
Optimal Adversary Behavior for the Serial Model of Financial Attack Trees

Margus Niitsoo

University of Tartu, Liivi 2, 50409 Tartu, Estonia
Cybernetica AS, Akadeemia tee 21,12618 Tallinn, Estonia.

margus.niitsoo@ut.ee

Abstract. Attack tree analysis is used to estimate different parameters of general security threats based on infor-
mation available for atomic subthreats. We focus on estimating the expected gains of an adversary based on both
the cost and likelihood of the subthreats. Such a multi-parameter analysis isconsiderably more complicated than
separate probability or skill level estimation, requiring exponential time in general. However, this paper shows that
under reasonable assumptions a completely different type of optimal substructure exists which can be harnessed
into a linear-time algorithm for optimal gains estimation. More concretely, we use a decision-theoretic framework
in which a rational adversary sequentially considers and performs the available attacks. The assumption of ratio-
nality serves as an upper bound as any irrational behavior will just hurtthe end result of the adversary himself. We
show that if the attacker considers the attacks in a goal-oriented way, his optimal expected gains can be computed
in linear time. Our model places the least restrictions on adversarial behavior of all known attack tree models that
analyze economic viability of an attack and, as such, provides for the best efficiently computable estimate for the
potential reward.

1 Introduction

Assessing the security of a computer system has become an increasingly more important problem in the
past decade due to the widespread use of computer communications. To date, many interesting graph-based
solutions have been provided (see [14] for a review) that try to address the problem of threat estimation.

Although the approaches vary greatly in their scope and methodologies, most of them have two things
in common. First, they tend to concentrate on the technical aspects of computersystems such as network
topology and software flaws. Secondly, the emphasis is usually placed on finding and describing the possible
attack vectors, giving less emphasis on the analysis of attack feasibility or likelihood. For instance, [2, 9]
concentrate on semi-automatic generation of attack graphs and then only do rather simple path-enumeration
and cut-set analysis on what they have generated. Both approaches have since been developed further but
the emphasis still seems to remain on fast and accurate graph generation.

There are some major problems with these trends, however. The emphasis ontechnical aspects such as
software vulnerabilities might not be the most fruitful path of inquiry. For instance, Bilar [3] found that for
6 operating systems used at that time, nearly all known vulnerabilities would need to be patched in order to
achieve significant reduction in the probability of compromise and even then the probability would remain
reasonably high. This hints that most computer systems are usually insecureto some degree on the technical
level and that instead of asking whether the break is possible, we should ask how probable it actually is. This
question comes into perspective when we consider the increasing number of successful social engineering
attacks, which are usually much simpler, yet often just as effective, as clever technical hacking can be.

Another flaw with the emphasis on technical aspects is that the assumptions about adversarial behavior
are often overly simplistic. For instance, it is generally assumed that a systemis insecure as soon as a possible
means of penetration is found. This seemingly reasonable assumption is, however, not always justified.
Knowing that there exists a way to penetrate the system is akin to knowing that itis possible to pick the lock
on the front door of a house. However, it is obvious that whether the house will actually be burgled depends

much more on whether there is something valuable inside, how high the probabilityof getting caught is and
what the penalties for breaking and entering are. Just considering the quality of the lock on the door or the
strength of the bars on the windows will definitely give some information aboutthe security, but it might not
tell much about the actual likelihood of an attack.

This means that although the analysis of technical level vulnerability is of importance, it cannot provide
for the complete analysis of security. It is also important to develop models thatwork on a higher level of
abstraction and allow the integration of social engineering attacks alongsidethe more technical possibilities.
It would also make more sense to concentrate on the incentives and possibilities available to the adversary
and try to analyze his behavior rather than simply determining whether the attackis possible or not.

The attack tree (also called threat tree) approach to security evaluation is not a recent development but
has roots that reach back several decades. Its beginnings can be traced to Fault tree analysis methods that
were developed at Bell Laboratories in 1961 (see [7]). Throughoutthe years, it has been used for tasks like
fault assessment of critical systems [18] and software vulnerability analysis [19, 16]. The approach was
introduced for the study of information system security by Weiss [21] and made popular in that context
by Bruce Schneier [17]. We refer to [6, 8] for good overviews of thedevelopment and application of the
methodology.

Although Weiss [21] already realized that the attack trees can have many parameters, initial work con-
centrated on estimating just one of them at a time. The cost, feasibility and the skilllevel required for the
attack have all been independently considered for analysis by different authors [16, 17, 15]. There is even a
software package [1] on the market for performing such analyses1.

Substantial progress was made in 2006 by Buldas et al. [4] who introduceda multi-parameter game-
theoretic model which allowed estimation of the expected utility of the attacker with only a linear amount
of computation. The model was later used in practice by Buldas and Mägi [5] to evaluate the security of
several e-voting schemes in use at that time.

However, the model of [4] was somewhat ad-hoc and turned out to be theoretically unsound. This was
noticed by J̈urgenson and Willemson [13], who in turn proposed a modification that resulted in a sound
model for parallel adversary behavior in which the adversary has to attempt all the attacks at the same time
in parallel. However, it seems that exponential running time is required to determine the maximal possible
expected utility of the adversary. This means that the model is impractical for all but the smallest attack
trees.

Jürgenson and Willemson went on to consider a model of serial attacks [12]in which the adversary
performs the attacks in a prescribed order and has full information aboutwhat the results of the previous
attacks are. For that model they provide a quadratic time algorithm for calculating the expected utility for
the adversary. Their model is sound, but only under a somewhat weird assumption on adversarial behavior.
To be precise, they (implicitly) assume that the adversary always performsan elementary attack whenever
doing so increases the chance of materializing the primary threat. This violatesthe assumption of economic
rationality because it is easy to envision a scenario where an elementary attack costs more than the increased
probability of materializing the primary threat is worth. In such a case a rational adversary would skip the
attack, but in their model it is performed nevertheless. To address this flaw, they consider a subset of the
elementary attacks with the largest expected value. However, there is still noguarantee that this would
produce optimal results in terms of economic theory. Another problem with the subset idea is that finding
the optimal subset seems to require an exponential amount of computation. This means that their more
general model is much too slow for practical applications.

1 We note that although multiple parameters are used by the software package, one of the parameters is used just for tree pruning
and as such, their computational analysis is still single-parameter in essence.

2

We start out with a systematic decision-theoretic approach to adversarial behavior analysis and show that
there actually exists a linear-time algorithm for computing the maximal expected outcome for an exponential
sized family of attack orders. Our model is also one of the least restrictive models in terms of assumptions
about adversarial behavior. This means that the expected utility of the adversary that is computed by our
proposed algorithm is the highest among the currently known efficient computation methods and as such
can serve as an upper bound for all of them.

2 Attack Trees

In security analysis, one is interested in estimating the parameters of some largeprimary threat. The ad-
versary usually has many ways of materializing the primary threat and it is often possible to break it down
into smaller parts such that either all or at least one of the parts need to be realized for the main attack to
succeed. As many of these parts can then also be broken down in a similar manner, a tree structure is formed
with increasingly simpler attack scenarios at the nodes. If one continues decomposing the threats, one is
bound to eventually reach a point where the attack considered is simple enough such that its parameters can
be directly estimated. When this happens, the threat is not decomposed further, but is left as a leaf of the
tree and calledelementary. When all the branches have been stretched out to that level of detail, theprocess
is stopped and the result is called theattack tree corresponding to the primary threat at its root. A small
example of an attack tree is depicted in Figure 1.

Bribe the
sysadmin

Hack into
the database the password

Brute force
keylogger
Use a

Obtain
encrypted

file

company
secrets

Decrypt

the password
Obtain

X1 X2 X3 X4

∧

∨
∨

Fig. 1.An example attack tree

For a given attack tree, we denote the set of all its leaf elementary attacks byX = {X1, . . . ,Xn}. The
internal nodes of the tree that describe the primary threat and its non-elementary subgoals can be of two dis-
tinct types. If all of the parts of the subgoal need to succeed for the subgoal to be considered successful, the
node is called an AND-node (∧-node). If just one successful part is enough for the subgoal to besuccessful,
it is called an OR-node (∨-node). These two node types are usually sufficient to describe all the possible
variations of the attacks.

This means that an attack tree is usually just an AND-OR tree in which the primarythreat is realized
precisely when the root of the AND-OR tree is satisfied. The problem can also be expressed in terms of
Boolean functionsF on elementary attacks as the AND-OR tree can easily be converted into a (monotone)
Boolean formula of a certain simple form. For example, the attack tree in Figure 1corresponds to the
Boolean formulaF (X1,X2,X3,X4)= (X1∨X2)∧(X3∨X4). The attention is usually restricted to trees because

3

they usually provide for a model that is simpler both computationally as well as construction (for a specific
security threat). In our case, however, it makes sense to talk about moregeneral attackscenarios whereF
can be any Boolean function.

These scenarios can still be analyzed in different ways depending on what parameters of the attack
are taken into consideration and what assumptions are made about the adversarial behavior. Our approach
follows that of J̈urgenson and Willemson [11] who simplify the model of Buldas et al. [4]. Their model has
just two parameters for each elementary attackXi:

1. The probability of the attack succeedingpi.
2. The expected expensesei when attempting the attack.

Additionally, there is one global parameterg that denotes the expected utility that materializing the
primary threat has for the adversary. We note that the expenses are meant to include not only the immediate
expenses of performing the attack but also accounts for the expected cost of possible penalties that need to
be paid if the attacker is caught in the act. How this value can be calculated is described in detail in [13].
We also note that it is reasonable to assume that the adversary does not get paid for attempting the attacks,
i.e., the expenses are all non-negative. It is also natural to assume thatg is positive for otherwise the attacker
would not be motivated to even attempt the attack. These parameters allow one tocarry out an economic
analysis in which it is assumed that the adversary tries to maximize his expected outcome.

In the serial model of attack, the adversary is assumed to try the elementary attacks one at a time in
such a way that he always knows what has happened on the previous attacks. This may lead to the adversary
not attempting an attack, for instance when it would have no impact on the finaloutcome any more, i.e.,
performing it would not increase the probability of winningg. However, whether this is the case or not
largely depends on the order of the elementary attacks. In real life, the elementary attacks often have a natural
order imposed on them by practical restrictions. For example, breaking intothe company safe requires that
the culprit first break into the office itself so the latter clearly has to precede the former in the order of
attacks. For simplicity we indeed assume that the order of the attacks has beenfixed beforehand and that the
adversary has to consider the attacks in just the order they are given, starting withX1 and ending withXn.
Figure 2 depicts two different possible orders for the example attack tree of Figure 1.

X1 X2 X3 X4

∧

∨∨

(a)

X1 X2 X3 X4

∧

∨∨

(b)

Fig. 2. Two different orderings of the tree in Figure 1.

Although we assume that the order of consideration is fixed for the attacks,the adversary still has a
choice for each elementary attack of whether to commit it or not. If the past outcomes imply that performing
the attack does not increase the likelihood of the main threat succeeding, one can definitely gain by choosing
not to attempt the attack. This was the intuition behind the model of Jürgenson and Willemson [12].

The model they propose has the adversary always attempting an attack whenever it increases the prob-
ability of materializing the main threat. They show that their model is sound in the sense of Mauw and

4

Oostdijk [15] and that computing the optimal adversary behavior can be done in O(n2) time for the tree
model for all the possible orders.

However, their model suffers from one critical flaw. Namely, it may sometimeshappen that an attack
costs more than it is worth in the sense that the probability increase of the main threat is so small that it does
not outweigh the cost of performing the given elementary attack. Jürgenson and Willemson attempt to fix
this flaw by saying they consider all the possible subsets of elementary attacks and try to find the optimal
subset. This does not really solve the problem, however, as it may still be rational to perform the attack for
one past while for the other it is not. We illustrate this with a small example.

Suppose we have the attack tree depicted in Figure 2(b) withe1 = e2 = 0,e3 = e4 = 80, p1 = p2 = 0.5 and
p3 = p4 = 0.9 with g = 100. In the serial model of Jürgenson and Willemson all attacks will be attempted
whenever they increase the probability of success. This means thatX1 andX2 will always be performed
whereasX3 will be performed precisely whenX1 fails andX4 will be performed when eitherX1 or X3

succeeds, butX2 fails. This is optimal behavior except in the case whereX1 andX2 both fail. After that, one
would need bothX3 andX4 to succeed in order to be awarded the gainsg. For that to happen, bothX3 and
X4 need to be attempted, costing 160. This is obviously not worth doing as the maximal possible gains from
it are just 100 units when the attack succeedsif it succeeds. Despite this,X3 is still attempted by the model
because there still is a theoretical chance of winning the gains. This is clearly not economically rational.

The optimal subset improvement does not solve the problem either becausethere are cases where both
X2 andX3 are worth attempting and increase the expected utility. This means that removing either one of
them will also decrease the maximal expected outcome. The only possible conclusion is that there exists a
behavior strategy for the adversary that is strictly better than is describable by the serial model of J̈urgenson
and Willemson.

3 Our Model

To overcome the weaknesses in the previous serial model, we approach the problem from the classical
viewpoint of decision theory (see [10] for an introduction). We assume the adversary to be a fully rational2

expected utility maximizer who can choose whether to attempt each elementary attack Xi ∈ X in their given
order. Additionally, we assume full information about the past so that whenconsideringXi the adversary
is assumed to have information about his past attack decisions and their results. We are interested in the
optimal decision strategy for the adversary and how much he could expect to gain by following it. The
strategy consists of a series of prescriptions on how to behave - one foreach attack for each of its possible
past series of events. This means that the adversary can choose to behave in different ways for different
past outcomes. The strategy is considered optimal when it has the highest possible utility of all the possible
decision strategies. This guarantees that the resulting behavior will produce the highest expected outcome
of all the possible behaviors that only rely on the information accounted forwithin the model. Among other
things, it will allow the adversary to refuse an attack when it is just too expensive, as happened in the
example in the previous section.

The classical formalization for serial decision problems is viadecision trees. Decision trees, like attack
trees, have only two types of internal nodes and one type of leaves. However, their semantics are completely
different. The internal nodes are either decision nodes (depicted as squares) in which the attacker can choose
the outcome, or chance nodes (depicted as circles) in which the outcome is chosen randomly according to
a given distribution. The leaves are called utility nodes (depicted as diamonds) and they determine how

2 This provides the upper bound as an irrational adversary can do no better. This is the generally accepted justification for consid-
ering rational actors in decision theory.

5

much the current sequence of decisions and chance events is worth to theadversary. The decision strategy
essentially consists of a prescription of what to choose at each decision node. Whensolving the tree, we
are looking for a strategy that maximizes the expected utility. An example of a decision tree is depicted in
Figure 3. It is quite straightforward to draw out the decision tree for adversarial behavior in the serial model
described for any Boolean functionF . For example, the decision trees forF (X1,X2) have the form depicted
in Figure 3. Finding the utilities at the leaves is also quite simple as it involves the positive utility of either
g if F was true or 0 if it was false and from that one just needs to subtract the expenses incurred during the
attack that depend on the exact decisions made and their outcomes.

Since the decision trees corresponding to the attack trees (or any attack scenarios describable by Boolean
formulae for that matter) are always binary, we adopt the following convention when depicting them in fig-
ures. We always assume that the upper arrow corresponds to the positive answer (attack is attempted, attack
succeeds) and that the lower arrow corresponds to the negative answer (attack is not attempted or fails). Ad-
ditionally, since the chance nodes have just two outputs, the distribution for them is uniquely determined by
the probability of the positive answer alone and we write that value inside the chance node. For utility nodes,
we write their utility inside the diamond symbol whenever possible. To differentiate between decision and
attack trees visually, decision trees are depicted with a root on the left while attack trees have the root on
top.

D1

D2

D2

D2

p1

p2

p2

p2

Fig. 3.A Decision Tree forF (X1,X2)

The standard algorithm for computing the expected value of decision trees isactually very straightfor-
ward. It takes an internal node for which the optimal expected outcomes ofthe children are known and
computes the optimal expected outcome for that node as well. This is done by either taking the maximum of
the utilities of the children if it is a decision node, or taking the weighed averageof the outcomes of children
according to the given distribution if it is a chance node. The process is repeated until the expected maximal
outcome for the root node is computed, which is then taken as the expected maximal outcome of the whole
tree. As we assume the adversary to be a rational utility maximizer, this is the most natural way to define his
optimal gains.

As a decision tree can easily be drawn out for any Boolean functionF on the set of elementary attacks
X and as the results do not depend on the representation ofF , our semantics are consistent in the sense of
Mauw and Oostdijk [15]. Thus far the AND-OR tree approach has been prevalent in the security analysis
literature due to the simplicity of calculations in many cases.

The decision tree approach provides us with a convenient, straightforward and theoretically sound for-
malization for adversarial behavior. Regrettably the trees are generally of exponential size in the number of
attacks so for practical attack scenarios it is infeasible to even draw them out in full. When assuming that the
attacks can be expressed as Boolean functions, however, the decisiontrees can often be greatly simplified

6

and the optimal strategy can be found in polynomial time. Before describing how this can be done we first
introduce some additional decision theory to simplify further discussion.

The standard model of decision trees is somewhat inconvenient for our purposes. It would be more
natural if we could factor in the expenses at the place where they are incurred rather than at the leaves. The
model can easily be modified to accommodate this by allowing utility changes to be placed on edges as well
as at the leaves3. We also change the semantics so that the utility of a given path from root to a leaf is now
defined as the sum of all the utility nodes encountered on the way, the leaf where the path ends included. To
cope with the augmented semantics within the optimization algorithm, we introduce a rulefor compacting a
utility node whose child is also a utility node. It works through simply merging the twonodes by summing
their utilities.

With this formalization we can move the expenses associated with performing the attacks in between the
chance and decision nodes inside the tree, leaving only either 0 org as the leaf utilities. It is straightforward
to verify that this new model still gives the exact same maximal expected outcomeas the original decision
tree model. Applying this approach to the example of Figure 3 produces Figure 4(a)4. In the case of our

D1 D2

D2

D2

p1
p2

p2

p2

e1 e2

e2

e2

g
g

g

g

g

0
0

0
0

(a)

D1 D2

D2

p1
p2

p2

e1 e2

e2
g

g

g

0

(b)

Fig. 4.Generalization of the decision tree forF (X1,X2) = X1∨X2 with extra utility nodes (a) and then into an RDAG (b)

model this shift will often tend to produce a tree with many subtrees that are completely identical in the
sense of having the exact same types of nodes with the exact same structure, distributions and utilities. As
the algorithm for solving decision trees works from leaves towards the root it is clear that if two subtrees
are equal to the end then the optimization algorithm will work in an essentially identical way in both. As
solving two such subtrees separately is just duplicate work, we could savetime by using the same solution
in both places and computing it just once. A convenient way to represent this in our model is to replace the
two equal subtrees with just a single one by making the incoming arcs to their roots both point to the same
node. See Figure 4(b) for an illustration of this. This requires loosening the assumption of having a (rooted)
tree into that of having a rooted directed acyclic graph (RDAG). It is easyto see that the maximal expected
utility remains unchanged whenever two equal subtrees are merged together.

Before moving on we note that the two generalizations to the decision tree modelare both fairly natural
and quite standard. The generalization to RDAG is commonly referred to ascoalescing and is viewed as one
of the simplest ways of reducing the decision tree size. Allowing utilities on the edges is also completely
standard.

The RDAG generalization allows us to make one further simplification. Following the example on Fig-
ure 4 it should be intuitively clear that the subtree corresponding to an attack Xi failing and the subtree

3 So a utility node now always has one incoming arc and may also have at most one outgoing arc.
4 For readability we omit minus-signs from the utility nodes corresponding to the expenses. They do nonetheless convey negative

utility and this is just a notational convenience for the figures.

7

corresponding to the same attackXi not being attempted are always identical to one another so we can al-
ways merge them together. This allows us to abstract the decision and its corresponding chance and utility
nodes into adecision compound like the one depicted in Figure 5(a). After doing that we are left with a tree
composed of just decision compounds and utility nodes (an example is depictedin Figure 5(b)). This allows
for a simpler and more informative visual representation and all the decisionRDAG figures in the follow-
ing will use this abstraction. Therefore, the following diagrams will be composed of decision compounds
(marked as rectangles with rounded corners) and two terminating leaves – one for 0 and one forg.

Di

piei

(a)

X1
X2

X2

g
g

g

0

(b)

Fig. 5.A decision compound forXi (a) and the RDAG in Figure 4 redrawn using decision compounds (b)

4 Non-crossing Trees

Since the decision trees are of exponential size in general, we need one additional assumption to achieve
computational efficiency. We thus constrain the order of the attacks to adhere to anon-crossing assumption.

The non-crossing condition basically means assuming goal-oriented behavior from the adversary. It is
required that the elementary attacks of a subattack are always attempted together without considering any
elementary attacks from the other subattacks in between. If a subattack is something to the effect of ”break
into the main office and steal the data from the safe” then it is completely naturalto assume that all the
elementary attacks within it (such as ”pick the front door”, ”find the safe”, ”crack the safe open”, ”run for
your life”) are all attempted one after the other without attempting elementary attacks from other subattacks
(such as ”hack into the mainframe of the overseas office”) in between them.We essentially assume that
one large goal is either satisfied or abandoned before a subsequent subattack of the same importance is
ever attempted. As people do tend to work and think in a goal-oriented way, webelieve this to be a rather
reasonable assumption to make of an adversary.

The name ”non-crossing” comes from the visual representation of the attack trees. Suppose an attack
tree is drawn in such a way that all elementary attacks are positioned on a straight line in the order they
are performed. The tree, then, is non-crossing precisely when it can be drawn so that no two arcs intersect
one another (without changing the order of elementary attacks) and no arc crosses the straight lines from
the root to the first and last elementary attack. This is best illustrated on Figure 2 where the subfigure (a) is
non-crossing while (b) is crossing. Formally, the condition can be stated in the following way:

Definition 1. Let F (X1, . . . ,Xn) be a monotone Boolean formula of n variables. We say that F is non-
crossingrelative to the order X1, . . . ,Xn if it can be written in such a way that

(simplicity) Only ∧ and ∨ operators are used
(single-occurrence)Each variable occurs at most once
(order-preserving) For all i < j, Xi appears to the left of X j

8

We note that for a given attack tree ofn elementary attacks there are at least 2n−1 different non-crossing
orders so our approach works for an exponentially large set of orders. However, it is only a negligible fraction
of all the possiblen! orders.

For simplicity, we assume the attack trees to bebinary so that every internal node has just two children.
As we are dealing with AND-OR trees, this is without loss of generality. This is because a single AND-node
with many children can be split into a series of AND-nodes with just two childreneach and the same can
be done for OR nodes as well. This means we can decompose any non-crossing AND-OR tree into a non-
crossing binary tree without changing the semantics. As the process is simpleand completely mechanic we
will discuss it no further and just assume we are using binary trees.

5 Efficient Computation for the Non-Crossing Trees

For the case of non-crossing trees the RDAG can be greatly reduced in size. To be precise, it can be made to
have just one decision compound for each elementary attack. The result iscaptured in the following theorem:

Theorem 1. Let X1, . . . ,Xn be elementary attacks of an attack scenario described by F (X1, . . . ,Xn). If F is
a non-crossing Boolean function, the optimal attack strategy can be found in O(n) time.

Proof. The result rests on three observations about the structure of non-crossing attack trees.
It should be clear from the description of the decision RDAG that two sub-RDAGs rooted atXi are func-

tionally equal whenever they give the same exact outcome for all the possible future choicesXi, . . . ,Xn.
More formally, for an attack tree corresponding to a Boolean functionF , two subtrees with histories
r1, . . . ,ri−1 ∈ {t, f} andr′1, . . . ,r

′
i−1 ∈ {t, f} rooted atXi are equal precisely when for allXi, . . . ,Xn ∈ {t, f}

we have

F (r1, . . . ,ri−1,Xi, . . . ,Xn) = F
(

r′1, . . . ,r
′
i−1,Xi, . . . ,Xn

)

. (1)

This is so because the subtrees rooted at two different decision compounds for the same attackXi always
have the same binary subtree structure all the way to the leaves and that theycan only differ in leaf values.
Leaf values, however, are fully determined by the Boolean functionF and the equivalence holds because
that, too behaves in an identical way in the two cases.

It turns out that in the case of non-crossing trees this simplification allows usto systematically reduce
the complexity of the decision RDAG to a manageable size. This can be done based on three simple ob-
servations. For illustration we will use an example attack tree depicted in Figure6(a) to demonstrate the
simplification process. The corresponding unsimplified decision RDAG is depicted in Figure 6(b).

Before moving on to discuss the observations, we introduce some notation. We assume the tree to be a
full binary tree so each internal node has exactly two direct descendants orchildren. The single-occurrence
assumption means that there is one well-defined path from each of the elementary attacks to the root. We
denote this path byPi = {Y0,Y1, . . . ,Yk} whereY0 is the root. Given a fixed non-crossing order, the two
childrenZl,Zr of a parent nodeZp are uniquely ordered to satisfy the non-crossing restriction. We callZl

andZr siblings of one another and we call the siblingZl theleft sibling of Zr andZr theright sibling of Zl. If
Zp is an AND-node, we sayZl is the leftAND-sibling and ifZp is an OR-node, we callZl the leftOR-sibling
of Zr. For an elementary attackXi we call the setLi of left siblings ofPi its left (sibling) set. Left AND-set
and left OR-set are defined in a similar way, being composed (respectively) of left AND-siblings and left
OR-siblings ofPi.

For example, consider the elementary attackX4 of the attack tree in Figure 6(a). Its left AND-set is
composed of a single node – the OR-node that combinesX1 andX2. Its left AND-set also has just one node

9

X1 X2 X3 X4

∧

∨∨

(a)

X1

X2

X2

X3

X3

X3

X3

X4

X4

X4

X4

X4

X4

X4

X4

g
g

g

g

g
g

g

g

g

0

0
0

0
0

0

0

(b)

Fig. 6.An attack tree (a) and the corresponding decision tree (b)

– the leaf node of the elementary attackX3. These two nodes together form the complete left set forX4. As
X4 is the last elementary attack, its right set is empty.

We note that the non-crossing assumption along with the assumption of full information about the past
guarantee that whenever a decisionXi is being considered, all the values for its left set nodes can already be
computed. This is because the elementary attacks required for that have already been performed and their
results are known. This makes the left set central in our description of thealgorithm as it is coupled with
the fact that information about previous attacks can be compressed downto just the values of the nodes
contained therein.

We first note that the equation (1) always holds wheneverr1, . . . ,ri−1 ∈ {t, f} andr′1, . . . ,r
′
i−1 ∈ {t, f}

give the same results for the elements of the left set ofXi. This is intuitively easy to understand if you
consider that the results from the elementary attacks are aggregated at theinternal nodes and that having a
stake in the aggregate results is the only way the elementary attacks really influence the root value. As our
tree is non-crossing, the left set values forXi can always be computed ifr1, . . . ,ri−1 are all known and the
left set values are, in fact, the topmost aggregate values that can be computed based solely on the history up
to Xi. This means that the left set truth values are essentially the only information that is needed about the
past attacks and their successes. After carrying out the simplification, theRDAG for the example attack tree
in Figure 6 simplifies to the form depicted in Figure 7(a).

The second thing we note is that there is actually just one valuation of the left set for which any given
decision actually makes any difference - the one where all the nodes in the left AND-set evaluate tot and
all the nodes in the left OR-set evaluate tof . This is because any left set valueZl deviating from that
scheme would also determine the value for its parent clauseZp. For instance, ifZp was an OR clause and
Zl would bet then no matter what the right branchZr evaluates to,Zp would still evaluate tot. Analogous
reasoning works forZp being an AND clause andZl beingt. This means that in these cases no elementary
attack within the subtree ofZr could possibly modify the final outcome (as the aggregate value atZp is
determined already). SinceXi is contained in the subtree ofZr, its result is insignificant when computing
the final result in this case. After carrying out this simplification for our example we arrive at the RDAG
depicted in Figure 7(b).

10

X1

X2

X2

X3

X3

X4

X4

X4

X4

g

0

(a)

X1

X2

X2

X3

X3

X4

X4

X4

g

0

(b)

Fig. 7. The attack tree being simplified according to the first (a) and the second (b) observation

The third observation is that the decision compounds whose both outgoing arcs point to the same place
are inconsequential and can actually be ignored. The reason for that is that performing the attack may
cost something while not attempting it is always free. As such, it is always safe not to attempt an attack
whenever both success and failure lead to the same future outcomes. This allows us to simplify the decision
RDAG even further. For notational convenience we call the decision compounds that are left after this step
consequential. The final RDAG for the example is depicted in Figure 8

X1

X2

X3
X4

g

0

Fig. 8. The attack tree after the third simplification

To further illustrate the observations, we provide another example of a larger attack treeX1 ∧ ((X2 ∧
(X3∨X4))∨X5) along with the fully simplified decision RDAG corresponding to it in Figure 9. As before,
the RDAG is again of only linear size.

X1

X2

X3 X4

X5∧

∧

∨

∨

(a)

X1

X2

X3

X4

X5

g

0

(b)

Fig. 9.An attack tree of five elementary attacks (a) and the corresponding simplified decision RDAG (b)

11

Putting the three observations together clearly leads to a conclusion that if wemerge all the equal sub-
RDAGs for a non-crossing tree, there is just one consequential decision compound per each attackXi. This
follows from the fact that there is just one sub-RDAG for each left set valuation (the first observation) and
that there is just one left set valuation for which it matters whether the compound succeeds or fails (the
second observation) and that all the other compounds can be removed (observation three). This means that
the decision RDAG is of linear size for the non-crossing trees. As the structure of the RDAG can also be
computed in linear time5 and the optimization process takes time proportional to the number of nodes in
the decision RDAG, the whole computation can be done inO(n) time. ⊓⊔

The algorithm that results for the non-crossing case is fairly easy to implement and has relatively low
overhead. It is also extensible to the case where inconsequential compounds (those where both outgoing arcs
point to the same place) cannot be inlined, although in such a case, the algorithm is worst case quadratic. see
Appendix B. In some special cases, however, dynamic programming can still be used to do partial inlining,
in which case the running time remains linear. An example of this is provided by allowing for the expenses
to be negative (i.e. getting paid for performing an attack instead of paying for it). See Appendix C.

6 Connection with Previous Models

As claimed in the introduction, our model achieves the highest expected outcome for the adversary of all the
financial models proposed thus far. To be more formal, letF be an attack scenario with elementary attacks
X and letσ be a fixed ordering for the elementary attacks inX . Denote byOutcome

JW
σ the expected utility

assigned to the attack tree with attack orderσ on the optimal subset ofX by the serial mode of Jurgenson
and Willemson [12] and letOutcome

DT
σ be the expected utility computed by the decision-theoretic model

proposed in this paper. It is easy to show that

Theorem 2. For all attack scenarios F and attack orders σ

Outcome
JW
σ ≤ Outcome

DT
σ .

It is interesting to note that in the case of non-crossing trees the equality always holds in Theorem 26.
We do, however note that findingOutcome

JW
σ requires trying all the 2n subsets to find the optimal solution

whereas our algorithm findsOutcome
DT
σ in linear-time.

This observation leads to another possible practical application. LetOutcome
P denote the expected

outcome in the parallel model of [13]. Jürgenson and Willemson [12] showed that

Outcome
P ≤ Outcome

JW
σ

for all attack ordersσ. This result, when combined with ours, yields a linear-time method of finding non-
trivial upper bounds on the adversarial outcome in the parallel model. Thisis something that was impossible
with the previously known algorithms.

5 Success always goes to the leftmost elemental attack of the subtree rooted at the lowest element of the right AND-set and analo-
gously for failure and the right OR-set. This is easy to verify and we omit the details. Using this knowledge it is straightforward
to generate the graph in linear time by first determining the leftmost elementalattack for each subattack and then traversing the
tree left-to-right, keeping track of the right AND and OR sets. See Appendix A for the pseudocode.

6 This follows from the fact that there is always just one consequential decision compound for each elementary attackXi from
which it follows that the optimal subset for the model of [12] is exactly the set of elementary attacksXi that are considered
worthwhile in our model.

12

7 Possible extensions

The simplification steps presented in the preceding section are not restrictedto the non-crossing trees and
can indeed be applied for many other Boolean functions and variable orders. To better understand that, we
look at an alternative form of representing the underlying Boolean formulae.

Binary Decision Diagrams (BDD) are a method of compactly representing Boolean formulae by rooted
directed acyclic graphs where each node corresponds to a variable and has two distinguishable outgoing arcs
– one for when the variable is set to true and one when it is set to false. Thegraph has just two leaves that
correspond to the formula being evaluated to true and the other for false. The most common use of BDD-s
involves the so called Reduced Ordered BDD-s (ROBDD-s) in which casethe variables are in a fixed order
and all the sub-RDAGs that are equivalent are merged. It is also assumed that a node is in-lined whenever its
both outgoing arcs point to the same place. We refer a reader more interested in the theory of BDD to [20]

Following the steps of the previous section, it is trivial to see that our model ofeconomic decision trees
actually reduces to the form where we have a directed graph of decision compounds (with output degree
2) and just two leaves. As the final destination leaf of a path is determined solely by the truth table of the
Boolean function, it is clear that our model is in some sense isomorphic to BDD-s. As we can also do all
the simplification steps that are allowed for ROBDD-s, we can actually formalizeour result as the following
corollary:

Corollary 1. Suppose we have an attack scenario with elementary attacks X = {X1, . . . ,Xn} so ordered. If
the attack scenario F can be described with a polynomial-sized ROBDD with the same order, the optimal
strategy and its expected outcome can also be determined in polynomial time.

This result has three important implications. Firstly, it is known that many Boolean formulae (that can-
not be expressed as AND-OR trees) have reasonably small representations as ROBDD-s for some variable
orders. This is important because it may well make sense to find the utility even when the order for which
this is feasible is completely absurd. This is because our model will produce astrictly higher utility than
the parallel model described in the introduction. As the exact computation of the parallel model takes ex-
ponential time, our model can thus be used as a fast and practical means offinding an upper bound for the
adversarial outcome in it. It is known that most interesting classes of Boolean functions do have orders for
which their BDD-s are small, allowing our model to be used for just such estimation.

A second implication (being somewhat a corollary of the first) is that we can actually allow a few
elementary attacks to occur in multiple places in the tree. Namely, it is rather easy toverify that introducing
another occurrence of a variable can at most double the size of the ROBDD7. As such, the model still
remains efficiently computable if 2-4 variables occur more than once. This is often the case in practice as
most elementary attacks only matter in one place but there are usually a few (such as gaining root privileges)
that are required in multiple places. In these cases there is still an exponential set of orders for which the
approach will work.

A third implication is that even for simple attack trees, we cannot use this approach for all the possible
orders. To be precise, there are trees of very simple structure for which some orders produce exponential-
sized ROBDD-s. This means that the approach, although very effectivefor gaining practical estimates and
computing some attack orders, is still inherently limited. The exact extent to whichthese limits apply needs
further exploration and we leave it as an open question for now. A quick review of BDD literature shows
that this question is relatively unexplored. This is probably due to the fact that in general applications the
order of variables in a BDD does not need to be fixed. Due to that, most literature is interested in finding

7 This is essentially achieved by Shannon decomposition on the remaining variables.

13

orders that produce small BDD-s and not in determining the minimal size of a BDD for a given order. Some
progress has been made, however and we refer the more interested reader to Chapter 5 of [20] for a general
overview.

8 Conclusions and Further Work

We describe a model for attack trees that is strictly based on classical decision theory. We also show that
there exists an exponential sized family of orders for attack trees for which the maximal utility outcome
can be found inO(n) time and also describe how the same approach may be generalized for other Boolean
functions that generalize the usual solely tree based approach.

Our work still leaves many open questions to be further explored. For instance, the assumption of non-
crossing trees, although quite natural, is still rather restrictive and it wouldbe very interesting to find an
efficient algorithm that works under more general assumptions. Anotherinteresting question is whether
the optimal order for the elementary attacks could be found efficiently in the cases where the order is not
determined naturally. It would also be interesting to consider more general models, such as those allow-
ing intermediate payouts in the subattack nodes. Research in any of these directions would greatly further
the applicability of attack trees and provide us with much more accurate tools forpredicting adversarial
behavior.

9 Acknowledgements

The author would like to thank Jan Willemson and Aivo Jürgenson for introducing him to the topic of attack
trees and for helpful comments on this article. He is also very grateful to Sven Laur, Peeter Laud and all the
anonymous reviewers for all their suggestions, which helped to make the article easier to follow and more
self-contained.

14

Bibliography

[1] Amenaza,Secur/tree attack tree modeling, 2010,http://www.amenaza.com/.
[2] Paul Ammann, Duminda Wijesekera, and Saket Kaushik,Scalable, graph-based network vulnerabil-

ity analysis, CCS ’02: Proceedings of the 9th ACM conference on Computer and communications
security, 2002, pp. 217–224.

[3] Daniel Bilar,Quantitative risk analysis of computer networks, Ph.D. thesis, Dartmouth College, 2003,
Chairperson-Cybenko, George.

[4] Ahto Buldas, Peeter Laud, Jaan Priisalu, Märt Saarepera, and Jan Willemson,Rational Choice of Se-
curity Measures via Multi-Parameter Attack Trees, Critical Information Infrastructures Security. First
International Workshop, CRITIS 2006, LNCS, vol. 4347, 2006, pp.235–248.

[5] Ahto Buldas and Triinu M̈agi,Practical security analysis of e-voting systems, Advances in Information
and Computer Security, Second International Workshop on Security, IWSEC, LNCS, vol. 4752, 2007,
pp. 320–335.

[6] Kenneth S. Edge,A framework for analyzing and mitigating the vulnerabilities of complex systems via
attack and protection trees, Ph.D. thesis, Air Force Institute of Technology, Ohio, 2007.

[7] Clifton A. Ericson II, Fault tree analysis - a history, Proceedings of the 17th International System
Safety Conference, 1999.

[8] Jeanne H. Espedahlen,Attack trees describing security in distributed internet-enabled metrology, Mas-
ter’s thesis, Department of Computer Science and Media Technology, Gjøvik University College, 2007.

[9] Sushil Jajodia, Steven Noel, and Brian O’Berry,Topological analysis of network attack vulnerability,
Managing Cyber Threats: Issues, Approaches and Challenges, 2003.

[10] Finn V. Jensen,Bayesian networks and decision graphs, Information Science and Statistics, Springer,
2001.

[11] Aivo Jürgenson and Jan Willemson,Processing multi-parameter attacktrees with estimated parameter
values, Advances in Information and Computer Security, Second International Workshop on Security,
IWSEC, LNCS, vol. 4752, 2007, pp. 308–319.

[12] Aivo Jurgenson and Jan Willemson,Serial model for attack tree computations, International Confer-
ence on Information Security and Cryptololgy: ICISC 2009, LNCS, 2009.

[13] Aivo Jürgenson and Jan Willemson,Computing exact outcomes of multi-parameter attack trees, On
the Move to Meaningful Internet Systems: OTM 2008, LNCS, vol. 5332, 2008, pp. 1036–1051.

[14] Richard P. Lippmann and Kyle Ingols,An annotated review of past papers on attack graphs, 2005.
[15] Sjouke Mauw and Martijn Oostdijk,Foundations of attack trees, International Conference on Informa-

tion Security and Cryptology – ICISC 2005 (Dongho Won and Seungjoo Kim,eds.), LNCS, vol. 3935,
Springer, 2005, pp. 186–198.

[16] Andrew P. Moore, Robert J. Ellison, and Richard C. Linger,Attack modeling for information security
and survivability, Tech. Report CMU/SEI-2001-TN-001, Software Engineering Institute, 2001.

[17] Bruce Schneier,Attack trees: Modeling security threats, Dr. Dobb’s Journal24 (1999), no. 12, 21–29.
[18] W.E. Vesely, F.F. Goldberg, N.H. Roberts, and D.F. Haasl,Fault tree handbook, US Government Print-

ing Office, January 1981, Systems and Reliability Research, Office of Nuclear Regulatory Research,
U.S. Nuclear Regulatory Commission.

[19] John Viega and Gary McGraw,Building secure software: How to avoid security problems the right
way, Addison Wesley Professional, 2001.

[20] Ingo Wegener,Branching programs and binary decision diagrams: theory and applications, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[21] J. D. Weiss,A system security engineering process, Proceedings of the 14th National Computer Secu-
rity Conference, 1991, pp. 572–581.

A Pseudocode for the Linear Algorithm

For completeness we give (recursive) pseudocode for the linear algorithm for non-crossing trees. The algo-
rithm should initially be called aslrec(/0,1).

Algorithm 1 lrec(L ,i)
Require: The set of elementary attacksX = {X1,X2, . . . ,Xn} with their costsci and success probabilitiespi along with a single-

occurrence non-crossing monotone Boolean formulaF describing the attack scenarios
Require: Truth valuesL evaluated for the left set based on past results for attacks
Require: i ∈ [1,n+1] - the index of the attack we are considering
1: if i = n+1 then
2: return g or 0 depending on whether the main threat was materialized
3: else ifThe global outcome ofF givenL depends onXi then
4: if The expected valueEi for Xi has been cachedthen
5: return Ei
6: else
7: UpdateL by assuming thatXi succeeded. Store the result inL ′.
8: Determine the indexi+ of the leftmost elementary attack of the lowermost right AND-sibling ofXi. If it does not exist,

i+ = n+1 and the main threat succeeds, yieldingg.
9: TakeE+ = lrec(L ′, i+)

10: UpdateL by assuming thatXi failed. Store the result inL ′′.
11: Determine the indexi+ of the leftmost elementary attack of the lowermost right OR-sibling ofXi. If it does not exist,

i− = n+1 and the main threat fails, yielding 0.
12: TakeE− = lrec(L ′′, i−)
13: Compute the optimal expected outcomeE = max{piE++(1− pi)E−− ci,E−}.
14: CacheE asEi.
15: return E
16: end if
17: end if

B Quadratic Decision RDAGs

There is a simple family of attack treesQ for which the number of nodes is of quadratic size if no pruning of
inconsequential nodes is performed. The familyQ is generated by taking the Boolean formulaXa ∧ ((Xb ∧
Z)∨Xc) and iteratively replacingZ within it with the exact same compound, gettingQ1 = Xa ∧ ((Xb ∧Z)∨
Xc), Q2 = Xa ∧ ((Xb ∧ (Xa′ ∧ ((Xb′ ∧Z)∨Xc′)))∨Xc), In general, the formula forQm will have 3m+1
variables. If they are left in the same order but numbered from 1 to 3m+1 and interpreted as an attack tree,
the decision RDAG corresponding to the resulting attack tree will have(3n+ 5)n+ 1 ≈ 3n2 compounds
- exactlyk compounds for eachXk for 1 ≤ k ≤ 2m+1, 2m+1 compounds forX2m+2 and 2 less than the
previous for eachXk from then on. That this is indeed so should be intuitively clear and easy to verify based
in Figure 10.

16

X1

X2

X2

X3

X3

X3

X4

X4

X4

g

0

Fig. 10.Decision RDAG corresponding to the smallest attack treeQ1 of the familyQ .

C The Linear Algorithm for Negative Expenses Model

For completeness we bring the linear algorithm along with the modifications required to work with the
negative expenses as well.

The precomputation step consists of computing sums

Si =− ∑
i:1≤i≤n,ei<0

ei .

As before, the algorithm should initially be called as lrec(/0,1).

Algorithm 2 lrec(L ,i)
Require: The set of elementary attacksX = {X1,X2, . . . ,Xn} and a single-occurrence non-crossing monotone Boolean formulaF

describing the attack scenarios
Require: Truth valuesL evaluated for the left set based on past results for attacks, the sumsSi
Require: i ∈ [1,n+1] - the index of the attack we are considering
1: if i = n+1 then
2: return g or 0 depending on whether the main threat was materialized
3: else ifThe global outcome ofF givenL depends onXi then
4: if The expected valueEi for Xi has been cachedthen
5: return Ei
6: else
7: UpdateL by assuming thatXi succeeded. Store the result inL ′.
8: Determine the indexi+ of the leftmost elementary attack of the lowermost right AND-sibling ofXi. If it does not exist,

i+ = n+1 and the main threat succeeds.
9: TakeE+ = lrec(L ′, i+)+Si+−1−Si

10: UpdateL by assuming thatXi failed. Store the result inL ′′.
11: Determine the indexi+ of the leftmost elementary attack of the lowermost right OR-sibling ofXi. If it does not exist,

i− = n+1 and the main threat fails.
12: TakeE− = lrec(L ′′, i−)+Si−−1−Si
13: Compute the optimal expected outcomeE of the decision compound forXi on the assumption that its outputs have

expected values ofE+ andE− respectively.
14: CacheE asEi.
15: return E
16: end if
17: end if

17

