Optimal Adversary Behavior for the Serial Model of Financial Attack Trees

Margus Niitsoo

University of Tartu, Liivi 2, 50409 Tartu, Estonia
Cybernetica AS, Akadeemia tee 21,12618 Tallinn, Estonia.
mar gus. ni i t soo@it . ee

Abstract. Attack tree analysis is used to estimate different parameters of geretaltg threats based on infor-
mation available for atomic subthreats. We focus on estimating the expegitexsiaj an adversary based on both
the cost and likelihood of the subthreats. Such a multi-parameter analysiesilerably more complicated than
separate probability or skill level estimation, requiring exponential time nmegd. However, this paper shows that
under reasonable assumptions a completely different type of optirbatraature exists which can be harnessed
into a linear-time algorithm for optimal gains estimation. More concretely, seeaudecision-theoretic framework
in which a rational adversary sequentially considers and performsvttilale attacks. The assumption of ratio-
nality serves as an upper bound as any irrational behavior will justenend result of the adversary himself. We
show that if the attacker considers the attacks in a goal-oriented way, thisabpxpected gains can be computed
in linear time. Our model places the least restrictions on adversariavioelwd all known attack tree models that
analyze economic viability of an attack and, as such, provides for theefie$ently computable estimate for the
potential reward.

1 Introduction

Assessing the security of a computer system has become an increasinglymmportant problem in the
past decade due to the widespread use of computer communications. To@ayanteresting graph-based
solutions have been provided (see [14] for a review) that try to addinesproblem of threat estimation.

Although the approaches vary greatly in their scope and methodologiespfrtbem have two things
in common. First, they tend to concentrate on the technical aspects of corapstiems such as network
topology and software flaws. Secondly, the emphasis is usually placawimgfiand describing the possible
attack vectors, giving less emphasis on the analysis of attack feasibility bhdikd. For instance, [2, 9]
concentrate on semi-automatic generation of attack graphs and then oalydosimple path-enumeration
and cut-set analysis on what they have generated. Both approamhesihce been developed further but
the emphasis still seems to remain on fast and accurate graph generation.

There are some major problems with these trends, however. The emphésthioical aspects such as
software vulnerabilities might not be the most fruitful path of inquiry. Fotanse, Bilar [3] found that for
6 operating systems used at that time, nearly all known vulnerabilities woaltitoebe patched in order to
achieve significant reduction in the probability of compromise and even tlegortibability would remain
reasonably high. This hints that most computer systems are usually ins@soree degree on the technical
level and that instead of asking whether the break is possible, we shabutba probable it actually is. This
guestion comes into perspective when we consider the increasing nufrthecessful social engineering
attacks, which are usually much simpler, yet often just as effective, @ardkrhnical hacking can be.

Another flaw with the emphasis on technical aspects is that the assumptiansadiersarial behavior
are often overly simplistic. For instance, it is generally assumed that a sigsitesecure as soon as a possible
means of penetration is found. This seemingly reasonable assumption sydrpwot always justified.
Knowing that there exists a way to penetrate the system is akin to knowing ighpbisible to pick the lock
on the front door of a house. However, it is obvious that whether theénwill actually be burgled depends

much more on whether there is something valuable inside, how high the probabgiting caught is and
what the penalties for breaking and entering are. Just consideringi#tigycpf the lock on the door or the
strength of the bars on the windows will definitely give some information atfveugecurity, but it might not
tell much about the actual likelihood of an attack.

This means that although the analysis of technical level vulnerability is of it@poe, it cannot provide
for the complete analysis of security. It is also important to develop modelsvtdréton a higher level of
abstraction and allow the integration of social engineering attacks alorgsidsore technical possibilities.
It would also make more sense to concentrate on the incentives and possibilditable to the adversary
and try to analyze his behavior rather than simply determining whether the attaggsible or not.

The attack tree (also called threat tree) approach to security evaluatiohdsecent development but
has roots that reach back several decades. Its beginnings carcdxd tiva-ault tree analysis methods that
were developed at Bell Laboratories in 1961 (see [7]). Througtieuyears, it has been used for tasks like
fault assessment of critical systems [18] and software vulnerability sisgly9, 16]. The approach was
introduced for the study of information system security by Weiss [21] andenpepular in that context
by Bruce Schneier [17]. We refer to [6, 8] for good overviews of deeelopment and application of the
methodology.

Although Weiss [21] already realized that the attack trees can have meaay@@rs, initial work con-
centrated on estimating just one of them at a time. The cost, feasibility and theegé&ilrequired for the
attack have all been independently considered for analysis by diffeo¢imors [16, 17, 15]. There is even a
software package [1] on the market for performing such anatyses

Substantial progress was made in 2006 by Buldas et al. [4] who introducedti-parameter game-
theoretic model which allowed estimation of the expected utility of the attacker withaoimear amount
of computation. The model was later used in practice by Buldas aigi (8] to evaluate the security of
several e-voting schemes in use at that time.

However, the model of [4] was somewhat ad-hoc and turned out to beetiially unsound. This was
noticed by dirgenson and Willemson [13], who in turn proposed a modification thatteelsin a sound
model for parallel adversary behavior in which the adversary has toattil the attacks at the same time
in parallel. However, it seems that exponential running time is required tondete the maximal possible
expected utility of the adversary. This means that the model is impracticall foutathe smallest attack
trees.

Jurgenson and Willemson went on to consider a model of serial attacksnMich the adversary
performs the attacks in a prescribed order and has full information atiwaitthe results of the previous
attacks are. For that model they provide a quadratic time algorithm for calguthe expected utility for
the adversary. Their model is sound, but only under a somewhat wsstoimgotion on adversarial behavior.
To be precise, they (implicitly) assume that the adversary always permmmetementary attack whenever
doing so increases the chance of materializing the primary threat. This vitllatassumption of economic
rationality because it is easy to envision a scenario where an elementakycaités more than the increased
probability of materializing the primary threat is worth. In such a case a rataahaersary would skip the
attack, but in their model it is performed nevertheless. To address thistflayconsider a subset of the
elementary attacks with the largest expected value. However, there is sgllarantee that this would
produce optimal results in terms of economic theory. Another problem withutbeges idea is that finding
the optimal subset seems to require an exponential amount of computatisrme&ans that their more
general model is much too slow for practical applications.

1 We note that although multiple parameters are used by the software paokegof the parameters is used just for tree pruning
and as such, their computational analysis is still single-parameter incessen

We start out with a systematic decision-theoretic approach to adversahifibr analysis and show that
there actually exists a linear-time algorithm for computing the maximal expectegimetor an exponential
sized family of attack orders. Our model is also one of the least restrictivelmodterms of assumptions
about adversarial behavior. This means that the expected utility of theszdy that is computed by our
proposed algorithm is the highest among the currently known efficient gtatipn methods and as such
can serve as an upper bound for all of them.

2 Attack Trees

In security analysis, one is interested in estimating the parameters of someniangey threat. The ad-
versary usually has many ways of materializing the primary threat and it is pftssible to break it down
into smaller parts such that either all or at least one of the parts need tallzedefor the main attack to
succeed. As many of these parts can then also be broken down in a simitzenyatree structure is formed
with increasingly simpler attack scenarios at the nodes. If one continwesngesing the threats, one is
bound to eventually reach a point where the attack considered is simplghesach that its parameters can
be directly estimated. When this happens, the threat is not decomposeat,fbtthis left as a leaf of the
tree and calle@lementary. When all the branches have been stretched out to that level of detglatess

is stopped and the result is called thitack tree corresponding to the primary threat at its root. A small
example of an attack tree is depicted in Figure 1.

A

Decrypt
company
secrets

V
_ V
Obtain / \ Obtain
encrypted

the password

VYN

Bribe the Hack into Brute force Use a
sysadmin the database | the password | keylogger
X1 X2 X3 X4

Fig. 1. An example attack tree

For a given attack tree, we denote the set of all its leaf elementary attacks=byXy,...,Xy}. The
internal nodes of the tree that describe the primary threat and its nonrgasnsubgoals can be of two dis-
tinct types. If all of the parts of the subgoal need to succeed for thgoslibo be considered successful, the
node is called an AND-nodé\{node). If just one successful part is enough for the subgoal soibeessful,
it is called an OR-nodeV(-node). These two node types are usually sufficient to describe allobsiybe
variations of the attacks.

This means that an attack tree is usually just an AND-OR tree in which the priimaat is realized
precisely when the root of the AND-OR tree is satisfied. The problem Isanbee expressed in terms of
Boolean functiongF on elementary attacks as the AND-OR tree can easily be converted into attmeno
Boolean formula of a certain simple form. For example, the attack tree in Figemrésponds to the
Boolean formulaF (Xz, X2, X3, Xa) = (X1 V X2) A (X3V X4). The attention is usually restricted to trees because

3

they usually provide for a model that is simpler both computationally as wellrstretion (for a specific
security threat). In our case, however, it makes sense to talk aboutgeoeeal attaclkcenarios where 7
can be any Boolean function.

These scenarios can still be analyzed in different ways dependinghah parameters of the attack
are taken into consideration and what assumptions are made about theaasidi®&ehavior. Our approach
follows that of dirgenson and Willemson [11] who simplify the model of Buldas et al. [4].ifMim@del has
just two parameters for each elementary attgck

1. The probability of the attack succeedipg
2. The expected expensasvhen attempting the attack.

Additionally, there is one global parametgrthat denotes the expected utility that materializing the
primary threat has for the adversary. We note that the expenses anetmgeclude not only the immediate
expenses of performing the attack but also accounts for the expedtedf @mssible penalties that need to
be paid if the attacker is caught in the act. How this value can be calculatedaslsl in detail in [13].
We also note that it is reasonable to assume that the adversary does paitdger attempting the attacks,
i.e., the expenses are all non-negative. It is also natural to assungashmadsitive for otherwise the attacker
would not be motivated to even attempt the attack. These parameters allow cereytout an economic
analysis in which it is assumed that the adversary tries to maximize his expettede.

In the serial model of attack, the adversary is assumed to try the elemetitarksaone at a time in
such a way that he always knows what has happened on the prettaxisaThis may lead to the adversary
not attempting an attack, for instance when it would have no impact on theofiteédme any more, i.e.,
performing it would not increase the probability of winniggHowever, whether this is the case or not
largely depends on the order of the elementary attacks. In real life, tineetary attacks often have a natural
order imposed on them by practical restrictions. For example, breakinth@twompany safe requires that
the culprit first break into the office itself so the latter clearly has to precesléotimer in the order of
attacks. For simplicity we indeed assume that the order of the attacks hafieeldreforehand and that the
adversary has to consider the attacks in just the order they are giseimgwith X; and ending withX,.
Figure 2 depicts two different possible orders for the example attack tisigure 1.

(b)

Fig. 2. Two different orderings of the tree in Figure 1.

Although we assume that the order of consideration is fixed for the attdeksdversary still has a
choice for each elementary attack of whether to commit it or not. If the pasboes imply that performing
the attack does not increase the likelihood of the main threat succeedencgiodefinitely gain by choosing
not to attempt the attack. This was the intuition behind the moddingiehson and Willemson [12].

The model they propose has the adversary always attempting an attackwehé increases the prob-
ability of materializing the main threat. They show that their model is sound in theesshMauw and

4

Oostdijk [15] and that computing the optimal adversary behavior can be a®(n?) time for the tree
model for all the possible orders.

However, their model suffers from one critical flaw. Namely, it may sometihaggen that an attack
costs more than it is worth in the sense that the probability increase of the meanighso small that it does
not outweigh the cost of performing the given elementary attdaoigehson and Willemson attempt to fix
this flaw by saying they consider all the possible subsets of elementarysattadkry to find the optimal
subset. This does not really solve the problem, however, as it may stiltibaabkto perform the attack for
one past while for the other it is not. We illustrate this with a small example.

Suppose we have the attack tree depicted in Figure 2(b)withe, = 0,63 =, =80,p; = p, =0.5and
ps = p4 = 0.9 with g = 100. In the serial model ofidgenson and Willemson all attacks will be attempted
whenever they increase the probability of success. This meanXgtaatd X, will always be performed
whereasXz will be performed precisely wheKX; fails and X, will be performed when eitheX; or X3
succeeds, buX; fails. This is optimal behavior except in the case whérandX, both fail. After that, one
would need bothXz and X, to succeed in order to be awarded the gagnBor that to happen, bot and
X4 need to be attempted, costing 160. This is obviously not worth doing as the mh@xisséble gains from
it are just 100 units when the attack succeddssucceeds. Despite thiX; is still attempted by the model
because there still is a theoretical chance of winning the gains. This ityakedeconomically rational.

The optimal subset improvement does not solve the problem either babavseare cases where both
Xo and X3 are worth attempting and increase the expected utility. This means that remahieigane of
them will also decrease the maximal expected outcome. The only possiblesionds that there exists a
behavior strategy for the adversary that is strictly better than is deslzibglthe serial model ofitgenson
and Willemson.

3 Our Model

To overcome the weaknesses in the previous serial model, we appraaphotiiem from the classical
viewpoint of decision theory (see [10] for an introduction). We assuraativersary to be a fully ratiorfal
expected utility maximizer who can choose whether to attempt each elementakyattad in their given
order. Additionally, we assume full information about the past so that wesideringX; the adversary
is assumed to have information about his past attack decisions and thdtis.rééel are interested in the
optimal decision strategy for the adversary and how much he could expect to gain by following it. The
strategy consists of a series of prescriptions on how to behave - opadbrattack for each of its possible
past series of events. This means that the adversary can chooseate liretdifferent ways for different
past outcomes. The strategy is considered optimal when it has the higlssiilg utility of all the possible
decision strategies. This guarantees that the resulting behavior willggdba highest expected outcome
of all the possible behaviors that only rely on the information accounteditbin the model. Among other
things, it will allow the adversary to refuse an attack when it is just too esipenas happened in the
example in the previous section.

The classical formalization for serial decision problems isdaeision trees. Decision trees, like attack
trees, have only two types of internal nodes and one type of leaves\ugowheir semantics are completely
different. The internal nodes are either decision nodes (depictediases)in which the attacker can choose
the outcome, or chance nodes (depicted as circles) in which the outcomasenalandomly according to
a given distribution. The leaves are called utility nodes (depicted as dianandshey determine how

2 This provides the upper bound as an irrational adversary can dattes. Génis is the generally accepted justification for consid-
ering rational actors in decision theory.

much the current sequence of decisions and chance events is worthaidvidresary. The decision strategy
essentially consists of a prescription of what to choose at each decziten Whensolving the tree, we
are looking for a strategy that maximizes the expected utility. An example ofisigdedtree is depicted in
Figure 3. Itis quite straightforward to draw out the decision tree for edvial behavior in the serial model
described for any Boolean functigh. For example, the decision trees 6 X;, X) have the form depicted
in Figure 3. Finding the utilities at the leaves is also quite simple as it involves tli@/pasility of either
gif F was true or 0O if it was false and from that one just needs to subtract geme&s incurred during the
attack that depend on the exact decisions made and their outcomes.

Since the decision trees corresponding to the attack trees (or any atackies describable by Boolean
formulae for that matter) are always binary, we adopt the following autime when depicting them in fig-
ures. We always assume that the upper arrow corresponds to thegangiver (attack is attempted, attack
succeeds) and that the lower arrow corresponds to the negativerafaiack is not attempted or fails). Ad-
ditionally, since the chance nodes have just two outputs, the distributiongiior iguniquely determined by
the probability of the positive answer alone and we write that value insidéntirece node. For utility nodes,
we write their utility inside the diamond symbol whenever possible. To differentiatween decision and
attack trees visually, decision trees are depicted with a root on the left wtdlkkdrees have the root on
top.

Fig. 3. A Decision Tree forf (X, X2)

The standard algorithm for computing the expected value of decision traetually very straightfor-
ward. It takes an internal node for which the optimal expected outcom#weathildren are known and
computes the optimal expected outcome for that node as well. This is done éxytakimg the maximum of
the utilities of the children if it is a decision node, or taking the weighed averile outcomes of children
according to the given distribution if it is a chance node. The procespésted until the expected maximal
outcome for the root node is computed, which is then taken as the expectedahantcome of the whole
tree. As we assume the adversary to be a rational utility maximizer, this is the atosdlrway to define his
optimal gains.

As a decision tree can easily be drawn out for any Boolean fun¢fiam the set of elementary attacks
X and as the results do not depend on the representatign ofir semantics are consistent in the sense of
Mauw and Oostdijk [15]. Thus far the AND-OR tree approach has beevafent in the security analysis
literature due to the simplicity of calculations in many cases.

The decision tree approach provides us with a convenient, straightfbemal theoretically sound for-
malization for adversarial behavior. Regrettably the trees are genefakponential size in the number of
attacks so for practical attack scenarios it is infeasible to even draw themfall. When assuming that the
attacks can be expressed as Boolean functions, however, the demsisrcan often be greatly simplified

6

and the optimal strategy can be found in polynomial time. Before describinvgltis can be done we first
introduce some additional decision theory to simplify further discussion.

The standard model of decision trees is somewhat inconvenient foruspoges. It would be more
natural if we could factor in the expenses at the place where they amneédaather than at the leaves. The
model can easily be modified to accommodate this by allowing utility changes to leelgaedges as well
as at the leavésWe also change the semantics so that the utility of a given path from root &b is ieow
defined as the sum of all the utility nodes encountered on the way, the leaé Wie path ends included. To
cope with the augmented semantics within the optimization algorithm, we introducefarratenpacting a
utility node whose child is also a utility node. It works through simply merging therteaes by summing
their utilities.

With this formalization we can move the expenses associated with performingablesan between the
chance and decision nodes inside the tree, leaving only eitheg @the leaf utilities. It is straightforward
to verify that this new model still gives the exact same maximal expected out@sithe original decision
tree model. Applying this approach to the example of Figure 3 producese~igal. In the case of our

Fig. 4. Generalization of the decision tree f6r(X;, X2) = X1 vV Xz with extra utility nodes (a) and then into an RDAG (b)

model this shift will often tend to produce a tree with many subtrees that anpletely identical in the
sense of having the exact same types of nodes with the exact same strdigiibutions and utilities. As
the algorithm for solving decision trees works from leaves towards theitr@oclear that if two subtrees
are equal to the end then the optimization algorithm will work in an essentially id¢miey in both. As
solving two such subtrees separately is just duplicate work, we couldisady using the same solution
in both places and computing it just once. A convenient way to represenhtbur model is to replace the
two equal subtrees with just a single one by making the incoming arcs to th&sryoth point to the same
node. See Figure 4(b) for an illustration of this. This requires loosenmgdbhumption of having a (rooted)
tree into that of having a rooted directed acyclic graph (RDAG). It is éasge that the maximal expected
utility remains unchanged whenever two equal subtrees are merged togethe

Before moving on we note that the two generalizations to the decision tree aredsbth fairly natural
and quite standard. The generalization to RDAG is commonly referreddmabescing and is viewed as one
of the simplest ways of reducing the decision tree size. Allowing utilities on tge<ts also completely
standard.

The RDAG generalization allows us to make one further simplification. Followiagiample on Fig-
ure 4 it should be intuitively clear that the subtree corresponding to arkattaailing and the subtree

3 S0 a utility node now always has one incoming arc and may also have abnesutgoing arc.
4 For readability we omit minus-signs from the utility nodes correspondinget@xipenses. They do nonetheless convey negative
utility and this is just a notational convenience for the figures.

corresponding to the same atta¥knot being attempted are always identical to one another so we can al-
ways merge them together. This allows us to abstract the decision and éspmmmding chance and utility
nodes into alecision compound like the one depicted in Figure 5(a). After doing that we are left with a tree
composed of just decision compounds and utility nodes (an example is deipi€igdre 5(b)). This allows

for a simpler and more informative visual representation and all the ded®#G figures in the follow-

ing will use this abstraction. Therefore, the following diagrams will be coragad decision compounds
(marked as rectangles with rounded corners) and two terminating leavesferd and one fog.

L <o)

€Y

Fig. 5. A decision compound foX; (a) and the RDAG in Figure 4 redrawn using decision compounds (b)

4 Non-crossing Trees

Since the decision trees are of exponential size in general, we neediditiersal assumption to achieve
computational efficiency. We thus constrain the order of the attacks toeatthanon-crossing assumption.

The non-crossing condition basically means assuming goal-orientedibefram the adversary. It is
required that the elementary attacks of a subattack are always attemptiabtagighout considering any
elementary attacks from the other subattacks in between. If a subattackethsng to the effect of "break
into the main office and steal the data from the safe” then it is completely natuasisume that all the
elementary attacks within it (such as "pick the front door”, "find the saferack the safe open”, "run for
your life”) are all attempted one after the other without attempting elementarkafiaen other subattacks
(such as "hack into the mainframe of the overseas office”) in between Wenessentially assume that
one large goal is either satisfied or abandoned before a subsegbatiask of the same importance is
ever attempted. As people do tend to work and think in a goal-oriented wayeleve this to be a rather
reasonable assumption to make of an adversary.

The name "non-crossing” comes from the visual representation of thekadtees. Suppose an attack
tree is drawn in such a way that all elementary attacks are positioned orightstirge in the order they
are performed. The tree, then, is non-crossing precisely when iteednalivn so that no two arcs intersect
one another (without changing the order of elementary attacks) andtcraaases the straight lines from
the root to the first and last elementary attack. This is best illustrated oreRiguhere the subfigure (a) is
non-crossing while (b) is crossing. Formally, the condition can be statee iioflowing way:

Definition 1. Let F(X1,...,%y) be a monotone Boolean formula of n variables. We say that ¥ is non-
crossingrelative to the order Xy, ..., X, if it can be written in such a way that

(simplicity) Only A and V operators are used
(single-occurrence) Each variable occurs at most once
(order-preserving) For all i < j, X appearsto the left of X;

We note that for a given attack treemélementary attacks there are at ledst'aifferent non-crossing
orders so our approach works for an exponentially large set ofardewever, it is only a negligible fraction
of all the possibla! orders.

For simplicity, we assume the attack trees tdob®ry so that every internal node has just two children.
As we are dealing with AND-OR trees, this is without loss of generality. Thietabse a single AND-node
with many children can be split into a series of AND-nodes with just two chilésash and the same can
be done for OR nodes as well. This means we can decompose any 138mgraND-OR tree into a non-
crossing binary tree without changing the semantics. As the process is sintht®mpletely mechanic we
will discuss it no further and just assume we are using binary trees.

5 Efficient Computation for the Non-Crossing Trees

For the case of non-crossing trees the RDAG can be greatly reducied.if@ be precise, it can be made to
have just one decision compound for each elementary attack. The resgtised in the following theorem:

Theorem 1. Let Xy, ..., X, be elementary attacks of an attack scenario described by F (Xy, ..., Xn). If F is
a non-crossing Boolean function, the optimal attack strategy can be found in O(n) time.

Proof. The result rests on three observations about the structure of nesirggattack trees.

It should be clear from the description of the decision RDAG that two sDBES rooted alX; are func-
tionally equal whenever they give the same exact outcome for all the po$sthre choicesX;, ..., X,.
More formally, for an attack tree corresponding to a Boolean funcfigntwo subtrees with histories
ri,....ri—1 € {t,f}andry,....r_; € {t, f} rooted atX; are equal precisely when for &],.... X, € {t, f}
we have

,{F(rla"'vriflvxiv"-axn):—{F(r&v-"ari/—bxia"',xn) . (1)

This is so because the subtrees rooted at two different decision codgpfamthe same attack; always
have the same binary subtree structure all the way to the leaves and theathegly differ in leaf values.
Leaf values, however, are fully determined by the Boolean funcfioand the equivalence holds because
that, too behaves in an identical way in the two cases.

It turns out that in the case of non-crossing trees this simplification allows sygstematically reduce
the complexity of the decision RDAG to a manageable size. This can be doae tathree simple ob-
servations. For illustration we will use an example attack tree depicted in Figayg¢o demonstrate the
simplification process. The corresponding unsimplified decision RDAG ietehin Figure 6(b).

Before moving on to discuss the observations, we introduce some notaoassiime the tree to be a
full binary tree so each internal node has exactly two direct descendechildren. The single-occurrence
assumption means that there is one well-defined path from each of the elgnataaks to the root. We
denote this path by2 = {Yo,Y1,...,Yk} whereYy is the root. Given a fixed non-crossing order, the two
childrenZ,,Z; of a parent nod&, are uniquely ordered to satisfy the non-crossing restriction. WeZcalll
andZ, siblings of one another and we call the siblidgtheleft sibling of Z, andZ; theright sibling of Z;. If
Z,is an AND-node, we sa¥, is the leftAND-sibling and ifZ, is an OR-node, we call, the leftOR-sibling
of Z,. For an elementary attack we call the sets; of left siblings of ? its left (sibling) set. Left AND-set
and left OR-set are defined in a similar way, being composed (respgriideft AND-siblings and left
OR-siblings of?.

For example, consider the elementary attXglof the attack tree in Figure 6(a). Its left AND-set is
composed of a single node — the OR-node that combinemdX;. Its left AND-set also has just one node

9

(@) (b)

Fig. 6. An attack tree (a) and the corresponding decision tree (b)

— the leaf node of the elementary attatk These two nodes together form the complete left seKfoAs
X4 is the last elementary attack, its right set is empty.

We note that the non-crossing assumption along with the assumption of fulinafion about the past
guarantee that whenever a deciskiis being considered, all the values for its left set nodes can already be
computed. This is because the elementary attacks required for that headyalireen performed and their
results are known. This makes the left set central in our description dlgioeithm as it is coupled with
the fact that information about previous attacks can be compressedtdgwst the values of the nodes
contained therein.

We first note that the equation (1) always holds wheneyver.,ri_1 € {t,f} andr},...,ri_; € {t, f}
give the same results for the elements of the left seX ofThis is intuitively easy to understand if you
consider that the results from the elementary attacks are aggregatedraethel nodes and that having a
stake in the aggregate results is the only way the elementary attacks reallpéefline root value. As our
tree is non-crossing, the left set values ¥prcan always be computedii, ..., ri_1 are all known and the
left set values are, in fact, the topmost aggregate values that can beateshbased solely on the history up
to X;. This means that the left set truth values are essentially the only informatibis tigeded about the
past attacks and their successes. After carrying out the simplificatioRODAG for the example attack tree
in Figure 6 simplifies to the form depicted in Figure 7(a).

The second thing we note is that there is actually just one valuation of theetdtirsvhich any given
decision actually makes any difference - the one where all the nodes inftAdNIB-set evaluate td and
all the nodes in the left OR-set evaluate ftoThis is because any left set valde deviating from that
scheme would also determine the value for its parent cl@gsEor instance, iZ, was an OR clause and
Z, would bet then no matter what the right branzh evaluates toZ, would still evaluate ta. Analogous
reasoning works foZ, being an AND clause ang beingt. This means that in these cases no elementary
attack within the subtree df, could possibly modify the final outcome (as the aggregate valug &
determined already). Sincg is contained in the subtree &f, its result is insignificant when computing
the final result in this case. After carrying out this simplification for ournepke we arrive at the RDAG
depicted in Figure 7(b).

10

Fig. 7. The attack tree being simplified according to the first (a) and the secdotbgbrvation

The third observation is that the decision compounds whose both outgamgaint to the same place
are inconsequential and can actually be ignored. The reason for that is that performing thek attay
cost something while not attempting it is always free. As such, it is alwagsrad to attempt an attack
whenever both success and failure lead to the same future outcomedidvgsues to simplify the decision
RDAG even further. For notational convenience we call the decision cangs that are left after this step
consequential. The final RDAG for the example is depicted in Figure 8

Fig. 8. The attack tree after the third simplification

To further illustrate the observations, we provide another example of arlattack treeX; A ((Xz A
(X3 X4)) V Xs) along with the fully simplified decision RDAG corresponding to it in Figure 9. Afobe,
the RDAG is again of only linear size.

Fig. 9. An attack tree of five elementary attacks (a) and the corresponding sedpléicision RDAG (b)

11

Putting the three observations together clearly leads to a conclusion thatievge all the equal sub-
RDAGs for a non-crossing tree, there is just one consequential decisiopound per each attagk This
follows from the fact that there is just one sub-RDAG for each left adiation (the first observation) and
that there is just one left set valuation for which it matters whether the comgpsucceeds or fails (the
second observation) and that all the other compounds can be rembasav@tion three). This means that
the decision RDAG is of linear size for the non-crossing trees. As thetgteuof the RDAG can also be
computed in linear timé& and the optimization process takes time proportional to the number of nodes in
the decision RDAG, the whole computation can be dor@(im) time. O

The algorithm that results for the non-crossing case is fairly easy to impteandrhas relatively low
overhead. Itis also extensible to the case where inconsequential codg@iiose where both outgoing arcs
point to the same place) cannot be inlined, although in such a case, thighatgsrworst case quadratic. see
Appendix B. In some special cases, however, dynamic programmindiltde sised to do partial inlining,
in which case the running time remains linear. An example of this is provided hwyiajdor the expenses
to be negative (i.e. getting paid for performing an attack instead of payirit).f&ee Appendix C.

6 Connection with Previous Models

As claimed in the introduction, our model achieves the highest expectedwoaifoo the adversary of all the
financial models proposed thus far. To be more formal#ldte an attack scenario with elementary attacks
X and leto be a fixed ordering for the elementary attackinDenote byOutcomeg,W the expected utility
assigned to the attack tree with attack ordesn the optimal subset of by the serial mode of Jurgenson
and Willemson [12] and leDutcomeDT be the expected utility computed by the decision-theoretic model
proposed in this paper. It is easy to show that

Theorem 2. For all attack scenarios # and attack orders o
OutcomelV < OutcomeDT .

It is interesting to note that in the case of non-crossing trees the equalysivolds in Theorem 2
We do, however note that findir(gutcomeﬂ,w requires trying all the 2subsets to find the optimal solution
whereas our algorithm find3utcomeDT in linear-time.

This observation leads to another possible practical applicationOLatome” denote the expected
outcome in the parallel model of [13Juthenson and Willemson [12] showed that

Outcome” < Outcome?W
o

for all attack orders. This result, when combined with ours, yields a linear-time method of finding non
trivial upper bounds on the adversarial outcome in the parallel modelisT&isnething that was impossible
with the previously known algorithms.

5 Success always goes to the leftmost elemental attack of the subtres atiie lowest element of the right AND-set and analo-
gously for failure and the right OR-set. This is easy to verify and we oritigtails. Using this knowledge it is straightforward
to generate the graph in linear time by first determining the leftmost elenatdaek for each subattack and then traversing the
tree left-to-right, keeping track of the right AND and OR sets. See Appehéor the pseudocode.

6 This follows from the fact that there is always just one consequentisida compound for each elementary attagKrom
which it follows that the optimal subset for the model of [12] is exactly tbed elementary attacks; that are considered
worthwhile in our model.

12

7 Possible extensions

The simplification steps presented in the preceding section are not restadtezinon-crossing trees and
can indeed be applied for many other Boolean functions and variablesofidebetter understand that, we
look at an alternative form of representing the underlying Boolean flaenu

Binary Decision Diagrams (BDD) are a method of compactly representinteBodormulae by rooted
directed acyclic graphs where each node corresponds to a variagiasiwo distinguishable outgoing arcs
— one for when the variable is set to true and one when it is set to falsegréiph has just two leaves that
correspond to the formula being evaluated to true and the other for fdlean®st common use of BDD-s
involves the so called Reduced Ordered BDD-s (ROBDD-s) in which tteseariables are in a fixed order
and all the sub-RDAGs that are equivalent are merged. It is also adghata node is in-lined whenever its
both outgoing arcs point to the same place. We refer a reader more indéretite theory of BDD to [20]

Following the steps of the previous section, it is trivial to see that our mod=d@iomic decision trees
actually reduces to the form where we have a directed graph of decisiopaunds (with output degree
2) and just two leaves. As the final destination leaf of a path is determinelg bgl¢he truth table of the
Boolean function, it is clear that our model is in some sense isomorphic to 8 }3-we can also do all
the simplification steps that are allowed for ROBDD-s, we can actually formalizessult as the following
corollary:

Corollary 1. Suppose we have an attack scenario with elementary attacks X = {X,..., X} so ordered. If
the attack scenario F can be described with a polynomial-sized ROBDD with the same order, the optimal
strategy and its expected outcome can also be determined in polynomial time.

This result has three important implications. Firstly, it is known that many Badlaanulae (that can-
not be expressed as AND-OR trees) have reasonably small refaitsesn as ROBDD-s for some variable
orders. This is important because it may well make sense to find the utility dven thie order for which
this is feasible is completely absurd. This is because our model will prodstigctly higher utility than
the parallel model described in the introduction. As the exact computatiore gfattallel model takes ex-
ponential time, our model can thus be used as a fast and practical mdamdirgg an upper bound for the
adversarial outcome in it. It is known that most interesting classes of Bofieations do have orders for
which their BDD-s are small, allowing our model to be used for just such estimatio

A second implication (being somewhat a corollary of the first) is that we ctualy allow a few
elementary attacks to occur in multiple places in the tree. Namely, it is rather easyfyathat introducing
another occurrence of a variable can at most double the size of the ROB® such, the model still
remains efficiently computable if 2-4 variables occur more than once. Thiteis the case in practice as
most elementary attacks only matter in one place but there are usually a tdwagsgaining root privileges)
that are required in multiple places. In these cases there is still an expdmsentid orders for which the
approach will work.

A third implication is that even for simple attack trees, we cannot use this agpfoaall the possible
orders. To be precise, there are trees of very simple structure fohwshioe orders produce exponential-
sized ROBDD-s. This means that the approach, although very efféotigmining practical estimates and
computing some attack orders, is still inherently limited. The exact extent to sk limits apply needs
further exploration and we leave it as an open question for now. A geidlkew of BDD literature shows
that this question is relatively unexplored. This is probably due to the fatirnlgeneral applications the
order of variables in a BDD does not need to be fixed. Due to that, mostiter& interested in finding

7 This is essentially achieved by Shannon decomposition on the remainiaglear

13

orders that produce small BDD-s and not in determining the minimal size oftafBba given order. Some
progress has been made, however and we refer the more interestedtce@hapter 5 of [20] for a general
overview.

8 Conclusions and Further Work

We describe a model for attack trees that is strictly based on classicalbdettisory. We also show that
there exists an exponential sized family of orders for attack trees forwvthi& maximal utility outcome
can be found irO(n) time and also describe how the same approach may be generalized for otthearB
functions that generalize the usual solely tree based approach.

Our work still leaves many open questions to be further explored. Fonicestéhe assumption of non-
crossing trees, although quite natural, is still rather restrictive and it welldery interesting to find an
efficient algorithm that works under more general assumptions. Anaitenesting question is whether
the optimal order for the elementary attacks could be found efficiently in thescahere the order is not
determined naturally. It would also be interesting to consider more genedgdlsysuch as those allow-
ing intermediate payouts in the subattack nodes. Research in any of thesteds would greatly further
the applicability of attack trees and provide us with much more accurate toopsddicting adversarial
behavior.

9 Acknowledgements

The author would like to thank Jan Willemson and Aiimgkenson for introducing him to the topic of attack
trees and for helpful comments on this article. He is also very grateful to ISuer, Peeter Laud and all the
anonymous reviewers for all their suggestions, which helped to makettble aasier to follow and more
self-contained.

14

Bibliography

[1] AmenazaSecur/tree attack tree modeling, 2010,ht t p: / / www. anenaza. cont .

[2] Paul Ammann, Duminda Wijesekera, and Saket KausBilable, graph-based network vulnerabil-
ity analysis, CCS ’'02: Proceedings of the 9th ACM conference on Computer and coinations
security, 2002, pp. 217-224.

[3] Daniel Bilar, Quantitative risk analysis of computer networks, Ph.D. thesis, Dartmouth College, 2003,
Chairperson-Cybenko, George.

[4] Ahto Buldas, Peeter Laud, Jaan PriisaliamSaarepera, and Jan Willems®&ational Choice of Se-
curity Measures via Multi-Parameter Attack Trees, Critical Information Infrastructures Security. First
International Workshop, CRITIS 2006, LNCS, vol. 4347, 2006,385—248.

[5] Ahto Buldas and Triinu Ngi, Practical security analysis of e-voting systems, Advances in Information
and Computer Security, Second International Workshop on Securi§ElRY LNCS, vol. 4752, 2007,
pp. 320-335.

[6] Kenneth S. EdgeA framework for analyzing and mitigating the vulnerabilities of complex systemsvia
attack and protection trees, Ph.D. thesis, Air Force Institute of Technology, Ohio, 2007.

[7] Clifton A. Ericson Il, Fault tree analysis - a history, Proceedings of the 17th International System
Safety Conference, 1999.

[8] Jeanne H. Espedahlefiitack trees describing security in distributed inter net-enabled metrology, Mas-
ter’s thesis, Department of Computer Science and Media Technologyk®&@iversity College, 2007.

[9] Sushil Jajodia, Steven Noel, and Brian O’Berfgpological analysis of network attack vulnerability,
Managing Cyber Threats: Issues, Approaches and Challenges, 200

[10] Finn V. JensenBayesian networks and decision graphs, Information Science and Statistics, Springer,
2001.

[11] Aivo Jurgenson and Jan Willemsdey,ocessing multi-parameter attacktrees with estimated parameter
values, Advances in Information and Computer Security, Second Internationekdifop on Security,
IWSEC, LNCS, vol. 4752, 2007, pp. 308-319.

[12] Aivo Jurgenson and Jan Willemsoserial model for attack tree computations, International Confer-
ence on Information Security and Cryptololgy: ICISC 2009, LNCS, 2009

[13] Aivo Jurgenson and Jan Willemso@pmputing exact outcomes of multi-parameter attack trees, On
the Move to Meaningful Internet Systems: OTM 2008, LNCS, vol. 533282¢p. 1036-1051.

[14] Richard P. Lippmann and Kyle Ingol&n annotated review of past papers on attack graphs, 2005.

[15] Sjouke Mauw and Martijn Oostdijloundations of attack trees, International Conference on Informa-
tion Security and Cryptology — ICISC 2005 (Dongho Won and Seungjoo Kifg,), LNCS, vol. 3935,
Springer, 2005, pp. 186—-198.

[16] Andrew P. Moore, Robert J. Ellison, and Richard C. Lingétack modeling for information security
and survivability, Tech. Report CMU/SEI-2001-TN-001, Software Engineering InsjtR001.

[17] Bruce Schneietittack trees. Modeling security threats, Dr. Dobb’s Journa4 (1999), no. 12, 21-29.

[18] W.E. Vesely, F.F. Goldberg, N.H. Roberts, and D.F. Hazal|t tree handbook, US Government Print-
ing Office, January 1981, Systems and Reliability Research, Office cielluRegulatory Research,
U.S. Nuclear Regulatory Commission.

[19] John Viega and Gary McGrawuilding secure software: How to avoid security problems the right
way, Addison Wesley Professional, 2001.

[20] Ingo WegenerBranching programs and binary decision diagrams. theory and applications, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[21] J. D. WeissA system security engineering process, Proceedings of the 14th National Computer Secu-
rity Conference, 1991, pp. 572-581.

A Pseudocode for the Linear Algorithm

For completeness we give (recursive) pseudocode for the linearthigdor non-crossing trees. The algo-
rithm should initially be called alsr ec(0, 1) .

Algorithm 1 [rec(£,i)

Require: The set of elementary attacks= {X1,Xo,...,Xn} with their costsc; and success probabilitigs along with a single-
occurrence non-crossing monotone Boolean fornfuldescribing the attack scenarios
Require: Truth valuesz evaluated for the left set based on past results for attacks
Require: i € [1,n+1] - the index of the attack we are considering
1: ifi=n+1then
2: return gor 0 depending on whether the main threat was materialized

3: else if The global outcome of given £ depends otX; then
4 if The expected valug; for X; has been cachatien
5: return E;
6 else
7 Update£ by assuming thaX; succeeded. Store the resultih
8 Determine the indek" of the leftmost elementary attack of the lowermost right AND-siblingofif it does not exist,
i™ =n+ 1 and the main threat succeeds, yielding
9: TakeE* =lrec(L,iT)
10: Updater by assuming thax; failed. Store the result ir”.
11: Determine the indek" of the leftmost elementary attack of the lowermost right OR-sibling;off it does not exist,
i~ =n+ 1 and the main threat fails, yielding 0.
12: TakeE™ =Irec(L",i7)
13: Compute the optimal expected outcobe max{ pE™ + (1— p)E~ —¢,E~}.
14: CacheE asE;.
15: return E
16: endif
17: end if

B Quadratic Decision RDAGs

There is a simple family of attack tre€sfor which the number of nodes is of quadratic size if no pruning of
inconsequential nodes is performed. The fandllys generated by taking the Boolean formian ((Xp A

Z) Vv Xc) and iteratively replacing@ within it with the exact same compound, getti@g = Xa A (X A Z) V

Xe)y Q2 =Xa A (XA Ka A (K AZ) VX)) VXKe), - ... In general, the formula fd@my, will have 3m+ 1
variables. If they are left in the same order but numbered from Int¢ 3 and interpreted as an attack tree,
the decision RDAG corresponding to the resulting attack tree will t{@ae- 5)n+ 1 ~ 3n? compounds

- exactlyk compounds for eacKy for 1 < k < 2m+1, 2m+ 1 compounds foXom: 2 and 2 less than the
previous for eaclxy from then on. That this is indeed so should be intuitively clear and easyifg based

in Figure 10.

16

Fig. 10.Decision RDAG corresponding to the smallest attack @g®f the family Q.

C The Linear Algorithm for Negative Expenses Model

For completeness we bring the linear algorithm along with the modifications eelgtaorwork with the
negative expenses as well.
The precomputation step consists of computing sums

S=- 5 =a.

i:1<i<n,g<0

As before, the algorithm should initially be called as Igt].

Algorithm 2 Irec(L,i)

Require: The set of elementary attacks= {X;,X,...,Xn} and a single-occurrence non-crossing monotone Boolean forfnula
describing the attack scenarios
Require: Truth valuesz evaluated for the left set based on past results for attacks, theSums
Require: i € [1,n+1] - the index of the attack we are considering
1: ifi=n+1then
2: return gor 0 depending on whether the main threat was materialized

3: else if The global outcome of given £ depends otX; then
4 if The expected valuk; for X; has been cachatien
5 return E;
6: else
7 Update£ by assuming thaX; succeeded. Store the resultih
8 Determine the indek" of the leftmost elementary attack of the lowermost right AND-siblingGofif it does not exist,
it =n+ 1 and the main threat succeeds.
9: TakeE™ =Irec(£,iT)+S+_1—§
10: Updater by assuming thaX; failed. Store the result ir”.
11: Determine the indek" of the leftmost elementary attack of the lowermost right OR-sibling;off it does not exist,
i~ =n+ 1 and the main threat fails.
12: TakeE™ =lrec(£”,i7)+S-_1—§
13: Compute the optimal expected outcofef the decision compound foX; on the assumption that its outputs have
expected values &+ andE~ respectively.
14. CacheE askE;.
15: return E
16: endif
17: end if

17

