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Abstract

The Virtual Black Box (VBB) property for program obfuscators provides a strong guarantee:
anything computable by an efficient adversary, given the obfuscated program, can also be computed
by an efficient simulator, with only oracle access to the program. However, we know how to achieve
this notion only for very restricted classes of programs.

This work studies a simple relaxation of VBB: allow the simulator unbounded computation time,
while still allowing only polynomially many queries to the oracle. We demonstrate the viability of
this relaxed notion, which we call Virtual Grey Box (VGB), in the context of composable obfuscators
for point programs: it is known that, with respect to VBB, if such obfuscators exist, then there
exist multi-bit point obfuscators (also known as “digital lockers”) and subsequently also very strong
variants of encryption that are resilient to various attacks, such as key leakage and key-dependent-
messages. However, no composable VBB-obfuscators for point programs have been shown. We
show composable VGB-obfuscators for point programs under a strong variant of the Decision Diffie
Hellman assumption. We show that VGB (instead of VBB) obfuscation still suffices for the above
applications, as well as for new applications. This includes extensions to the public key setting and
to encryption schemes with resistance to certain related key attacks (RKA).

Key words. Obfuscation, Strong Simulation, Composable Point Obfuscation, Strong Encryption,
Decision Diffie Hellman.

∗Supported by The Check Point Institute for Information Security, Marie Curie grant PIRG03-GA-2008-230640, ISF Grant
1144/09, and NSF grant 1218461. An extended abstract of this paper appears in the proceedings of Crypto’10.



Contents

1 Introduction 2
1.1 This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Our Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 6

3 Definitions 6

4 VGB Obfuscation 8
4.1 VGB Vs. VBB and INDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Impossibility Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 VGB Obfuscation with Auxiliary Information . . . . . . . . . . . . . . . . . . . . . . . 10

5 Composable Point Obfuscators 10
5.1 Composition of Obfuscators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Point Obfuscators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Distributional Indistinguishability and Composable Point Obfuscation . . . . . . . . . . 11
5.4 On the Possibility of Bounded Simulation (VBB) . . . . . . . . . . . . . . . . . . . . . 17

6 A Concrete Composable Point Obfuscator 19
6.1 On the Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 SVDDH Holds in the Generic Group Model . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Applications 22
7.1 Application to Obfuscation of Set Circuits . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 Application to Obfuscation of Point Circuits with Multi-bit Output . . . . . . . . . . . . 23
7.3 Application to Strong Encryption Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 25

A Obfuscation with Auxiliary Input and Composability 29

B More on Distributional Indistinguishability and [Can97] 32

1



1 Introduction

Informally, an obfuscator is an algorithm which gets as input a program (e.g., a Turing machine or cir-
cuit) and outputs a new program that has the same functionality as the original one, but is otherwise
“unintelligible”. The rigorous study of obfuscation was initiated in the work of [BGI+01], who intro-
duced the concept of virtual black box security (VBB in short). This concept requires the obfuscated
program to behave like a “black box”, in the sense that it should not leak any information about the
program except its input-output behavior. More precisely, any efficient adversary with access to an ob-
fuscated program can be simulated by an efficient simulator with only oracle access to the program. The
same work presented the impossibility of “universal VBB obfuscation”, showing a family of programs
that cannot be VBB obfuscated.

In light of this negative result, subsequent work has included several research directions. One line
of work extends the result of [BGI+01], ruling out obfuscation in various settings [GK05, Wee05].
Another line of work is aimed at constructing obfuscators for specific program families that are not
ruled out by the universal impossibility result. Here, if we stick to VBB obfuscators, our knowledge is
essentially limited to obfuscating point programs and their extensions [Can97, CMR98, LPS04, DS05,
Wee05, CD08, CV09, CRV10]. A point program Pv : Dn → {0, 1} holds a value v ∈ Dn in its code
and accepts its input x iff x = v. We only know how to obfuscate point programs in which the point
v is explicitly obtainable from the code. Moreover, the known constructions depend on rather strong
hardness assumptions, which was shown to be somewhat inherent in [Wee05].

A third line of work focuses on relaxations of VBB. In this context, [BGI+01] suggested the notion of
indistinguishability obfuscators (INDO), according to which obfuscations of two related size programs,
implementing the same functionality, should be indistinguishable to any efficient adversary. Another
relaxation, called best possible obfuscation (BPO) [GR07], requires that any information which the
obfuscation leaks is efficiently learnable from any other program with the same functionality and related
size (hence “best possible”). These two notions turn out to be equivalent, when restricted to efficient
obfuscators.

Both the INDO and BPO notions are easier to satisfy than VBB; however, the security guarantee
they provide is less clear. Unlike VBB, both seem to lose their meaning for a relatively wide range
of program classes that are natural candidates for obfuscation. For instance, these notions become
meaningless if we allow the obfuscator to work only when the program is given in some “canonical”
representation, in which case no two programs have the same functionality. Another relaxation requires
the obfuscation to be secure only when the program is sampled from some adequate distribution (rather
than requiring security for any program in the family). This was done in the context of perfect one-
way hashing [CMR98], point proximity testing [DS05], re-encryption [HRSV07] and more [AW07,
HMLS07, Had10]. However, in some scenarios such a relaxation does not capture the security properties
we would expect from an obfuscation.

A natural goal is thus to come up with a notion of secure obfuscation that is both meaningful and
achievable. Here, there is room to consider notions which might be meaningful only for certain program
families but not for all.

1.1 This Work

We study a new relaxation of VBB security notion for obfuscators. The requirement is that an obfus-
cation leaks no information about the program, rather than what can also be learned by an all-powerful
learner that witnesses only a limited number of input-output pairs (at his choice).

More formally, any efficient adversary with access to an obfuscated program can be simulated by an
all-powerful simulator with polynomially many oracle queries to the program (in contrast to poly-time
simulation which VBB requires). For lack of better name, we call this notion virtual grey box (or VGB in
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short). The extra power given to the simulator is intended to allow it to “reverse engineer” the adversary
while avoiding technical difficulties that might be irrelevant to the overall goal. In certain cases (such as
“highly unlearnable” programs), this could be done without losing too much of the meaningfulness of
the guarantee.

Relationship with existing notions. VGB obfuscation is clearly weaker than VBB obfuscation. In
particular, a VGB obfuscation is allowed to leak information which a VBB obfuscation cannot. Formally,
we show that VGB is strictly weaker, demonstrating a family of programs that cannot be VBB obfuscated
but is (trivially) VGB obfuscatable. On the other hand, we show that VGB obfuscators are stronger than
the indistinguishability obfuscators and best possible obfuscators (INDO and BPO) mentioned above.
To do so, we observe that, even if we further weaken the VGB security requirement by allowing the
simulator an unlimited number of oracle queries, it still implies INDO and BPO.

For Turing machine obfuscators, the impossibility result of [BGI+01] extends to rule out “universal
VGB obfuscation”. However, we could not rule out universal VGB circuit obfuscators (see more details
within regarding this difference). We note that [GR07] show impossibility of strong universal BPO
obfuscation that can handle even circuits that use random oracle gates. This impossibility applies to the
stronger VGB notion.

A setting where VGB is both meaningful and achievable. Like INDO and BPO, VGB is not strong
enough for some desirable obfuscation tasks; its weakness might be revealed in cases where an all-
powerful simulator, even with limited oracle access to the program, has a clear advantage over a bounded
simulator (as is often the case for “cryptographic functionalities” such as, say, pseudo-random func-
tions). In general, it seems that VGB is mostly meaningful for program classes which are unlearnable
with only polynomially many queries even for learners with unbounded computation time. We demon-
strate concrete obfuscation tasks where VGB obfuscation is both meaningful and achievable (under
appropriate hardness assumptions) while VBB is not known to be achievable.

The main task we consider is that of composable obfuscation of point programs. A point program
obfuscator is t-composable if any adversary that has access to t obfuscated programs can be simulated,
given only oracle access to the programs. Ideally, t could be any polynomial.

As in other cryptographic settings where composability is studied, here too the goal is to construct
obfuscators for more elaborate types of programs from obfuscators of a simpler type, namely, point
obfuscators. As an important example, in the context of VBB obfuscation, composable point obfuscators
were shown to suffice for obfuscating multi-bit point programs (MBPP). An MBPP has two hidden
values (k,m) in its code. It returns m on input k, and ⊥ on any other input. MBPP obfuscators
(MBPOs) were, in turn, shown to imply strong symmetric encryption schemes that are simultaneously
secure against weakly random keys (i.e., keys with any super-log entropy) and key dependent messages
(KDM) [CKVW10]. However, as natural and fruitful as the composability property may seem, none of
the known point program obfuscators were shown to be composable (with respect to VBB).

We show that, with respect to VGB obfuscation, composable point obfuscators do exist, under ap-
propriate hardness assumptions. Specifically, we show that, under a strong variant of the Decision Diffie
Hellman assumption, the point program obfuscator from [Can97] is VGB-composable for any polyno-
mial number of instances. (The mentioned assumption is a natural extension of the one used in [Can97]
to show VBB security, without addressing composability).

We then show that VGB composable point obfuscators suffice for constructing MBPOs that are VGB
composable on their own. This yields very strong encryption schemes that are resilient to a variety of
attacks. This includes the aforementioned KDM and weak keys resilience, as well as new implications
to resistance to certain related key attacks (RKA) [AHI11]. We also show that, given an extra re-
randomization property (that the [Can97] obfuscator has), the encryption schemes can also be extended
to the public key setting. We remark that the result for KDM encryption should be contrasted with the
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fact that fully KDM-secure encryption schemes cannot be proven secure using fully black-box reductions
to efficiently falsifiable assumptions [HH09]; indeed, the assumption that a given construction is a VGB
obfuscator is not an efficiently falsifiable one. (In fact, Wee [Wee05] shows that VBB point obfuscators
cannot be constructed using black-box simulators; Wee’s result also applies for VGB point obfuscators,
as VBB and VGB are equivalent for the case of a single point.)

1.2 Our Techniques

Proving composability for point obfuscators encounters several difficulties. We sketch these difficulties,
as well as the ideas and techniques we use to overcome them. In particular, we exhibit how the VGB
relaxation comes to our aid.

Simulation and distributional indistinguishability. Taking a similar approach to [Can97, Wee05]
(for non-composable point obfuscation), we first study an appropriate indistinguishability notion of ob-
fuscation and then show how it leads to composable VGB point obfuscation.

Ideally, we might try to require that for fixed sequence of points, the resulting obfuscated point
programs would appear to an efficient adversary as a sequence of obfuscated random point programs
(similarly to the semantic security requirement for encryption schemes). This would allow simple sim-
ulation, by running the adversary on obfuscations of random hidden values. However, in the context
of obfuscation such a requirement is unachievable, since the adversary is able to run the program and
verify any guesses it might have; in particular it can have some hardwired values which it can always
recognize. Instead, we consider a weaker requirement which we call Distributional Indistinguishability
(DI in short). We show that: (a) DI is necessary and sufficient for constructing VGB simulators, and (b)
it is achievable under appropriate hardness assumptions.

DI is an extension of a notion used in [Can97] in the context of single point (non-composable)
obfuscators. The requirement refers to coordinatewise well spread (CWS) distributions over tuples,
where each coordinate has super-logarithmic min-entropy. In other words,

{
(X

(1)
n . . . X

(t)
n )
}

is a CWS

distribution ensemble on
{
Dtn
}

if, for any a ∈ Dn and i ∈ [t],Xi 6= a, except with negligible probability.
Essentially, O is a t-DI obfuscator if for any CWS distribution X , over t-tuples of elements in Dn,

no efficient adversary can distinguish obfuscations of t uniform values from obfuscations of a tuple of
values sampled from X . We show:

Theorem 1.1 (informal). IfO is a t-DI point obfuscator, then it is a t-composable VGB point obfuscator.
Moreover, if O is t-DI for any polynomial t, then it is a composable VGB point obfuscator, for any
polynomial number of point programs.

The main technical difficulty in this work is in proving Theorem 1.1. We sketch the ideas used in
the proof. Our starting point is a result of [Can97] showing that for point obfuscators (i.e. t = 1) the
notions of DI and VBB obfuscation are equivalent and that DI obfuscation is achievable under certain
number theoretic assumptions.

First, we ask whether t-DI obfuscators imply t-composable VBB obfuscators for t > 1. We show
that this is the case as long as t = O(1). However, when t = ω(1), major (and seemingly inherent)
difficulties arise. Specifically, recall that, when constructing a simulator, we should deal with the fact
that the adversary can run the obfuscated programs and might have some hardwired values that it can
always recognize. When the adversary has access only to a single obfuscated point program, [Can97,
Wee05, CKVW10] show that, in fact, it cannot do much more than have a polynomial number of such
hardwired test elements. We call these the distinguishing elements. This allows hardwiring into the
simulator the polynomially many distinguishing elements, and having it query its oracle to the circuit
only on these elements.
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However, in the case of multiple obfuscated points, this plan does not go through. The main difficulty
is adaptivity. More specifically, while in the case of a single hidden point there is only a single secret, in
the case of composable point obfuscators, the adversary might first discover only some of the points, and
then use this partial information to make his next choices. In other words, in addition to having an “initial
set of hardwired distinguishing elements”, the adversary may adaptively compute “new distinguishing
elements”, after having discovered some of the hidden points.

Fortunately, we can show that, for any partial information already learned (which is, intuitively, the
subset of hidden points that the adversary have revealed so far), there is a corresponding poly-size set of
“new distinguishing elements”. Still, there remains the question of how can the simulator compute these
elements ahead of time.

We show that the total number of potentially queried elements is nΘ(t). Here, when t = ω(1), VGB
comes to our aid. That is, having limited oracle access to the point programs and sufficient power to
compute the distinguishing elements allows performing the required simulation.

We remark that a converse statement is also true; that is, DI is necessary for VGB composable
obfuscation (and thus also for the stronger VBB notion).

A t-DI point obfuscator. Finally, we reconsider the point program obfuscator constructed in [Can97].
Under a strong variant of the Decision Diffie Hellman assumption (SDDH), we show that this obfus-
cator is t-DI for any polynomial t and hence is a t-composable VGB point obfuscator. As evidence of
plausibility, we show that our assumption holds in the Generic Group Model [Sho97], where algorithms
are only allowed to perform generic group operations and cannot exploit the representation of group ele-
ments. We note that there exist well studied group ensembles (e.g. Quadratic Residues modulo a prime,
and Elliptic Curves groups) where the best cryptanalytic techniques are in fact generic ones [Bon98].

Relation to previous POs and MBPOs. As mentioned above, VBB point obfuscators (POs), for point
programs with a single output bit, were constructed in [Can97] and [Wee05]. Also, in [Wee05], the con-
struction was extended to point programs with log(n) output bits. In contrast, VBB obfuscators for
programs with poly(n) output bits (MBPOs) are only known assuming composable point obfuscation
[CD08], or for the restricted case that the output m is independent of the key k [CD08, CKVW10].
Likewise, the applications to RKA and KDM encryption mentioned in this work also require compos-
ability. However, Composable (VBB) point obfuscators cannot be obtained, in general, from single point
obfuscators, even if these satisfy a stronger notion of security with auxiliary input (see Appendix A).

Nevertheless, the point obfuscators mentioned above [Can97, Wee05] may still be composable; the
question, however, is under what kind of assumptions. Here, we would clearly like to rely on assump-
tions that do not go as far as assuming that a given obfuscator is composable (i.e., assuming that a
simulator exists). Instead, as done in [Can97, Wee05] for the case of non-composable obfuscation, we
formulate a distributional indistinguishability requirement that can be obtained from corresponding in-
distinguishability assumptions (as the variants of DDH mentioned above). Then, we try to explicitly
construct the simulator; however, due to the difficulties explained above we only manage to obtain VGB
simulation.

Organization. Section 3 recalls the VBB notion and some of its previous relaxations. Section 4 is de-
voted to the definition and discussion of VGB obfuscation and its relative place in the obfuscation field.
Section 5 shows a general way to construct composable VGB point obfuscators for point programs. Sec-
tion 6 discusses a construction of a composable point obfuscator under a number theoretic assumption.
Section 6.1 discusses the nature and plausibility of our hardness assumption. Section 7 demonstrates
the applications of composable point obfuscators to obfuscation of set programs and multi-bit point
programs as well as to strong encryption schemes. In Appendix A, we discuss the relation between
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obfuscation with auxiliary input and composability. In Appendix B, we further explain the relations
between some of the point obfuscation definitions provided in this work and those provided in [Can97].

2 Preliminaries

Turing machines, circuits, and adversaries. TM is shorthand for Turing machine. By circuit we
refer to a standard boolean circuit with logical gates (taken from some universal system). Most of the
adversaries in this work are represented by circuit families of polynomial size. By PPT we refer to
probabilistic polynomial-time Turing machines. We say that an algorithm (circuit family) is efficient if
it is PPT (or poly-size in the case of circuits). For a function f we denote by Af an algorithm A with
oracle (black-box) access to f .

Distributions, indistinguishability, and min-entropy. We say that a function ν : N → N is negli-
gible, if ν(n) = n−ω(1) (i.e. it decays faster than any polynomial). Given an ensemble of domains
D = {Dn}, we denote by U(D) = {U(Dn)} the ensemble of uniform, distributions on this domain
(we may omit the brackets when it is clear what is the domain). Given two distribution ensembles
X = {Xn}n∈N ,Y = {Yn}n∈N, where Supp(Xn)∪Supp(Yn) ⊆ {0, 1}poly(n), we say that X is compu-
tationally indistinguishable from Y , if for any poly-size adversaryA there exists a negligible ν such that
for all sufficiently large n:

∣∣Prx←Xn [A(x) = 1]− Pry←Yn [A(y) = 1]
∣∣ ≤ ν(n). We denote the latter by

X ≈c Y . For a distribution ensemble X = {Xn}n∈N and an algorithm A, A(Xn) denotes the distri-
bution induced by running (the probabilistic) A on an input sampled from Xn. A(X ) = {A(Xn)}n∈N
denotes the corresponding distribution ensemble. The min-entropy of a distribution X is defined as
H∞(X) = minx∈Supp(X) log 1

Pr[X=x] .

3 Definitions

We recall the virtual black box (VBB) definition and two of its previous relaxations. In all following
definitions, we consider the task of obfuscating an ensemble C = {Cn}, where each Cn is a collection of
circuits with input length n and poly(n) size.

Definition 3.1 (Obfuscator [BGI+01] ). A PPT O is a VBB obfuscator for C, if it satisfies:

• Functionality. For any n ∈ N, C ∈ Cn, O(C) is a circuit that computes the same function as C.

• Polynomial slowdown. There is a polynomial q such that, for any n ∈ N,C ∈ Cn, |O(C)| ≤ q(|C|).

• Virtual black-box.1 For any poly-size adversaryA, and polynomial p, there is a poly-size simulator
S such that for all sufficiently large n ∈ N and C ∈ Cn:∣∣∣∣Pr

A,O
[A(O(C)) = 1]− Pr

S
[SC(1|C|) = 1]

∣∣∣∣ ≤ 1

p(n)
.

Definition 3.2 (Indistinguishability Obfuscation [BGI+01]). O is said to be an indistinguishability ob-
fuscator (INDO) for C, if it satisfies the functionality and polynomial slowdown, and for any ensemble
of circuit pairs C(1) × C(2) = {(C(1)

n , C
(2)
n ) ∈ Cn × Cn}, where the two circuits in each pair are of the

same size and functionality, it holds that:

O(C(1)) ≈c O(C(2)) .

1As noted by [BGI+01], the following can be replaced with the equivalent requirement that∣∣∣Pr[A(O(C) = π(C)]− Pr[SC(1|C|) = π(C)]
∣∣∣ ≤ 1

p(n)
, for any predicate π : Cn → {0, 1}. Also the size of the

simulator can depend on p(n), namely the required simulation quality.
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Another relaxation of VBB is Best Possible Obfuscation (BPO) [GR07]. Here, the requirement is
that any information that the obfuscation leaks is efficiently learnable from any other circuit with the
same functionality and related size (hence it is “best possible”). The two definitions are equivalent when
the obfuscator is required to be a PPT [GR07].

Before presenting our definition, in the next section, we make the following preliminary observation
regarding the nature of the above relaxations. The INDO definition is in fact equivalent to a weak
black-box definition that allows an unbounded simulator with unlimited number of oracle queries .

Proposition 3.1. O is an indistinguishability obfuscator, for an ensemble of circuits C = {Cn}, iff for
any efficient distinguisherA and polynomial p, there is a (possibly inefficient) simulator S, such that for
all large enough n and C ∈ Cn:∣∣∣∣Pr

A,O
[A(O(C)) = 1]− Pr

S
[SC(1|C|) = 1]

∣∣∣∣ ≤ 1

p(n)
.

Proof. Assume O is an obfuscator for C = {Cn} satisfying the unbounded simulation property. Let A
be an efficient distinguisher and let C(1)×C(2) = {(C(1)

n , C
(2)
n ) ∈ Cn×Cn}n∈N be an ensemble of circuit

pairs of the same functionality and of the same size, cn. Then for any c ∈ N, there exists a simulator
S = Sc, such that for any large enough n ∈ N, i ∈ {1, 2}:∣∣∣Pr[A(O(C(i)

n )) = 1]− Pr[SC
(i)
n (1cn) = 1]

∣∣∣ ≤ n−c .
Moreover, since C(1)

n , C
(2)
n compute the same function, obviously:

Pr[SC
(1)
n (1cn) = 1] = Pr[SC

(2)
n (1cn) = 1] ,

implying that for any c ∈ N and large enough n:∣∣∣Pr[A(O(C(1)
n )) = 1]− Pr[A(O(C(2)

n )) = 1]
∣∣∣ ≤ 2n−c .

For the converse , assume O is an indistinguishability obfuscator for C. Consider the unbounded simu-
lator that gets as input 1c as well as oracle access to a function f , and operates as follows. It first learns
the function and produces a circuit C̃ ∈ Cn of size |C̃| = c that computes the function. Then it computes
an obfuscation O(C̃) and feeds it as input to the simulated adversary. The result follows directly from
the indistinguishability condition.

The definitions above concern obfuscators for circuits. That is, both the input program and the output
of the obfuscator are given by circuits. One can naturally adjust these definitions to fit the case of Turing
Machine obfuscators (both input and output are given by a description of a TM). We next give the VBB
TM definition. In what follows we assume all TM’s have some canonical description. By A(M) we
mean that the algorithmA gets as input the description ofM . In addition, all TM’s discussed have some
timeout mechanism (i.e. they always halt and output).

Definition 3.3 (VBB TM obfuscator [BGI+01]). A PPT O is a VBB obfuscator for a TM familyM, if it
satisfies:

• Functionality. For any M ∈M, O(M) is a TM that computes the same function as M .

• Polynomial slowdown. There is a polynomial q such that, for anyM ∈M, |O(M)| ≤ q(|M |), and
for any x ∈ {0, 1}∗, if M(x) performs at most t steps, then O(M)(x) performs at most q(t) steps.

• Virtual black-box. For any poly-size adversary A and polynomial p, there is a poly-size simulator
S such that, for all sufficiently large n ∈ N and M ∈M of description size |M | = n:

|Pr[A(O(M)) = 1]− Pr[SM (1n) = 1]| ≤ 1

p(n)
,

where the probability is taken over the coins of A,S and O.
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4 VGB Obfuscation

In this section, we formalize the notion of virtual grey box obfuscation with strong simulators, and
explore its relation to existing notions. The new definition relaxes the VBB security requirement by
allowing the simulator to have more computational power. However, we still restrict the number of
oracle queries it is allowed to make. The functionality and polynomial slowdown requirements should
be satisfied as in Definition 3.1. The VBB requirement is replaced by the following. Denote by C[q] an
oracle to the circuit (function) C that allows at most q queries.

Definition 4.1 (Virtual Grey Box - obfuscation with a strong simulator). A PPT O has the VGB prop-
erty, if for any PPT adversary A and polynomial p, there is a (possibly inefficient) simulator S and a
polynomial q such that for all sufficiently large n ∈ N and any C ∈ Cn:∣∣∣∣Pr

A,O
[A(O(C)) = 1]− Pr

S
[SC[q(n)](1|C|) = 1]

∣∣∣∣ ≤ 1

p(n)
.

Remark 4.1. This definition can be naturally adjusted to the case of Turing Machine obfuscators, by
replacing the simulator in (Definition 3.3) with an unbounded simulator with polynomially many queries.

When Is VGB Meaningful? Like INDO and BPO, VGB obfuscation does not seem strong enough
for some desirable obfuscation tasks. Examples include: transforming private key encryption schemes
to public ones and constructing homomorphic encryption schemes2. Informally, the problem in these
scenarios is that the obfuscated program computes some kind of cryptographic functionality that does
not remain secure in the presence of unbounded simulators. In general, it seems that VGB is mostly
meaningful for program classes that are unlearnable with only polynomially many queries, even for
learners with unbounded computation time. For other program families, VGB might not guarantee the
required security (in the proof of Proposition 4.1, we describe such a family).

4.1 VGB Vs. VBB and INDO

VGB is strictly weaker than VBB. The VGB definition is clearly implied by the VBB definition. We
show that, in fact, it is strictly weaker. That is, we show a family that cannot be obfuscated according to
the VBB definition but is (trivially) obfuscatable under the weaker VGB definition. To do so, we use a
slight variation of the family constructed in the [BGI+01] impossibility result.

Proposition 4.1. Assuming the existence of one-way permutations, there exists a family of programs
that is not VBB obfuscatable but is VGB obfuscatable.

To prove the above proposition, we use the notion of TM obfuscation. This choice is only for
the sake of simplicity; indeed, constructing TM families that are not VBB-obfuscatable is technically
much simpler than constructing such circuit families as reflected in [BGI+01]. The separation can
be extended to case of circuit families using pseudo random functions that are exactly learnable for
unbounded adversaries with polynomially many queries (which can also be easily constructed from
one-way permutations).

We recall the definition of one way permutations and then turn to prove Proposition 4.1

Definition 4.2 (One Way Permutation). A family of permutations f = {fn : {0, 1}n → {0, 1}n}n∈N is
a one-way permutation if f is efficiently computable and for any poly-size A:

Pr
x
U←{0,1}n

[A(fn(x)) = x] = n−ω(1) .

2See the section on applications in [BGI+01] for more details.
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Proof of Proposition 4.1. We describe a family of TM’s that is not VBB obfuscatable but is (trivially)
VGB obfuscatable. We use a slight variation of the family constructed in the negative result of [BGI+01]
(for TM’s). For n ∈ N, α, β ∈ {0, 1}n , consider TM’s Cα,β, Dα,β with the following functionality:

Cα,β(x) =

{
β x = α

⊥ otherwise

Dα,β(M, 1t) =

{
1 M halts on input α with output β after at most t steps
⊥ otherwise

.

We assume that both TM’s have descriptions of size Θ(n), that Cα,β runs at most δn steps for some
constant δ, and Dα,β runs in poly-time (in its input length). We also assume that given (α, β), both
TM’s can be generated (by another TM) in time poly(n). Let f = {fn : {0, 1}n → {0, 1}n}n∈N be a
one way permutation family. For any n ∈ N, α, β, β′ ∈ {0, 1}n define another TM:

Fα,β,β′(i, s) =


Cα,β(s) i = 1

Dα,β′(s) i = 2

fn(α), fn(β′) i = 3

.

Consider the corresponding families Fn = {Fα,β,β′} and F = ∪
n∈N
Fn. We first claim that F is trivially

VGB obfuscatable, the obfuscator is just the identity function. An unbounded simulator can invert
fn, retrieve α, β′, use its oracle to compute β = Cα,β(α) and run the simulated adversary on the
corresponding Fα,β,β′ . We now show that F is not VBB obfuscatable. Indeed, let O be any candidate
for obfuscation, and let c be the polynomial slowdown constant such that for any F ∈ ∪Fn, it holds that
|O(F )| ≤ |F |c and if F (x) halts after t steps then (O(F ))(x) halts after at most tc steps with the same
output. Let A be the adversary that, given a program P as input, where |P | = k, first computes the
code of a new program C = P (1, .) that, given any input x, runs P (1, x). Then, the adversary computes
P (2, C, (δk)c). A runs in poly time for any input in F 3. Furthermore, for any α, β, β′ ∈ {0, 1}n, it
holds thatA(O(Fα,β,β′)) = 1 iff β = β′ 4. On the other hand, for a randomly chosen α, β, β′ ∈ {0, 1}n
any efficient simulator, with nothing but black box access to Fα,β,β , fails to determine whether β = β′,
except with negligible probability. Indeed, the simulator fails to learn anything from its oracle except
for fn(α), fn(β′) (i.e. sees only⊥) as long as it never queries on (1, α) nor on (2, C, 1t), where C is the
code of a TM which on input α returns β′ in time t. The latter happens only with negligible probability;
otherwise, we could construct a poly-size adversary which inverts f . Indeed, given an adversary A that
on input fn(α), fn(β′) (for random α, β′) produces a program C that on input α outputs β′ in time
poly(n), we could invert f as follows. On input fn(β′) choose a random α and compute fn(α), then
use A to create the program C and run it on α. Ruling out an adversary that on input fn(α), fn(β′)
outputs α is straight forward. It follows that F is not VBB obfuscatable.

VGB implies INDO (BPO). The relation between VGB obfuscation and INDO (BPO) follows from
Proposition 3.1. That is, even when VGB is further weakened by allowing the (unbounded) simulator
unlimited oracle access, it still implies INDO and (for efficient obfuscators) BPO.

4.2 Impossibility Results

We consider the possibility of “universal VGB obfuscation”. That is, could there exists a VGB obfus-
cator for the class of all programs? We observe that for TM’s obfuscators the impossibility result of

3Formally, one should also set a time out mechanism to deal with other inputs.
4Note that k = |O(Fα,β,β′)| ≥ n so A is allowed poly(n) steps
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[BGI+01] extends and also applies for VGB obfuscation. However, for circuits obfuscators, the sepa-
ration shown in [BGI+01] no longer holds. Essentially, the reason for this difference is that the VBB
unobfuscatable circuit family constructed by [BGI+01] includes cryptographic functionalities (such as
encryption schemes and pseudo random functions) that fail to remain secure in the presence of un-
bounded simulators (even with limited oracle access). We could not rule out universal VGB obfuscation
in the circuit case.

We note that [GR07] show impossibility of universal BPO obfuscation for circuits that are allowed
to use random oracle gates. Their result also applies for the stronger VGB notion; however, the meaning
of an impossibility result in such a setting is somewhat less clear.

4.3 VGB Obfuscation with Auxiliary Information

A more general notion of obfuscation is obfuscation with auxiliary information (for either VBB or
VGB). In this setting, the adversary also has some prior information regarding the obfuscated circuit.
This notion was previously studied in [GK05] who showed impossibility results for VBB obfuscation
with auxiliary input. While, for VBB, obfuscation with auxiliary input seems to be a stronger notion than
plain VBB obfuscation, we show that, for VGB, it actually does not add any extra power. In Appendix A
we give the formal definitions and prove this result (Proposition A.3).

5 Composable Point Obfuscators

In this section, we define composable VGB point obfuscators and study the relation between the nat-
ural simulation-based definition and an indistinguishability-based definition. In Section 6, we study
a concrete construction satisfying the indistinguishability-based definition, under appropriate number-
theoretic assumptions.

5.1 Composition of Obfuscators

One central question in the context of obfuscation is the question of composition, which asks when and
whether is it secure to obfuscate a sequence of programs by obfuscating each program on its own and
combining the obfuscated programs. There are several forms of composition one could consider, in this
work we consider one specific form, namely composition by concatenation [LPS04].

Definition 5.1 (t-Composable Obfuscation [LPS04]). A PPT O is a t-composable obfuscator for a
circuit ensemble C = {Cn} if it satisfies the functionality and polynomial slow-down requirements, as in
Definition 3.1, and for any poly-size binary adversary A and polynomial p, there is a simulator S, such
that for any sequence of circuits C1, . . . , Ct ∈ Cn (where t = poly(n)), and any sufficiently large n:∣∣∣Pr[A(O(C1), . . . ,O(Ct)) = 1]− Pr[SC1,...,Ct(1|C

1|, . . . , 1|C
t|) = 1]

∣∣∣ ≤ 1

p(n)
,

where C1, . . . , Ct gets as input (x, i) and returns Ci(x).

Remark 5.1. A special case of t-composability is t-self-composability, where C1 = C2 = · · · = Ct.
This captures the requirement that multiple obfuscations of the same point would not reveal more infor-
mation than a single obfuscation of that point.

Remark 5.2. [LPS04] naturally refer to VBB obfuscation, i.e. the simulator S is polynomially bounded.
We consider the definition also for VGB obfuscators; i.e., we allow the simulator to be unbounded with
polynomially many oracle queries.
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5.2 Point Obfuscators

Point circuits. For a security parameter n ∈ N and a domain Dn, a point circuit Cx : Dn → {0, 1}
returns 1 on input x and 0 on all other inputs. The point circuits we discuss are given in some “canonical”
form where the point x is explicit. As the size of the canonical circuits is determined by the parameter n,
we simplify our notation by letting the simulator take input 1n (instead of the circuit size). The natural
choice for the domain is Dn = {0, 1}n. However, to avoid confusion when discussing tuples of points
in Dtn, we shall stick to the more general notation. We refer to obfuscators for point circuits as point
obfuscators.

Is any point obfuscator composable? Point obfuscators have been constructed, both in the plain
model and in the random oracle model. A natural question is whether any VBB secure point obfuscator
is also guaranteed to be composable (as in Definition 5.1). [LPS04] conjectured that the answer is
negative. To support their conjecture they give a point obfuscator in the Random Oracle model that is not
even 2-composable. In the standard model, it can be shown that if point obfuscators exist, then there are
also point obfuscators which are not Ω(n)-composable [CD08] (see further discussion in Appendix A) .
In general, none of the constructions of point obfuscators were known to be composable.

Does obfuscation with auxiliary information imply composability? In the context of cryptographic
protocols, auxiliary information is known to be tightly related to composability. A natural question is
whether the same holds for obfuscation; in particular, whether point obfuscators with auxiliary input
would imply composable point obfuscation. This was partially answered in [CD08] who showed that
such an implication does not hold for a certain type of auxiliary information. In Appendix A, we extend
this to a more general setting (Proposition A.1). However, we show that point obfuscation with auxiliary
information does imply a more restricted notion of composability, namely constant-self-composability
(Proposition A.2).

5.3 Distributional Indistinguishability and Composable Point Obfuscation

To overcome the difficulties in achieving composable point obfuscators, we explore in this section an
additional property of point obfuscators called Distributional Indistinguishability (or DI in short).5 We
will show that this additional property is necessary for composable obfuscation, even under the VGB
notion, just as it is necessary for the stronger VBB notion. More importantly, we will show that, in fact,
it suffices for VGB point obfuscation. The definition we present generalizes the DI definition presented
in [Can97].

Definition 5.2 (Coordinatewise Well Spread Distribution). Let X = {Xn} be an ensemble where each
Xn is a distribution on Dt(n)

n for a domain ensemble {Dn}. We say that X is CWS if:

max
a∈Dn

Pr
x̄←Xn

[∃i ∈ [t] : xi = a] = n−ω(1) .

That is, any element has only a negligible chance of being picked within a vector sampled from the
distribution. Equivalently, in a CWS ensemble the distributionsX(i)

n all have super-log min-entropy; i.e.,
mini∈[t]H∞(X

(i)
n ) = ω(log n).

Definition 5.3 (Distributional Indistinguishability). O is t-DI if for any CWS distribution ensemble,
X = {Xn = 〈X(1)

n , . . . , X
(t)
n 〉}, it holds that:

O(CX (1)), . . . ,O(CX (t)) ≈c O(CU(1)), . . . ,O(CU(t)) ,

5DI should not be confused with Indistinguishability Obfuscators of [BGI+01], which were presented in Definition 3.2.

11



where each O(CX (i)) is an ensemble of distributions on point obfuscations, and the hidden point is
drawn from X (i) and U (1), . . . ,U (t) are ensembles of independent uniform distributions over {Dn}.

We note that, for the case t = 1, Definition 5.3 is equivalent to the DI definition in [Can97] (see
Appendix B). There, it is shown that for t = 1, DI and VBB are in fact equivalent. The proof there does
not follow through for larger t. Nevertheless, we show:

Theorem 5.1 (Restatement of Theorem 1.1). Any t-DI point obfuscator is a t-composable VGB point
obfuscator. Moreover, for t = O(1), it is VBB composable. Conversely, any t-composable VGB point
obfuscator is t-DI.

We first prove the second part of Theorem 5.1, which is simpler, and then prove the more involved
second part. We start by introducing preliminary notation.

Notations. Given a vector of t points x̄ = 〈x1, . . . , xt〉, we abuse notation and denote by Cx̄ the
vector of point circuits 〈Cx1 , . . . , Cxt〉. We also denote byO(Cx̄) the compositionO(Cx1), . . . ,O(Cxt).
Speaking of vectors, we shall often be interested in the (unordered) set of their elements. Whenever we
use set operators such as ∈,∩,∪ on vectors, it should be interpreted as operating on the corresponding
sets. For integers s ≤ t we denote by

(
[t]
s

)
the family of subsets of [t] of size s. For vectors x̄, z̄ of

dimensions s and t−s, and a set of indices I ⊆ [t] of size |I| = s, we denote by CMBI(x̄, z̄) the t-vector
with the elements of x̄ in coordinates I and those of z̄ in coordinates [t] − I (the mapping is according
to ascending order of indices).6

Proof - Any t-composable VGB point obfuscator is t-DI. Let X be a CWS distribution ensemble over
vectors in Dtn and letA be a binary poly-size adversary. By the VGB assumption, for any polynomial p,
there exists an (unbounded) simulator S that is allowed q = poly(n) many oracle queries and satisfies,
for all x̄ ∈ Dtn and sufficiently large n:∣∣∣∣Pr

A,O
[A(O(Cx̄)) = 1]− Pr

S
[SCx̄[q](1n) = 1]

∣∣∣∣ ≤ 1/4p . (1)

It follows that, for large enough n:∣∣∣∣∣∣∣ Pr
x̄←Xn
O,A

[A(O(Cx̄)) = 1]− Pr
ū
U←Dtn
O,A

[A(O(Cū)) = 1]

∣∣∣∣∣∣∣ ≤∣∣∣∣∣ Pr
x̄←Xn

[SCx̄[q](1n) = 1]− Pr
ū
U←Dtn

[SCū[q](1n) = 1]

∣∣∣∣∣+
1

2p
.

We can assume WLOG that S is deterministic (by fixing its coins to those that maximize the above
difference). To conclude the claim observe that:∣∣∣∣∣ Pr

x̄←Xn
[SCx̄[q](1n) = 1]− Pr

ū
U←Dtn

[SCū[q](1n) = 1]

∣∣∣∣∣ = n−ω(1) . (2)

Indeed, for any CWS distribution Y = {Yn} on vectors in Dtn, the probability that S queries an element
of a vector sampled from Yn is at most q · max

a∈Dn
Prȳ←Yn [∃i ∈ [t] : yi = a], which is negligible when Y

CWS. Thus, S distinguishes any two CWS distributions, such as X and U , with negligible probability.

6For example CMB{2,5}((a, b), (c, d, e)) = (c, a, d, e, b).
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Proving the first part of Theorem 5.1 - a road map. The proof follows the ideas presented in Sec-
tion 1.2: our eventual goal is to establish that, for any partial information learned by the adversary
(intuitively corresponding to hidden points the adversary revealed), there is a corresponding polynomial
set of distinguishing elements that it may try to identify in its next set of queries. Then, we will construct
a simulator that, using its unbounded power (and a polynomially bounded number of oracle queries),
will compute the distinguishing elements on the fly in order to simulate.

More concretely, the first Lemma 5.1 deals with the case that no partial information is learned,
showing that there is a polynomial set L of distinguishing elements, such that, as long as the obfuscated
vector does not contain any elements from the distinguishing set L, it cannot be distinguished from an
obfuscated random vector. For a single point (non-composable obfuscation), this lemma is sufficient for
constructing a VBB (i.e., efficient) simulator (as in [Can97]); indeed, the simulator can use its oracle to
the hidden point to check whether it is taken from the polynomial distinguishing set, and if not simply
simulate the obfuscation using a random point. However, in our setting, this is clearly not enough, as it
might be that only some of the elements in the hidden vector are taken from the distinguishing set; this
intuitively corresponds to the case that the adversary learns some part of the obfuscated vector, and may
adapt its learning strategy accordingly.

To deal with the above, we show in Lemma 5.2 that, for any partial information learned by the
adversary, there is still a corresponding polynomial distinguishing set that may depend on this partial
information. Then, we show in Lemma 5.3 how to deduce a function F that computes, from any such
partial information, a corresponding set of distinguishing elements, where the size of any such set is
bounded by some fixed polynomial; however, this function may not be efficiently computable. Finally,
we construct the simulator, which will use its unbounded power to compute the function F on the fly,
while performing only a fixed polynomial number of queries. Specifically, the constructed simulator, in
each iteration, computes the set of distinguishing elements L = F(I) relative to the partial information
I it has learned so far (including some of the elements of hidden vector, as well as their positions). Then,
it queries its oracle on the elements in L to try and reveal more elements. If eventually it reveals all the
hidden point, it can perfectly simulate the adversary; otherwise, it gets to a point where it revealed infor-
mation I , and non of the unrevealed points are in the relative set L = F(I) of distinguishing elements,
meaning it can simulate them as random points, without the adversary being able to distinguish.

Lemma 5.1. Assume O is t-DI, then, for any poly-size A with binary output and polynomial p, there
is a poly-size family L = {Ln ⊆ Dn} such that any vector x̄ ∈ Dtn that does not intersect Ln (i.e.
x̄ ⊆ Dn \ Ln) satisfies:∣∣∣∣∣Pr

A,O
[A(O(Cx̄)) = 1]− Pr

A,O,ūU←Dtn

[A(O(Cū)) = 1]

∣∣∣∣∣ ≤ 1

p(n)
. (1)

Proof. Consider a binary poly-sizeA and a polynomial p. We describe the corresponding family L. Let
Xn be the set of all “identifiable vectors”, namely vectors that do not satisfy Equation (1). We treat Xn

as the union of two sets, Xn = X+
n ∪X−n , where:

X+
n =

{
x̄ ∈ Dtn : Pr[A(O(Cx̄)) = 1]− Pr[A(O(Cū)) = 1] ≥ 1

p(n)

}
,

X−n =

{
x̄ ∈ Dtn : Pr[A(O(Cū)) = 1]− Pr[A(O(Cx̄)) = 1] ≥ 1

p(n)

}
.

First, we reduce X+
n to a subset of vectors Y +

n ⊆ X+
n such that: (a) any identifiable vector x̄ ∈ X+

n

shares an element with some vector in Y +
n , i.e. x̄ ∩ ∪

ȳ∈Yn
ȳ 6= ∅, and (b) any element a ∈ Dn appears in

at most one vector ȳ ∈ Y +
n . Similarly, reduce X−n to Y −n . Let Yn = Y +

n ∪ Y −n and define

Ln = ∪
ȳ∈Yn

ȳ = {a ∈ Dn : ∃ȳ ∈ Yn, a ∈ ȳ} .
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By the construction of Ln, any x̄ ⊆ Dn \ Ln is not in the set Xn = X+
n ∪ X−n , and hence it

is not identifiable, i.e., it satisfies Equation (1). Thus, it remains to show that |Ln| = poly(n). As
|Ln| ≤ t|Yn|, it suffices to show that |Yn| = poly(n). Assume towards contradiction that the latter does
not hold. We shall construct a CWS distribution ensembleZ = {Zn} over Dtn, such thatA distinguishes
O(CZ) from O(CU(Dt)) with advantage 1/p, contradicting the DI property. By the assumption on the
size of |Ln|, there exists a function `(n) = nω(1) such that for infinitely many n’s either |Y +

n | ≥ `(n) or
|Y −n | ≥ `(n). We assume WLOG the first case holds (the proof is similar for the second). For any n ∈ N
such that |Ln| ≥ `(n), set Zn to be uniform on the set Y +

n . For other n, let Zn be uniform on some
arbitrary set of size `(n) in which any element appears in at most one vector (we can take ` = o(|Dn|)
to assure such a choice is possible). The resulting ensemble Z is CWS since any single vector is drawn
with probability at most 1/`, and any single element appears in at most one vector. Moreover, for any n
such that Zn , U(Y +

n ), it holds that:

Pr
z̄←Zn

[A(O(Cz̄)) = 1] − Pr
ū←U(Dtn)

[A(O(Cū)) = 1] ≥

min
ȳ∈Y +

n

Pr[A(O(Cȳ)) = 1] − Pr
ū←U(Dtn)

[A(O(Cū)) = 1] ≥ 1

p(n)
.

The next lemma shows that, for any partial information learned by the adversary, there is still a
corresponding polynomial distinguishing set.

Lemma 5.2. Assume O is t-DI. Let s = s(n) be any length function such that s ≤ t and let T ={
(x̄n, In) ∈ Dsn ×

(
[t]
s

)}
n∈N

be a family of vectors and index sets7. Then, for any poly-size A with

binary output and polynomial p, there exists a poly-size family LT = {Ln} such that for any ȳ ∈ Dt−sn

that does not intersect Ln:

|Pr[A(CMBIn(O(Cx̄n),O(Cȳ)) = 1]− Pr[A(CMBIn(O(Cx̄n),O(Cū))) = 1]| ≤ 1

p(n)
,

where ū U← Dt−sn and the probabilities are over the coins of A,O and ū.

To prove the lemma, we shall need the following (rather intuitive) claim.

Claim 5.1. If O is t-DI, then it is also s-DI for any s ≤ t. .

Proof of claim. Assume towards contradiction there is an adversary A and a CWS distribution ensem-
ble X over s-dimensional vectors, such that A distinguishes O(CX ) from O(CU(Ds)) with some non-
negligible advantage. We examine a new CWS distribution ensemble X ′ = X ×U(Dt−s) and an adver-
sary A′ that, given an obfuscation of t points, runs A on the first s obfuscations. Then A′ distinguishes
O(CX ′) from O(CU(Dt)) (with the same advantage) contradicting the t-DI property.

Proof of Lemma 5.2. Consider the function r = t − s, then by Claim 5.1, O is r-DI. Consider an
adversary A′ (for r-compositions) that has T hardwired and, on input w̄ (here w̄ = O(Cȳ) for some
y1 . . . yr), runsA on the valid obfuscation CMBIn(O(Cx̄n),O(Cȳ)). By Lemma 5.1, thisA′ has a family
LT which satisfies the required property with respect to the original adversary A.

The next lemma shows that there is a uniform polynomial bound on the size of all distinguishing
sets (corresponding to any partial information), and hence there exists a distinguishing function family
that, given any partial information, outputs a poly-size set of all distinguishing elements (with respect to
this information).

7Any pair (x̄, I) should be thought of as partial information on a tuple of size t with the elements of x̄ in the indices I .
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Lemma 5.3. Let O be a t-DI obfuscator. Then for any poly-size A with binary output, and polynomial
p, there exists a family of functions F = {Fn} and a q = poly(n) such that Fn :

⋃
s≤t

(
Dsn ×

(
[t]
s

))
−→⋃

s≤q

(Dn
s

)
and for any (x̄, I) ∈ D|I|n ×

([t]
|I|
)

and any ȳ ∈ Dt−|I|n which does not intersect the set Fn(x̄, I):

|Pr[A(CMBIn(O(Cx̄),O(Cȳ))) = 1]− Pr[A(CMBIn(O(Cx̄),O(Cū))) = 1]| ≤ 1

p(n)
,

where ū U← Dt−|I|n and the probabilities are over the coins of A,O and ū.

Remark 5.3. The function Fn is defined for any “partial information”; in particular, the set of indices I
is allowed to be the empty set corresponding to no partial information as in Lemma 5.1.

Proof. For any (x̄, I) ∈ D|I|n ×
([t]
|I|
)
, let Fn(x̄, I) ⊆ Dn be the minimal set that satisfies the above

condition (note that such a set always exists as Dn trivially satisfies the requirement). We show that
there exists a polynomial q, such that |Fn| ≤ q(n) (i.e. q is a uniform bound on all images). Let (x̄∗n, I

∗
n)

be the pair which maximizes Fn(x̄, I), i.e. |Fn(x̄∗n, I
∗
n)| = max

I⊆[t],x̄∈D|I|n
|Fn(x̄, I)|. By Lemma 5.2, there

exists a polynomial q for which |Fn(x̄∗n, I
∗
n)| ≤ q(n) (just by considering the family {(x̄∗n, I∗n)}n∈N).

The result follows.

To complete the proof of the theorem, we construct a simulator using the family of distinguishing
functions F . However, as it might not be computable by a poly-size simulator, the result holds only for
strong simulators as in the VGB definition.

Proof - Any t-DI point obfuscator is also a t-composable VGB point obfuscator (sketch). LetA be a bi-
nary poly-size adversary and p a polynomial. Let F be the corresponding family of functions given by
Lemma 5.3, and let q be the polynomial bound on the size of the images of F (which are sets). We con-
struct an unbounded simulator S that performs at most q · t oracle queries (the full description is given
by Algorithm (5.3)). Given oracle access to a tuple of circuits Cx̄ = Cx1 , . . . , Cxt , for some x̄ ∈ Dtn,
S first runs Fn (on the empty set), retrieves a set L(0) of all distinguishing elements with respect to
no partial information, and queries its oracle on all the elements in L(0). In case it did not reveal any
elements (i.e. x̄ ∩ L(0) = ∅), it chooses a uniform vector ū U← Dtn, computes obfuscations of the points
in ū and runs A on their composition. Otherwise, it revealed some elements given by a pair (z̄(0), I(0)).
It then computes L(1) = Fn(z̄(0), I(0)), and as in the first step, queries all the values in L(1). In case it

did not reveal any new values, it chooses a uniform vector ū U← Dt−|I
(0)|

n and runs A on an obfuscation
CMBI(0)(O(Cz̄(0)),O(Cū))). Otherwise, it has updated partial information given by a pair (z̄(1), I(1)).
It continues on in this manner. If at any point it revealed all the points in x̄, it just runs A on a random
composed obfuscation of the points in x̄ performing a perfect simulation. Otherwise, it stops after at
most t iterations, guaranteeing a simulation with 1/p accuracy. This completes the main part of the
proof of Theorem 5.1.

A more careful analysis shows that we can somewhat “compress” the distinguishing function F to a
set of distinguishing elements. This yields the following.

Proposition 5.1. IfO is a t-DI obfuscator, then any binary adversary, given a sequence of t obfuscations,
can be simulated by a simulator of size nO(t) and poly(n) queries. In particular, for t = O(1) this yields
a polynomially bounded simulator (VBB).
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Algorithm 5.1 Simulator SCx1 ,...,Cxt

1: (z̄, I)← (∅, ∅)
2: L← ∅
3: while not all the coordinates of x̄ were revealed do
4: L← Fn(z̄, I)
5: Query all values in L
6: if New elements were revealed then
7: Update partial information (z̄, I) accordingly
8: else
9: ū

U← Dt−|I|n \ L
10: return A(CMBI(O(Cz̄),O(Cū)))
11: end if
12: end while
13: return A(O(Cx̄))

Proof sketch. Going back to our proof of simulation (in Theorem 5.1), we show that one can replace
F by hardwiring into the simulator sets of distinguishing elements of total size at most nO(t). The
main point is to note that the simulator does not need the distinguishing elements corresponding to
all partial information sets, but only to some. Formally, let (x̄, I) be some partial information (where
I ⊆ [t], dim x̄ = |I|). We shall say that the partial information (ȳ, J), Fn-extends (x̄, I) and denote

(x̄, I)
Fn
b (ȳ, J), if the following holds:

I ⊆ J (1)

ȳ|I = x̄ (2)

ȳ|J \ I ⊆ Fn(x̄, I) , (3)

where ȳ|I denotes the restriction of ȳ to the coordinates corresponding to I . In addition, we define the
following t sets of partial information pairs.

G(0)
n = {(∅ ∅)} (no partial information)

∀k ∈ [t− 1] : G(k)
n =

{
(ȳ, J) : |J | = k,∃(x̄, I) ∈ G(k−1)

n , (x̄, I)
Fn
b (ȳ, J)

}
.

We claim that we can construct a simulator by hardwiring into it only the distinguishing sets corre-
sponding to the family Gn =

⋃
kG

(k)
n . Indeed, consider a simulator that tries to reveal a single new

element at a time; one can think of its query strategy as a tree, where the k’th level corresponds to G(k)
n ,

and a concrete run corresponds to a path in the tree (which ends when no distinguishing elements are
found). That is, the simulator starts by querying the values in Fn(∅), when it finds an element x1 in
coordinate i1, it stops and locates Fn(〈x1〉, {i1}) (as (〈x1〉, {i1}) ∈ G(1)

n ). It then continues in the same
manner, each time locating the proper extension (in the j’th step it finds xj at coordinate ij and locates
Fn(〈x1 . . . xj〉, {i1 . . . ij})). If at any point it queries all values in the current set L, without revealing
any new elements, it completes its partial information with uniform elements that do not intersect L,
computes the corresponding composition of obfuscations, and runs the adversary on it (just as in the
proof of the theorem). The properties of the sets Fn guarantee the required simulation accuracy. It is
left to show that the total size of the family (or tree) Gn is at most nO(t). Indeed, any set in the family
is of size at most q (where q is the polynomial bound on F given by Lemma 5.3). Hence, any pair
(x̄, I) ∈ G(k−1)

n has at most q(t− k) ≤ qt extensions in G(k)
n (there are at most q elements in Fn(x̄, I)
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each having t− k possible coordinates). It follows that |G(k)
n | ≤ qt · |G(k−1)

n | (the degree is bounded by
qt) and hence the total number of pairs in Gn is (qt)O(t). Since each corresponding set contains at most
q elements, and both q and t are polynomial, the total number of elements is bounded by nO(t).

5.4 On the Possibility of Bounded Simulation (VBB)

We note that our result does not rule out the possibility of bounded simulation for any t = poly(n);
namely, it may still be that any t-DI point obfuscator is also a t-composable VBB point obfuscator.
More specifically, it might be that there always exists a function family F , such as the one required
in Theorem 5.1, that is also efficiently computable, or even a “compressed” poly set of distinguishing
elements as in Proposition 5.1. Alternatively, there might be other techniques that allow efficient sim-
ulation. In this context, we show an example of an adversary whose distinguishing function cannot be
compressed into a poly set. We also show that, if bounded simulation exists, then so does an efficiently
computable function family F ; i.e., simulation can be proven using the same technique we use above.

Example 5.1. Intuitively speaking, the reason we can compress the distinguishing function F for con-
stant dimension t is that the adversary has a relatively limited amount of adaptivity to aid it, while when
t grows, there are simply too many adaptive options, which cannot be captured within a polynomial set.
This is given by the following example.

For t = ω(1) consider obfuscating points in {0, 1}n (i.e. Dn = {0, 1}n). Consider an adversary
A which first checks for any x ∈ {0, 1}logn if x ◦ 0n−logn is one of the obfuscated points (simply by
running the obfuscation). Let bx be the indicator for the case in which x ◦ 0n−logn is indeed one of the
points and let b = (bx)x∈{0,1}logn be the n-bit string given by the answers. The adversary now checks
whether b is one of the points and returns 1 only if this is indeed the case. We claim that any poly-size
family cannot cover all “distinguishing elements”. More precisely, we show that for any poly-size family
L = {Ln}, there are infinitely many n’s for which there is some partial information, given by a vector x̄
that does not intersect Ln, and two possible ways (ȳ, z̄) to complete it to a vector of t points such that

Pr[A(O(Cx̄◦ȳ)) = 1]− Pr[A(O(Cx̄◦z̄)) = 1] = 1 ,

where x̄ ◦ ȳ = CMB[dim x̄](x̄, ȳ) is just the vector of t points given by the concatenation of x̄, ȳ. In
particular, for some w̄ ∈ {ȳ, z̄}:

|Pr[A(O(Cx̄◦w̄)) = 1]− Pr[A(O(Cx̄◦ū)) = 1]| ≥ 1

2
,

where ū is a uniformly chosen vector with elements in {0, 1}n.
Indeed, define the following set of strings:

Gtn =

b ∈ {0, 1}n :
∑

x∈{0,1}logn

bx ≤ t

 ,

and note that 8 :

|Gtn| =
∑
i≤t

(
n

i

)
≥
(

n

log n

)ω(1)

= nω(1) ;

hence, for any large enough n ∈ N, there must be some a ∈ Gtn −
(
Ln ∪

(
{0, 1}logn ×

{
0n−logn

}))
.

We now consider the set T =
{
x ◦ 0n−logn : x ∈ {0, 1}logn, ax = 1

}
, a vector x̄ consisting of the

8If t ≥ logn then |Gtn| ≥
(
n

logn

)
≥

(
n

logn

)logn

and otherwise |Gtn| ≥
(
n
t

)
≥

(
n
t

)t ≥ (
n

logn

)ω(1)

.
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elements in T (in some arbitrary order) and two vectors ȳ, z̄ of t − |T | elements in {0, 1}n that do not
intersect Ln ∪

(
{0, 1}logn ×

{
0n−logn

})
and satisfy a ∈ ȳ \ z̄ (e.g. ȳ = at−|T |, z̄ = bt−|T | for some

b /∈ Ln ∪
(
{0, 1}logn ×

{
0n−logn

})
). Equation (1) follows as required.

It should be noted that although the above example rules out the technique of hardwiring a poly-
nomial set of “distinguishing elements”, it does not rule out the possibility of efficient simulation in
general. In particular, the adversary described above makes a “black box” attack (i.e. only runs the
program) and hence can be easily (and efficiently) simulated.

Proposition 5.2. If O is a t-composable VBB point obfuscator, then there exists an efficient algorithm
B computing a distinguishing function family F (with the properties given in Lemma 5.3).

Previously, we showed that, for constant dimensional vectors, bounded simulation is in fact possi-
ble. The above proposition shows that in fact, if efficient simulation is possible, then there must be a
distinguishing function family F that is also efficiently computable (i.e. it can be proven using the same
techniques we used above).

Proof sketch of Proposition 5.2. LetA be a binary poly-size adversary and p a polynomial. We describe
the algorithm B. By the VBB property, there exists an efficient simulator S such that, for any vector
v̄ ∈ Dtn, it holds that:

|Pr[A(O(Cv̄)) = 1]− Pr[SCv̄(1n) = 1]| ≤ 1/3p(n) ,

where the probability is over the coins of A,S,O.
Given partial information (x̄, I), let Cx̄◦0̄ : D × [t] → {0, 1} denote the function which returns 1 on
input (z, i) if i ∈ I and xi = z and 0 otherwise. B will run SCx̄◦0̄ and will record its set of queries,
it will independently repeat this process k times (where k = poly(n, log |Dn|) will be specified later
on). Eventually, it will output the set of all recorded queries Q = ∪

i∈[k]
Qi. We show that there is only a

negligible probability (over the coins of B) that there exists a vector ȳ of dimension (t − |I|) that does
not intersect Q and satisfies:

|Pr[A(CMBI(O(Cx̄),O(Cȳ))) = 1]− |Pr[A(CMBI(O(Cx̄),O(Cū))) = 1] ≥ 1

p(n)
, (1)

where ū is a uniform vector (of the same dimension as ȳ) and the probabilities are over the coins ofA,O
and the choice of ū.

Concretely, for any vector ȳ satisfying Equation (1), we show that ȳ ∩ Q = ∅ with probability at
most 2−n|Dn|−2t. Denote x̄ ◦ ȳ = CMBI(x̄, ȳ). By the simulation property and Equation (1):

|Pr[SCx̄◦ȳ(1n) = 1]− Pr[SCx̄◦ū(1n) = 1]| ≥ 1/3p(n) .

On the other hand, the probability that SCx̄◦ū queries an element of ū is at most |S|·t|Dn| = n−ω(1), and
hence: ∣∣Pr[SCx̄◦0̄(1n) = 1]− Pr[SCx̄◦ū(1n) = 1]

∣∣ ≤ n−ω(1) .

It follows that:

|Pr[SCx̄◦0̄ = 1]− Pr[SCx̄◦ȳ = 1]| ≥ 1/3p(n)− n−ω(1) .

As before, conditioning on the event that S does not query any element of ȳ, the above probabilities
are equal. It follows that S queries some element in ȳ with probability at least 1/4p(n). Hence, the
probability that ȳ ∩Qi = ∅ for all i ∈ [k] is bounded by:(

1− 1

4p(n)

)k
≤ 2−k/4p < 2−n|Dn|−t ,

where the last inequality holds for k = Θ(pt log |Dn|). Using union bound over all possible vectors ȳ
(there are at most |Dn|t such vectors) we get the required result.
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6 A Concrete Composable Point Obfuscator

After establishing the proper framework in the previous, this section is devoted to a concrete construction
of composable VGB point obfuscators. We consider the point obfuscator constructed in [Can97] and
analyze its security under composition.

Construction 6.1 (The r, rx Point Obfuscator [Can97]). Let G = {Gn}n∈N be a group ensemble, where
each Gn is a group of prime order pn ∈ (2n−1, 2n). We define an obfuscatorO, for points in the domain

Zpn as follows: Cx
O7−→ C[r, rx] Where r U← G∗n is a random generator of Gn, and C [r, rx] is a circuit

that has r, rx hardwired into it, and on input z, it checks whether rx = rz .

In [Can97], Construction 6.1 is shown to be secure under a strong variant of the Decision Diffie-
Hellman assumption. We now present our assumption, which is a generalization of the [Can97] assump-
tion to tuples of points.

Assumption 6.1 (t-Strong Vector Decision Diffie Hellman I). Let t = poly(n). There exists a group
ensemble G = {Gn : |Gn| = pn is prime} with efficient representation and operations, such that for
any CWS distribution ensemble X = {Xn} over vectors in Ztpn the following holds:

g1, g
a1
1

...
gt, g

at
t

:
ḡ
U← (G∗n)t

ā
Xn← Ztpn


n∈N

≈c


g1, g

u1
1

...
gt, g

ut
t

:
ḡ
U← (G∗n)t

ū
U← Ztpn


n∈N

.

We observe that Assumption 6.1 implies that the r, rx point obfuscator is t-DI with respect to the
corresponding group ensemble G, given by the construction. Hence, Theorem 5.1 yields:

Theorem 6.1. Under Assumption 6.1, the r, rx point obfuscator is a t-composable VGB point obfus-
cator (with respect to the group ensemble G given by the assumption). Assuming the existence of a
“universal” group ensemble that satisfies Assumption 6.1 for any t = poly(n) implies composable VGB
point obfuscators (i.e. t-composable for any t = poly(n)).

In the following subsection, we further discuss our hardness Assumption 6.1.

6.1 On the Assumption

As shown in [Wee05], strong hardness assumptions are inherently necessary for point obfuscation (even
non-composable). We next discuss the specific nature of our Assumption 6.1, including its relation to
previous Decision Diffie Hellman variants. In addition, we show that it holds in the Generic Group
Model.

Relation to Previous DDH Assumptions. We start by presenting another strong variant of DDH for
tuples of points, which is in a sense a natural generalization to the standard and strong DDH assumptions
[Bon98, Can97].

Assumption 6.2 (t-Strong Vector Decision Diffie Hellman II). Let t = poly(n). There exists a group
ensemble G = {Gn : |Gn| = pn is prime} with efficient representation and operations, such that for
any CWS distribution ensemble X = {Xn} over vectors in Ztpn the following holds:

g1, g
a1
1 , gb11 , g

c1
1

...
gt, g

at
t , g

bt
t , g

ct
t

:

ḡ
U← (G∗n)t

ā
Xn← Zpn

b̄, c̄
U← Ztpn


n∈N

≈c


g1, g

a1
1 , gb11 , g

a1b1
1

...
gt, g

at
t , g

bt
t , g

atbt
t

:

ḡ
U← (G∗n)t

ā
Xn← Ztpn

b̄
U← Ztpn


n∈N

.
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Restricting the assumption to t = 1 results in the strong DDH (SDDH) assumption in [Can97]. If in
addition we restrict X to be the uniform distribution ensemble, we get the standard DDH assumption.
Assumption 6.2 appears as a more familiar and a natural generalization of SDDH and DDH than As-
sumption 6.1 does. However, 6.1 is somewhat simpler and is clearly weaker (the distributions induced
by the last two elements of each foursome in 6.2 are identical to those in 6.1). It is also not hard to see
that if 6.1 holds for 2t then 6.1 holds for t, but in fact the assumptions are equivalent also with the same
parameter t.

Proposition 6.1. Assumptions 6.1 and 6.2 are equivalent for t ≥ 2.

Proof sketch. As explained above, Assumption 6.2 trivially implies Assumption 6.1 (for any t). To prove
that 6.1 implies 6.2 for any t ≥ 2, we show that the following distribution ensembles are computationally
indistinguishable:


g1, g

a1
1 , gb11 , g

a1b1
1

...
gt, g

at
t , g

bt
t , g

atbt
t

:

ḡ
U← (G∗n)t

ā
Xn← Ztpn

b̄
U← Ztpn


n∈N

(1)


g1, g

a1
1 , gb11 , g

a1b1
1

...
gt, g

at
t , g

bt
t , g

atbt
t

:
ḡ
U← (G∗n)t

(ā, b̄)
U← Zt×2

pn


n∈N

(2)


g1, g

a1
1 , gb11 , g

c1
1

...
gt, g

at
t , g

bt
t , g

ct
t

:
ḡ
U← (G∗n)t

(ā, b̄, c̄)
U← Zt×3

pn


n∈N

(3)


g1, g

a1
1 , gb11 , g

c1
1

...
gt, g

at
t , g

bt
t , g

ct
t

:

ḡ
U← (G∗n)t

ā
Xn← Ztpn

(b̄, c̄)
U← Zt×2

pn


n∈N

(4)

(1) ≈c (2), since given a distinguisher A for these two ensembles, we can construct a distinguisher A′

for the ensembles in Assumption 6.2. Given input g1, g
a1
1 , . . . , gt, g

at
t , A′ samples b̄ U← Ztpn and runs

A on g1, g
a1
1 , gb11 , g

a1b1
1 , . . . , gt, g

at
t , g

bt
t , g

atbt
t . The fact that (2) ≈c (3) follows from standard DDH by

applying a standard hybrid argument, while standard DDH follows from Assumption 6.1 with t = 2 and
X = U . Finally, (3) ≈c (4) is equivalent to Assumption 6.1, as the last two elements in each foursome
are uniform over G∗n and independent of the first two, hence any distinguisher can simulate these on its
own.

A natural question is whether assumptions 6.1 and 6.2 for t = 1 imply the corresponding assump-
tions for general polynomial t (or even just larger constant t). For the case that the distribution ensemble
X is the uniform distribution, this is true (corresponds to showing DDH for any poly number of four-
somes from DDH for a single foursome by an hybrid argument). However, when allowing any CWS
distribution, such an argument fails to work for two main reasons: (a) dependence among coordinates.
(b) the distribution ensemble might not even be efficiently samplable. In general, we do not know
whether SDDH implies SVDDH.

6.2 SVDDH Holds in the Generic Group Model

We show that Assumption 6.1 holds in the generic group model [Sho97] where algorithms cannot exploit
the representation of the group elements, other than the fact that each element has a unique representa-
tion. As noted in the introduction, there exist well studied group ensembles (e.g. Quadratic Residues
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modulo a prime, and Elliptic Curves groups) where the best cryptanalytic techniques are in fact generic
ones [6].

Formally, a generic poly-size algorithmA, in (Zp,+) takes as input a list of encodings σ(g1), . . . , σ(gk),
where σ is a random encoding of Zp to bit-strings {0, 1}m, for m = poly(|p|). In addition, it has access
to two oracles: the first, ADDσ, takes as input two (previously given) encodings σ(g1), σ(g2) and a bit b,
and returns σ(g1 +(−1)bg2), the second 1σ, returns σ(1) on all inputs.9 For a vector ḡ = (g1, . . . , gt) of
group elements, we shall denote by σ(ḡ) the corresponding encodings vector σ(g1), . . . , σ(gt). For two
vectors of elements (ḡ, h̄), we denote by ḡh̄ = (g1h1, . . . , gtht) the corresponding vector of products.
To prove that Assumption 6.2 holds in this model, we show the following.

Proposition 6.2. Let X1, X2 be two distributions on Ztp, such that for both i ∈ {1, 2} it holds that
max
a∈Zp

Prv̄←Xi [∃j ∈ [t] : vj = a] ≤ ν for some ν ≤ 1. Let A be a generic algorithm that makes at most

q queries to its oracles and denote:

pi = Pr
x̄
Xi←Ztp,ū

U←Ztp

[A(σ(ū, ūx̄)) = 1] ,

where the probability is also taken over σ and the coins of A. Then:

|p1 − p2| ≤ (q + 2t)2

(
ν +

1

p

)
.

In the setting of Assumption 6.1, one distribution is taken from a CWS ensemble X and the other is
taken from the uniform distribution ensemble.

Proof. To prove the proposition, we shall need the following simple claim.

Claim 6.1. Let P : Z2t
p → Zp be a multivariate polynomial such that 0 ≤ degP ≤ 1. Then for

i ∈ {1, 2} and x̄ Xi← Ztp, ū
U← Ztp, it holds that

Pr[P (ū, ūx̄) = 0] ≤ ν +
1

p
.

Proof of claim. In case degP = 0, P is a constant non-zero polynomial and the claim trivially holds.
Assume degP = 1 and write P (ū, ūx̄) = a0 +

∑
i∈[t]

aiui +
∑
i∈[t]

ai+tuixi = a0 +
∑
i∈[t]

(ai + ai+txi)ui.

Since degP = 1, there is some j ∈ [t] such that (aj , aj+t) 6= (0, 0). This implies that aj + aj+txj = 0
with probability at most ν. Indeed, in case aj 6= 0, aj+t = 0 the above term never vanishes, while if
aj+t 6= 0, the term vanishes only when xj = −aja−1

j+t, which occurs with probability at most ν. Given
that aj + aj+txj 6= 0, P (ū, ūx̄) = 0 with probability at most 1/p as uj is independent of all other
random variables. Overall, P (ū, ūx̄) vanishes with probability at most ν + 1/p.

We now prove Proposition 6.2, using the same technique applied in [Sho97, Bon98]. First note that at
each step ofA’s execution, all the encodings it got so far correspond to some linear polynomial evaluated
at ū, x̄ū. More precisely, its input consists of encodings σi = σ(Pi(ū, x̄ū)) : −2t + 1 ≤ i ≤ 0, where
Pi(x̄) = xi+2t is just a projection polynomial. At its k’th query, it either queries ADDσ(σi, σj , (−1)b)
for some i, j < k and is answered with an encoding σk = σ([Pi + (−1)bPj ](ū, x̄ū)) or it queries 1σ
and is answered with σk = σ(1) (which is just a constant polynomial). Informally, we show that for
the algorithm to distinguish the two distributions it must perform queries corresponding to two distinct

9Adding such an oracle allows the algorithm to get the encoding of any arbitrary element in Zp by applying ADDσ (in
particular it could sample random elements).
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polynomials Pi 6= Pj such that Pi(ū, x̄ū) = Pj(ū, x̄ū), otherwise it only sees uniform samples indepen-
dently of the underlying distribution. Formally, consider an alternative setting in which x, u are disre-
garded through the entire interaction. Instead, we emulate the interaction by storing a table with values
σi ∈ {0, 1}m and corresponding linear polynomials Pi. As input, we give the algorithm random dis-
tinct strings σ−2t+1, . . . , σ0, and store each with a corresponding projection polynomial Pi(x̄) = xi+2t.
At the k’th query, if ADDσ(σi, σj , (−1)b) is called (with some i, j < k) we compute the correspond-
ing polynomial Pk = Pi + (−1)bPj , and check whether Pk = P` for some ` < k. In case it does,
we return σk = σ`, otherwise we choose σk to be a random value in {0, 1}m \ {σj}j<k. Same goes
for queries to 1σ. Denote by p∗ the probability that A outputs 1 in such an interaction; we show that
|pi− p∗| ≤ (q+2t)2

2

(
ν + 1

p

)
. Note that the altered interaction differs from a true interaction (where x̄, ū

are used) only when there are some i < j and Pi 6= Pj , such that Pi(ū, x̄ū) = Pj(ū, x̄ū), in which
case the true interaction would return σj = σi, while the altered interaction returns a new random value.
Denote by Ci the event in which such an equality occurs, when x̄ is sampled from Xi and denote by
pi|Ci the probability that A outputs 1 in the original (non altered) interaction given that Ci occurs.10

Then:

|pi − p∗| =
∣∣Pr[Ci](pi|Ci) + Pr[Ci]p

∗ − p∗
∣∣ = Pr[Ci]|(pi|Ci)− p∗| ≤ Pr[Ci] ;

hence, it is enough to bound Pr[Ci]. Indeed, for any arbitrary 2t + q linear polynomials P−2t+1 . . . Pq,
the probability that for some pair Pi 6= Pj and [Pi − Pj ](ū, ūx̄) = 0 is at most ν + 1/p by Claim 6.1.
Taking union bound over

(
q+2t

2

)
< (q + 2t)2/2 pairs yields the required bound.

7 Applications

In this section, we show how composable VGB point obfuscators, can be used to construct VGB set
obfuscators and composable VGB point obfuscators for MBPCs. Then we discuss how these can be
used to obtain strong encryption schemes that are simultaneously resilient to key dependent messages
(KDM), leakage and related key attacks (RKA).

7.1 Application to Obfuscation of Set Circuits

Another application is obfuscation of set membership circuits (or set circuits in short). A set circuit
CT : Dn → {0, 1}, returns 1 for any element in the set T ⊆ Dn and 0 for all other inputs. Again
we deal with set circuits in some canonical form where the set is given explicitly. Set obfuscators have
been considered in past work regarding extensions of point obfuscators [CD08, CV09]. We show that
a natural construction described at [CD08] implies VGB (VBB) set obfuscators based on t-composable
VGB (VBB) point obfuscators.

Proposition 7.1. Let O be a t-composable point obfuscator. Consider a new PPT O′, which given a set
T of size |T | = t, first chooses some random ordering of the elements, applies O to each circuit and
wraps these obfuscations with a circuit that on input z checks if z is one of the obfuscated points (by
applying an ∨ gate). Then O′ is a set obfuscator.

Proof. As in Section 5, we denote by O(Cx̄) the composition O(Cx1), . . . ,O(Cxt). Let A be a poly-
size adversary (for set obfuscations) and let p be a polynomial. Since O is a composable obfuscator
there exists an efficient simulator S, such that for any vector x̄ ∈ Dtn:

|Pr[A(O(Cx̄)) = 1]− Pr[SCx̄(1n) = 1]| ≤ 1

p(n)
;

10formally these are defined on a joint probability space, where both the original and altered interaction are executed and it
refers to the polynomials determined by the altered interaction. In particular these polynomials are independent of x̄, ū.
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in particular, for any set T = {x1, . . . , xt} of size t:

|Pr[A(O′(CT )) = 1]− Pr[SCσ̄(T )(1n) = 1]| ≤ 1

p(n)
,

where σ̄(T ) = 〈xσ(1), . . . , xσ(t)〉 is a random ordering of the elements in T . We now describe a simulator
S ′ which simulates A with oracle access to a set circuit CT . S ′ chooses a random permutation σ and
stores a table of size t × 2, where the first column has indexes i ∈ [t] and the second will represent
corresponding values (at the beginning it is initialized with blanks). S ′ runs S and keeps a counter c of
how many distinct values were queried by S so far (where by distinct we mean distinct elements of Dn,
i.e. queries (x, i), (x, j) are not considered distinct). When S queries (x, i), S ′ first checks if x is in
the table. If it appears next to the index i, S ′ answers S with 1, if it appears but next to another index,
S ′ answers with 0. In case it does not appear, S ′ queries CT on x, if CT (x) = 0 it answers with 0 and
continues. Otherwise it sets c ← c + 1 and writes x in the table next to index σ(c) and answers 1 only
if σ(c) = i. We now note that for any set T ⊆ Dn of size |T | = t:

Pr[S ′CT (1n) = 1] = Pr[SCσ̄(T )(1n) = 1] ,

indeed, by our construction of S ′, the emulated S is experiencing oracle access to a truly random order
on T . It follows that:

|Pr[A(O′(T )) = 1]− Pr[S ′CT (1n) = 1]| ≤ 1

p(n)
.

The proposition follows.

7.2 Application to Obfuscation of Point Circuits with Multi-bit Output

A multi-bit point circuit (or MBPC in short) Cx→y : Dn → {0, 1}m returns y on input x and ⊥ on
all other inputs (once again we assume Cx→y is given in some canonical form where x, y are explicit).
MBPC obfuscators were constructed by [CD08] assuming the existence of a composable VBB point
obfuscators. However, as explained earlier no known obfuscator has been shown to be composable.
We show that applying the [CD08] construction to composable VGB point obfuscators results in VBB
(rather than VGB) MBPC obfuscator that is also VGB composable. We remark that existing MBPOs
were only shown to be secure for the restricted case that the message m is independent of the key k
[CD08, CKVW10]. Moreover, they were not shown to be composable. Both properties are essential
for the encryption schemes discussed in the next subsection, in order to get resilience to key-dependent-
messages and related key attacks.

Construction 7.1 (Multibit-bit Output Point Obfuscator [CD08]). Let O be a point obfuscator. Define
a PPT O(m) for point circuits with m-bit output as follows. For a point x ∈ Dn and output y =
y1y2 . . . ym ∈ {0, 1}m, choose a random s ∈ Dn − {x} and define ā = 〈a0, a1, . . . , am〉 as follows.
a0 = x, and for any i ∈ [m] ai = x if yi = 1 and ai = s otherwise. The output of the obfuscator is:

O(m)(Cx→y) = C [O(Ca0), . . . ,O(Cam)] ,

where each O(Cai) is an obfuscation of the point circuit Cai , and C [O(Ca0), . . . ,O(Cam)] is a circuit
that has the obfuscated programs O(Ca0), . . . ,O(Cam) hardwired into it; it operates as follows: on
input z, it first checks if z = a0 = x (by running the first obfuscated circuit), and if so, it returns ⊥;
otherwise, it finds all other coordinates such that ai = z = x (by running the rest of the obfuscated
circuits) and outputs y1 . . . ym, where yi = 1 if ai = z = x and 0 otherwise.
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Proposition 7.2. if O is an (m+ 1)-composable VGB point obfuscator, then O(m) (given by Construc-
tion 7.1) is a VBB obfuscator for m-bit point circuits. Moreover, for any decomposition, m + 1 =
t× (m′ + 1) O(m′) is a t-composable MBPC VGB obfuscator .

We prove this proposition in two steps. First we claim that ifO is a (m+ 1)-composable VGB point
obfuscator, then for any decomposition m + 1 = t × (m′ + 1), O(m′) is a t-composable MBPC VGB
obfuscator (in particular for t = 1 it is an m-bit VGB point obfuscator). The proof basically follows the
arguments in [CD08] (replacing the bounded simulator by an unbounded one) and hence, we omit it. In
the second step, we show that (putting composability aside) for MBPC VBB and VGB obfuscation are
equivalent.

Proposition 7.3. Assume O is a VGB obfuscator for the family of m-bit output point circuits. Then it is
also a VBB obfuscator for the family.

Proof. We start by giving the intuition behind the proposition. Note that a simulator that fails to query
the hidden point has an output distribution that is actually independent of the hidden point (and corre-
sponding output). In this case, the only concern we might have is that the simulator’s output cannot be
efficiently sampled (as the simulator is unbounded). However, this cannot be the case, as this distribution
is strongly related to the one generated by the efficient adversary. Moreover, the strong simulator has
only polynomially many oracle queries and hence there are relatively few elements that it queries with
high probability. Thus, we will be able to perform bounded simulation by hardwiring those elements
into our simulator. We remark that applying some of the techniques used in Theorem 5.1 and Proposi-
tion 5.1, one could strengthen the above proposition and show that for any t = O(1) and m = poly(n),
a t-composable VGB point obfuscator with m-bit output is in fact a t-composable VBB obfuscator. We
present the proof only for the simple case t = 1.

We shall first prove two preliminary claims. In what follows, Let A be a binary poly-size adversary,
p a polynomial, and S = SA,p the corresponding VGB simulator (which is unbounded). Recall that S
can make only poly(n) queries to its given oracle. We shall denote the number of allowed queries by
q = q(n).

Claim 7.1. Let Z be the function which returns ⊥ on all inputs. Then there are at most pq elements
which SZ queries with probability more than 1/p (over the coins of S).

Proof of claim. Denote by X the distribution on query vectors (in Dqn) induced by SZ and define

Gpn =

{
a ∈ Dn : Pr

x̄←X
[a ∈ x̄] ≥ 1/p

}
.

Consider a distribution X̃ defined by first drawing a vector from X and then choosing one of its coordi-
nates uniformly. Then for any a ∈ Gpn, it holds that X̃(a) ≥ 1/pq, hence |Gpn| ≤ pq.

Claim 7.2. For any two values x1, x2 which SZ queries with probability at most 1/p and for any y1, y2

it holds that :

|Pr[A(O(Cx1→y1)) = 1]− Pr[A(O(Cx2→y2)) = 1]| ≤ 4/p .

Proof of claim. Since S simulates A (with accuracy 1/p):

|Pr[A(O(Cx1→y1)) = 1]− Pr[A(O(Cx2→y2)) = 1]| ≤
|Pr[SCx1→y1 (1n) = 1]− Pr[SCx2→y2 (1n) = 1]|+ 2/p .
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Denote by Q the event (set of random tapes) in which SZ queries x1 or x2 and note that:

Pr[Q] ≤ 2/p

Pr[SCx1→y1 (1n) = 1|Q] = Pr[SCx2→y2 (1n) = 1|Q] = Pr[SZ(1n) = 1|Q] ,

which in turn implies:

|Pr[SCx1→y1 (1n) = 1]− Pr[SCx2→y2 (1n) = 1]| =
|Pr[Q](Pr[SCx1→y1 (1n) = 1|Q]− Pr[SCx2→y2 (1n) = 1|Q])| ≤ Pr[Q] ≤ 2/p .

The claim follows.

We now return to proving Proposition 7.3. Given an adversary A and a corresponding unbounded
simulator S with accuracy 1/p, we show how to construct an alternative simulator S ′ which is polyno-
mially bounded and has polynomial accuracy 4/p. S ′ has the set Gpn (given by the first claim) hard-
wired. Given oracle access to Cx1→y1 , it first queries its oracle on all values in Gpn. In case it found
the hidden value x1, it retrieves y1, creates an obfuscation O(Cx1→y1) and feeds it to A, performing a
perfect simulation. Otherwise, it chooses an arbitrary x2 /∈ Gpn and an arbitrary y2, and as before runs
A(O(Cx2→y2)). According to the second claim it achieves in this case a simulation with 4/p accuracy.
The running time (or size) of S ′, is proportional to that of A plus an overhead of |Gpn| ≤ pq.

7.3 Application to Strong Encryption Schemes

As noted in [CD08], obfuscation of MBPCs implies a very strong type of symmetric encryption (which
they call a digital locker). This usage was further explored by [CKVW10] who showed tight relations
between MBPC (VBB) obfuscation and the notions of weak key encryption and key dependent messages
encryption (KDM). Informally, they show that the existence of MBPC VBB obfuscators implies the
existence of strong symmetric encryption schemes that are secure for key dependent messages even with
weak random keys. We extend their results by showing that using composable VGB MBPC obfuscators
(as the ones described above), similar implications still hold, even for the scenario of multiple messages
and keys which are correlated (the implications of composable MBPC obfuscation to related key attacks
resilient encryption (RKA) was not discussed in previous work).

Remark 7.1. Consistently with prior work, the encryption schemes discussed in this section are analyzed
based on a simulation-based definition (specifically in our case, VGB); however, they can also analyzed
directly using the t-DI obfuscation definition. The VGB simulation definition (which holds for arbitrary
distributions on tuples of points) is more attractive from a definitional point of view, capturing more
closely what we expect of obfuscation in general. In addition, one can consider conceptually stronger
simulation-based definitions of KDM/RKA encryption, with respect to arbitrary distributions on keys
and messages.

We start by presenting the basic natural transformation between MBPC obfuscators and symmetric
encryption schemes.

Construction 7.2 (MBPC Obfuscator to Symmetric Encryption). LetO be an MBPC obfuscator, define
(probabilistic) encryption and decryption algorithms:

EOk (m) , O(Ck→m)

DOk (C) = C(k) ,

where C is interpreted as an MBPC and k is a key taken from a domain of keys Dn (key sampling is
addressed below).
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There are several definitions regarding KDM, RKA and leakage [BRS02, HK07, BHHO08, App08,
AHI11]. We use a variant of the definition in [CKVW10] extended to the setting of multiple related
keys. In this definition, t keys are generated from a distribution X = {Xn} on key vectors in Dtn and the
adversary witnesses t encryptions of predetermined functions of the keys. Any message might depend
on any key, and the keys themselves might also be dependent according to the joint distribution Xn.
The definition considers the case where the distributions Xn are not necessarily uniform but only have
certain entropy guarantee.

Definition 7.1 (Encryption with multi keys-messages dependence - MKM). An encryption scheme
(E,D) is (m, t)-MKM secure if for any CWS distribution ensemble X = {Xn} on key vectors in Dtn,
any poly-size A, functions f1, . . . , ft : Dtn → {0, 1}m and all large enough n:∣∣∣∣∣∣∣ Pr

k̄←Xn
E,A

[A(Ek1(f1(k̄)), . . . , Ekt(ft(k̄))) = 1]− Pr
k̄
U←Dtn
E,A

[A(Ek1(0̄), . . . , Ekt(0̄)) = 1]

∣∣∣∣∣∣∣ = n−ω(1) ,

where m(n), t(n) are polynomially bounded length functions and 0̄ = 0m.

Theorem 7.1. Let O be a t-composable VGB obfuscator for m-bit point circuits, then the encryption
scheme (EO, DO) is (m, t)-MKM secure .

Proof. Let X be a CWS distribution ensemble over t-dimensional vectors (of keys) and A be a binary
poly-size adversary. Since O is a t-composable VGB obfuscator for m-bit point circuits, for any poly-
nomial p there exists an (unbounded) simulator S which is allowed q = poly(n) many oracle queries
and satisfies for all k̄, ȳ ∈ Dtn × {0, 1}m×t and sufficiently large n:∣∣∣∣Pr

A,O
[A(O(Ck1→y1), . . . ,O(Ckt→yt)) = 1]− Pr

S
[SCk̄→ȳ [q](1n) = 1]

∣∣∣∣ ≤ 1/4p ;

in particular, the above holds if ȳ = f(k̄) = 〈f1(k̄), . . . , ft(k̄)〉 for arbitrary functions fi with output of
length m. This implies:

∣∣∣∣∣∣∣ Pr
k̄←Xn
E,A

[A(Ek1(f1(k̄)), . . . , Ekt(ft(k̄))) = 1]− Pr
k̄
U←Dtn
E,A

[A(Ek1(0̄), . . . , Ekt(0̄)) = 1]

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ Pr
k̄←Xn
O

[A(O(Ck1→f1(k̄)), . . . ,O(Ckt→ft(k̄))) = 1]− Pr
k̄
U←Dn
O

[A(O(Ck1→0m), . . . ,O(Ckt→0m)) = 1]

∣∣∣∣∣∣∣ ≤∣∣∣∣∣ Pr
k̄←Xn

[SCk1→f(k̄),...,Ckt→f(k̄)[q](1n) = 1]− Pr
k̄
U←Dn

[SCk1→0m ,...,Ckt→0m [q](1n) = 1]

∣∣∣∣∣+
1

2p
.

Assume WLOG that S is deterministic (by fixing its coins to those which maximize the above
difference). To conclude the claim observe that the left term in the above sum is of negligible size.
Indeed, for any CWS distribution Y = {Yn} on t-dimensional vectors, the probability that S queries an
element of a vector sampled from Yn is at most q · max

a∈Dn
Prȳ←Yn [a ∈ ȳ], which is negligible. The latter

implies that S distinguishes any two CWS distributions (such as the two distributions given above) with
negligible probability. The result follows.
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Remark 7.2. The key dependent messages (KDM) resilience of Construction 7.2 is restricted to a non-
adaptive model in which the adversary has to choose in advance the functions of the key which it is
interested in11. We remark that this restricted setting is still meaningful and captures common KDM
resilience such as the classical circular dependence.

Remark 7.3. There are several definitions of related key attacks (RKA) resilience that can be considered.
[App08, AHI11] define a model in which a secret key k is chosen uniformly, and the adversary witnesses
encryptions under t new keys k1 . . . kt which are derived from k according to some correlation function.
The correlation function can be either determined in advance (non-adaptive RKA), or alternatively the
adversary can adaptively choose correlation functions according to the encryptions it already witnessed
(adaptive RKA). In general, Construction 7.2 only yields non-adaptive RKA. However, considering the
instantiation of the scheme with the obfuscator given by Construction 6.1, one gets also adaptive RKA
security for the family of affine functions of the key. This follows simply because the construction allows
affine homomorphisms of the key (which yields adaptive RKA [AHI11]).

Extension to asymmetric encryption.

In case the underlying point obfuscator used in Constructions 7.1,7.2 can be re-randomized, we can in
fact get a CPA-secure public key encryption scheme with essentially the same strong properties described
above.

Definition 7.2 (Re-randomizable obfuscator). Let O be an obfuscator for a family of circuits C. Denote
by Or(C) an obfuscation of a circuit C ∈ C using random coins r ∈ P (for some domain P). Also

denote by O(C) the distribution given by drawing r U← P and computing Or(C). We say that O is re-
randomizable if there exists a PPTR, such that for any C ∈ C and fixed r0 ∈ P ,R(Or0(C)) , O(C).

Construction 7.3 (Re-randomizable point obfuscator to asymmetric bit encryption). Let O be a re-
randomizable point circuit obfuscator with re-randomization algorithm R. For a distribution X on
secret keys from D, we define key generation, encryption and decryption algorithms:

GO(X) , (sk, pk) : sk ← X, pk ← O(Csk)

EOpk(b) , C : s
U← D \ {sk} , C ←

{
R(pk) b = 1

O(Cs) b = 0

DOsk(C) = C(sk) .

We can extend the MKM Definition 7.1 to the public key setting. In such an extension, t secret keys
are drawn from a CWS distribution, t corresponding public keys are generated as in Construction 7.3,
and the encrypted messages are allowed to depend on the keys (according) to pre-determined depen-
dence functions. Using similar arguments as in Theorem 7.3, it follows that using a composable VGB
point obfuscator in Construction 7.3 yields an MKM public key encryption scheme (for any polynomial
number of secret keys). Finally, we note that the point obfuscator given by Construction 6.1 is indeed
re-randomizable as in Definition 7.2.
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A Obfuscation with Auxiliary Input and Composability

In this section, we discuss obfuscation with auxiliary input. In this setting, the adversary also has some
prior information regarding the obfuscated circuit. This notion was previously studied in [GK05] who
referred to two variants, obfuscation with ”dependent” auxiliary input, and with ”independent” auxiliary
input. Here, we discuss only the first (stronger) dependent auxiliary input variant. The following defini-
tion only concerns the security requirement, functionality and polynomial slow-down are also required
as for standard obfuscators.

Definition A.1 (Obfuscation with Auxiliary Input [GK05]). O is an obfuscator with auxiliary input for
a circuit ensemble C = {Cn} if for any poly-size adversary A and polynomials p, q there is a simulator
S such that for all large enough n ∈ N, C ∈ Cn and auxiliary input z ∈ {0, 1}q(n):∣∣∣∣Pr

A,O
[A(O(C), z) = 1]− Pr

S
[SC(1n, z) = 1]

∣∣∣∣ ≤ 1

p(n)
.

Remark A.1. Once, again we can consider this definition in the VBB setting with a poly-size simulator
or in the VGB setting with an unbounded simulator with polynomially many oracle queries.

Obfuscation with auxiliary input and composability. In the context of cryptographic protocols, aux-
iliary information is known to be tightly related to composability. Here, we question whether the same
holds for obfuscation; in particular, whether point obfuscators with auxiliary input would imply com-
posable point obfuscation. This was partially answered in [CD08] who showed that such an implication
does not hold in general. They focus on a distributional obfuscation definition with uninvertible aux-
iliary input. We extend this to the general simulation (Definition A.1). However, we show that point
obfuscation with auxiliary information does imply a more restricted notion of composability, namely
constant-self-composability.

Construction A.1 (From Point Obfuscation to Non-composable Point Obfuscation [CD08]). Let O be
a point obfuscator for the domain Dn = {0, 1}n. Consider a new algorithm O′ defined as follows:

O′r,s(Cx) = (Or(Cx), s, x · s) ,

where Or(Cx) denotes an obfuscation of x using random coins r, s U← {0, 1}n and x · s denotes the
scalar product mod2.
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In [CD08], it is shown that if O is a VBB point obfuscator then so is O′. However, O′ is not
Ω(n)-self-composable as Ω(n) linear equations in x allow to fully recover it. The proof thatO′ remains
an obfuscator relies on the fact that O(Cx) is one-way in x as long as x is taken from a Well Spread
distribution Xn, i.e. H∞(Xn) = ω(log n). The latter implies by [GL89] that

(Or(Cx), s, x · s) ≈c (Or(Cx), s, b) ,

for b U← {0, 1} and x which is taken from any WS distribution. This in turn implies that O′ is indeed an
obfuscator (an easy way to see it would be applying Theorem 5.1). We now question whether the same
idea should also work if we also consider auxiliary input. That is, we assume thatO is a point obfuscator
with auxiliary input and ask whether O′ is also a point obfuscator with auxiliary input. Now, it is not
sufficient that O(Cx) is one-way, as we should consider O(Cx), z together. We show the following
proposition.

Proposition A.1. Let O be a VBB point obfuscator with auxiliary input (as in Definition A.1). Then
O′ given by Construction A.1 is a VBB point obfuscator with auxiliary input which is not Ω(n)-self-
composable.

Proof sketch. The fact that O′ is not composable is shown in the same way as in the standard case
(with no auxiliary input). We focus on showing that O′ is indeed a point obfuscator with auxiliary
input. Informally, we consider two cases. In the first, the extra bit x · s appears random (even given
the obfuscation and auxiliary information), which will allow easy simulation. In the second case, the
adversary can predict this extra bit with noticeable chance. Here, the fact thatO is a VBB obfuscator that
is secure against binary adversaries implies a simulator that, given the auxiliary input and oracle access
to the hidden point circuit Cx, can also predict this with noticeable chance. However, this implies that
with noticeable chance it can also recover the hidden point x using the well known [GL89] list decoding
algorithm. This suffices for perfect simulation.

For the actual proof, letA be a binary poly-size adversary and let p, q be polynomials. Our goal is to
construct a simulator for A as in Definition A.1. We call (x, z) ∈ {0, 1}n × {0, 1}q(n) a distinguishing
pair if: ∣∣∣∣ Pr

A,r,s
[A(Or(Cx), s, x · s, z) = 1]− Pr

A,r,s,b
[A(Or(Cx), s, b, z) = 1]

∣∣∣∣ ≥ 1

2p(n)
,

where r are random coins for O, s U← {0, 1}n and b U← {0, 1}. We can now transform the distinguisher
A to a predictor P , such that for any distinguishing pair (x, z):

Pr
r,s

[P(Or(Cx), s, z) = x · s] ≥ 1

2
+

1

2p(n)
.

Since O is an obfuscator with auxiliary input, there is a poly-size simulator SP , such that for all large
enough n and any (x, s, z) ∈ {0, 1}n × {0, 1}n × {0, 1}q(n):∣∣∣∣Pr

SP
[SCxP (s, z) = x · s]− Pr

r
[P(Or(Cx), s, z) = x · s]

∣∣∣∣ ≤ 1

4p(n)
.

It follows that for all large enough n, any distinguishing pair (x, z) ∈ {0, 1}n×{0, 1}q(n) and a random

s
U← {0, 1}n:

Pr
SP ,s

[SCxP (s, z) = x · s] ≥ 1

2
+

1

4p(n)
.
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By [GL89] we can use SP to obtain a poly-size invertor I such that for the all large enough n and
distinguishing pairs (x, z) ∈ {0, 1}n × {0, 1}q(n):

Pr
I

[ICx(z) = x] ≥ n−O(1) .

Since I can verify a successful inversion using its oracle, we can amplify it to get an invertor which
obtains x with overwhelming probability.

Finally, we can construct a simulator SA for A. First, we consider an adversary B that, given an ob-
fuscationOr(Cx) and auxiliary input z, samples (s, b)

U← {0, 1}n×{0, 1} and runsA onOr(Cx), s, b, z.
B can be simulated by a poly-size simulator SB with accuracy 1/2p(n). Now, to simulate A, given aux-
iliary input z and oracle access to Cx, SA first runs ICx(z) and records the result x̃. In case x̃ is the
hidden point x, it can perform a perfect simulation. Otherwise, it runs SCxB (z) . It follows that for
any non distinguishing pair SA has simulation accuracy 1

p(n) and for any distinguishing pair it performs
almost perfect simulation (up to the negligible probability that I fails to obtain x).

Proposition A.2. Any VBB obfuscator with auxiliary input is also c-self-composable for any constant c.

Proof sketch. For simplicity, we start with the case c = 2. Let O be an obfuscator with auxiliary input
for a family of circuits C = {Cn}, and let A be a binary poly-size adversary and p a polynomial. By
obfuscation with auxiliary input, there is a poly-size simulator S, such that for any C ∈ Cn and auxiliary
input z ∈ {0, 1}q(n):

Pr
A,r,s

[A(Or(C),Os(C), z) = 1]− Pr
s

[SC(Os(C), z) = 1] ≤ 1

2p(n)
,

where we treated the second obfuscation as auxiliary input. Now, we can consider a poly-size adversary
S′ that perfectly simulates SC(Os(C), z) with no oracle access to C. Instead, it uses the obfuscation
Os(C) to evaluate the oracle queries of S. Now since O is an obfuscator with auxiliary input, it follows
that S ′ can also be simulated by S ′′C(z) with accuracy 1

2p(n) (where S ′′ is also of poly-size). The result
follows for c = 2. In general, we can use the above argument to show that for any polynomially bounded
function t = t(n), if O is t-self-composable with auxiliary input it is also t + 1-self-composable with
auxiliary input. In particular we get c-self-composability for any constant c.

On VGB obfuscation with auxiliary input. When considering point obfuscators, it seems that VBB
obfuscators with auxiliary input is a stronger notion than plain point obfuscators (with no auxiliary
input). In particular, it implies constant-self-composability, while plain obfuscators are not known to
imply it (and are even conjectured not to imply it). In contrast, the following proposition shows that for
VGB obfuscators, the notion of VGB obfuscation with auxiliary input is not stronger than plain VGB
obfuscation.

Proposition A.3. Let O be a VGB obfuscator for a circuit ensemble C = {Cn}. Then O is also a VGB
obfuscator with auxiliary input for the ensemble.

Proof sketch. To show this we use a similar idea to the one used in the proof of Theorem 5.1. Roughly
speaking, we note that for a fixed auxiliary input VGB implies simulation on all circuits in the family.
In general, different auxiliary inputs correspond to different simulators, while we wish to have a single
simulator for all auxiliary inputs. However, a VGB simulator which gets some auxiliary input z, can
compute on its own the best simulator corresponding to z and run it.

More formally, for any adversary A, polynomial q, and auxiliary information sequence
Z =

{
zn ∈ {0, 1}q(n)

}
n∈N, we can consider a new (non-uniform) adversary {A(·, zn)}n∈N which has
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zn hardwired. By VGB (with no auxiliary input) for any polynomial p there is a VGB simulator S = SZ
which makes r(n) = poly(n) queries, such that for all large enough n ∈ N and any C ∈ Cn:

Pr[A(O(C), zn) = 1]− Pr[SC[r](1n) = 1] ≤ 1

p(n)
. (1)

Now for any12 n ∈ N and z ∈ {0, 1}q(n), let Sn = Sn(z) be a circuit with minimal number of oracle
queries that satisfies for all C ∈ Cn:

Pr[A(O(C), z) = 1]− Pr[SCn (1n) = 1] ≤ 1

p(n)
.

Consider a family of functions F = {Fn} that, given an input z ∈ {0, 1}q(n), returns Sn(z). We show
that there is a uniform bound r(n) = poly(n) on the number of oracle queries made by the circuits that
F outputs. Indeed, we can consider the auxiliary information sequence Z∗ = {z∗n} which maximizes
Sn(z), and get a polynomial bound given by Equation (1). We can now construct a simulator S for A
which performs well on any C ∈ Cn and z ∈ {0, 1}q(n). On input z and oracle access to C, S simply
computes Fn(z) and runs the resulting simulator. The proposition follows.

B More on Distributional Indistinguishability and [Can97]

The DI Definition 5.3 presented in this work is formulated differently from the DI definition in [Can97],
and is seemingly cleaner and simpler. We show that both formulations are indeed equivalent. We
address the single point case, which is the focus of [Can97]. In particular, we deal with well spread
(WS) distributions, which is a special case of the CWS distributions given by Definition 5.2 (restricted
to a single point).

Definition B.1 (Distributional Indistinguishability [Can97]). A point obfuscatorO is DI if for any poly-
size adversary A and any WS distribution ensemble X = {Xn} on points in {Dn}:

X1,A(O(CX1)) ≈c X1,A(O(CX2)) ,

where X1,X2 are two independent instances of the distribution X .

Proposition B.1. Definitions 5.3 and B.1 are equivalent.

Proof. Throughout the proof we use the following notations. For an element x ∈ Dn, define:

Px = Pr
A,O

[A(O(Cx)) = 1] = E
A,O
A(O(Cx)) ,

where E denotes expectation.
For a distribution X on points in Dn, define

PX = E
x
X←Dn

Px .

We start by showing that if Definition 5.3 holds then so does B.1. Concretely, we show something
stronger, the distribution ensembles given in B.1 are statistically indistinguishable.

12To be more accurate, we should first note that for all large enough n ∈ N and any z ∈ {0, 1}q(n) there is indeed a circuit
with the required property. Then we can restrict our discussion to all large enough n’s
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Claim B.1. Assume there exists an adversary A, and a WS distribution ensemble X such that

SD(X ◦ A(O(CX)), X ◦ A(O(CY ))) ≥ ε ,

for infinitely many n’s, where X,Y are two independent instance of Xn and ε = n−O(1). Then for all
such n’s either |PXn−PUn | ≥ ε/4 or there exists another distributionX ′n withH∞(X ′n) = H∞(Xn)−
log 4

ε for which |PX′n − PUn | ≥ ε/4.

This claim implies there exist some WS distribution ensembleX ′′ (consisting of the distributionsXn

or X ′n) such that A distinguishes O(X ) from O(U)) with advantage ε/4, contradicting Definition 5.3.

Proof of claim. Consider any n for which the assumption holds and let X,Y be two independent in-
stances of Xn. Define the set: G = {x ∈ Dn : |Px − PX | ≥ ε/2} . We first show that Pr[X ∈ G] ≥
ε/2. Indeed for any set T ⊆ Dn:

|Pr[X ∈ T,A(O(CX)) = 1]− Pr[X ∈ T,A(O(CY )) = 1]| ≤
Pr[X ∈ G] + Pr[X /∈ G] Pr[X ∈ T |X /∈ G] |Pr[A(O(CX)) = 1|X ∈ T \G]− Pr[A(O(CY )) = 1]| ≤
Pr[X ∈ G] +

∣∣PX|X∈T\G − PX ∣∣ ≤ Pr[X ∈ G] + ε/2 ,

where we used the fact that X,Y are independent and the definition of G. It follows that:

Pr[X ∈ G] ≥ max
T⊆Dn

|Pr[X ∈ T,A(O(CX)) = 1]− Pr[X ∈ T,A(O(CY )) = 1]| − ε

2
=

SD(X ◦ A(O(CX)), X ◦ A(O(CY )))− ε

2
≥ ε

2
.

Consider now the sets:

G+ = {x ∈ Dn : Px − PX ≥ ε/2}
G− = {x ∈ Dn : PX − Px ≥ ε/2} .

Then, G = G+ ∪ G−, and hence one of them has density at least ε/4, assume WLOG that it holds
for G+, and define X ′ = X|X ∈ G+. It clearly holds that H∞(X ′) = H∞(X ′) − log 4

ε . Moreover,
ε
2 ≤ PX′ − PX ≤ |PX′ − PU |+ |PX − PU |. The result follows.

We now show that Definition B.1 implies that Definition 5.3.

Claim B.2. Assume there exists an adversary A, and a WS distribution ensemble X such that A distin-
guishesO(X ) fromO(U) with advantage ε, i.e. |PXn −PUn | ≥ ε for infinitely many n’s. Then there ex-
ists a WS distribution ensemble X ′ and a poly-size distinguisherD, which distinguishes X ′1,A(O(CX ′1))
from X ′1,A(O(CX ′2)) with advantage Ω(ε).

Proof of claim. Consider any n for which the assumption holds. Let Zn , Xn+Un
2 be the distribution

defined by flipping a fair coin, and then drawing a sample from Xn or Un according to the result.
Note that H∞(Zn) ≥ min {H∞(Xn), H∞(Un)} ≥ H∞(Xn). Moreover,PZn =

PUn+PXn
2 and hence

|PZn − PXn | ≥ ε/2. We first show that at least one of the distributions X ∈ {Xn, Zn} satisfies
Pr

x
X←Dn

[|Px − PX ] ≥ ε/4] ≥ 1/3. Indeed, assume this does not hold for Xn, then

Pr
x
Zn←Dn

[|Px − PZn ] ≥ ε/4] ≥ 1

2
Pr

x
Xn←Dn

[|Px − PXn ] ≤ ε/4] ≥ 1

2
· 2

3
. (1)

Now, construct X ′ consisting of the distributions Xn, Zn, according to Equation (1). Then X ′ is clearly
WS and we can now construct a distinguisher D as required. Given input x, b ∈ Dn × {0, 1}, D first
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estimates Px using n/ε2 samples ofA(O(Cx)). In case its estimate satisfies |P̃x−PX′n | ≥ ε/8 it outputs
b, and otherwise it outputs 1. Denote by F the first event (i.e. D outputs b), and by G the event in which∣∣Px − PX′n∣∣ ≥ ε

4 . Let X,Y be two independent instances of X ′n. Then for the infinitely many n’s
satisfying Pr[G] ≥ 1/3 it holds that:

|Pr[D(X,A(O(CX))) = 1]− Pr[D(X,A(O(CY ))) = 1]| ≥
Pr[G,F ]

∣∣PX|G,F − PX′n∣∣− Pr[G,F ] ≥
1

2
· ε

4
− e−Ω(n) ,

where we used the fact that given F , D outputs the same for both distributions and the fact that both
Pr[F |G] and Pr[F |G] are bounded by Pr

[∣∣∣P̃x − Px∣∣∣ ≥ ε/8] which is at most e−Ω(n) by Chernoff
inequality.

This completes the proof of Proposition B.1
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