
Computationally Sound Veri�
ation of Sour
e CodeMi
hael Ba
kesSaarland University, MPI-SWS Matteo Ma�eiSaarland University Dominique UnruhSaarland UniversityJuly 26, 2010Abstra
tIn
reasing attention has re
ently been given to the formal veri�
ation of the sour
e
ode of
ryptographi
 proto
ols. The standard approa
h is to use symboli
 abstra
tions of
ryptographythat make the analysis amenable to automation. This leaves the possibility of atta
ks that exploitthe mathemati
al properties of the
ryptographi
 algorithms themselves. In this paper, we showhow to
ondu
t the proto
ol analysis on the sour
e
ode level (F# in our
ase) in a
omputationallysound way, i.e., taking into a

ount
ryptographi
 se
urity de�nitions.We build upon the prominent F7 veri�
ation framework (Bengtson et al., CSF 2008) whi
h
omprises a se
urity type-
he
ker for F# proto
ol implementations using symboli
 idealizations andthe
on
urrent lambda
al
ulus RCF to model a
ore fragment of F#.To leverage this prior work, we give
onditions under whi
h symboli
 se
urity of RCF programsusing
ryptographi
 idealizations implies
omputational se
urity of the same programs using
rypto-graphi
 algorithms. Combined with F7, this yields a
omputationally sound, automated veri�
ationof F#
ode
ontaining publi
-key en
ryptions and signatures.For the a
tual
omputational soundness proof, we use the CoSP framework (Ba
kes, Hofheinz,and Unruh, CCS 2009). We thus inherit the modularity of CoSP, whi
h allows for easily extendingour proof to other
ryptographi
 primitives.Contents1 Introdu
tion 21.1 Our te
hniques 31.2 Related work 61.3 Notation 62 RCF (review) 62.1 Syntax and semanti
s 73 CoSP Framework (review) 94 The Dolev-Yao library 124.1 The library 124.2 Dolev-Yao transition relation . . . 135 Computational soundness 15

5.1 De�nitions 155.2 Symb. vs.
omputational exe
ution 175.3 Comp. soundness of the DY-library 245.4 En
ryption and signatures 256 The sealing-based library 296.1 Dynami
 Sealing 296.2 Mapping DY-terms into SB-terms 326.3 Preservation of safety 346.4 Computational soundness 407 Con
lusions 41A Symmetri
 semanti
s of RCF 41
1

1 Introdu
tionProofs of se
urity proto
ols are known to be error-prone and, owing to the distributed-system aspe
tsof multiple interleaved proto
ol runs, di�
ult for humans to generate. Hen
e, work towards the automa-tion of su
h proofs started soon after the �rst proto
ols were developed. From the start, the a
tual
ryptographi
 operations in su
h proofs were idealized into so-
alled symboli
 or Dolev-Yao models,following [DY83, EG83, Mer83℄ (see, e.g., [KMM94, S
h96, AG97, Low96, Pau98, BMV04℄). This ideal-ization simpli�es proofs by freeing them from
ryptographi
 details su
h as
omputational restri
tions,probabilisti
 behavior, and error probabilities. Unfortunately, these idealizations also abstra
t away fromthe algebrai
 properties a
ryptographi
 algorithm may exhibit. Therefore a symboli
 analysis may over-look atta
ks based on these properties. In other words, symboli
 se
urity does not imply
omputationalse
urity. In order to remove this limitation, [AR02℄ introdu
ed the
on
ept of
omputational soundness.We
all a symboli
 abstra
tion
omputationally sound when symboli
 se
urity implies
omputationalse
urity. A
omputational soundness result allows us to get the best of two worlds: The analysis
an beperformed (possibly automati
ally) using symboli
 abstra
tions, but the �nal results hold with respe
tto the realisti
 se
urity models used by
ryptographers.A drawba
k
ommon to the existing
omputational soundness results, is, however, that they work onabstra
t proto
ol representations (e.g., the applied π-
al
ulus [AF01℄). That is, although the analysistakes into a

ount the a
tual
ryptographi
 algorithms, it still abstra
ts away from the a
tual proto
ol im-plementation. Thus, even if we prove the proto
ol se
ure, the implementation that is later deployed may
ontain implementation errors that introdu
e new vulnerabilities. To avoid this issue, re
ent work hasta
kled the problem of verifying se
urity dire
tly on the sour
e
ode, e.g., [GLP05a, BFGT06, BBF+08℄.Yet, this veri�
ation is again based on symboli
 idealizations.Thus, we are left with the
hoi
e between veri�
ation te
hniques that abstra
t away from the
rypto-graphi
 algorithms, and veri�
ation te
hniques that abstra
t from the proto
ol implementation. To
losethis gap, we need a
omputational soundness result that applies dire
tly to proto
ol implementations.Our result. We present a
omputational soundness result for F#
ode. For this, we use the RCF
al
ulus proposed by [BBF+08℄ as semanti
s for (a
ore fragment of) F#. RCF allows for en
odingimplementation in F# by o�ering a lambda-abstra
tion
onstru
tor that allows for reasoning abouthigher-order languages. Moreover, it supports
on
urren
y primitives, indu
tive datastru
tures, re
ur-sion, and an expressive treatment of symboli

ryptography using sealing me
hanisms. Furthermore,RCF supports very general tra
e-based se
urity properties that are expressed in �rst-order logi
, usingassumptions and assertions. (Previous
omputational soundness results are restri
ted to
al
uli like theapplied π-
al
ulus whi
h la
k these features.) We spe
ify a
ryptographi
 library that internally usessymboli
 abstra
tions, and prove that if a proto
ol is symboli
ally se
ure when linked to that library, itis
omputationally se
ure when using a
tual
ryptographi
 algorithms. Our approa
h enables the useof existing symboli
 veri�
ation tools, su
h as the type-
he
ker F7 [BBF+08℄. The requirement to usethese tools in parti
ular ruled out potential
hanges to the RCF semanti
s that would have simpli�ed toestablish a
omputational soundness result. We stress, however, that our result does not depend on anyparti
ular symboli
 veri�
ation te
hnique.We have derived
omputational soundness for en
ryptions and digital signatures. Our result is, how-ever, extensible: most of our theorems are parametri
 in the set of
ryptographi
 primitives and theremaining theorems
an be easily extended. Furthermore, by basing on the so-
alled CoSP framework[BHU09℄, our proof solely
on
erns the semanti
s of RCF programs and does not involve any
rypto-graphi
 arguments; thus extending our proofs to additional
ryptographi
 abstra
tions supported byCoSP does not require a deep knowledge of
ryptography, whi
h makes su
h an extension a

essible toa more general audien
e.
2

1.1 Our te
hniquesCoSP (Se
tion 3). The main idea of our work is to redu
e
omputational soundness of RCF to
om-putational soundness in the CoSP framework [BHU09℄. Thus, we �rst give an overview of the ideasunderlying CoSP. All de�nitions in CoSP are relative to a symboli
 model that spe
i�es a set of
on-stru
tors and destru
tors that symboli
ally represent
omputational operations, and a
omputationalimplementation that spe
i�es
ryptographi
 algorithms for these
onstru
tors and destru
tors. In CoSP,a proto
ol is represented by an in�nite tree that des
ribes the proto
ol as a labeled transition system.Su
h a CoSP proto
ol
ontains a
tions for performing abstra
t
omputations (applying
onstru
tors anddestru
tors to messages) and for
ommuni
ating with an adversary. A CoSP proto
ol is endowed with twosemanti
s, a symboli
 exe
ution and a
omputational exe
ution. In the symboli
 exe
ution, messages arerepresented by terms. In the
omputational exe
ution, messages are bitstrings, and the
omputationalimplementation is used instead of applying
onstru
tors and destru
tors. A
omputational implementa-tion is
omputationally sound if any symboli
ally se
ure CoSP proto
ol is also
omputationally se
ure.The advantage of expressing
omputational soundness results in CoSP is that the proto
ol model inCoSP is very general. Hen
e the semanti
s of other
al
uli
an be embedded therein, thus transferringthe
omputational soundness results from CoSP to these
al
uli.DY library (Se
tions 4, 5). To apply CoSP to RCF, we �rst de�ne a library σM
DY that en
odes anarbitrary symboli
 model. This library internally represents all messages as terms in some datatype.Manipulation of these terms is possible only through the library, neither the program nor the adversary
an dire
tly manipulate messages. σM

DY also provides fun
tions for sending and re
eiving messages. Giventhe library σM
DY , we
an de�ne a notion of symboli
 se
urity. A program A
ontains
ertain events andse
urity poli
ies spe
i�ed in �rst-order logi
. We
all A robustly →-σM

DY-safe if the se
urity poli
ies aresatis�ed in every step of the exe
ution when A runs in parallel with an arbitrary opponent and is linkedto the library σM
DY.Next, we spe
ify a probabilisti

omputational semanti
s for RCF programs A. In these semanti
s, wespe
ify an algorithm (the
omputational RCF-exe
ution) that exe
utes A. In ea
h step of the exe
ution,the adversary is asked what redu
tion rule to apply to A. Letting the adversary make these s
hedulingde
isions resolves the non-determinism in the RCF program and simultaneously makes our result strongerby making the worst-
ase assumption that the adversary has total
ontrol over the s
heduling. Allmessages are represented as bitstrings, and any invo
ation of σM

DY is repla
ed by the
orresponding
omputation from the
omputational implementation. Noti
e that in the
omputational RCF-exe
ution,the adversary is not limited to invoking library routines; sin
e messages are bitstrings, the adversary
anperform arbitrary polynomial-time operations on them. If all se
urity poli
ies are satis�ed in ea
h stepof the
omputational RCF-exe
ution, we
all A robustly
omputationally safe.Our goal is to show that, if an RCF program is robustly →-σM
DY-safe, then it is robustly
omputa-tionally safe. To prove this, we introdu
e two intermediate semanti
s.

• The redu
tion relation : This semanti
s is very similar to the original semanti
s of RCF, ex
eptthat all invo
ations of σM
DY are internalized, i.e., symboli

ryptographi
 operations are atomi
operations with respe
t to . This leads to the notion of robust -σM

DY-safety.
• The symboli
 RCF-exe
ution SExec: This semanti
s is de�ned by taking the de�nition of the
omputational RCF-exe
ution, and by repla
ing all
omputational operations by the
orrespondingsymboli
 operations. That is, the symboli
 and the
omputational RCF-exe
ution are essentiallythe same algorithm, one operating on terms, the other doing the
orresponding operations fromthe
omputational implementation. This leads to the notion of robust SExec-safety.In the �rst step (
f. Figure 1), we show that robust →-σM

DY-safety implies robust -σM
DY-safety. Thisproof is fairly straightforward, be
ause just internalizes the de�nition of σM

DY.In the se
ond step, we show that robust -σM
DY-safety implies robust SExec-safety. The �rst te
hni
aldi�
ulty here lies in the fa
t that robust -σM
DY-safety is de�ned with respe
t to adversaries that areexpressed as RCF-programs and that run interleaved with the program A, while robust SExec-safetymodels the adversary as an external non-deterministi
 entity. Thus, for any possible behavior of the3

rob. →-σM
DY-safety rob. -σM

DY-safetyrob.
omputational safety rob. SExec-safety1. 2.3.Figure 1: Main steps of the
omputational soundness proof
SExec-adversary, we have to
onstru
t an RCF-program Q that performs the same a
tions when runningin parallel with A. The se
ond di�
ulty lies in the fa
t that the logi
 for des
ribing se
urity propertiesis quite general. In parti
ular, it allows for expressing fa
ts about the a
tual
ode of σM

DY (e.g., the
odeof one fun
tion is a subterm of the
ode of another). Sin
e the library σM
DY is not present in the symboli
RCF-exe
ution, we need to identify
riteria that ensure that the poli
ies do not depend on the a
tual
ode of σM

DY.In the third step, we use the fa
t that the symboli
 and the
omputational RCF-exe
ution of Ahave essentially the same de�nition, ex
ept that one performs symboli
 and the other
omputationaloperations. Thus, if we express these exe
utions by a labeled transition system that treats operations onmessages as atomi
 steps, we get the same transition system for both exe
utions, only with a di�erentinterpretation of these atomi
 steps. This transition system is a CoSP proto
ol ΠA, and the symboli
and the
omputational exe
ution of that proto
ol are equivalent to the symboli
 and the
omputationalRCF-exe
ution of A. Thus, assuming a
omputational soundness result in CoSP, we get that robust
SExec-safety implies robust
omputational safety. Combining this with the previous steps, we have thatrobust →-σM

DY-safety implies robust
omputational safety (Theorem 1).Note that this argumentation is fully generi
, it does not depend on any parti
ular symboli
 model.On
e we have a new
omputational soundness result in CoSP, this dire
tly translates into a result forRCF. Note further that no a
tual
ryptographi
 proofs need to be done; all
ryptographi
 details areoutsour
ed to CoSP. The library σM
DY is very similar in spirit to the one used in [BFG10℄, we believe thatthe veri�
ation te
hniques used there
an be applied to robust →-σM

DY-safety as well.En
ryption and signatures (Se
tion 5.4). Our results so far are fully generi
. In the CoSP frame-work, a
omputational soundness result exists for publi
-key en
ryption and signatures. Combining thisresult with our generi
 result, we get a self-
ontained
omputational soundness result for en
ryptionsand signatures in RCF (Theorem 2). The result in the CoSP framework imposes
ertain restri
tions onthe use of the
ryptographi
 primitives (e.g., one is not allowed to send se
ret keys around). To ensurethat these restri
tions are met, we introdu
e a wrapper-library σHighlevel for σM
DY . A program that onlyinvokes fun
tions from σHighlevel is guaranteed to satisfy these restri
tions.Sealing-based library (Se
tion 6). In the library σM

DY , we have internally represented symboli

ryptography as terms in some datatype. An alternative approa
h is used in the F7 veri�
ation framework[BBF+08℄ for analyzing RCF/F#-
ode. In this approa
h, a library based on seals is used. Roughly, aseal
onsists of a mutable referen
e and a

essor fun
tions. An en
ryption key pair, e.g., is modeled asa sealed map. The en
ryption key is a fun
tion that inserts the plaintext into that map and returnsthe index of the plaintext. The de
ryption key is a fun
tion that retrieves the plaintext given the index.Seals have proven well-suited for se
urity analysis by type-
he
king, sin
e they allow for polymorphi
types. We present a sealing-based library σS modeling en
ryptions and signatures. We show that robustsafety with respe
t to σS implies robust -σM
DY-safety by proving the existen
e of a simulation betweenexe
utions with respe
t to the two libraries. Combined with Theorem 2, this immediately returns a
omputational soundness result for the sealing-based library (Theorem 4). The advantage of this resultis that programs using σS
an be analyzed using the F7 type-
he
ker, sin
e the library itself is type-
he
ked with polymorphi
 typing annotations1.Note that this part of our paper is spe
i�
 to the
ase of en
ryptions and signatures. We believe,however, that the proof
an be easily extended to other primitives on a
ase-by-
ase basis. Furthermore1The F#
ode of the library with typing annotations is available at [BMU℄.4

our proof also gives an additional justi�
ation to the approa
h of seals: We redu
e se
urity with respe
tto seals to se
urity with respe
t to a term-based abstra
tion that is
onsiderably simpler be
ause it doesnot rely on a shared state.Restri
tions. We brie�y dis
uss the limitations of our result and explain why they are present.Se
urity properties. We only
onsider safety properties (des
ribed by authorization poli
ies) thatare e�
iently de
idable (in the sense that for any given tra
e, it is e�
iently de
idable whether thesafety property is ful�lled). Both the restri
tion to safety properties (as opposed to liveness properties)and the restri
tion to e�
iently de
idable properties2 are state of the art in
omputational soundnessresults. Computational soundness results for properties based on observational equivalen
e exist [CLC08℄;applying these to RCF would
onstitute an interesting extension to our work.Proto
ol
onditions. We impose
ertain
onditions on our proto
ols. Most prominently, we forbidto en
rypt or send se
ret keys. (As a side e�e
t, this also avoids so-
alled key-
y
les.) Again, these
onditions are state of the art in
omputational soundness results, and, if removed there, they
an alsobe removed from our result.Authorization poli
ies. Constru
tors that represent
ryptographi
 operations (su
h as en
ryptions)may not o

ur in the formulae used to express authorization properties. This is due to the fa
t that astatement su
h as ∃xyz.c = enc(x, y, z) does not have a sensible
omputational interpretation (there isno e�
ient way to
he
k it). Sin
e our treatment is generi
, also
onstru
tors that represent �harmless�primitives su
h as pairs are ex
luded from authorization poli
ies; allowing them should be possible butwould
onsiderably
ompli
ate our treatment. We believe, however, that disallowing these
onstru
torsin authorization poli
ies does not
onstitute a big restri
tion. In most
ases, an authorization poli
ywill de�ne high-level rules (su
h as �if P has paid for x, then P may download x�). Statements aboutthe a
tual format of messages (e.g., �m is a pair�) will only be used during the symboli
 veri�
ation ofthe high-level properties, e.g., as part of a re�nement type. We do not impose any restri
tions on thesymboli
 veri�
ation te
hniques; arbitrary formulae
an be used there as long as they do not appear inthe �nal authorization poli
y.Network
hannels. We assume that there is only a single publi
 network
hannel (i.e., only a single
hannel to the adversary). This is done for simpli
ity only, our results
ould be easily extended to asetting with more
hannels. Or, one might emulate several
hannels by adding a header to all messagessent over the publi

hannel.Assumptions and assertions in libraries. One is not allowed to add assumptions and assertions (i.e.,authorization poli
ies) in the
ode of the symboli
 libraries themselves. This is, however, not really arestri
tion sin
e one may use a wrapper library that adds these assumptions and assertions.Alternative approa
hes. We brie�y dis
uss several possible alternatives to our approa
h and explaintheir di�
ulties.Using CryptoVerif. Instead of doing a symboli
 se
urity veri�
ation and then applying a
omputa-tional soundness result, one
ould perform the analysis dire
tly in the
omputational setting using atool su
h as CryptoVerif [Bla06℄. CryptoVerif is a tool that performs a se
urity analysis dire
tly in the
omputational model. To follow this approa
h in our setting, one would have to des
ribe an en
odingof RCF into CryptoVerif's
al
ulus. Although this
an easily be done for a fragment of RCF, manyfeatures of RCF su
h as re
ursion, authorization poli
ies in �rst-order logi
, and
on
urren
y3 are prob-ably beyond what CryptoVerif
an handle. Also, CryptoVerif's approa
h probably does not s
ale wellto
omplex programs. Finally, one needs to prove that the en
oding of RCF into CryptoVerif preservesall required se
urity properties; su
h a proof might be not mu
h simpler than the proofs in the presentpaper. [BCFZ08℄ pursue this approa
h; they do not, however, prove their en
oding sound.2By e�
iently de
idable properties, we do not mean that it
an be e�
iently de
ided whether a proto
ol guaranteesthat the property is satis�ed, we only mean that it
an be e�
iently de
ided whether in a given exe
ution, the propertywas satis�ed.3CryptoVerif does support
on
urren
y natively, but its model of
on
urren
y assumes a uniform random
hoi
e in ea
hs
heduling de
ision whi
h arguably is an unrealisti
 assumption in most settings.5

Redu
ing to the applied π-
al
ulus. An alternative approa
h to obtain
omputational soundness wouldbe to embed F# into the applied pi-
al
ulus and to exploit the
omputational soundness result for theapplied pi-
al
ulus established in [BHU09℄. However, establishing this embedding would arguably notbe easier than our approa
h: it requires to en
ode datastru
tures, re
ursion, the sealing me
hanism, andassertions/assumptions into the applied pi-
al
ulus, in
luding the whole FOL/F logi
. Moreover, the
orre
tness of the en
oding has to be proven twi
e � on
e symboli
ally (the proof would follow the samelines as the proof in [BFGT06℄) and on
e with respe
t to the
omputational semanti
s.Removing equality tests on lambda-expressions. A large part of the te
hni
al di�
ulties in our proofsstem from the fa
t that RCF allows to do synta
ti
 equality tests on lambda-abstra
tions. It is not,however, easily possible to remove these tests: If we
hange the semanti
s of RCF, our results be
omein
ompatible with existing tools like the F7 framework. A synta
ti
 restri
tion that disallows
omparisonsof lambda-abstra
tions does not seem to be possible either; whi
h variables are instantiated with lambda-abstra
tions only be
omes
lear at runtime.1.2 Related workThe problem of
omputational soundness was �rst addressed by Abadi and Rogaway in [AR02℄ for passiveadversaries and symmetri
 en
ryption. The proto
ol language and se
urity properties handled therewere extended in [AJ01, Lau01, HLM03, BCK05, ABW06℄, but still apply only to passive adversaries.Subsequent works studied
omputational soundness against a
tive atta
ks (e.g.,
f. [BPW07, BPW03a,BPW03b, BP04, SBB+06, Lau04, MW04, JLM05, BHU09℄). Re
ent works also fo
used on
omputationalsoundness in the sense of observational equivalen
e of
ryptographi
 realizations of pro
esses (e.g., [AF06,CLC08, CL08℄). All these works do not ta
kle the
omputational soundness of proto
ol implementations.Con
urrently with the announ
ement of this work at FCC 2009, [Fou09℄ reported independent work inprogress on a type system for RCF that entails
omputational soundness.The analysis of the sour
e
ode of proto
ol implementations has re
ently re
eived in
reasing atten-tion. Goubault-Larre
q and Parrennes developed a stati
 analysis te
hnique [GLP05b℄ based on pointeranalysis and
lause resolution for
ryptographi
 proto
ols implemented in C. The analysis is limited tose
re
y properties. Chaki and Datta re
ently proposed a te
hnique [CD09℄ based on software model
he
king for the automated veri�
ation of se
re
y and authenti
ation properties of proto
ols imple-mented in C. The analysis provides se
urity proofs for a bounded number of sessions and is e�e
tive indis
overing atta
ks. It was used to
he
k se
re
y and authenti
ation properties of the SSL handshake pro-to
ol for
on�gurations of up to three servers and three
lients. Bhargavan et al. proposed a te
hnique[BFGT06, BCFZ08℄ for the veri�
ation of F# proto
ol implementations by automati
ally extra
tingProVerif models [Bla01℄. The analysis provides se
urity proofs and, despite its non-
ompositional nature,s
ales remarkably well and was su

essfully used to verify implementations of real-world
ryptographi
proto
ols su
h as TLS [BCFZ08℄. None of these analysis te
hniques enjoys
omputational soundnessguarantees. [BCFZ08℄ also proposes an embedding of F# into the
al
ulus of CryptoVerif. The embed-ding is not, however, proven to be sound; also, a

ording to [BCFZ08℄, it is di�
ult to analyze re
ursivefun
tions with CryptoVerif.1.3 NotationGiven a term t, we write t{t′/x} for the result of substituting all free o

urren
es of x by t′. We assumethat substitutions are
apture avoiding, i.e., bound names are renamed when ne
essary. We write t for alist t1, . . . , tn where the length n of the list is left impli
it. Given sets P,C of logi
al formulae, we write
P ⊢ C i� for all F ∈ C, F is entailed by P .2 RCF (review)This se
tion outlines the Re�ned Con
urrent FPC [BBF+08℄, a simple
ore
al
ulus extending the FixedPoint Cal
ulus [Gun92℄ with re�nement types and
on
urren
y. Although very simple, this
al
ulus is6

a, b, c name
h
onstru
tor
M,N ::= value
x, y, z variable
() unit
λx.A fun
tion
(M,N) pair
h M
onstru
tor appli
ation

A,B ::= expression
M value
M N fun
tion appli
ation
M = N synta
ti
 equality
let x = A in B let
let (x, y) = M in A pair split
match M with h x then A else B
onstru
tor mat
h
νa.A restri
tion
A � B fork
a!M transmission of M on
hannel a
a? re
eive message o�
hannel
assume F assumption of formula F
assert F assertion of formula FFigure 2: Syntax of RCF values and expressionsStru
t Refl A ≡ AStru
t Trans A ≡ A′′, if A ≡ A′ and A′ ≡ A′′Stru
t Let let x = A in B ≡ let x = A′ in B, if A ≡ A′Stru
t Res νa.A ≡ νa.A′, if A ≡ A′Stru
t Fork 1 A � B ≡ A′ � B, if A ≡ A′Stru
t Fork 2 B � A ≡ B � A′, if A ≡ A′Stru
t Fork () () � A ≡ AStru
t Msg () a!M ≡ a!M � ()Stru
t Assume () assume C ≡ assume C � ()Stru
t Res Fork 1 A′ � (νa.A) ≡ νa.A′ � A, if a 6∈ fn(A′)Stru
t Res Fork 2 νa.A � A′ ≡ νa.A � A′, if a 6∈ fn(A′)Stru
t Res Let let x = νa.A in B ≡ νa.let x = A in B, if a 6∈ fn(B)Stru
t Fork Asso
 (A � A′) � A′′ ≡ A � (A′ � A′′)Stru
t Fork Comm (A � A′) � A′′ ≡ (A′ � A) � A′′Stru
t Fork Let let x = (A � A′) in B ≡ A � (let x = A′ in B)Figure 3: Stru
tural equivalen
e relation A ≡ A′expressive enough to en
ode a large part of F# [BBF+08℄.2.1 Syntax and semanti
sThe set of values is
omposed of names, variables, unit, fun
tions, pairs, and type
onstru
tors (
f.Figure 2). Names are generated at run-time and are only used as
hannel identi�ers, while variables arepla
e-holders for values. Unit, fun
tions, and pairs are standard. While RCF originally in
ludes onlythree type
onstru
tors (namely, introdu
tion forms for union and re
ursive types), we extend the syntaxof the
al
ulus to an arbitrary set of
onstru
tors.Conditionals are en
oded using the following synta
ti
 sugar: true := inl(), false := inr(), and if M =

N then A else B abbreviates let y = (M = N) in match y with inl x then A else B for some fresh x, y.An expression represents a
on
urrent
omputation that may redu
e to a value, or may diverge. Thesemanti
s of expressions is de�ned by a stru
tural equivalen
e relation ≡4 and a redu
tion relation →.4The equivalen
e relation ≡
onsidered in this paper is the extension of the heating relation A ⇛ B proposed in [BBF+08℄where all heating rules are made symmetri
. In Appendix A, we prove that making the heating relation symmetri
 is sound,i.e., it does not a�e
t the safety of expressions. 7

Red Fun (λx.A) N → A{N/x}Red Split let (x1, x2) = (N1, N2) in A → A{N1/x1}{N2/x2}Red Mat
h match M with h x then A else B →

{

A{N/x} if M = h N
B otherwiseRed Eq M = N →

{

true if M = N
false otherwiseRed Comm a!M � a? → MRed Assert assert C → ()Red Let Val let x = M in A → A{M/x}Red Let let x = A in B → let x = A′ in B, if A → A′Red Res νa.A → νa.A′, if A → A′Red Fork 1 A � B → A′
� B, if A → A′Red Fork 2 B � A → B � A′, if A → A′Red Stru
t A → A′, if A ≡ B,B → B′, B′ ≡ A′Figure 4: Redu
tion relation A→ A′The former enables
onvenient rearrangements of expressions, while the latter des
ribes the semanti
s ofRCF
ommands.Values are irredu
ible. The semanti
s of fun
tion appli
ations,
onditionals, let
ommands, pair splits,and
onstru
tor mat
hes is standard. Intuitively, the restri
tion νa.A generates a globally fresh
hannel

a that
an only be used in A and the name a is bound in A. The expression A � B evaluates A and
B in parallel, and returns the result of B (the result of A is dis
arded). The expression a!M outputs
M on
hannel a and redu
es to the unit value (). The evaluation of a? blo
ks until some message M isavailable on
hannel a, removes M from the
hannel, and then returns M .The expressions assume F and assert F represent logi
al assumptions and assertions for modelingse
urity poli
ies. The intended meaning is that at any point of the exe
ution, the assertions are entailedby the assumptions. The formulae F are spe
i�ed in FOL/F [BBF+08℄, a variant of �rst-order logi
.More pre
isely, the formulae F o

urring in an RCF-expressions are formulae in the logi
 FOL/F,a variant of �rst order logi
 extended with the
on
ept of synta
ti
 fun
tion symbols. For synta
ti
fun
tion symbols f 6= f ′, we have the additional axioms ⊢ (f(x) = f(x′)) ⇒ x = x′ (F Inje
tive)and ⊢ f(x) 6= f ′(x′) (F Distin
t). All synta
ti
 elements of RCF ex
ept for variables (e.g., lambda-abstra
tions, names,
onstru
tors) are en
oded as (possibly nullary) synta
ti
 fun
tion symbols in FOL/F-formulae. RCF-variables are identi�ed with FOL/F-variables. For details, see [BBF+08℄.The equivalen
e relation ≡ introdu
e a normal form for RCF-expressions, a stru
ture. A stru
ture isan expression of the formS := νa.

(

Πi∈[1,m]assume Fi � Πj∈[1,n]cj !Mj � Πk∈[1,o]Lk{ek}
)where ek is any expression apart from a let, restri
tion, fork, message send, or an assumption and

L := {} | let x = L in B. Noti
e that any expression is stru
turally equivalent to a stru
ture.The FOL/F-formulae Fi in S we
all the a
tive assumptions , and any FOL/F-formula F with ei =
assert F for some i we
all the a
tive assertions of S. We
an now formalize the fa
t that the assumptionsfollow from the assertions in the exe
ution of an RCF expression:RCF expressions
an be transformed by stru
tural equivalen
e into a normal form, whi
h is
alleda stru
ture and
onsists of a sequen
e of restri
tions followed by a parallel
omposition of assumptions,outputs, and lets. These assumptions and the assertions ready to be redu
ed are
alled a
tive. Intuitively,an expression is safe if all a
tive assertions are entailed by the a
tive assumptions.De�nition 1 (→-safety) A stru
ture S is stati
ally safe i� P ⊢ C where P are the a
tive assumptionsand C the a
tive assertions of S. 8

An expression A is →-safe if for all stru
tures S su
h that A→∗ S, we have that S is stati
ally safe.
⋄When reasoning about implementations of
ryptographi
 proto
ols, we are interested in the safety ofprograms exe
uted in parallel with an arbitrary atta
ker. This property is
alled robust safety.De�nition 2 (Opponents and robust →-safety) An expression O is an opponent if and only if Ois
losed and O
ontains no assertions. A
losed expression A is robustly →-safe if and only if theappli
ation O A is →-safe for all opponents O. ⋄The notion of robust→-safety is the same as the robust safety de�ned in [BBF+08℄. Robust→-safety
an be automati
ally veri�ed using the F7 type
he
ker.In the following, we will sometimes need to restri
t our attention to programs that only use a
ertainsubset of the set of all
onstru
tors. For this, we assume that the set of RCF
onstru
tors is partitionedinto publi

onstru
tors and private
onstru
tors . Private
onstru
tors are usually used inside a library.Note however, that the semanti
s of RCF treats private and publi

onstru
tors in the same way. An RCFexpression that does not
ontain private
onstru
tors (neither in
onstru
tor appli
ations nor in pattern-mat
hes) is
alled p
-free. We
all an RCF-expression A mp
-free (for mat
h-private-
onstru
tor-free)i� A = C[h1t1, . . . , hntn] where hi are private
onstru
tors and C is a
ontext that does not
ontainsubterms of the form match · with h · then · else for private
onstru
tors h. (That is, a mp
-freeexpression may have pattern mat
hes using private
onstru
tors only below private
onstru
tors.) We
all an RCF-expression pure if it does not
ontain assumptions, assertions, outputs (M !N), inputs (M?),or forks (M � N).Furthermore, we
all a FOL/F-fun
tion symbol forbidden if it is the fun
tion symbol representing anRCF-lambda-abstra
tion5 or a private RCF-
onstru
tor.3 CoSP Framework (review)The
omputational soundness proof developed in this paper follows CoSP [BHU09℄, a general frameworkfor
ondu
ting
omputational soundness proofs of symboli

ryptography and for embedding these proofsinto pro
ess
al
uli. CoSP enables proving
omputational soundness results in a
on
eptually modularand generi
 way: every
omputational soundness proof for a
ryptographi
 abstra
tion phrased in CoSPautomati
ally holds for all embedded
al
uli, and the pro
ess of embedding pro
ess
al
uli is
on
eptuallyde
oupled from
omputational soundness proofs.CoSP provides a general symboli
 model for expressing
ryptographi
 abstra
tions. We �rst introdu
esome
entral
on
epts su
h as
onstru
tors, destru
tors, and dedu
tion relations.De�nition 3 (CoSP terms) A
onstru
tor f is a symbol with a (possibly zero) arity. We write f/n ∈ Cto denote that C
ontains a
onstru
tor f with arity n. A non
e n is a symbol with zero arity. A messagetype T over C and N is a set of terms over
onstru
tors C and non
es N. A destru
tor d of arity n,written d/n, over a message type T is a partial map Tn → T. If d is unde�ned on t1, . . . , tn, we write
d(t1, . . . , tn) = ⊥. ⋄To unify the notations for
onstru
tors, destru
tors, and non
es, we de�ne the partial fun
tion eval f :
Tn → T as follows: If f is a
onstru
tor or non
e, eval f(t1, . . . , tn) := f(t1, . . . , tn) if f(t1, . . . , tn) ∈ T and
eval f(t1, . . . , tn) := ⊥ otherwise. If f is a destru
tor, eval f(t1, . . . , tn) := f(t1, . . . , tn) if f(t1, . . . , tn) 6= ⊥and eval f(t1, . . . , tn) := ⊥ otherwise.A dedu
tion relation ⊢CoSP between 2T and T formalizes whi
h terms
an be dedu
ed from otherterms. The intuition of S ⊢CoSP m for S ⊆ T and m ∈ T is that the term m
an be dedu
ed from theterms in S.5In RCF, every
onstru
t from the language (in
luding lambda-abstra
tions) is represented in FOL/F formulae by aspe
ial fun
tion symbol; see the full version of [BBF+08℄. 9

De�nition 4 (Dedu
tion relation) A dedu
tion relation ⊢CoSP over a message type T is a relationbetween 2T and T. ⋄The
onstru
tors, destru
tors, and non
es, together with the message type and the dedu
tion relationform a symboli
 model. Su
h a symboli
 model des
ribes a parti
ular Dolev-Yao-style theory.De�nition 5 (Symboli
 model) A symboli
 model M = (C,N,T,D,⊢CoSP)
onsists of a set of
on-stru
tors C, a set of non
es N, a message type T over C and N with N ⊆ T, a set of destru
tors D over
T, and a dedu
tion relation ⊢CoSP over T. ⋄A CoSP proto
ol Π is de�ned as a tree with labelled nodes and edges. We distinguish
omputationnodes, whi
h des
ribe
onstru
tor appli
ations, destru
tors appli
ations, and non
e
reations, output andinput nodes, whi
h des
ribe
ommuni
ation, and
ontrol nodes, whi
h allow the adversary to in�uen
e the
ontrol �ow of the proto
ol. Computation and output nodes refer to earlier
omputation and input nodes;the messages
omputed at these earlier nodes are then taken as arguments by the
onstru
tor/destru
torappli
ations or sent to the adversary.For CoSP proto
ols, both a symboli
 and a
omputational exe
ution are de�ned by traversingthe tree. In the symboli
 exe
ution, the
omputation nodes operate on terms, and the input/outputnodes re
eive/send terms to the (symboli
) adversary. The su

essors of
ontrol nodes are
hosen non-deterministi
ally. In the
omputational exe
ution, the
omputation nodes operate on bitstrings (us-ing a
omputational implementation Impl), and the input/output nodes re
eive/send bitstrings to the(polynomial-time) adversary. The adversary
hooses the su

essors of
ontrol nodes.De�nition 6 (CoSP proto
ol) A CoSP proto
ol Π is a tree with a distinguished root and labels onboth edges and nodes. Ea
h node has a unique identi�er ν and one of the following types:6
• Computation nodes are annotated with a
onstru
tor, destru
tors, or non
e f/n together with theidenti�ers of n (not ne
essarily distin
t) nodes. Computation nodes have exa
tly two su

essors;the
orresponding edges are labeled with yes and no, respe
tively.
• Output nodes are annotated with the identi�er of one node. An output node has exa
tly onesu

essor.
• Input nodes have no further annotation. An input node has exa
tly one su

essor.
• Control nodes are annotated with a bitstring l. A
ontrol node has at least one and up to
ountablymany su

essors annotated with distin
t bitstrings l′ ∈ {0, 1}∗. (We
all l the out-metadata and l′the in-metadata.)If a node ν
ontains an identi�er ν′ in its annotation, then ν′ has to be on the path from the root to

ν (in
luding the root, ex
luding ν), and ν′ must be a
omputation node or input node. In
ase ν′ is a
omputation node, the path from ν′ to ν has to additionally go through the outgoing edge of ν′ with label
yes. ⋄De�nition 7 (Symboli
 exe
ution) Let a symboli
 model (C,N,T,D,⊢CoSP) and a CoSP proto
ol Πbe given. A full tra
e is a (�nite) list of tuples (Si, νi, fi) su
h that the following
onditions hold:
• Corre
t start: S1 = ∅, ν1 is the root of Π, f1 is a totally unde�ned partial fun
tion mapping nodeidenti�ers to terms.
• Valid transition: For every two
onse
utive tuples (S, ν, f) and (S′, ν′, f ′) in the list, let ν̃ be thenode identi�ers in the annotation of ν and de�ne t̃ through t̃j := f(ν̃j). We have:� If ν is a
omputation node with
onstru
tor, destru
tor or non
e f, then S′ = S. If m :=

eval f(t̃) 6= ⊥, ν′ is the yes-su

essor of ν in Π, and f ′ = f(ν := m). If m = ⊥, then ν′ is the
no-su

essor of ν and f ′ = f .� If ν is an input node, then S′ = S and ν′ is the su

essor of ν in Π and there exists an mwith S ⊢CoSP m and f ′ = f(ν := m).� If ν is an output node, then S′ = S ∪ {t̃1}, ν′ is the su

essor of ν in Π and f ′ = f .6Note in [BHU09℄, there is an additional type of node, the non-deterministi
 node. We have omitted the non-deterministi
 nodes here be
ause we do not use them in the CoSP proto
ols
onstru
ted in this paper.10

A list of node identi�ers (νi) is a node tra
e if there is a full tra
e with these node identi�ers. ⋄De�nition 8 (Computational implementation) Let a symboli
 model M = (C,N,T,D,⊢CoSP) begiven. A
omputational implementation of M is a family of fun
tions Impl = (Implx)x∈C∪D∪N su
hthat Implf for f/n ∈ C ∪ D is a partial deterministi
 fun
tion N × ({0, 1}∗)n → {0, 1}∗, and Impln for
n ∈ N is a total probabilisti
 fun
tion with domain N and range {0, 1}∗ (i.e., it spe
i�es a probability dis-tribution on bitstrings that depends on its argument). The �rst argument of Implf and Impln representsthe se
urity parameter.All fun
tions Implf have to be
omputable in deterministi
 polynomial-time, and all Impln have to be
omputable in probabilisti
 polynomial-time. ⋄De�nition 9 (Computational exe
ution) Let a symboli
 model M = (C,N,T,D,⊢CoSP), a
omputa-tional implementation Impl of M, and a CoSP proto
ol Π be given. Let a probabilisti
 polynomial-timeintera
tive ma
hine E (the adversary) be given (polynomial-time in the sense that the number of stepsin all a
tivations are bounded in the length of the �rst input of E), and let p be a polynomial. We de-�ne a probability distribution Nodes

p
M,Impl,Π,E(k), the
omputational node tra
e, on (�nite) lists of nodeidenti�ers (νi) a

ording to the following probabilisti
 algorithm (both the algorithm and E are run oninput k):

• Initial state: ν1 := ν is the root of Π. Let f be an initially empty partial fun
tion from nodeidenti�ers to bitstrings, and let n be an initially empty partial fun
tion from N to bitstrings.
• For i = 2, 3, . . . do the following:� Let ν̃ be the node identi�ers in the annotation of ν. m̃j := f(ν̃j).� Pro
eed depending on the type of node ν:

∗ If ν is a
omputation node with non
e n ∈ N: Let m′ := n(N) if n(N) 6= ⊥ and sample
m′ a

ording to Impln(k) otherwise. Let ν′ be the yes-su

essor of ν, f ′ := f(ν := m′),and n′ := n(N := m′). Let ν := ν′, f := f ′ and n := n′.
∗ If ν is a
omputation node with
onstru
tor or destru
tor f, then m′ := Implf(k, m̃). If
m′ 6= ⊥, then ν′ is the yes-su

essor of ν, if m′ = ⊥, then ν′ is the no-su

essor of ν.Let f ′ := f(ν := m′). Let ν := ν′ and f := f ′.
∗ If ν is an input node, ask for a bitstring m from E. Abort the loop if E halts. Let ν′ bethe su

essor of ν. Let f := f(ν := m) and ν := ν′.
∗ If ν is an output node, send m̃1 to E. Abort the loop if E halts. Let ν′ be the su

essorof ν. Let ν := ν′.
∗ If ν is a
ontrol node, annotated with out-metadata l, send l to E. Abort the loop if Ehalts. Upon re
eiving an answer l′, let ν′ be the su

essor of ν along the edge labeled l′(or the lexi
ographi
ally smallest edge if there is no edge with label l′). Let ν := ν′.� Let νi := ν.� Let len be the number of nodes from the root to ν plus the total length of all bitstrings in therange of f . If len > p(k), stop.

⋄De�nition 10 (Tra
e property) A tra
e property ℘ is an e�
iently de
idable and pre�x-
losed setof (�nite) lists of node identi�ers.Let M = (C,N,T,D,⊢CoSP) be a symboli
 model and Π a CoSP proto
ol. Then Π symboli
ally satis�esa tra
e property ℘ i� every node tra
e of Π is in ℘.Let Impl be a
omputational implementation of M and let Π be a CoSP proto
ol. Then (Π, Impl)
omputationally satis�es a tra
e property ℘ i� for all probabilisti
 polynomial-time intera
tive ma
hines
E and all polynomials p, NodespM,Impl,Π,E(k) ∈ ℘ with overwhelming probability. ⋄De�nition 11 (Computational soundness) A
omputational implementation Impl of a symboli
model M = (C,N,T,D,⊢CoSP) is
omputationally sound for a
lass P of CoSP proto
ols i� for everytra
e property ℘ and for every e�
ient CoSP proto
ol Π, we have that (Π, Impl)
omputationally satis-�es ℘ whenever Π symboli
ally satis�es ℘ and Π ∈ P . ⋄11

4 The Dolev-Yao libraryIn this paper, we do not restri
t our attention to a spe
i�
 symboli
 library. We instead provide a
omputational soundness result for any symboli
 library ful�lling
ertain
onditions that we detail inthis se
tion.4.1 The libraryWe �rst de�ne a general Dolev-Yao model, whi
h is a symboli
 model subje
t to
ertain natural restri
-tions.De�nition 12 (DY Model) We say that a symboli
 model M = (C,D,N,T,⊢CoSP) is a DY model if
N = NE⊎NP for
ountably in�nite NE,NP, and equals/2 ∈ D where equals(x, x) := x and equals(x, y) := ⊥for x 6= y, and ⊢CoSP is the smallest relation su
h that m ∈ S ⇒ S ⊢CoSP m, n ∈ NE ⇒ S ⊢CoSP n,and su
h that for any
onstru
tor or destru
tor f/n ∈ C ∪ D and for any t1, . . . , tn ∈ T satisfying
∀i ∈ [1, n].S ⊢CoSP ti and ⊥ 6= eval f(t1, . . . , tn) ∈ T, we have S ⊢CoSP f(t1, . . . , tn). ⋄In the following, we will only reason about DY models. Intuitively, in a DY library ea
h CoSP term m isrepresented by message M , where message is a private
onstru
tor that tags all values whi
h the libraryoperates on and M is an en
oding of m. CoSP
onstru
tors are represented by RCF
onstru
tors andnon
es are represented by RCF names. For ea
h
onstru
tor and destru
tor f, the library exports a fun
-tion lib f su
h that σM

DY(lib f) (message M1, . . . , messageMn) returns some message M if eval f(m1, . . . ,mn)returns m, or none if eval f(m1, . . . ,mn) returns ⊥. In addition, the library exports a fun
tion nonce thatpi
ks a fresh name (to be used as a non
e) and fun
tions send and recv for sending and re
eiving termsof the form message M over a publi

hannel.For example, if we have a symboli
 model
ontaining en
ryptions and de
ryptions (su
h as theone presented in Se
tion 5.4), we would represent a
iphertext with key ek(k) and randomness r as
message(enc(ek(k),m, r)). The de
ryption fun
tion in the library would then be de�ned by σM

DY(libdec) :=
λx.match x with (message(dk(y)),message(enc(ek(y), z, w))) then some(message(z)) else none. A non
ewould be represented as message(nonce(λx.a!x)) for some fresh name a.7Instead of giving a de�nition that is spe
i�
 to a parti
ular DY model, we will give a general de�nitionof a DY library for a DY model. In the following, we assume an arbitrary embedding ι of terms T intothe set of
losed RCF values. We further assume a �xed name achan used internally by the libraryfor
ommuni
ation and we assume that there is a value-
ontext Cι[] (a value with a hole) su
h that
{Cι[a] : a 6= achan is a name} = ι(N).De�nition 13 (DY Library) A DY library for M = (C,D,N,T,⊢CoSP) is a substitution σM

DY fromvariables to RCF fun
tions satisfying the following
onditions:
• Let message be a private
onstru
tor.
• domσM

DY = {lib f | f ∈ C ∪ D} ∪ {nonce, send , recv}.
• σM

DY(lib f) is a pure fun
tion su
h that the following holds for all m1, . . . ,mn ∈ T: If m :=
eval f(m1, . . . ,mn) 6= ⊥, then σM

DY(lib f) (message ι(m1), . . . , message ι(mn))→
∗ some message ι(m).If m = ⊥, then σM

DY(lib f) (message ι(m1), . . . , message ι(mn)) →∗ none. In all other
ases,
σM
DY(lib f) (. . .) is stu
k.

• σM
DY(nonce) = fun _→ νa.message Cι[a].

• σM
DY(send) = (fun x→ (match x with message _ then achan !message x else stuck)). Here stuck is apure diverging RCF expression.

• σM
DY(recv) = fun _→ achan?

• fv(range(σM
DY)) = ∅ and fn(range(σM

DY)) = achan.
• For any variable x ∈ domσM

DY, and any mp
-free value M 6= x, we have σM
DY(x) 6= MσM

DY. (We
all a substitution satisfying this
ondition
ondition equality-friendly.) ⋄7For synta
ti
 reasons, RCF forbids to simply write message(nonce(a)) if a is a name.12

The requirement that σM
DY is equality-friendly is a te
hni
al
ondition to ensure that the out
omeof equality-tests in a program exe
ution does not depend on the internal
ode of the library fun
tions.For example, if we had that σM

DY(lib f1) = (λx.σM
DY(lib f2)x), the test lib f1 = (λx.lib f2x) would su

eed ina program linked to σM

DY. To avoid su
h dependen
ies on the internal
ode of the library, we introdu
eequality-friendliness. Note that equality-friendliness is only ne
essary be
ause RCF allows synta
ti
equality tests on lambda-abstra
tions.Equality-friendliness
an be enfor
ed, e.g., by requiring that all σ(f) are expressions of the form
λx.(magic;A) for some RCF expression A where magic := (λz.match z with message y then () else ()).To interfa
e an expression A with a library σM

DY, we use the expression AσM
DY . We will only
onsiderprograms A su
h that fn(A) = ∅ and fv(A) ⊆ domσM

DY.In σM
DY , all messages M are prote
ted by the private
onstru
tor message. However, if an opponentwould be allowed to perform a pattern mat
h on message, he
ould get the internal representation of Mand thus, e.g., extra
t the plaintext from an en
ryption. Similarly, an adversary applying message
ouldprodu
e invalid messages. Thus, when using σM

DY , we have to restri
t ourselves to p
-free opponents.The following variant of robust →-safety models this.De�nition 14 (Robust →-σ-safety) Let σ be a substitution. We
all an RCF expression a σ-opponenti� fv (O) ⊆ domσ and O is p
-free and
ontains neither assertions nor assumptions and achan /∈ fn(O).An RCF expression A with fv (A) ⊆ domσ is robustly →-σ-safe i� the appli
ation (O A)σ is →-safefor all σ-opponents O. ⋄Note that in
ontrast to De�nition 2, we expli
itly apply the substitution σ representing the libraryto the opponent. This is be
ause a p
-free opponent has to invoke library fun
tions in order to performen
ryptions, outputs, et
. Furthermore, we will also need that the programs we analyze operate on termstagged by message only through the library. In order to enfor
e this (and other invariants that will beused in various lo
ations in the proofs) we introdu
e the following well-formedness
ondition:De�nition 15 Let A be an RCF expression and M = (C,N,T,D,⊢) a DY model. We say M ⊢ A i�
fv (A) ⊆ {libf : f ∈ C ∪ D} ∪ {nonce, send , recv} and achan /∈ fn(A) and A is p
-free and the FOL/F-formulae in A do not
ontain forbidden fun
tion symbols. ⋄4.2 Dolev-Yao transition relationThe COSP framework assumes the atomi
ity of
ryptographi
 operations. In general, however, Dolev-Yao libraries may de�ne these operations by a sequen
e of
ommands, whi
h may lead to non-atomi

omputations. For this reason, a
onvenient tool for the embedding of a language in COSP is thede�nition of a symboli
 semanti
s where
ryptographi
 operations are exe
uted atomi
ally. This isa
hieved by de�ning a new redu
tion relation A B (
f. Figure 5), whi
h di�ers from the standardredu
tion relation A→ B in that
ryptographi
 operations are atomi
ally performed.Using the de�nition of , we
an reformulate the notion of safety. Our formulation is justi�ed byLemma 1 below.De�nition 16 (-σ-Safety) A stru
ture S is stati
ally σ-safe i� Pσ ⊢ Cσ where P are the a
tiveassumptions and C the a
tive assertions of S.An expression A is -σ-safe if for all S su
h that A ∗ S we have that S is stati
ally σ-safe. ⋄In
ontrast to De�nition 14, when de�ning robust safety with respe
t to , we to not apply σ to theopponent or the program, be
ause σ is hard-
oded into :De�nition 17 (Robust -σ-safety) An RCF expression A with fv (A) ⊆ domσ is robustly -σ-safei� the appli
ation O A is -σ-safe for all σ-opponents O. ⋄A ne
essary ingredient for the
omputational soundness result is the proof that if a program is→-safethen it is also -σM

DY-safe. 13

(λx.A)N A{N/x}

let (x1, x2) = (N1, N2) in A A{N1/x1, N2/x2}

match M with h x then A else B

{

A{N/x} if M = h N for some N

B otherwise
M = N

{

true if M = N

false otherwise
a!M � a? M

assert C ()

let x = M in A A{M/x}

A A′ ⇒ let x = A in B let x = A′

in B

A A′ ⇒ νa.A νa.A′

A A′ ⇒ (A � B) (A′

� B)

A A′ ⇒ (B � A) (B � A′)

A ≡ B B′ ≡ A′ =⇒ A A′

send (message M) achan !message M

recv N achan?

nonce M νa.message Cι[a]

σM
DY(libf) M →∗ N =⇒ libf M N (libf ∈ domσM

DY\{send , recv ,nonce})Figure 5: Redu
tion relation A BLemma 1 Let A be p
-free. If AσM
DY is →-safe then A is -σM

DY-safe.Proof. By de�nition of→-safety and -σM
DY-safety, we only have to show that A ∗ B implies AσM

DY →
∗

BσM
DY . The proof is by stru
tural indu
tion on the derivation of A ∗ B. The base
ase is when

A = B and no redu
tion step is applied, and the proof is straightforward. The indu
tion
ases are alsostraightforward, ex
ept for the equality, mat
h, and library fun
tion appli
ation rules.Equality. Sin
e → tests MσM
DY = NσM

DY while tests M = N , we have to prove that MσM
DY =

NσM
DY ⇔ M = N . The ⇐ dire
tion is straightforward. For proving the ⇒ dire
tion, we a
tually provethat M 6= N ⇒MσM

DY 6= NσM
DY.Sin
e A is p
-free, we
an easily see that B is mp
-free and therefore M and N are mp
-free. Nowwe pro
eed by stru
tural indu
tion on M . We �rst reason on the base
ases:

M = a The only interesting
ase is when N = x. By De�nition 13, rangeσM
DY is a set of fun
tions, hen
e

σM
DY(x) 6= a.

M = () Analogous to the previous item.
M = x The proof follows by observing that σM

DY is equality-friendly.We now reason on the indu
tion
ases:
M = h M ′ & N = h′ N ′ & h 6= h′ We
learly have MσM

DY 6= NσM
DY.

M = h M ′ & N = h N ′ If h is a publi

onstru
tor, then the proof follows dire
tly from the indu
tionhypothesis. If h is a private
onstru
tor, then we do not know whether M ′ and N ′ are mp
-freeor not. We do know, however, that they are
losed (by an inspe
tion of the -semanti
s and byDe�nition 13). Therefore MσM
DY = M and NσM

DY = N .14

The remaining
ases follow straightforwardly from the indu
tion hypothesis.Mat
h. We have to show that (i) if match M with h x then C else D C{N/x} (i.e., M =
h N for some N and B = C{N/x}) then match MσM

DY with h x then CσM
DY else DσM

DY →
C{N/x}σM

DY and (ii) if match M with h x then C else D D (i.e., ∄N.M = h N) then
match MσM

DY with h x then CσM
DY else DσM

DY → DσM
DY . For this, we must show (i) M = h N ⇒MσM

DY =
h NσM

DY and (ii) ∄N.M = h N ⇒ ∄N.MσM
DY = h N . The proof for (i) is straightforward (sin
e σM

DY isapplied on both sides). For proving (ii), we a
tually prove that ∀N.M 6= h N ⇒ ∀N.MσM
DY 6= h N .Sin
e A is p
-free, we
an easily see that B is mp
-free and therefore M is mp
-free and h is a publi

onstru
tor. Now we pro
eed by stru
tural indu
tion on M . We �rst reason on the base
ases:

M = a Straightforward.
M = () Straightforward.
M = x Assume by
ontradi
tion that ∃N.xσM

DY = h N . By De�nition 13, rangeσM
DY is a set of fun
tions,therefore h N /∈ rangeσM

DY, whi
h yields a
ontradi
tion.We now reason on the indu
tion
ases:
M = h M ′ This
ase is obvious, sin
e the hypothesis ∀N.M 6= h N does not hold.The remaining
ases are straightforward.Appli
ation of library fun
tions. We have to show that if f M N , with f ∈ domσM

DY , then
(fσM

DY)(MσM
DY) →

∗ NσM
DY . We fo
us on the
ase f /∈ {send , recv , nonce}, sin
e the other
ases arestraightforward. By de�nition of , we have fσM

DY M →∗ N . By de�nition of DY library, this redu
tiontakes pla
e only if M = (message ι(m1), . . . , message ι(mn)). By de�nition of ι, ι(mi) and hen
e also Mis
losed. Similar reasoning shows that N is
losed. Hen
e MσM
DY = M and NσM

DY = N . This
on
ludesthe proof. �5 Computational soundnessIn this se
tion, we present the
omputational soundness result for Dolev-Yao libraries.5.1 De�nitionsSin
e RCF only has semanti
s in the symboli
 model (without probabilism and without the notionof a
omputational adversary) we need to introdu
e the notion of a
omputational exe
ution of RCFexpressions. In the
omputational exe
ution, we let the adversary have the full
ontrol over the s
hedulingand all non-deterministi
 de
isions. This models the worst
ase; a setting in whi
h s
heduling de
isionsare taken randomly
an be redu
ed to this setting. Our
omputational exe
ution maintains a state that
onsists of the
urrent pro
ess S and an environment η. Cryptographi
 messages (i.e., bitstrings re
eivedby the adversary or
omputed by
ryptographi
 operations) are represented in S by free variables. Thebitstrings
orresponding to these variables are maintained in the environment η. In ea
h step of theexe
ution, the adversary is given the pro
ess S (together with a set of equations E that tell him forwhi
h x, y we have η(x) = η(y)), and then
an de
ide whi
h of the di�erent redu
tion rules from theRCF semanti
s should be applied to S. Note that giving S to the adversary does not leak any se
rets sin
ethese are only
ontained in η. If the adversary requests that a fun
tion appli
ation lib f(x) is exe
uted,where lib f is a fun
tion in the DY library, the
omputational implementation Implf is used to
omputethe result of this fun
tion appli
ation; that bitstring is then stored in η. Similarly for an appli
ation
nonce(). If the adversary requests a fun
tion evaluation send(x) the adversary is given the bitstring η(x);in the
ase recv(), the adversary provides a bitstring that is then stored in η.15

The following de�nition formalizes the
omputational exe
ution of RCF expressions. We assume thatea
h RCF expression has a unique8 normal form (a stru
ture) with the property that bound names aredistin
t from free names (and similarly for variables). We also assume that the bound names of thenormal form are distin
t from the free names of σM
DY . We follow the
onvention that �fresh variable�or �name� means a variable or name that does not o

ur in any of the variables maintained by thealgorithm, nor in σM

DY . The parts in angle bra
kets (〈· · · 〉)
an be ignored, as they de�ne the symboli
RCF-exe
ution whi
h will be dis
ussed in the next se
tion.De�nition 18 (Computational 〈symboli
〉 RCF-exe
ution) Let M be a DY model and let Implbe a
omputational implementation for M. Let A be an expression su
h that M ⊢ A, and let Adv bean intera
tive ma
hine
alled the adversary. 〈Adv is a non-deterministi
 ma
hine that only sends mif S ⊢CoSP m where S are the messages sent to Adv so far.〉 We de�ne the
omputational 〈symboli
〉RCF-exe
ution as an intera
tive ma
hine ExecImpl
A (1k) 〈SExecA〉 that takes a se
urity parameter k asargument 〈that does not take any argument〉 and intera
ts with Adv:

• Start: Let η be a totally unde�ned partial fun
tion mapping variables to bitstrings 〈terms〉. (ηprovides an environment giving bitstring 〈term〉 interpretation to the variables o

urring in the
urrent expression.)
• Main Loop: Let S = νa1 . . . al. (Π

i∈1...m
assume Ci � Π

j∈1...n
cj !Mj � (Π

k∈1...o
Lk{ek})) be the normalform of A. Let E := {x = y : x 6= y, η(x) = η(y)} be a set of formulae. Send (S, E) to theadversary and pro
eed depending on the type of message re
eived from Adv as follows:� When re
eiving (sync, j, k) from Adv, if ek = cj?, then set A := B, where B is the expressionobtained from S by removing cj !Mj and repla
ing Lk{ek} by Lk{Mj};� When re
eiving (step, k):

∗ If ek = x (y1, . . . , yn) with x = lib f for some
onstru
tor or destru
tor f of arity n and
y1, . . . , yn ∈ dom η: Let m := Implf(η(y1), . . . , η(yn)) 〈m := eval f(η(y1), . . . , η(yn))〉. If
m 6= ⊥, set η := η ⊎ (z := m) for fresh z and m′ := some z. If m = ⊥, set η := η and
m′ := none. Set A := S{Lk{m′}/Lk{ek}};
∗ If ek = nonce M , then pi
k r ← Impln(1

k) for some n ∈ NP
9 〈let r be a fresh proto
olnon
e〉 and set η := η ⊎ (z := r) for fresh z and A := S{Lk{z}/Lk{ek}}.

∗ If ek = recv M , then request a bitstring 〈term〉 m from the adversary and set η := η⊎(z :=
m) for fresh z and A := S{Lk{z}/Lk{ek}}.
∗ If ek = send x with x ∈ dom η: Send η(x) to the adversary and set A :=S{Lk{()}/Lk{ek}}.
∗ If ek = (λx.B) N , let A := S{Lk{B{N/x}}/Lk{ek}}.
∗ If Lk{ek} = L′{let x = M in B}: Set A := S{Lk{B{M/x}}/Lk{ek}}.
∗ If ek = (M = N): For every x ∈ dom η, let ρ(x) be the lexi
ographi
ally �rst y ∈ dom ηwith η(x) = η(y).10 If MρσM

DY = NρσM
DY, let b := true, otherwise let b := false. Set

A := S{Lk{b}/Lk{ek}}.
∗ If ek = let (x, y) = (M1,M2) in B: Set A := S{Lk{B{M1/x,M2/y}}/Lk{ek}}.
∗ If ek = match M with h x then B1 else B2: If M is of the form hN , let B := B1{N/x},otherwise let B := B2. Set A := S{Lk{B}/Lk{ek}}.
∗ If ek = assert C: Set A := S{Lk{()}/Lk{ek}}.� If none of these
ases apply, do nothing. ⋄8The uniqueness of normal forms
an be a
hieved, for instan
e, by imposing a lexi
ographi
al order on stru
tures.9The en
-sig-implementation
onditions ensure that Impln(1

k) does not depend on the
hoi
e of n.10We use ρ to unify variables that refer to the same messages. This is ne
essary be
ause the test MσM
DY

= NσM
DY

without
ρ would treat these variables as distin
t terms. 16

Noti
e that the exe
ution of ExecImpl
A (1k) maintains the invariant that all bound variables and namesin A are pairwise distin
t and that they are distin
t from the variables in the domain of η. For agiven polynomial-time intera
tive ma
hine Adv, a
losed expression A, and a polynomial p, we let

Trace
Impl
Adv,A,p(k) denote the list of pairs (S, E) output by ExecImpl

A (1k) (at the beginning of ea
h loopiteration) within the �rst p(k)
omputation steps (jointly
ounted for Adv(1k) and ExecImpl
A (1k)).De�nition 19 (Stati
al equation-σ-safety) Let σ be a substitution. A pair (S, E) of a stru
ture Sand a set E of equalities between variables is stati
ally equation-σ-safe i� P, eqs ⊢ C where P and

C are the a
tive assumptions and assertions of S, vars := fv(E) ∪ domσ, exterms is the set of allFOL/F-subterms h(t) of P,C with h forbidden and t synta
ti

losed, and
eqs := E ∪ {x 6= x′ : x, x′ ∈ vars , x 6= x′, (x = x′) /∈ E}

∪ {∀y.x 6= c(y) : x ∈ vars , c non-forbidden synta
ti
 fun
tion symbol}
∪ {x 6= t : x ∈ vars , t ∈ exterms}. ⋄We add the fa
ts eqs in order to tell the logi
 what is known about the environment η in the
omputational exe
ution. More pre
isely, we have x = x′ whenever η(x) = η(x′) and x 6= x′ otherwise.Furthermore, we have equations x 6= x′ when x 6= x′ refer to library fun
tions (intuitively, this is justi�edbe
ause we assume all our libraries to be equality-friendly), and x 6= x′ when x is a library fun
tion and

x′ refers to the environment (i.e., represents a bitstring). The equations x 6= t with t ∈ exterms are bestexplained by an example: Let A0 := let x = nonce in let x′ = (λz.z) in assume (x = x′); assert (false).Then A0 is robustly →-σM
DY-safe: A0σ

M
DY redu
es to assume (σM

DY(nonce) = λz.z) � assert (false) andwe have nonceσM
DY = (λz.z) ⊢ false (this is implied by equality-friendliness). In the
omputationalexe
ution, however, we get the pro
ess A = assume (nonce = λz.z) � assert (false), thus for robust
omputational safety, we need that nonce = (λz.z), eqs ⊢ false holds. For this, we need the inequalities

x 6= t in eqs. Noti
e that these extra inequalities are ne
essary only be
ause the logi
 allows us to
ompare lambda-abstra
tions synta
ti
ally.De�nition 20 (Robust
omputational safety) Let Impl be a
omputational implementation. Let
A be an expression with M ⊢ A. We say that A is robustly
omputationally safe using
Impl if for all polynomial-time intera
tive ma
hines Adv and all polynomials p, we have that
Pr[all
omponents of TraceAdv,A,p(1

k) are stati
ally equation-σM
DY-safe] is overwhelming in k. ⋄At the �rst glan
e, it may seem strange that the de�nition of robust
omputational safety isparametrized by the symboli
 library σM

DY . An inspe
tion of De�nition 19, however, reveals that thede�nition only depends on the domain of σM
DY, i.e., on the set of
ryptographi
 operations available to A.5.2 Symboli
 vs.
omputational exe
utionAs des
ribed in Se
tion 1.1, we now introdu
e an intermediate semanti
s, the symboli
 RCF-exe
ution.This exe
ution is spe
i�ed in De�nition 18 (by reading the parts inside the 〈. . . 〉), and is the exa
tanalogue to the
omputational RCF-exe
ution, ex
ept that it performs symboli
 operations instead of
omputational ones.We write SExecA in the set of lists of pairs (S, E) that
an be sent in the symboli
 exe
ution. Like forthe
omputational RCF-exe
ution, these pairs (S, E)
ontain the information needed to
he
k whetherthe a
tive assumptions entail the a
tive assertions. This allows us to express robust safety in terms ofthe symboli
 RCF-exe
ution:De�nition 21 (Robust SExec-safety) Let A be an expression and M a DY model su
h that M ⊢ A.We say that A is robustly SExec-safe i� for any ((S1, E1), . . .) ∈ SExecA, we have that (Si, Ei) isstati
ally equation-σM

DY-safe for all i. ⋄17

We now pro
eed to show that robust -σM
DY-safety implies robust SExec-safety. For this, we �rstneed a bit of notation:We
all a name a a proto
ol name if Cι[a] ∈ ι(NP) and an adversary name if Cι[a] ∈ ι(NE). Notethat every name is either a proto
ol name or an adversary name. For an expression Q and a substitution

ϕ from variables to CoSP terms, we say that Q is valid for ϕ if Q does not
ontain assume or assert, Qis p
-free, fn(Q) = ∅, and fv (Q) ⊆ domϕ∪ domσM
DY , and all its free names are adversary names. Let Adenote the pro
ess from the symboli
 exe
ution before the
urrent main loop, let ϕ denote a substitutionmapping x1, . . . , xk to the messages sent to the adversary. Let ιm(x) := message ι(x). For n ∈ N, let

ιN (n) be the name a with Cι(a) = ι(n). Let n be the list of all non
es
hosen by the proto
ol, and
n := ιN (n).Let A′, ϕ′, N ′, n′ denote the values of A,ϕ,N, n after the
urrent iteration, and let A0, ϕ0, N0, n0denote the values of A,ϕ,N, n before the �rst iteration. We now show that ea
h iteration of the symboli
exe
ution
an be simulated in the RCF semanti
s by
hoosing a suitable σM

DY-opponent.Lemma 2 Consider an iteration of the main loop of the symboli
 exe
ution with M ⊢ A0. Then for allRCF expressions Q′ valid for ϕ′, there is a substitution ϕ and an RCF expression Q valid for ϕ su
hthat
νn.(Q(ιm ◦ ϕ) � A(ιm ◦ η))

∗ νn′.(Q′(ιm ◦ ϕ
′) � A′(ιm ◦ η

′)).Proof. By indu
tion over the number of iterations of the main loop, and using the fa
t that M ⊢ A0, weget that A is
losed, p
-free, and does not
ontain achan .We distinguish the
ases in De�nition 18.
• The adversary sends (sync, j, k): Then n = n′, ϕ = ϕ′, η = η′. And A(ιm ◦ η) A′(ιm ◦ η). Sothe lemma holds with Q := Q′.
• The adversary sends (step, k) and ek = x (y1, . . . , yn) with x = lib f for some
onstru
tor ordestru
tor f of arity n and y1, . . . , yn ∈ dom η and m := eval f(η(y1), . . . , η(yn)) 6= ⊥: Then
η′ = η ⊎ (z 7→ m) for fresh z and A′ := A{Lk{some z}/Lk{ek}}. Furthermore n′ = n and ϕ = ϕ′.Let mi := η(yi). Then
(x(y1, . . . , yn))(ιm ◦ η) = lib f(message ι(m1), . . . ,message ι(mn))

 some(message ι(m)) = (some z)(ιm ◦ η
′)and hen
e A(ιm ◦ η) A′(ιm ◦ η). So the lemma holds with Q := Q′.

• The adversary sends (step, k) and ek = x (y1, . . . , yn) with x = lib f for some
onstru
tor ordestru
tor f of arity n and y1, . . . , yn ∈ dom η and eval f(η(y1), . . . , η(yn)) = ⊥: Then η′ = η,
ϕ = ϕ′, n = n′, and A′ = A{Lk{none}/Lk{ek}}. Let mi := η(yi). Then

(x(y1, . . . , yn))(ιm ◦ η) = lib f(message ι(m1), . . . ,message ι(mn)) none = none(ιm ◦ η
′)and hen
e A(ιm ◦ η) A′(ιm ◦ η). So the lemma holds with Q := Q′.

• The adversary sends (step, k) and ek = nonce M : Then ϕ = ϕ′ and η′ = η ⊎ (z := r) for a freshvariable z and a fresh proto
ol non
e r. Furthermore A′ = A{Lk{z}/Lk{ek}}. Sin
e r is a proto
olnon
e, ι(r) = Cι[a] for some fresh proto
ol name a. Hen
e a /∈ fn(σM
DY) and n′ = na. We have

ek(ιm ◦ η) = nonce (M(ιm ◦ η)) νa.message Cι[a] = νa.(z(ιm ◦ η
′))and hen
e A(ιm ◦ η)σM

DY νa.A′(ιm ◦ η′)σM
DY. Sin
e Q is valid, Q does not
ontain the proto
olname a, so the lemma holds with Q := Q′. 18

• The adversary sends (step, k) and ek = recv M and the adversary sends the term m: Then
η′ = η ⊎ (z := m) and ϕ′ = ϕ and n′ = n and A′ = A{Lk{z}/Lk{ek}}. Furthermore rangeϕ ⊢ m.By indu
tion over the rules de�ning ⊢CoSP, we have that for any term t with rangeϕ ⊢ t, thereis a RCF expression e su
h that e(ιm ◦ ϕ) ∗ ιm(t) where e obeys the following grammar: e ::=
xi|let x1 = e1 in . . . let xn = en in lib f(x1, . . . , xn)|a where a is an adversary name, 1 ≤ i ≤ |ϕ|, and
n is the arity of the
onstru
tor or destru
tor f. Thus there is an RCF expression em su
h that
em(ιm ◦ϕ) ∗ ιm(m). Let y, y′ be variables that are not free in Q′. Let Q := let y = em in let y′ =
send y in Q′. Sin
e em only
ontains adversary non
es, Q is valid for ϕ. We have

Q(ιm ◦ ϕ) � ek(ιm ◦ η)

= let y = em(ιm ◦ ϕ) in let y′ = send y in Q′(ιm ◦ ϕ) � recv (M(ιm ◦ η))

 ∗ let y′ = send ιm(m) in Q′(ιm ◦ ϕ) � recv (M(ιm ◦ η))

 ∗ let y′ = achan !ιm(m) in Q′(ιm ◦ ϕ) � achan?

 let y′ = () in Q′(ιm ◦ ϕ) � ιm(m)

 Q′(ιm ◦ ϕ) � ιm(m)

= Q′(ιm ◦ ϕ) � z(ιm ◦ η
′)and thus

νn.(Q(ιm ◦ ϕ) � A(ιm ◦ η))
∗ νn.(Q′(ιm ◦ ϕ) � A

′(ιm ◦ η)) = νn′.(Q′(ιm ◦ ϕ
′) � A′(ιm ◦ η

′)).

• The adversary sends (step, k) and ek = send M and M ∈ dom η: Let m := η(M). Then ϕ′ =
ϕ⊎ (xn+1 7→ m) where n := |domϕ|. Furthermore n′ = n and η′ = η and A′ = A{Lk{()}/Lk{ek}}.Let Q := let xn+1 = recv() in Q′. Then

Q(ιm ◦ ϕ) � ek(ιm ◦ η)

= let xn+1 = recv() in Q′(ιm ◦ ϕ) � send(message ι(m))

 ∗ let xn+1 = achan? in Q′(ιm ◦ ϕ) � achan !(message ι(m))

∗ let xn+1 = message(ι(m)) in Q′(ιm ◦ ϕ) � ()

 Q′(ιm ◦ ϕ
′) � ()and thus

νn.(Q(ιm ◦ ϕ) � A(ιm ◦ η))
∗ νn′.(Q′(ιm ◦ ϕ

′) � A′(ιm ◦ η
′)).

• The adversary sends (step, k) and ek = (λx.B) N : Then n = n′, ϕ = ϕ′, η = η′. And A(ιm ◦ η)
A′(ιm ◦ η). So the lemma holds with Q := Q′.
• The adversary sends (step, k) and Lk{ek} = L′{let x = M in B}: Then n = n′, ϕ = ϕ′, η = η′.And A(ιm ◦ η) A′(ιm ◦ η). So the lemma holds with Q := Q′.
• The adversary sends (step, k) and ek = (M = N) and Mρ = Nρ where ρ(x) is the lexi
ographi
ally�rst y ∈ dom η with η(x) = η(y): Then M(ιm ◦ η) = Mρ(ιm ◦ η) = Nρ(ιm ◦ η) = N(ιm ◦ η). Thus
ek(ιm ◦ η) true and hen
e A(ιm ◦ η) A′(ιm ◦ η). So the lemma holds with Q := Q′.
• The adversary sends (step, k) and ek = (M = N) and Mρ 6= Nρ where ρ is as in the previous
ase.Assume for
ontradi
tion that M(ιm ◦ η) = N(ιm ◦ η). Sin
e all terms in the range of ιm ◦ η are ofthe form message M ′ and M,N are mp
-free (be
ause A is mp
-free), we have that M and N di�eronly in their variables, i.e., that there is a
ontext C withM = C[x1, . . . , xn] and N = C[x′

1, . . . , x
′

n].Furthermore, for all i we have ιm ◦ η(xi) = ιm ◦ η(x′

i). Sin
e ιm is inje
tive, η(xi) = η(x′

i). Byde�nition of ρ, this implies ρ(xi) = ρ(x′

i). Thus Mρ = Nρ in
ontradi
tion to Mρ 6= Nρ. Thus
M(ιm ◦ η) 6= N(ιm ◦ η). It follows that ek(ιm ◦ η) false and hen
e A(ιm ◦ η) A′(ιm ◦ η). Sothe lemma holds with Q := Q′. 19

• The adversary sends (step, k) and ek = let (x, y) = (M1,M2) in B: Then n = n′, ϕ = ϕ′, η = η′.And A(ιm ◦ η) A′(ιm ◦ η). So the lemma holds with Q := Q′.
• The adversary sends (step, k) and ek = match h N with h x then B1 else B2: Then n = n′, ϕ = ϕ′,
η = η′. And A(ιm ◦ η) A′(ιm ◦ η). So the lemma holds with Q := Q′.
• The adversary sends (step, k) and ek = match M with h x then B1 else B2 and M is not of theform h N for any N : If M /∈ dom η, then M(ιm ◦ η) is not of the form h N . If M ∈ dom η, then
M(ιm ◦ η) is of the form message N ′, and sin
e A is mp
-free, h 6= message and thus message N ′is not of the form h N .Thus (match M with h x then B1 else B2)(ιm ◦ η)→ B2(ιm ◦ η) and hen
e A(ιm ◦ η)→ A′(ιm ◦ η).So the lemma holds with Q := Q′.
• The adversary sends (step, k) and ek = assert C: Then n = n′, ϕ = ϕ′, η = η′. Furthermore
ek () and hen
e A(ιm ◦ η) A′(ιm ◦ η). So the lemma holds with Q := Q′.
• All other
ases: A′ = A, η′ = η, ϕ′ = ϕ, n′ = n. Thus with Q := Q′,

νn.(Q(ιm ◦ ϕ) � A(ιm ◦ η))σDY = νn′.(Q′(ιm ◦ ϕ
′) � A′(ιm ◦ η

′))σDY .

�Lemma 3 Let P,C be sets of FOL/F-formulae. Assume that P and C
ontain no forbidden fun
tionsymbols. Let γ be a substitution mapping variables to
losed FOL/F-terms. Assume that dom γ ⊆
fv (P,C). Assume that for all x ∈ dom γ we have γ(x) = h(t) for forbidden h and synta
ti
 t. Let
eqs := {x = x′ : x, x′ ∈ domγ, x 6= x′, γ(x) = γ(x′)} ∪ {x 6= x′ : x, x′ ∈ dom γ, γ(x) 6= γ(x′)}

∪ {∀y. x 6= c(y) : x′ ∈ dom γ, c non-forbidden synta
ti
 fun
tion symbol}.Then Pγ ⊢ Cγ =⇒ P, eqs ⊢ C.Proof. Without loss of generality, we assume that the bound variables and the free variables of P,C, eqsare disjoint. In the following, we will use x to denote variables in dom γ, y to denote variables not freein P,C, f for fun
tion symbols, h for forbidden fun
tion symbols, c for non-forbidden fun
tion symbols,
t for FOL/F-terms, and u for members of the universe U (de�ned below).To show that P, eqs ⊢ C, it is su�
ient to show that for any modelM and any environment η with
dom η = dom γ, ifM, η � P, eqs thenM, η � C. Thus, �x su
h a modelM and su
h an environment η.We are left to show M, η � C. Let U be the universe of M, and for a non-forbidden fun
tion symbol
f , letMf denote the interpretation of f inM, and analogously for forbidden fun
tion symbols h. (Wetreat
onstants as nullary fun
tion symbols, thus we do not need to treat them separately.) We write
Mη(t) for the interpretation of t in the modelM under environment η. If t is
losed, we also writeM(t)instead ofMη(t).By de�nition of FOL/F, we have that for any synta
ti
 fun
tion symbol f , Mf is inje
tive. Thusfor
losed terms t, t′
ontaining only synta
ti
 fun
tion symbols,M(t) =M(t′) i� t = t′. Furthermore,sin
eM, η � eqs , η(x) = η(x′) i� γ(x) = γ(x′). Hen
eM(γ(x)) =M(γ(x′)) i� η(x) = η(x′).Sin
eM(γ(x)) =M(γ(x′)) i� η(x) = η(x′) for all x, x′, there is a permutation π on {η(x),M(γ(x)) :
x ∈ dom γ} ⊆ U su
h that π(η(x)) =M(γ(x)) for all x. Fix su
h a permutation π. We extend π to apermutation on U by setting π(u) := u for u /∈ {η(x),M(γ(x)) : x ∈ domγ} ⊆ U . We abbreviate π(u)for π(u1), π(u2), . . . and analogously for π−1.For any c, x, we have (∀y. x 6= c(y)) ∈ eqs . Sin
e M, η � eqs by assumption, it follows that
∀u ∈ U. η(x) 6=Mc(u). Furthermore, sin
eM is a FOL/F-model, ∀u, u′ ∈ U.Mh(u

′) 6=Mc(u). Sin
efor all x, γ(x) = h(t) for some h, t, it follows that ∀u ∈ U. γ(x) 6= Mc(u). Thus ∀u ∈ U. Mc(u) /∈
{η(x),M(γ(x)) : x ∈ domγ}. By de�nition of π, this implies

∀u ∈ U. π(Mc(u)) =Mc(u). (1)20

We de�ne a model M′. This model M′ has universe U , M′

c(u) := π(Mc(π
−1(u))), and M′

p(u) :=
Mp(π

−1(u)) for predi
ate symbols p.It is left to de�ne M′

h. First note that Mh is inje
tive. (By de�nition of FOL/F, for synta
ti
 hwe haveM � ∀y, y′. h(y) 6= h(y′) ⇒ y 6= y′ for any model M.) Thus U × · · · × U and rangeMh havethe same
ardinality. Furthermore, as seen above, M(t) = M(t′) i� t = t′ for
losed terms t, t′ only
ontaining synta
ti
 fun
tion symbols. Thus we
an �x M′

h to be some inje
tive fun
tion with range
rangeM′

h = rangeMh and satisfying: For all h(t) ∈ range γ, we haveM′

h(M
′(t)) =Mh(M(t)).Claim 1 M′ is a FOL/F-model.Obviously, M′ is a FOL-model. Thus, to show Claim 1, we only need to show that for all synta
ti
fun
tion symbols f 6= f ′, the axioms ∀y, y′.f(y) 6= f ′(y′) (F Disjoint) and ∀y, y′.f(y) 6= f(y′) ⇒ y = y′(F Inje
tive) are satis�ed by M′. Sin
e M′

f is inje
tive by de�nition both for forbidden and non-forbidden f , (F Inje
tive) is satis�ed. To show that (F Disjoint) is satis�ed, we distinguish the
ases
(f, f ′) = (c, c′), (f, f ′) = (h, h′), and (f, f ′) = (c, h′) (the
ase (f, f ′) = (h, c′) is analogous). If (f, f ′) =
(c, c′), then rangeMc ∩ rangeMc′ = ∅ (sin
e M is a FOL/F-model and c 6= c′ are synta
ti
) andthus rangeM′

c ∩ rangeM′

c′ = π(rangeMc) ∩ π(rangeMc′) = π(∅) = ∅ (sin
e π is a permutation on
U). If (f, f ′) = (h, h′), we have rangeM′

h ∩ rangeM′

h′ = rangeMh ∩ rangeMh′ = ∅ by de�nition of
M′

h,M
′

h′ and sin
e M is a FOL/F-model and h 6= h′ are synta
ti
. If (f, f ′) = (c, h′), we have that
rangeMc ∩ rangeMh′ = ∅ sin
e M is a FOL/F-model and c 6= h′ are synta
ti
. By (1), we havethat rangeMc = π(rangeMc). Thus rangeM′

c ∩ rangeM′

h′

(∗)
= π(rangeMc) ∩ rangeMh′ = rangeMc ∩

rangeMh′ = ∅ where (∗) uses the de�nition of M′

c and M′

h′ . Thus, for all synta
ti
 fun
tion symbols
f 6= f ′, we have rangeM′

f ∩ rangeM′

f ′ = ∅. Thus (F Disjoint) is satis�ed and Claim 1 holds.Claim 2 For all environments ζ with dom ζ ∩ dom η = ∅, and all terms t not
ontaining forbiddenfun
tion symbols and fv (t) ⊆ dom η ∪ dom ζ, we have that π(Mη∪ζ(t)) =M′

π◦ζ(tγ).We show this by stru
tural indu
tion on t. We distinguish the following
ases:
• Case �t = c(t′)�: π(Mη∪ζ(t)) = π(Mc(Mη∪ζ(t

′)))
IH
= π(Mc(π

−1(M′

π◦ζ(t
′γ))))

(∗)
=

M′

c(M
′

π◦ζ(t
′γ)) =M′

π◦ζ(c(t
′γ)) =M′

π◦ζ(tγ). Here (∗) uses the de�nition ofM′

c.
• Case �t = h(t′)�: This
ase does not o

ur be
ause t does not
ontain forbidden fun
tion symbols.
• Case �t = x ∈ dom η�: Then π(Mη∪ζ(t)) = π(η(x)) sin
e x ∈ dom η and M′

π◦ζ(tγ) = M′(γ(x))sin
e x ∈ dom γ = dom η. By de�nition of π, π(η(x)) =M(γ(x)). Furthermore, sin
e γ(x) is ofthe form h(t′), we have that M(γ(x)) = Mh(M(t′)) =M′

h(M
′(t′)) = M′(γ(x)). Summarizing,

π(Mη∪ζ(t)) = π(η(x)) =M(γ(x)) =M′(γ(x)) =M′

π◦ζ(tγ).
• Case �t = y ∈ dom ζ�: π(Mη∪ζ(t)) = π(η(y)) =M′

π◦ζ(y).We have shown Claim 2.Claim 3 For all environments ζ with dom ζ ∩ dom η = ∅, and all FOL/F-formulae Q not
ontainingforbidden fun
tion symbols and fv (Q) ⊆ dom η ∪ dom ζ, we have that M, ζ ∪ η � Q i� M′, π ◦ ζ � Qγ.We show this by stru
tural indu
tion on t. We distinguish the following
ases:
• Case �Q = Q1 ·Q2 for · ∈ {∧,∨,⇒}�: ThenM, ζ ∪ η � Q⇔ (M, ζ ∪ η � Q1) · (M, ζ ∪ η � Q2)

IH
⇔

(M′, π ◦ η � Q1γ) · (M′, π ◦ η � Q2γ) ⇔M′, π ◦ ζ � Qγ. (This also
overs Q = ¬Q′ be
ause ¬Q′is synta
ti
 sugar for Q′ ⇒ false.)
• Case �Q = �y.Q′ with � ∈ {∀, ∃}�: For an environment ζ and a value u ∈ U , we abbreviate
ζ(y := u) by ζu. Then

M, ζ ∪ η � Q⇐⇒ �u ∈ U. (M, ζu ∪ η � Q′)IH
⇐⇒ �u ∈ U. (M, π ◦ ζu � Q′γ)⇐⇒ �u ∈ U. (M, π ◦ ζu � Q′γ)

⇐⇒ �u ∈ U. (M, (π ◦ ζ)π(u) � Q′γ)⇐⇒M′, π ◦ ζ � �z. Q′γ

⇐⇒M′, π ◦ ζ � Qγ. 21

• Case �Q = false�: Then bothM, ζ ∪ η � Q andM′, π ◦ ζ � Q do not hold.
• Case �Q = (t = t′)�:

M, η ∪ ζ � Q⇐⇒Mη∪ζ(t) =Mη∪ζ(t
′)

⇐⇒ π(Mη∪ζ(t)) = π(Mη∪ζ(t
′))

Claim 2
⇐⇒M′

π◦ζ(tγ) =M
′

π◦ζ(t
′γ)

⇐⇒M′, π ◦ ζ � tγ = t′γ.⇐⇒M′, π ◦ ζ � Qγ.

• Case �Q = p(t) for a predi
ate symbol p�: We use the abbreviationMp(t) forMp(t1, t2, . . .).
M, η ∪ ζ � Q⇐⇒Mp(Mη∪ζ(t))

(∗)
⇐⇒M′

p(π(Mη∪ζ(t)))
Claim 2
⇐⇒M′

p(π(M
′

π◦ζ(tγ)))

⇐⇒M′, π ◦ ζ � p(tγ).⇐⇒M′, π ◦ ζ � Qγ.Here (∗) uses the de�nition ofM′

p.This shows Claim 3.We
an now
on
lude the proof of Lemma 3. Sin
eM, η � P , we haveM′, π◦η � Pγ by Claim 3 (spe
ial
ase with ζ = ∅). Sin
e Pγ ⊢ Cγ by assumption, it follows that M′, π ◦ η � Cγ. By Claim 3 we get
M, η � C. Sin
eM, η � C was the only remaining goal, P, eqs ⊢ C and thus Lemma 3 follows. �Lemma 4 Let P,C be sets of message-free FOL/F-formulae. Assume that fv(P,C)∩bv (P,C) = ∅. Let
γ be a substitution mapping variables to
losed FOL/F-terms. Assume that fv(P,C) ⊆ domγ. Assumethat for all x, we have γ(x) = h(t) for forbidden h and synta
ti

losed t. Let exterms be the set ofsubterms h(t) of P,C su
h that h is forbidden. Assume that fv (exterms) ∩ bv (P,C) = ∅ (i.e., thevariables in exterms are not bound). Assume that all t ∈ exterms are synta
ti
. Assume that for all
x ∈ dom γ and all message-free FOL/F-terms t /∈ dom γ, we have γ(x) 6= tγ. Let

eqs := {x = x′ : x 6= x′, x, x′ ∈ dom γ, γ(x) = γ(x′)} ∪ {x 6= x′ : x, x′ ∈ domγ, γ(x) 6= γ(x′)}

∪ {∀y. x 6= c(y) : x ∈ domγ, c non-forbidden synta
ti
 fun
tion symbol}
∪ {x 6= t : x ∈ dom γ, t ∈ exterms}.Then Pγ ⊢ Cγ i� P, eqs ⊢ C.Proof. We �rst show the dire
tion P, eqs ⊢ C ⇒ Pγ ⊢ Cγ. Sin
e FOL/F is an authorization logi
,

P, eqs ⊢ C implies Pγ, eqs γ ⊢ Cγ. Sin
e for all x, γ(x) is a
losed term h(t)
ontaining only synta
ti
fun
tion symbols, we have ⊢ γ(x) = γ(x′) for γ(x) = γ(x′) by (FOL Re�), and ⊢ γ(x) 6= γ(x′) for
γ(x) 6= γ(x′) by (F Disjoint) and (F Inje
tive), and ⊢ ∀y. γ(x) 6= c(y) for all c, x by (F Disjoint), and
⊢ γ(x) 6= t for all t ∈ exterms by (F Disjoint) and (F Inje
tive) and γ(x) /∈ exterms. Thus ⊢ eqs γ. Sin
eFOL/F is an authorization logi
, Pγ, eqs γ ⊢ Cγ and ⊢ eqs γ ⊢ Cγ implies Pγ ⊢ Cγ. Thus we haveshown P, eqs ⊢ C ⇒ Pγ ⊢ Cγ.We pro
eed to show the dire
tion Pγ ⊢ Cγ ⇒ P, eqs ⊢ C. Assume that Pγ ⊢ Cγ holds.Let {t1, . . . , tn} := exterms where the ti are distin
t. Let x1, . . . , xn be fresh variables. Let σ :=
{t1/x1, . . . , tn/xn} and σ̄ := {x1/t1, . . . , xn/tn}. Let P ′ := P σ̄, C′ := Cσ̄, γ′ := γ ∪ σγ. Let

eqs0 := {xi 6= xj : i 6= j, tiγ 6= tjγ} ∪ {xi = xj : i 6= j, tiγ = tjγ}

∪ {∀y.xi 6= c(y) : c non-forbidden synta
ti
}
eqs ′ := {x = x′ : x, x′ ∈ domγ′, γ′(x) = γ′(x′)} ∪ {x 6= x′ : x, x′ ∈ dom γ′, γ′(x) 6= γ′(x′)}

∪ {∀y. x 6= c(y) : x ∈ domγ′, c non-forbidden synta
ti
 fun
tion symbol}.Sin
e P ′γ′ = Pγ and C′γ′ = Cγ, from Pγ ⊢ Cγ we get P ′γ′ ⊢ C′γ′. P ′, C′
ontain no forbiddenfun
tion symbols. Then, by Lemma 3, P ′, eqs ′ ⊢ C′. Sin
e FOL/F is an authorization logi
, P ′σ, eqs ′σ ⊢
C′σ.Furthermore, we have that eqs ′ = eqs σ̄ ∪ eqs0. Thus P ′σ, eqs ′σ ⊢ C′σ implies P, eqs , eqs0 σ ⊢ C.We will now show that eqs ⊢ eqs0 σ. For this, we �rst need the following two fa
ts:22

Claim 1 For all message-free subterms t1, t2 of P,C (not only those of the form h(·)) with t1γ = t2γand fv (t1, t2) ⊆ dom γ, we have eqs ⊢ t1 = t2.Claim 2 For all subterms t1, t2 of P,C (not only those of the form h(·)) with t1γ 6= t2γ and fv (t1, t2) ⊆
dom γ, we have eqs ⊢ t1 6= t2.We prove Claim 1 by stru
tural indu
tion on t1, t2 and distinguish the following
ases: Case �t1 = f(t′1)and t2 = f ′(t′2)�: Sin
e f(t′1γ) = t1γ = t2γ = f ′(t′2γ), we have f = f ′ and t′1γ = t′2γ. By indu
tionhypothesis, eqs ⊢ t′1 = t′2. Thus eqs ⊢ f(t′1) = f(t′2) whi
h is the same as eqs ⊢ t1 = t2. Case �t1 = xand t2 = f(t′2)�: Sin
e t2 /∈ dom γ is message-free, we have that t1γ = γ(x) 6= t2γ in
ontradi
tion tothe assumption t1γ = t2γ. Case �t1 = f(t′1) and t2 = x�: Analogous. Case �t1 = x and t2 = x′�: Sin
e
γ(x) = t1γ = t2γ = γ(x′), we have (x1 = x2) ∈ eqs . Thus eqs ⊢ t1 = t2. This shows Claim 1.We prove Claim 2 by stru
tural indu
tion on t1, t2 and distinguish the following
ases: Case �t1 = f1(t

′

1)and t2 = f2(t
′

2) with f1 6= f2�: Then eqs ⊢ t1 6= t2 by (F Disjoint). Case �t1 = f(t′) and t2 = f(t′′)�: From
f(t′γ) = t1γ 6= t2γ = f(t′′γ) we get t′iγ 6= t′′i γ from some i. Thus, by indu
tion hypothesis, eqs ⊢ t′i 6= t′′i .By (F Inje
tive), it follows that eqs ⊢ f(t′) 6= f(t′′) and thus eqs ⊢ t1 6= t2. Case �t1 = x and t2 = h(t′)�:Sin
e t2 is a subterm of P,C, t2 ∈ exterms. Thus (x 6= t2) ∈ eqs and hen
e eqs ⊢ t1 6= t2. Case �t1 = xand t2 = c(t′)�: Sin
e (∀y. x 6= c(y)) ∈ eqs , we have eqs ⊢ x 6= c(t′), thus eqs ⊢ t1 6= t2. Case �t1 = x1and t2 = x2�: Sin
e t1γ 6= t2γ, we have γ(x1) 6= γ(x2). Thus (x1 6= x2) ∈ eqs and hen
e eqs ⊢ t1 6= t2.The remaining
ases are symmetri
 to the ones above. This shows Claim 2.Now eqs ⊢ eqs0 σ follows: By Claim 1, we have eqs ⊢ ti = tj for all i 6= j with tiγ = tjγ. By Claim 2,we have eqs ⊢ ti 6= tj for all i, j with tiγ 6= tjγ. And sin
e ti = h(t′) for some h 6= c by de�nition, weget eqs ⊢ ∀y. ti 6= c(y) by (F Distin
t). Thus eqs ⊢ eqs0 σ holds. Together with P, eqs , eqs0 σ ⊢ C, sin
eFOL/F is an authorization logi
, this implies that P, eqs ⊢ C. �Lemma 5 If M ⊢ A0 and A0 is robustly -σM

DY-safe, then A0 is robustly SExec-safe.Proof. Assume that A0 is not SExe
-safe. Then, at some step of the symboli
 exe
ution for A0, we havethat P, eqs 0 C where P and C are the a
tive assumes and assertions of A and eqs is as in De�nition 19.By Lemma 2 and indu
tion on the des
ending number of the iteration of the main loop of the symboli
exe
ution (starting with Q := ()), we get that there is a RCF expression Q0 valid for ϕ0 su
h that
(Q0 � A0)

∗ νn′.() � A(ιm ◦ η).Sin
e Q0 is valid for ϕ0 = ∅, we have that Q0 does not
ontain assumptions or assertions, is p
-free andsatis�es fv (Q0) ⊆ domσM
DY and achan /∈ fn(Q0). With O := (λx.Q0 � x) it follows that OA ∗ A(ιm ◦ η)and that O is a σM

DY-opponent. Hen
e, sin
e A0 is robustly -σM
DY-safe, A(ιm ◦ η) is stati
ally σM

DY-safe.Hen
e C(ιm ◦ η)σM
DY ⊢ P (ιm ◦ η)σM

DY. Let γ := σM
DY ∪ (ιm ◦ η). (Note that η and σM

DY have disjointdomains by
onstru
tion.) Then Pγ ⊢ Cγ.Sin
e all σM
DY(x) are lambda-abstra
tions (by De�nition 13), and all ιm ◦ η(x) are of the form

message(. . .), we have that for all x ∈ dom γ, γ(x) = h(t) for forbidden h and
losed t. Let extermsbe the set of subterms h(t) of P,C su
h that h is forbidden. Sin
e M ⊢ A0, A0 is message-free and, byindu
tion over the number of iterations of the main loop of the symboli
 exe
ution, we get that P,C aremessage-free, that fv(P,C) ⊆ dom γ, that fv(P,C)∩bv (P,C) = ∅, that fv(exterms)∩bv (P,C) = ∅, andthat all t ∈ exterms are synta
ti
. (For the last fa
t, note that all RCF-values are en
oded as synta
ti
terms in FOL/F-formulae.)We have that σM
DY is equality-friendly, and ιm ◦ η(x) = message(·) is message-mat
h-free for all x.Thus for all x ∈ domγ and all message-free FOL/F-terms t /∈ dom γ, we have γ(x) 6= tγ.Thus we
an apply Lemma 4 and get P, eqs ′ ⊢ C where

eqs ′ := {x = x′ : x 6= x′, x, x′ ∈ dom γ, γ(x) = γ(x′)} ∪ {x 6= x′ : x, x′ ∈ dom γ, γ(x) 6= γ(x′)}

∪ {∀y. x 6= c(y) : x ∈ dom γ, c non-forbidden synta
ti
 fun
tion symbol}
∪ {x 6= t : x ∈ domγ, t ∈ exterms}. 23

Sin
e γ(x) 6= γ(x′) for x /∈ dom ιm ◦ η or x′ /∈ dom ιm ◦ η (this follows from the fa
t that σM
DY isequality-friendly and ιm ◦ η(x) = message(. . .)), we get eqs = eqs ′.Thus P, eqs ⊢ C. �5.3 Computational soundness of the DY-libraryWe will now use the CoSP framework [BHU09℄ to derive
onditions under whi
h robust SExec-safetyimplies robust
omputational safety. In order to do so, we �rst de�ne a CoSP proto
ol ΠA0 that simul-taneously
aptures the behavior of the symboli
 exe
ution and the one of the
omputational exe
ution.Then,
omputational soundness results in the CoSP framework guarantee that the se
urity of ΠA0 (inter-preted symboli
ally) implies se
urity of ΠA0 (interpreted
omputationally). Hen
e robust SExec-safetyimplies robust
omputational soundness. Together with the fa
t that →-safety implies SExec-safety, weget our �rst
omputational soundness result for RCF.Noti
e that the algorithm des
ribing the symboli
 exe
ution performs only the following operations onCoSP-terms: Applying CoSP-
onstru
tors (this in
ludes non
es) and CoSP-destru
tors, doing equalitytests on terms, and sending and re
eiving terms. Hen
e this intera
tive ma
hine
an be realized as aCoSP proto
ol in the sense of De�nition 6: The state of the ma
hine SExecA0 is used as a node identi�er.However, CoSP-terms (i.e., the images of η) are not en
oded dire
tly into the node identi�er; the nodein whi
h they were
reated (or re
eived) is referen
ed instead. This is due to the fa
t that a CoSPproto
ol allows one to treat CoSP-terms only as bla
k boxes. Note that the
urrent program A willbe en
oded in the node identi�er (as a bitstring). Operations on CoSP-terms
an then be performedby using
onstru
tor and destru
tor nodes, and the input and output of CoSP-terms is handled usinginput/output nodes. Equality tests
an be performed using the equals-destru
tor. Sending (S, E) tothe adversary and re
eiving (sync, j, k) and (step, k) is realized using
ontrol nodes (assuming a suitableen
oding of these values as bitstrings). A
ontrol node that sends (S, E) su
h that (S, E) is not stati
allyequation-σM

DY-safe is
alled a failure node. We
all the resulting CoSP proto
ol ΠA0 .De�nition 22 (E�
iently de
idable RCF expressions) Let A0 be an RCF expression. We
all aformula F a possible assertion of A0 i� there is an assertion F ′ in A0 su
h that F = F ′ϕ for somesubstitution ϕ. Analogously we de�ne possible assumptions.We
all an RCF expression A0 e�
iently de
idable if for any set P of possible assumptions and anypossible assertion C, it
an be de
ided in polynomial-time whether P ⊢ C. ⋄Theorem 1 Assume a DY model M and a
omputational implementation Impl. Assume that Impl is a
omputationally sound implementation of M for a
lass P of CoSP proto
ols (De�nition 11). Let σM
DYbe a DY library for M.Let A0 be an e�
iently de
idable11 RCF expression with M ⊢ A0 and ΠA0 ∈ P.If A0σ

M
DY is robustly →-safe or A0 is robustly -σM

DY-safe, then A0 is robustly
omputationally safeusing Impl.Proof. By Lemma 1, A0 is robustly -σM
DY-safe. By Lemma 5, A0 is robustly SExec-safe. By
on-stru
tion of ΠA0 , we have that A0 is robustly SExec-safe i� the symboli
 CoSP-exe
ution of ΠA0 rea
hesfailure nodes only with negligible probability. Let ℘ be the set of all sequen
es of node identi�ers thatdo not
ontain failure nodes. Then ΠA0 symboli
ally satis�es the CoSP-tra
e property ℘. Sin
e A0 ise�
iently de
idable, it
an be de
ided in polynomial-time whether a node is a failure node. Thus ℘ isan e�
iently de
idable tra
e property. Sin
e Impl is a
omputationally sound implementation of M fora
lass P of CoSP proto
ols, and ΠA0 ∈ P , ΠA0
omputationally satis�es the CoSP-tra
e property ℘.Then, again by
onstru
tion of ΠA0 , we have that A0 is robustly
omputationally safe i� the
ompu-tational CoSP-exe
ution of ΠA0 never rea
hes a failure node. (For this, note that the
omputationalexe
ution is de�ned like the symboli
 exe
ution, ex
ept that it stores/sends bitstrings instead of terms,11A0 is e�
iently de
idable if, at runtime, no assertions o

ur for whi
h it
annot be de
ided in polynomial-time whetherthey are entailed. A pre
ise de�nition is given in the full version.24

and applies the
omputational implementation of the
onstru
tors/destru
tors/non
es instead of the
onstru
tors/destru
tors/non
es themselves. The di�eren
e between the
omputational CoSP-exe
utionand the symboli
 CoSP-exe
ution is the same.) Thus A0 is robustly
omputationally safe with respe
tto Impl. �5.4 En
ryption and signaturesIn the pre
eding se
tion, we derived a generi

omputational soundness result for RCF programs(Theorem 1), parametri
 in the symboli
 model. To apply that result to a spe
i�
 symboli
 model,we need a
omputational soundness result in CoSP for that parti
ular model. In [BHU09℄, su
h a resultis presented for a symboli
 model supporting en
ryption, signatures, and arbitrary strings as payloads.The symboli
 model. We �rst spe
ify the symboli
 model Mes = (C,N,T,D,⊢CoSP):
• Constru
tors and non
es: Let C := {enc/3, ek/1, dk/1, sig/3, vk/1, sk/1, pair/2, string0/1, string1/1,
empty/0, garbageSig/2, garbage/1, garbageEnc/2} and N := NP ∪ NE . Here NP and NE are
ount-ably in�nite sets representing proto
ol and adversary non
es, respe
tively. Intuitively, en
ryption,de
ryption, veri�
ation, and signing keys are represented as ek(r), dk(r), vk(r), sk(r) with a non
e r(the randomness used when generating the keys). enc(ek(r′),m, r) en
rypts m using the en
ryptionkey ek(r′) and randomness r. sig(sk(r′),m, r) is a signature of m using the signing key sk(r′) andrandomness r. The
onstru
tors string0, string1, and empty are used to model arbitrary strings usedas payload in a proto
ol (e.g., a bitstring 010 would be en
oded as string0(string1(string0(empty)))).
garbage, garbageEnc, and garbageSig are
onstru
tors ne
essary to express
ertain invalid terms theadversary may send, these
onstru
tors are not used by the proto
ol.
• Message type: We de�ne T as the set of all terms M mat
hing the following grammar:

M ::= E(ek(n),M, n) | ek(n) | dk(n) |

sig(sk(n),M, n) | vk(n) | sk(n) |

pair(M,M) | S | n |

garbage(n) | garbageEnc(M, n) |

garbageSig(M, n)

S ::= empty | string0(S) | string1(S)where the nonterminal n stands for non
es.
• Destru
tors: D := {dec/2, isenc/1, isek/1, ekof/1, verify/2, issig/1, isvk/1, vkof/2, fst/1, snd/1,
unstring0/1, unstring1/1, equals/2}. The destru
tors isek, isvk, isenc, and issig realize predi
atesto test whether a term is an en
ryption key, veri�
ation key,
iphertext, or signature, respe
tively.
ekof extra
ts the en
ryption key from a
iphertext, vkof extra
ts the veri�
ation key from a sig-nature. dec(dk(r), c) de
rypts the
iphertext c. verify(vk(r), s) veri�es the signature s with respe
tto the veri�
ation key vk(r) and returns the signed message if su

essful. The destru
tors fstand snd are used to destru
t pairs, and the destru
tors unstring0 and unstring1 are used to parsepayload-strings. (Destru
tors ispair and isstring are not ne
essary, they
an be emulated using fst,
unstringi, and equals(·, empty).) The behavior of the destru
tors is given by the following rules;an appli
ation mat
hing none of these rules evaluates to ⊥:

25

dec(dk(t1), enc(ek(t1),m, t2)) = m

isenc(enc(ek(t1), t2, t3)) = enc(ek(t1), t2, t3)

isenc(garbageEnc(t1, t2)) = garbageEnc(t1, t2)

isek(ek(t)) = ek(t)

ekof(enc(ek(t1),m, t2)) = ek(t1)

ekof(garbageEnc(t1, t2)) = t1

verify(vk(t1), sig(sk(t1), t2, t3)) = t2

issig(sig(sk(t1), t2, t3)) = sig(sk(t1), t2, t3)

issig(garbageSig(t1, t2)) = garbageSig(t1, t2)

isvk(vk(t1)) = vk(t1)

vkof(sig(sk(t1), t2, t3)) = vk(t1)

vkof(garbageSig(t1, t2)) = t1

fst(pair(x, y)) = x

snd(pair(x, y)) = y

unstring0(string0(s)) = s

unstring1(string1(s)) = s

equals(t1, t1) = t1

• Dedu
tion relation: ⊢CoSP is the smallest relation su
h that m ∈ S ⇒ S ⊢CoSP m, n ∈ NE ⇒ S ⊢CoSP

n, and su
h that for any
onstru
tor or destru
tor f/n ∈ C ∪ D and for any t1, . . . , tn ∈ T, with
∀i ∈ [1, n].S ⊢CoSP ti and ⊥ 6= eval f(t1, . . . , tn) ∈ T, we have S ⊢CoSP f(t1, . . . , tn).It is easy to see that Mes is a DY model in the sense of De�nition 12.CoSP [BHU09℄ also spe
i�es
onditions a
omputational implementation Impl for Mes should ful�ll.Essentially, these
onditions ensure that the en
ryption s
heme used is IND-CCA se
ure, the signatures
heme is strongly existentially unforgeable, and that
ertain
onventions for tagging the di�erent kindsof bitstrings are observed. We do not reprodu
e these
onditions here but instead refer to [BHU09℄.We will
all these
onditions the �en
-sig-implementation
onditions�.Furthermore, [BHU09℄ imposes
onditions on the CoSP proto
ol. These ensure that all en
ryptionsand signatures are produ
ed using fresh randomness and that se
ret keys are not sent around. A proto
olsatisfying these
onditions is
alled key-safe.De�nition 23 A CoSP proto
ol is key-safe if it satis�es the following
onditions:1. The argument of every ek-, dk-, vk-, and sk-
omputation node and the third argument of every
enc- and sig-
omputation node is an n-
omputation node with n ∈ NP . (Here and in the following,we
all the nodes referen
ed by a proto
ol node its arguments.) We
all these n-
omputation nodesrandomness nodes. Any two randomness nodes on the same path are annotated with di�erentnon
es.2. Every
omputation node that is the argument of an ek-
omputation node or of a dk-
omputationnode on some path p o

urs only as argument to ek- and dk-
omputation nodes on that path p.3. Every
omputation node that is the argument of a vk-
omputation node or of an sk-
omputationnode on some path p o

urs only as argument to vk- and sk-
omputation nodes on that path p.4. Every
omputation node that is the third argument of an enc-
omputation node or of a sig-
omputation node on some path p o

urs exa
tly on
e as an argument in that path p.5. Every dk-
omputation node o

urs only as the �rst argument of a dec-destru
tor node.6. The �rst argument of a dec-destru
tor node is a dk-
omputation node.7. Every sk-
omputation node o

urs only as the �rst argument of a sig-
omputation node.26

8. The �rst argument of a sig-
omputation node is an sk-
omputation node.9. There are no
omputation nodes with the
onstru
tors garbage, garbageEnc, garbageSig, or n ∈ NE.
⋄Assuming that all these
onditions are ful�lled, we get
omputational soundness for en
ryptions andsignatures:Theorem 2 (Computational soundness of en
ryptions and signatures [BHU09℄) If Impl sat-is�es the en
-sig-implementation
onditions, then Impl is a
omputationally sound implementation of

Mes for the
lass of key-safe proto
ols.When
ombining Theorem 2 with Theorem 1, we immediately get the following lemma:Lemma 6 Let Impl be a
omputational implementation satisfying the en
-sig-implementation
onditions.Let A0 be an e�
iently de
idable RCF expression su
h that M ⊢ A0 and ΠA0 is key-safe.If A0σ
Mes

DY is robustly →-safe or A0 is robustly -σMes

DY -safe, then A0 is robustly
omputationally safeusing Impl.This lemma still has the drawba
k that one has to
he
k whether ΠA0 is key-safe. To be ableto simplify the lemma, we introdu
e a library σHighlevel that serves as a wrapper for σMes

DY and thatensures that a program A0 that never dire
tly
alls σMes

DY but only the wrappers from σHighlevel willresult in a key-safe ΠA0 . For example, σHighlevel exports a fun
tion σHighlevel(encrypt) that takes anen
ryption key and a plaintext,
hooses a fresh non
e for randomness, and then invokes σMes

DY (libenc).This ensures that the randomness-argument of σMes

DY (libenc) is always a fresh non
e. Furthermore, thefun
tion σHighlevel(enckeypair) pi
ks a fresh non
e and uses that non
e to generate an en
ryption anda de
ryption key. The de
ryption key is wrapped using a private
onstru
tor DecKey so that it
anonly be used as an argument of σHighlevel(decrypt). This ensures that keys are generated with freshrandomness and that the output of σMes

DY (libdk) will only be used as the se
ond argument to σMes

DY (libdec).12For signatures and signing keys, we pro
eed similarly. �Harmless� fun
tions su
h as pairs are simplyexported by σHighlevel (possibly with modi�ed
alling
onventions for more
onvenient use, in parti
ularfor the fun
tions related to payload strings). Fun
tions that may never be
alled from the proto
ol, su
has σMes

DY (libgarbage) are not exported by σHighlevel .The exa
t de�nition of σHighlevel is given in Figure 6. For in
reased readability, we use F#-syntaxfor the presentation of σHighlevel .The next lemma states that σHighlevel
an be used to enfor
e key-safety.Lemma 7 Let A0 be an RCF expression with Mes ⊢ A0 and fv (A0) ∩ domσMes

DY = ∅ and not
ontainingthe RCF-
onstru
tors DecKey and SigKey .Then ΠA0σHighlevel
is key-safe.Proof sket
h. The thesis follows dire
tly from an inspe
tion of the
ode of σHighlevel . �Finally, we get
omputational soundness for en
ryptions and signatures with respe
t to programsusing the DY library:Theorem 3 (Computational soundness for σMes

DY) Let Impl be a
omputational implementation sat-isfying the en
-sig-implementation
onditions. Let A0 be an e�
iently de
idable RCF expression su
hthat fv (A0) ⊆ σHighlevel , A is p
-free, A does not
ontain the RCF-
onstru
tor DecKey or SigKey , andthe FOL/F-formulae in A do not
ontain forbidden fun
tion symbols.Then, if A0σHighlevelσ
Mes

DY is robustly →-safe, then A0σHighlevel is robustly
omputationally safe using
Impl.12Noti
e that this has the e�e
t that keys may not be
orrupted during the proto
ol exe
ution (no adaptive
orruption).It is, however, possible to model stati
ally
orrupted parties by subsuming them into the adversary and letting him
hoosetheir keys. 27

type bitstring = bool listtype 'a de
key = De
Key of 'a Lib.de
keytype 'a sigkey = SigKey of 'a Lib.sigkeylet valOf x = mat
h x with Some m -> mlet en
rypt (k,m) = valOf (Lib.en
 (k,m,(Lib.non
e())))let sign (SigKey k) m = let n = Lib.non
e() in valOf (Lib.sign(k,m,n))let non
e _ = Lib.non
e ()let en
keypair usage = let r = non
e usage in (valOf (Lib.ek r), De
Key (valOf (Lib.dk r)))let sigkeypair usage = let r = non
e usage in (SigKey (valOf (Lib.sk r)), valOf(Lib.vk r))let de
rypt ((De
Key dk),m) = Lib.de
 (dk,m)let verify vk s = Lib.verify (vk,s)let pair x y = valOf (Lib.pair (x,y))let frst x = Lib.frst xlet s
nd x = Lib.s
nd x(* Instead of dire
tly exporting payloadEmpty, payload0/1, unpayload0/1,we export the following more
onvenient wrappers *)let empty_payload = valOf(Lib.payloadEmpty())let re
 payload str =mat
h str with[℄ -> empty_payload| true::
s -> let p
s = payload
s in valOf (Lib.payload1 p
s)| false::
s -> let p
s = payload
s in valOf (Lib.payload0 p
s)let re
 unpayload msg =if msg = empty_payload then Some [℄else (mat
h Lib.unpayload0 msg withSome m -> (mat
h unpayload m with Some m' -> Some(false::m') | None -> None)| None -> (mat
h Lib.unpayload1 msg withSome m -> (mat
h unpayload m with Some m' -> Some(true::m')| None -> None)| None -> None))let send m = Lib.send mlet re
v () = Lib.re
v () : messagelet ekof x = Lib.ekof xlet isen
 x = Lib.isen
 xlet isek x = Lib.isek xlet issig x = Lib.issig xlet isvk x = Lib.isvk xlet vkof x = Lib.vkof xFigure 6: De�nition of σHighlevel using F# syntax. The domain of σHighlevel
onsists of all fun
tionsde�ned here. 28

Proof. Let A′

0 := A0σHighlevel . Sin
e fv(A0) ⊆ σHighlevel and domσHighlevel ∩ domσMes

DY = ∅,
fv (A0) ∩ domσMes

DY = ∅. Thus by Lemma 7, ΠA′

0
is key-safe. Furthermore, Mes ⊢ A′

0 sin
e
Mes ⊢ σHighlevel(x) for all x ∈ domσHighlevel . Hen
e by Lemma 6, if A′

0σ
Mes

DY is robustly →-safe, then A′

0is robustly
omputationally safe using Impl. �6 The sealing-based libraryWe �rst review the RCF sealing-based library and then show that programs that are robustly safe whenlinked to the sealing-based library are also robustly safe when linked to the Dolev-Yao library des
ribedin the previous se
tions.6.1 Dynami
 SealingThe notion of dynami
 sealing was initially introdu
ed by Morris [Mor73℄ as a prote
tion me
hanismfor programs. Later, Sumii and Pier
e [SP03, SP07℄ studied the semanti
s of dynami
 sealing within a
λ-
al
ulus, observing a
lose
orresponden
e with symmetri
-key
ryptographi
 primitives.In RCF [BBF+08℄ seals are en
oded using pairs, fun
tions, referen
es13, and lists. A seal is a pair ofa sealing fun
tion and an unsealing fun
tion sharing a se
ret referen
e to a list. The sealing fun
tiontakes as input a term M and
he
ks whether the pair (M,N) is already stored in the list for some N . Ifit is not, then the sealing fun
tion returns a fresh value N , after adding the pair (M,N) to the se
ret list.Otherwise, the sealing fun
tion returns the value N that was previously stored in the list. The unsealingfun
tion takes as input a value N , s
ans the list in sear
h of a pair (M,N), and returns M . Only thesealing fun
tion and the unsealing fun
tion
an a

ess this se
ret list. Ea
h key-pair is (symboli
ally)implemented by means of a seal. In the
ase of publi
-key
ryptography, the sealing fun
tion is used foren
rypting (resp. signing), the unsealing fun
tion is used for de
rypting (resp. verifying), and the freshvalue N represents the en
ryption of (resp. signature on) M .14From a
omputational point of view, the
on
eptual di�eren
e between the sealing-based library andthe Dolev-Yao library is that the former relies on a global state (i.e., referen
es to lists of pairs (M,N)).The full
ode of the sealing-based library, in the following denoted as σS, is reported in Figure 7 andFigure 8. The following proposition re
alls some important fa
ts about σS.Proposition 1 (Sealing-based Library) The sealing-based library σS satis�es the following
ondi-tions:
• The range of σS only
ontains lambda-abstra
tions.
• domσMes

DY = domσS

• σS(nonce) = fun _→ νa.message Cι[a].
• σS(send) = (fun x → (match x with message x′ then achan !x else stuck)). Here stuck is a purediverging RCF expression.
• σS(recv) = fun _→ achan?

• fv(range(σS)) = ∅ and fn(range(σS)) = achan.
• σS is equality-friendly.
• The
onstru
tors N,EK, . . . used in the library are private.13As shown below, referen
es are implemented via se
ret
hannels.14The main advantage of the sealing-based library is polymorphism: the type of a seal is ∀α.(α → Un)∗ (Un → α), whi
hstates that the sealing fun
tion takes as input a message of an arbitrary type α and returns a message of type Un (the typeof messages possibly known to the atta
ker) and,
onversely, the unsealing fun
tion takes as input a message of type Unand returns a message of type α. Dolev-Yao libraries are not polymorphi
 but, as shown in [BFG10℄, they
an be typedwith re�nement types that are expressive enough to verify a large number of proto
ol implementations.29

// ********** Copied from list.fs from F7 pa
kage:let re
 mem x u = mat
h u with| y::v -> if x = y then true else mem x v| _ -> falselet re
 find p m = mat
h m with| x::xs -> if p x then x else find p xs| [℄ -> failwith "not found"let re
 first f xs = mat
h xs with| x::xs -> (let r = f x in mat
h r withSome(y) -> r| None -> first f xs)| [℄ -> Nonelet left z (x,y) = if z = x then Some y else Nonelet right z (x,y) = if z = y then Some x else Nonelet re
 map f xs = mat
h xs with| x::xs -> f x :: map f xs| [℄ -> [℄// ************* End: list.fslet magi
 x = mat
h x with Message x -> ()// auxiliary fun
tions for helping the F7-type
he
kinglet
ast_en
 x = xlet
ast_sig x = xlet
ast_en
key x = xlet
ast_verkey x = x// Sealinglet deref: 'a ref -> 'a = fun x -> !xlet seal = fun s m ->let state = deref s in mat
h first (left m) state with| Some(a) -> a| None ->let a = ref () ins := ((m,a)::state); alet unseal = fun s a ->let state = deref s inmat
h first (right a) state with Some t' -> t'let mkSeal() =let s = ref[℄ in(seal s, unseal s)Figure 7: De�nition of the SB-library σS. The exported fun
tions are (i.e., domσS) are re
v, send,non
e, pair, frst, s
nd, ek, dk, ekof, isek, isen
, en
, de
, sign, verify, sk, vk,issig, isvk, vkof, payloadEmpty, payload0, payload1, unpayload0, unpayload1, garbage,garbageEn
, garbageSig. Continued in Figure 8 30

let non
e () = magi
; Non
e (mkSeal ())let re
 re
v () = Pi.re
v Pi.a
hanlet send m = Pi.send Pi.a
han mlet pair p = magi
; mat
h p with (x,y) -> Some (Pair(x,y))let frst pair = magi
; mat
h pair with (Pair (x,y)) -> Some x | _ -> Nonelet s
nd pair = magi
; mat
h pair with (Pair (x,y)) -> Some y | _ -> Nonelet ek args = magi
; mat
h args with Non
e (s,u) -> Some (EK s) | _ -> Nonelet dk args = magi
; mat
h args with Non
e (s,u) -> Some (DK (s,u)) | _ -> Nonelet ekof msg = magi
; mat
h
ast_en
 msg with En
(k,e) -> Some k| GarbageEn
(k,x) -> Some k | _ -> Nonelet isek msg = magi
; mat
h
ast_en
key msg with EK k -> Some msg | _ -> Nonelet isen
 msg = magi
; mat
h
ast_en
 msg with En
(x,y) -> Some msg| GarbageEn
(x,y) -> Some msg | _ -> Nonelet en
 args = magi
; mat
h args with(EK key,msg,Non
e r) -> Some (En
 (EK key, key (msg,Non
e r))) | _ -> Nonelet de
 msg = magi
; mat
h msg with (DK (s,u), En
(k,
iph)) ->if s=k then let msgrand = u
iph in (Some (fst msgrand)) else None| _ -> Nonelet sign args = magi
; mat
h args with(SK (sk,vk),msg, Non
e r) -> Some (Sign (VK vk, sk (msg,Non
e r)))| _ -> Nonelet verify args = magi
; mat
h args with((VK key),(Sign(vk,sign))) -> if key=vk then let msgrand = key sign in Some (fst msgrand) else None| _ -> Nonelet sk args = magi
; mat
h args with (Non
e (s,u)) -> Some (SK (s,u)) | _ -> Nonelet vk args = magi
; mat
h args with (Non
e (s,u)) -> Some (VK u) | _ -> Nonelet issig msg = magi
; mat
h
ast_sig msg with Sign(x,y) -> Some msg| GarbageSig(x,y) -> Some msg | _ -> Nonelet isvk msg = magi
; mat
h
ast_verkey msg with VK k -> Some msg | _ -> Nonelet vkof msg = magi
; mat
h
ast_sig msg with Sign(k,e) -> Some k| GarbageSig(k,e) -> Some k | _ -> Nonelet payloadEmpty () = magi
; Some (Payload [℄)let payload0' s = Some (Payload (false::s))let payload0 msg = magi
; mat
h msg with Payload s -> payload0' s | _ -> Nonelet payload1' s = Some (Payload (true::s))let payload1 msg = magi
; mat
h msg with Payload s -> payload1' s | _ -> Nonelet unpayload0 m = magi
; mat
h m with Payload (false::m') -> Some (Payload m') | _ -> Nonelet unpayload1 m = magi
; mat
h m with Payload (true::m') -> Some (Payload m') | _ -> Nonelet garbage N = magi
; mat
h N with Non
e n -> Some (Garbage N) | _ -> Nonelet garbageEn
 args = magi
; mat
h args with (EK k, Non
e n) -> Some (GarbageEn
 (EK k, Non
e n))| _ -> Nonelet garbageSig args = magi
; mat
h args with (VK k, Non
e n) -> Some (GarbageSig (fst args, snd args))| _ -> NoneFigure 8: De�nition of σS,
ontinued.31

6.2 Mapping DY-terms into SB-termsIn the next de�nition, we introdu
e some useful abbreviations and show the
ode implementing referen
esand seals15 A referen
e is a pair
omposed of two fun
tions that read from and write to a private
hannel,respe
tively. Sin
e ea
h
ommuni
ation
onsumes one input and one output, the reading fun
tion returnsthe
ontent of the referen
e after outputting it again on the private
hannel and,
onversely, the writingfun
tion reads and dis
ards the
urrent
ontent of the referen
e before updating it.De�nition 24 (Referen
es and Seals) Referen
es are implemented using se
ret
hannels as follows:
Cref

def
=

(

(λx.let y = �? in �!y; y), (λx.�?;�!x)
)

ref
def
= λx.νa.(a!x � Cref [a])

!r
def
= let (g, s) = r in g()

r := v
def
= let (g, s) = r in s vSeals are implemented using referen
es and lists as follows:

C′

seal

def
= λm.let state =!� in (match first (left m) state with some x then x else

let x = ref () in (� := ((m,x) :: state);x))

C′

unseal

def
= λx.let state =!� in (match first (right x) state with some y then y else stuck)

Cseal
def
= Cseal′ [Cref [�]]

Cunseal
def
= Cunseal′ [Cref [�]]where stuck is a pure diverging RCF expression, first (left m) state returns the �rst pair in the list

state with m as �rst
omponent, and first (right a) state returns the �rst pair in the list state with
a as se
ond
omponent. The library fun
tions seal and unseal are de�ned in terms of these
ontexts:
seal

def
= λx.Cseal [x] and unseal

def
= λx.Cunseal [x]. ⋄In the following, we will
all DY-terms the RCF terms representing
ryptographi
 messages in the DY-library and SB-terms the RCF terms representing
ryptographi
 messages in the sealing-based library.In order to show that ea
h exe
ution of a program with the DY-library is mat
hed by an exe
utionwith the sealing-based library, we need to map DY-terms to SB-terms. We
ould de�ne this mappingdire
tly, but this would make our result dependent on the spe
i�
 implementation of the DY library. Inorder to make our result general, we de
ided instead to de�ne a mapping from CoSP terms to SB-terms,whi
h naturally indu
es a mapping from DY-terms to SB-terms via the embedding ι of CoSP terms intoDY-terms (
f. Se
tion 4.1).We re
all that the sealing-based library depends on a global hidden state, whi
h tra
ks the
rypto-graphi
 operations performed at run-time. For this reason, the mapping from CoSP terms to SB-termshas to depend on su
h a state.A state φ is a pair of fun
tions, denoted as (φS , φL). The former is a partial inje
tive fun
tion fromCoSP terms to RCF names, the latter is a partial inje
tive fun
tion from CoSP terms to
losed RCFvalues. Intuitively, ea
h CoSP term (i.e., non
es, keys,
iphertexts, signatures, et
.) is implemented bymeans of a distin
t seal and fun
tion φS is used to map CoSP terms to the name of the
hannel of the
orresponding seal16. For instan
e, if a
iphertext M is implemented by means of seal a, then φS(M) = a15Our implementation of referen
es di�ers from the one proposed in [BBF+08℄, sin
e the latter makes it possible to storemultiple messages, whi
h are then retrieved non-deterministi
ally, and prevents one from reading several times from thesame referen
e.16Te
hni
ally, the domain of φS
onsists of
iphertexts, signatures, and the randomness of keys and non
es. Thisasymmetry is due to the possible o

urren
e of di�erent keys with the same randomness, whi
h is not expli
itly preventedin CoSP. 32

or if a key ek(k) is implemented by means of seal b, then φS(k) = b. The fun
tion φL is used to mapea
h key to the se
ret list of pairs of the form ((M,R), N) stored in the
orresponding referen
e, where
M is the en
rypted message, R is the randomness, and N is a fresh value representing the
iphertext.Storing the randomness along with the en
rypted message allows for modelling probabilisti
 en
ryptionsand probabilisti
 signatures. For instan
e, if M1 and M2 have been en
rypted with randomness R1 and
R2, respe
tively, and key k, then φL(k) = [((M1, R1), N1), ((M2, R2), N2)], where N1 and N2 are thefresh values
orresponding to the en
ryption of M1 and M2, respe
tively. In the following, we sometimeswrite MφS for φS(M) and MφL for φL(M).De�nition 25 (CoSP-terms to SB-terms) Given a state φ, we de�ne v-mapφ re
ursively as fol-lows: v-mapφ(n) = N(Cseal [n

φS], Cunseal [n
φS]) (n ∈ N)v-mapφ(ek(r)) = EK(Cseal [ek(r

φS)])v-mapφ(dk(r)) = DK(Cseal [r
φS], Cunseal [r

φS])v-mapφ(vk(r)) = VK(Cunseal [r
φS])v-mapφ(sk(r)) = DK(Cseal [r

φS], Cunseal [r
φS])v-mapφ(enc(ek(k),m, r)) = Enc(v-mapφ(ek(k)), Cref [enc(ek(k),m, r)φS])v-mapφ(sign(sk(k),m, r)) = Sign(v-mapφ(vk(k)), Cref [sign(sk(k),m, r)φS])v-mapφ(pair(m1,m2)) = Pair(v-mapφ(m1), v-mapφ(m2))v-mapφ(garbage(r)) = Garbage(v-mapφ(r))v-mapφ(garbageenc(e, r)) = GarbageE(v-mapφ(e), v-mapφ(r))v-mapφ(garbagesign(s, r)) = GarbageSig(v-mapφ(s), v-mapφ(r))and v-mapφ(m) := Payload(f(m)) if m is a payload term, where f(payloadEmpty) = [], f(payload0(m′)) = false ::

f(m′) and f(payload1(m′)) = true :: f(m′).
⋄In the following, we fo
us on the DY library σMes

DY for the model MES .The following de�nition introdu
es the notion of expression and state validity. Given an expression
A, we let CoSPterms(A) denote {ι−1(M) : message M is a subterm of A}.De�nition 26 (Valid expressions and states) An RCF expression A is valid if:
• A is a stru
ture and ∄a,A′ su
h that A ≡ νa.A′.
• fv(A) ⊆ fv(σMes

DY).
• For every subterm message A′ of A, we have that A′ ∈ ι(T).
• A is mp
-free.Given a CoSP non
e k and a state φ, we say that L is k-valid if L is a list of pairs of RCF valuesand all its entries are of the form (N,Cref [enc(ek(k),M, r)φS]) or (N,Cref [sign(sk(k),M, r)φS]) with N =

(v-mapφ(M), v-mapφ(r)).A state φ is valid for an RCF expression A if for all CoSP non
es k, r, and all CoSP terms M thefollowing holds:
• domφS = domφL.
• If k ∈ domφL, then kφL is a k-valid list. (Noti
e that this does not
onstrain MφL for CoSP terms
M other than non
es.)
• If k o

urs in CoSPterms(A), then k ∈ domφS.33

• enc(ek(k),M, r) ∈ domφL i� k ∈ domφL and ∃N.(N,Cref [a]) ∈ kφL with a := enc(ek(k),M, r)φS(and analogously for signatures).
• If enc(ek(k),M, r) is a subterm of CoSPterms(A), then enc(ek(k),M, r) ∈ domφS and
∃N.(N,Cref [enc(ek(k),M, r)φS]) ∈ kφL (and analogously for signatures).

⋄We
an �nally formalize the mapping from a DY-expression to the
orresponding SB-expression,whi
h is obtained by repla
ing ea
h DY-term with the
orresponding SB-term and by adding the globalstate to the SB-expression. The state
onsists of the lists of en
rypted values, ea
h of them output onthe private
hannel asso
iated to the seal of the
orresponding en
ryption key.De�nition 27 Given a valid expression A and a state φ valid for A, let e-mapφ(A) be the result ofrepla
ing every message M o

urring in A by v-mapφ(ι−1(M)). Let s-mapφ(A) := ∏

M∈domφS
MφS !MφL �e-mapφ(A). (Or s-mapφ(A) := ⊥ if e-mapφ(A) = ⊥). ⋄6.3 Preservation of safetyIn this se
tion, we show that robust safety with respe
t to σS implies robust -σMes

DY -safety. This isa
hieved by proving the existen
e of a simulation between exe
utions with respe
t to the two libraries.Lemma 8 (Preservation of Stru
tural Equivalen
e) Let A be valid and let φ be a valid state for
A. If A ≡ A′, then s-mapφ(A) ≡ s-mapφ(A′).Proof. The proof pro
eeds by indu
tion on the derivation of A ≡ A′. We �rst
onsider the base
ases:
• Stru
t Re�: straightforward.
• Stru
t Fork () : A = () � B ≡ B = A′.We have s-mapφ(() � B) =

∏

M∈domφS
MφS !MφL � e-mapφ(() � B) =

∏

M∈domφS
MφS !MφL � () �e-mapφ(B). By Stru
t Fork Asso
, Stru
t Fork Comm, and Stru
t Trans we get s-mapφ(() � B) ≡

() �
∏

M∈domφS
MφS !MφL � e-mapφ(B). By Stru
t Fork () and Stru
t Trans, we get s-mapφ(() �

B) ≡
∏

M∈domφS
MφS !MφL � e-mapφ(B) = s-mapφ(A′).

• Stru
t Msg (): A = a!M ≡ a!M � () = A′.We have s-mapφ(a!M) =
∏

M∈domφS
MφS !MφL � e-mapφ(a!M). By Stru
t Msg () and Stru
t Fork2, we get s-mapφ(a!M) ≡

∏

M∈domφS
MφS !MφL � e-mapφ(a!M) � () = s-mapφ(A′).

• Stru
t Assume : similar to the previous item.
• Stru
t Res Fork 1: A = B′ � νb.B ≡ νb.(B′ � B) = A′ if b /∈ fn(B′).We have s-mapφ(B′ � νb.B) =

∏

M∈domφS
MφS !MφL � e-mapφ(B′ � νb.B) =

∏

M∈domφS
MφS !MφL �e-mapφ(B′) � νb.e-mapφ(B).By Stru
t Fork 2, Stru
t Res Fork 1, and Stru
t Trans, we get s-mapφ(B′ � νb.B) ≡

∏

M∈domφS
MφS !MφL � νb.(e-mapφ(B′) � e-mapφ(B)) = s-mapφ(A′)

• The remaining base
ases follow similarly to the previous item.We now dis
uss the indu
tion step:
• Stru
t Res: A = νb.B ≡ νb.B′ = A′ by B ≡ B′.By indu
tion hypothesis, s-mapφ(B) ≡ s-mapφ(B′). By Stru
t Res, we get s-mapφ(A) =
νb.s-mapφ(B) ≡ νb.s-mapφ(B′) = s-mapφ(A′).34

• The remaining indu
tion
ases follow by a similar argument.
�Lemma 9 Let A be an expression su
h that A B and let φ be a valid state for A. Then thereexist valid expressions A′, B′, a state φ′ valid for B, lists of names a, b, b′ ⊇ b su
h that achan /∈ a, b′,

A ≡ νa.A′, B ≡ νb.B′, and νa.s-mapφ(A′)σS →
∗ νb′.s-mapφ′(B′)σS.Proof. The proof pro
eeds by indu
tion on the derivation of A A′:

• send : A = send M achan !M = B and s-mapφ(A)σS = · · · � σS(send) e-mapφ(M) → · · · �

achan !e-mapφ(M) = s-mapφ(B). Thus the lemma holds with φ′ := φ, A′ := A, B′ := B, a, b, b′ :=
∅.
• re
v : A = recv M achan? = B and s-mapφ(A)σS = · · · � σS(recv) e-mapφ(M)→ · · · � achan? =s-mapφ(B). Thus the lemma holds with φ′ := φ, A′ := A, B′ := B, a, b, b′ := ∅.
• non
e: A = nonce M νa.message Cι[a] = B.We
hoose a := ∅, A′ = A, B′ = message Cι[a], b := a. Noti
e that A ≡ νa.A′ and νb.B′ ≡ B by(Stru
t Re�).By De�nition 27, we know that there exists M ′ and a su
h that s-mapφ(nonce M)σS =
∏

M∈domφS
MφS !MφL � σS(nonce)M

′ →∗ νa.
∏

M∈domφS
MφS !MφL � (a![] � N(Cseal [a], Cunseal [a])).Noti
e that we applied the stru
tural equivalen
e relation to move the restri
tion on top of thetarget expression.We set φ′

S := φS [a 7→ a] , φ′

L := φL[a 7→ []] , b′ = a. Noti
e that s-mapφ′(B′)σS =
∏

M∈domφ′

S

Mφ′

S !Mφ′

L � (N(Cseal [a], Cunseal [a])).
• en
 : A = enc(message ι(M1),message ι(M2),message ι(M3)) B, where B :=
some message ι(enc(M1,M2,M3)) or B := none. (In all other
ases, en
 would be stu
k.)We
hoose a = ∅ , A′ = A , B′ = B , and b = ∅ .If M1 is not an en
ryption key or M3 is not a non
e then A none; in this
ase s-mapφ(A)σS →∗

none.Hen
e assume M1 = ek(k) and M3 = r for non
es k, r. Then A some message ι(enc(ek(k),M2, r)).Let t := (v-mapφ(M2), v-mapφ(r)).Case 1 �(t, Cref [a]) ∈ kφL with a := enc(ek(k),M2, r)
φS �. We set φ′ := φ. By an inspe
tion ofDe�nition 26, we
an easily see that φ′ is valid for B.Noti
e that s-mapφ(A)σS =

∏

M∈domφS
MφS !MφL � σS(enc)(EK(Cseal [k

φS]), v-mapφ(M2), v-mapφ(r)).Sin
e kφL = [. . . , (t, Cref [a]), . . .], the seal fun
tion will retrieve Cref [a]. So s-mapφ(A) →∗

some
∏

M∈domφS
MφS !MφL � Enc(v-mapφ(ek(k)), Cref [a]) = s-mapφ(B). We �nally gets-mapφ(A)σS →∗ s-mapφ(B)σS by observing that s-mapφ(A) and s-mapφ(B) are
losed.Case 2: �∄a.(t, Cref [a]) ∈ kφL�. Noti
e that s-mapφ(A)σS =

∏

M∈domφS
MφS !MφL �

σS(enc)(EK(Cseal [k
φS]), v-mapφ(M2), v-mapφ(r)). Sin
e kφL does not
ontain [. . . , (t, . . .), . . .], theseal fun
tion will append (t, Cref [a]) for some fresh restri
ted name a and add a!() to the state andwill redu
e to some Enc(v-mapφ(ek(k)), Cref [a]).Let b′ := a , φ′

S = φS [enc(ek(k),M2, r) 7→ a] , φ′

L = φL[k 7→ kL :: (t, Cref [a]), enc(ek(k),M2, r) 7→

()]. We have that φ′ is valid for B. Then s-mapφ′(B′)σS =
∏

M∈domφ′

S

Mφ′

S !Mφ′

L �

some Enc(v-mapφ′(ek(k)), Cref [a]). Thus s-mapφ(A)σS →∗ νa.s-mapφ′(B′)σS.35

• de
: A = dec(message ι(M1),message ι(M2)) B, where B := some message ι(M) or B := none.(In all other
ases, de
 would be stu
k.)We
hoose a := ∅ , A′ := A′ , B′ = B , b := ∅. A = dec(message ι(M1),message ι(M2)).If M1 is not a de
ryption key and M2 is not an en
ryption with the
orresponding en
ryption key,then A none and s-mapφ(A)σS →∗ none and, by Stru
t Res, νa.s-mapφ(A)σS →∗ νa.none for all
a, as desired.Hen
e assume M1 = dk(k) and M2 = enc(ek(k),M, r) for non
es k, r and a CoSP term M.Then A some message ι(M). Sin
e φ is valid, kφL = [. . . , (t, Cref [M

φS

2]), . . .] with t :=
(v-mapφ(M), v-mapφ(r)).By the de�nition of the de
ryption fun
tion of the sealing-based library,we have that s-mapφ(A)σS = s-mapφ(A)σS =

∏

M∈domφS
MφS !MφL �

σS(dec)(DK(Cseal [k
φS], Cunseal [k

φS]),Enc(EK(Cseal [k
φS]), Cref [M

φS

2])) →∗ s-mapφ(B)σS =
∏

M∈domφS
MφS !MφL � some v-mapφ(M) = s-mapφ(some message ι(M))σS.

• sign: Analogous to en
.
• verify : Analogous to de
.
• ek : Straightforward, with A = ek message ι(r) , B = some message ι(ek(r)) , a := ∅ , b := ∅ ,
b′ = ∅. (If the argument of ek is not of the form message ι(r), then B := none.)
• dk : Analogous to ek.
• isen
: Straightforward, with A = isenc(message ι(M)) , B = some message ι(M) , a := ∅ , b := ∅, b′ = ∅. (If the argument of isen
 is not of the form message E(ek(ι(M1))), ι(M2), ι(M3)) or
messageGarbageE(ι(M1), ι(M2)), then B := none.)
• ekof : Analogous to isen
.
• isek : Analogous to isen
.
• sk: Analogous to ek.
• vk : Analogous to ek.
• issig : Analogous to isen
.
• isvk : Analogous to isen
.
• vkof : Analogous to isen
.
• pair : Straightforward, with A = pair (message ι(M1),message ι(M2)) , B =
some message ι(pair(ι(M1), ι(M2))) , a := ∅ , b := ∅ , b′ = ∅.
• frst : A = frst(message pair(ι(M1), ι(M2))) , B = some message ι(M1) , a := ∅ , b := ∅ , b′ = ∅.
• s
nd : Similar to frst.
• payloadEmpty : A = payloadEmpty () , B = some message PayloadEmpty , a := ∅ , b := ∅ , b′ = ∅.
• payload0 : Similar to pair.
• payload1 : Similar to pair.
• unpayload0 : Similar to frst.
• unpayload1 : Similar to frst. 36

• Red Fun: Straightforward, by an inspe
tion of the redu
tion rule.
• Red Split: Straightforward, by an inspe
tion of the redu
tion rule.
• Red Mat
h: Straightforward, by observing that h 6= message.
• Red Eq: A = (M = N) true | false.We
hoose a := ∅ , A′ := A , B′ = B , b := ∅.If MσMes

DY = NσMes

DY , A true, otherwise A false. By de�nition, s-mapφ(A)σS =
∏

M∈domφS
MφS !MφL � (e-mapφ(M)σS = e-mapφ(N)σS), sin
e e-mapφ(A)σS is equal to

(e-mapφ(M)σS = e-mapφ(N)σS). Therefore s-mapφ(A)σS
∏

M∈domφS
MφS !MφL � true i�e-mapφ(M)σS = e-mapφ(N)σS. Thus all we need to show is that MσMes

DY = NσMes

DY i�e-mapφ(M)σS = e-mapφ(N)σS.Assume that this does not hold. Then there are subterms M ′, N ′ of M and N (at the sameposition), su
h that M ′σMes

DY = N ′σMes

DY not-i� e-mapφ(M ′)σS = e-mapφ(N ′)σS and su
h that oneof M ′, N ′ is a variable in domσS = domσMes

DY or of the form message M ′′. Wlog, we assume that
M ′ has this property. Furthermore, N ′ 6= M ′.Case 1 �M ′ ∈ domσS�: Sin
e A is valid, N ′ is mp
-free. Then, sin
e σMes

DY is equality-friendly,
M ′σMes

DY = σMes

DY (M ′) 6= N ′σMes

DY . range v-mapφ does not
ontain match . . . with message . . . ,so e-mapφ(N ′) does not
ontain match . . . with message Furthermore e-mapφ(M ′) = M ′.Sin
e σS is equality-friendly, e-mapφ(M ′)σS = σS(M
′) 6= e-mapφ(N ′)σS. Thus M ′σMes

DY = N ′σMes

DYi� e-mapφ(M ′)σS = e-mapφ(N ′)σS.Case 2 �M ′ = message M ′′ and N ′ = message N ′′�: Sin
e A is valid, M ′′, N ′′ ∈ range ι, hen
ethey are
losed. Thus M ′σMes

DY = M ′ 6= N ′ = N ′σMes

DY . And e-mapφ(M ′) = v-mapφ(ι−1(M ′)) 6=e-mapφ(N ′) = v-mapφ(ι−1(N ′)) sin
e ι and v-mapφ are inje
tive. Thus M ′σMes

DY = N ′σMes

DY i�e-mapφ(M ′)σS = e-mapφ(N ′)σS.Case 3 �M ′ = message M ′′ and N ′ is not of the form message N ′′�: Then M ′′ ∈ range ι and M ′ isa
losed value.If N ′ is a variable, M ′σMes

DY = M ′ 6= σMes

DY (N ′) be
ause σMes

DY only
ontains lambda-expressions (thisfollows from the operational spe
i�
ation). If N ′ is not a variable, then N ′σMes

DY is not of the form
message . . . , hen
e M ′σMes

DY = M ′ 6= N ′σMes

DY .If N ′ is a variable, e-mapφ(M ′)σS = v-mapφ(ι−1(M ′)) 6= σS(N
′), sin
e σS only
ontains lambda-expressions and range v-map does not
ontain lambda-expressions, and thus e-mapφ(M ′)σS 6=e-mapφ(N ′)σS. If N ′ is not a variable, then the top-most synta
ti

onstru
t of e-mapφ(N ′)σSis not an appli
ation of message. Furthermore, sin
e all
onstru
tors used in v-map are assumedto be en
oded as
onstru
tor-
hains starting with message, e-mapφ(M ′)σS = v-mapφ(ι−1(M ′)) hasa message
onstru
tor on top-level, and thus e-mapφ(M ′)σS 6= e-mapφ(N ′)σS. Thus M ′σMes

DY =

N ′σMes

DY i� e-mapφ(M ′)σS = e-mapφ(N ′)σS.
• Red Comm: Straightforward, by an inspe
tion of the redu
tion rule.
• Red Assert: Straightforward, by an inspe
tion of the redu
tion rule.
• Red Let Val: Straightforward, by an inspe
tion of the redu
tion rule.
• Red Let: We have A = let x = C in D let x = C′ in D = B by C C′.By indu
tion hypothesis, we know that there exist valid RCF expressions C∗, C

′

∗
, a state φ′valid for C′, lists of names c

∗
, c′

∗
, c′ ⊇ c′

∗
su
h that C ≡ νc

∗
.C∗ and νc′

∗
.C′

∗
≡ C′ and

νc
∗
.s-mapφ(C∗)σS = νc

∗
.
∏

M∈domφS
MφS !MφL � e-mapφ(C∗)σS →∗ νc′.

∏

M∈domφ′

S

Mφ′

S !Mφ′

L �e-mapφ′(C′

∗
)σS = νc′.s-mapφ′(C′

∗
)σS. 37

By Red Let, we have let x = νc
∗
.
∏

M∈domφS
MφS !MφL � e-mapφ(C∗)σS in e-mapφ(D)σS →∗ let x =

νc′.
∏

M∈domφ′

S

Mφ′

S !Mφ′

L � e-mapφ′(C′

∗
)σS in e-mapφ(D)σS.By Red Stru
t, Stru
t Fork Let, and Stru
t Res Let, we get νc

∗
.let x =

∏

M∈domφS
MφS !MφL � e-mapφ(C)σS in e-mapφ(D)σS →∗ νc′.

∏

M∈domφ′

S

Mφ′

S !Mφ′

L � let x =e-mapφ′(C′

∗
)σS in e-mapφ(D)σS.The proof
on
ludes by setting a := c

∗
, b := c′

∗
, b′ := c′ , A′ := let x = C∗ in D , and

B′ := let x = C′

∗
in D.

• Red Res: We have A = νa.A′ νa.B′ = B by A′ B′.By indu
tion hypothesis, we know that there exist valid expressions A′′, B′′, a state φ′ valid for
B′, lists of names a′, b′

∗
, b′′

∗
⊇ b′

∗
su
h that A′ ≡ νa′.A′′, νb′

∗
.B′′ ≡ B′, and νa′.s-mapφ(A′′)σS →∗

νb′′
∗
.s-mapφ′(B′′)σS.By Red Res, we have νa, a′.s-mapφ(A′′)σS →∗ νa, b′′

∗
.s-mapφ(B′′)σS. The proof
on
ludes by setting

a := a, a′ , b := a, b′
∗
, b′ := a, b′′

∗
, A′ := A′′ , and B′ := B′′.

• Red Fork 1: We have A = C � D C′ � D = B by C C′.By indu
tion hypothesis, we know that there exist valid expressions C∗, C
′

∗
, a state φ′ valid for

C′, lists of names c
∗
, c′

∗
, c′ ⊇ c′

∗
su
h that C ≡ νc

∗
.C∗, νc′∗.C′

∗
≡ C′, and νc

∗
.s-mapφ(C∗)σS →∗

νc′.s-mapφ′(C′

∗
)σS.By Red Fork 1, we have νc

∗
.
∏

M∈domφS
MφS !MφL � e-mapφ(C∗)σS � e-mapφ(D)σS →∗

νc′.
∏

M∈domφ′

S

Mφ′

S !Mφ′

L � e-mapφ′(C′

∗
)σS � e-mapφ(D)σS.The proof
on
ludes by setting a := c∗ , b := c′

∗
, b′ := c′ , A′ := C∗ � D , and B′ := C′

∗
� D.

• Red Fork 2: Similar to Red Fork 1.
• Red Stru
t: We have A B by A ≡ A′, A′ B′, and B′ ≡ B.By indu
tion hypothesis, we know that there exist valid expressions A′′, B′′, a state φ′ valid for
B′, lists of names a′, b′, b′′ ⊇ b′ su
h that A′ ≡ νa′.A′′, B′ ≡ νb′.B′′, and νa′.s-mapφ(A′′)σS →∗

νb′′.s-mapφ′(B′′)σS.By Stru
t Trans, B ≡ νb′.B′′. This
on
ludes the proof, sin
e by Stru
t Trans we get A ≡ νa′.A′′.
�Lemma 10 (Restri
tions and Heating) Forall a,A,B,C su
h that C[νa.A] ≡ B, there exists B′, C′su
h that B = C′[νa.B′] and C[A] ≡ C′[B′].Proof. The proof is by straightforward indu
tion on the derivation of C[νa.A] ≡ B. �Lemma 11 Let A be an expression su
h that A ∗ B. Assume that A is p
-free and fv(A) ⊆ domσMes

DY .Then there exists a valid expression B′, a state φ valid for B′, lists of names b, b′ ⊇ b su
h that
achan /∈ a, b′, νb.B′ ≡ B, and AσS →∗ νb′.s-mapφ(B′)σS.Noti
e that the SB-exe
ution introdu
es more restri
tions than the DY-exe
ution. The reason isthat ea
h SB-
iphertext is represented by a fresh value, whi
h is implemented by a seal. Ea
h of theseseals introdu
es a restri
tion that does not have a
ounterpart in the DY-exe
ution, where
iphertextsare represented by applying a private
onstru
tor to the en
ryption key, the en
rypted value, and therandomness.Proof. The proof is by indu
tion on the length of the derivation of A ∗ B. We �rst show thebase
ase A = B. Let B′ be a stru
ture and b be a list of names su
h that A ≡ νb.B′ and su
h that38

∄b′′, B′′.(B′ ≡ νb′′.B′′). Let b′ := b and φ := ∅. Sin
e A is mp
-free and fv (A) ⊆ dom(σMes

DY), the sameholds for B′. Thus B′ is valid by De�nition 26. Sin
e B′ is mp
-free and φ = ∅, we have that φ is validfor B′ by De�nition 26 and s-mapφ(B′) = B′ by De�nition 27. Hen
e AσS ≡ νb.B′σS = νb′.B′σS =
νb.s-mapφ(B′)σS, so AσS →∗ νb.s-mapφ(B′)σS.For the indu
tion step, let us suppose that A ∗ B C. By indu
tion hypothesis, we know thatthere exist a valid expression B′, a state φ valid for B′, lists of names b and b′ ⊇ b su
h that νb.B′ ≡ B,and AσS →∗ νb′.s-mapφ(B′)σS.By Lemma 9, we know that there exist valid expressions B′

∗
, C′, a state φ′ valid for C, lists of names

b
∗
, c, c′ ⊇ c su
h that B ≡ νb

∗
.B′

∗
, νc.C′ ≡ C, and νb

∗
.s-mapφ(B′

∗
)σS →∗ νc′.s-mapφ′(C′)σS.By repeated appli
ation of Lemma 10 and by observing that heating does not
an
el restri
tions, itis easy to see that b is a permutation of b

∗
and B′ ≡ B′

∗
.By Lemma 8, s-mapφ(B′) ≡ s-mapφ(B′

∗
). By Stru
t Res, we get νb′.s-mapφ(B′) ≡ νb′.s-mapφ(B′

∗
).By an inspe
tion of the heating rules, we
an easily see that this implies νb′.s-mapφ(B′)σS ≡

νb′.s-mapφ(B′

∗
)σS.By repeated appli
ation of Lemma 15, it is easy to see that νb

∗
.s-mapφ(B′

∗
)σS →∗ νc′.s-mapφ′(C′)σSimplies c′ = b

∗
∪ c′′, for some fresh names c′′, and s-mapφ(B′

∗
)σS →∗ νc′′.s-mapφ′(C′)σS. By Stru
t Reswe get νb′.s-mapφ(B′)σS → νb′, c′′.s-mapφ′(C′)σS, as desired. �We now show that →-safety with respe
t to σS implies -σMes

DY -safety.Lemma 12 Fix an RCF expression A and a DY model M su
h that M ⊢ A. If AσS is →-safe then A is
 -σMes

DY -safe.Proof. Assume that A is not -σMes

DY -safe. Then A ∗ B for some stru
ture B that is not stati
ally
σMes

DY -safe. By Lemma 11, there exists a valid expression B′, lists of names b, b′ with achan /∈ b, b′ su
h that
νb.B′ ≡ B and AσS →∗ νb′.s-mapφ(B′)σS. For a stru
ture S, let P (S) denote the a
tive assumptionsof S, and C(S) the a
tive assertions of S. Sin
e B is not stati
ally σMes

DY -safe, P (B)σMes

DY 0 C(B)σMes

DY .Sin
e B′ is valid, B′ and νb.B′ are stru
tures. We have P (νb.B′) = P (B′) and C(νb.B′) = C(B′).Sin
e νb.B′ ≡ B, (P (νb.B′), C(νb.B′)) = (P (B), C(B)) up to renaming of names other than achan (thepossibility of renaming stems from the fa
t that ≡ allows for α-renaming of bound names). Hen
ealso (P (B′)σMes

DY , C(B′)σMes

DY) = (P (B)σMes

DY , C(B)σMes

DY) up to renaming of names. Hen
e P (B′)σMes

DY 0

C(B′)σMes

DY .By de�nition of , and due to the fa
t that A is p
-free and message is private, we have thatany FOL/F-subterm message t of B satis�es that t is synta
ti
 and
losed. By de�nition of ≡, thisimplies that any FOL/F-subterm message t of B′ and therefore of P (B′) and C(B′) is synta
ti
and
losed. Let {t1, . . . , tn} be the set of all ti su
h that message ti o

urs in (C,P). Let η1 :=
{message t1/x1, . . . ,message tn/xn} and η̄1 := {x1/message t1, . . . , xn/message tn}. Let C∗ := C(B′)η̄1and P ∗ := P (B′)η̄1. Then C∗, P ∗ do not
ontain the
onstru
tor message. Sin
e A is p
-free, and theonly private
onstru
tor that
an introdu
e is message, we have that C∗, P ∗ are p
-free.Let η2 := {v-mapφ(ι−1(t1))/x1, . . . , v-mapφ(ι−1(tn))/xn}. Let γ1 := σMes

DY ∪ η1. Let γ2 := σS ∪ η2.Then P (B′)σMes

DY = P ∗γ1 and C(B′)σMes

DY = C∗γ1 and, by de�nition of s-mapφ, P (s-mapφ(B′))σS = P ∗γ2and C(s-mapφ(B′))σS = C∗γ2. We write domγ for dom γ1 = dom γ2.Thus from P (B′)σMes

DY 0 C(B′)σMes

DY , we have P ∗γ1 0 C∗γ1. We will now apply Lemma 4 in order toshow
P ∗γ1 ⊢ C∗γ1 ⇐⇒ P ∗, eqs ⊢ C∗ and (2)
P ∗γ2 ⊢ C∗γ2 ⇐⇒ P ∗, eqs ⊢ C∗ (3)with eqs := {x 6= x′ : x, x′ ∈ domγ, x 6= x′}

∪ {∀y. x 6= c(y) : x ∈ domγ, c non-forbidden synta
ti
}
∪ {x 6= t : x ∈ domγ, t ∈ exterms}where exterms is the set of subterms h(t) of P ∗, C∗ with forbidden h.39

To apply Lemma 4, we
he
k the following:
• P ∗, C∗ are p
-free: This holds by de�nition of P ∗, C∗, and η̄1.
• fv(P ∗, C∗)∩bv (P ∗, C∗) = ∅: We
an assume this without loss of generality sin
e ≡ is
losed under
α-renaming of bound variables.
• γ1, γ2 map variables to synta
ti

losed FOL/F-terms: This holds be
ause the ranges of σMes

DY and
σS are
losed by de�nition, and be
ause the ti are
losed.
• For all x and i = 1, 2, γi(x) = h(t) for forbidden h: σMes

DY (x) and σS(x) are lambda-abstra
tions,and the fun
tion symbol representing lambda-abstra
tions is forbidden. η1(x) = message(t), and
message is forbidden. η2(x) = h(t) by de�nition of v-map where h is one of the private
onstru
torslisted in De�nition 25. Thus η2(x) = h(t) for some forbidden h.
• fv(exterms)∩ bv (P ∗, C∗) = ∅: Sin
e A and AσMes

DY does not
ontain FOL/F-formulae that
ontainterms h(t) with forbidden h, su
h terms
an only be introdu
ed in P ∗ and C∗ by substituting avariable in a FOL/F-formula by an RCF-term. Hen
e the terms h(t) do not
ontain variables thatare bound in the FOL/F-formula.
• All t ∈ exterms are synta
ti
: All terms h(t) in P ∗, C∗ with forbidden h result from substituting avariable by an RCF-term (previous point), and RCF-terms are en
oded as synta
ti
 FOL/F-termsby de�nition.
• For i = 1, 2 and x ∈ dom γ and all p
-free FOL/F-terms t /∈ dom γi, we have γi(x) 6= tγi: If
x ∈ domσi (with σ1 = σMes

DY and σ2 = σS), we have that γi(x) = σi(x) 6= tηiσi = tγi sin
e σi isequality-friendly and tηi is mp
-free. If t is a variable, then tγ is a variable sin
e t /∈ dom γ, andhen
e γi(x) 6= tγi sin
e γi(x) is
losed. If x /∈ domσi and t is not a variable, then t = f(t′) where fis not a private
onstru
tor, and γi(x) = ηi(x). Furthermore, η1(x) = message(t) by de�nition (and
message is private), and η2(x) = v-mapφ(. . .) = h(t′) where h is one of the forbidden
onstru
torslisted in De�nition 25. Thus γi(x) 6= tγi.
• For i = 1, 2 and x, x′ ∈ dom γ and x 6= x′, we have γi(x) 6= γi(x

′): If x, x′ ∈ dom γ, we have
γi(x) 6= γi(x

′) be
ause σMes

DY and σS are equality-friendly. If x, x′ /∈ dom γ, we have that γi(x) =
ηi(x) 6= ηi(x

′) = γi(x
′) be
ause all ti are distin
t and v-mapφ and ι are inje
tive. If x ∈ dom γand x′ /∈ dom γ, we have that γi(x

′) = ηi(x
′) = h(t) for a private
onstru
tor h and γi(x

′) is
losed, so γi(x
′) is mp
-free. Sin
e σ1 := σMes

DY and σ2 := σS are equality-friendly, this implies that
γi(x) = σi(x) 6= h(t)σi = γi(x

′).Thus the
onditions of Lemma 4 are ful�lled and (2) and (3) follow.From P ∗γ1 0 C∗γ1, (2), and (3), we get P ∗γ2 0 C∗γ2. Sin
e P (νb′.s-mapφ(B′)σS) =

P (s-mapφ(B′))σS = P ∗γ2 and C(νb′.s-mapφ(B′)σS) = C(s-mapφ(B′))σS = C∗γ2, it follows that
P (νb′.s-mapφ(B′)σS) 0 C(νb′.s-mapφ(B′)σS). Hen
e νb′.s-mapφ(B′)σS is not stati
ally safe. Sin
e
AσS →∗ νb′.s-mapφ(B′)σS, this implies that AσS is not →-safe. Thus, from the fa
t that A is not
 -σMes

DY -safe, it follows that AσS is not →-safe. By
ontraposition, the lemma follows. �We
an �nally state a main result of this se
tion, i.e., safety with respe
t to σS implies -σMes

DY -safety.Lemma 13 Fix an RCF expression A and a DY model M su
h that M ⊢ A. If AσS is robustly →-safethen A is robustly -σMes

DY -safe.Proof. We �rst observe that for all σMes

DY -opponents O, M ⊢ O. The thesis follows dire
tly fromLemma 12, De�nition 14, and De�nition 16. �6.4 Computational soundnessBy
ombining the results from the previous se
tion (relating the DY library and the SB library) withthe
omputational soundness result for the DY library (Theorem 3), we get a
omputational soundnessresult for the SB library:Theorem 4 (Computational soundness for σS) Let Impl be a
omputational implementation satis-fying the en
-sig-implementation
onditions. Let A0 be an e�
iently de
idable RCF expression su
h that40

fv (A0) ⊆ σHighlevel , A is p
-free, A does not
ontain the RCF-
onstru
tor DecKey or SigKey , and theFOL/F-formulae in A do not
ontain forbidden fun
tion symbols.Then, if A0σHighlevelσS is robustly →-safe, then A0σHighlevel is robustly
omputationally safe using
Impl.Proof. Let A′

0 := A0σHighlevel . We have thatMes ⊢ A′

0 sin
eMes ⊢ σHighlevel(x) for all x ∈ domσHighlevel .Sin
e A′

0σS is robustly →-safe, by Lemma 13, A′

0σ
Mes

DY is robustly -safe. Sin
e fv (A0) ⊆ σHighlevel and
domσHighlevel ∩dom σMes

DY = ∅, fv (A0)∩dom σMes

DY = ∅. Thus by Lemma 7, ΠA′

0
is key-safe. By Lemma 6,if A′

0 is robustly -safe, then A′

0 is robustly
omputationally safe using Impl. �We type-
he
ked the library σS using F7. Exported fun
tions are given polymorphi
 types asin [BBF+08℄, so we do not restri
t the expressiveness of the veri�
ation te
hnique. Sin
e well-typedprograms are robustly →-safe [BBF+08℄, Theorem 4 implies that well-typed programs enjoy
omputa-tional safety.7 Con
lusionsThis paper presents a
omputational soundness result for F7, a type-
he
ker for F# programs. We showthe
omputational soundness of a generi
 DY library as well as the
omputational soundness of a sealing-based library. The proof is
ondu
ted in the CoSP framework and solely
on
erns the semanti
s of RCFprograms, without involving any
ryptographi
 arguments. This makes our result easily extensible toadditional
ryptographi
 primitives supported by CoSP. We remark that the proof does not depend ona spe
i�
 veri�
ation te
hnique, thus our
omputational soundness result would automati
ally apply tore�nements of the type system, or even to a di�erent analysis te
hnique, as long as these use the samesymboli

ryptographi
 libraries. To the best of our knowledge, this is the �rst
omputational soundnessresult for an automated veri�
ation te
hnique of proto
ol implementations.A
knowledgments. This work was partially funded by the Cluster of Ex
ellen
e �Multimodel Com-puting and Intera
tion� (German S
ien
e Foundation), the Emmy Noether Programme (German S
ien
eFoundation), and Miur'07 Proje
t SOFT (Se
urity Oriented Formal Te
hniques).A Symmetri
 semanti
s of RCFWe start this se
tion by proving that making the heating relation symmetri
 does not a�e
t the safetyof programs. More formally let us de�ne ≡ a

ording to the rules de�ning⇛ plus the symmetri
 variantof the Heat Msg (), Heat Assume (), Heat Res Fork 1, Heat Res Fork 2 Heat Res Let, and Heat ForkComm rules. Similarly, let us de�ne → as →a, where the heating relation is de�ned by ≡ instead of ⇛.We let Cout
0 [·] range over the set of
ontexts de�ned by the following grammar:

Cout
0 [·] = [·] | Z � Cout

0 [·] | | Cout
0 [·] � Z

Z = () | Z � ZLemma 14 (Heating to output) The set of pro
esses ranged over by Cout
0 [a!M] is
losed by ≡.Proof. We prove that for all A and B su
h that A ≡ B, A /∈ Cout

0 [a!M] or B ∈ Cout
0 [a!M]. The proof isby indu
tion on the derivation of A ≡ B.The base
ases (i.e., Heat Re�, Heat Fork (), Heat Msg (), Heat Fork Asso
, and Heat Fork Comm)follow dire
tly from an inspe
tion of the heating rule.The indu
tive
ases (i.e., Heat Trans, Heat Fork 1, and Heat Fork 2) follow straightforwardly fromthe indu
tion hypothesis. �In the following, we let |R|r denote the number of redu
tion rules used in the derivation of the relation

R ∈ {→,→a}. We also let |R|h denote the number of heating rules used in the derivation of R ∈ {≡,⇛}.41

Heat Refl A⇛ AHeat Trans A⇛ A′′, if A⇛ A′ and A′ ⇛ A′′Heat Let let x = A in B ⇛ let x = A′ in B, if A⇛ A′Heat Res νa.TA⇛ νa.TA′, if A⇛ A′Heat Fork 1 A � B ⇛ A′ � B, if A⇛ A′Heat Fork 2 B � A⇛ B � A′, if A⇛ A′Equiv Fork () () � A ≡a AHeat Msg () a!M ⇛ a!M � ()Heat Assume () assume C ⇛ assume C � ()Heat Res Fork 1 A′ � (νa.TA)⇛ νa.T (A′ � A), if a 6∈ fn(A′)Heat Res Fork 2 (νa.TA) � A′ ⇛ νa.T (A � A′), if a 6∈ fn(A′)Heat Res Let let x = νa.TA in B ⇛ νa.T let x = A in B, if a 6∈ fn(B)Equiv Fork Asso
 (A � A′) � A′′ ≡a A � (A′ � A′′)Heat Fork Comm (A � A′) � A′′ ⇛ (A′ � A) � A′′Equiv Fork Let let x = (A � A′) in B ≡a A � (let x = A′ in B)Notation: We use A ≡a A′ to mean that both A⇛ A′ and A′ ⇛ A.Figure 9: Heating relation A⇛ A′Lemma 15 (Redu
tion, restri
tion, and heating) For all a,A,A,B′ su
h that νa.A ≡ A′ and
A′ → B′, there exists B su
h that A → B, B′ ≡ νa.B, and |A → B|r ≤ |νa.A → B′|r (where
νa.A→ B′ is proved by A′ → B′ and, if νa.A 6= A′, by νa.A ≡ A′ and Red Heat).Proof. The proof is by indu
tion on |A′ → B′|r.The base
ase is trivial sin
e A′ → B′
annot be of length one assuming νa.A ≡ A′. This followsfrom an inspe
tion of Red Fun,Red Split, Red Mat
h, Red Eq, Red Comm, Red Assert, and Red Let Valand by observing that heating does not
an
el restri
tions.For the indu
tion step, we pro
eed by
ase analysis on the last rule applied:Red Fun, Red Split, Red Mat
h, Red Eq, Red Comm, Red Assert, Red Let Val Theserules are not appli
able.Red Let A′ = let x = C in D → let x = C′ in D = B′ and C → C′ Sin
e A′ ≡ νa.A, there exists C′′su
h that C ≡ νa.C′′ and A ≡ let x = C′′ in D.Sin
e νa.C′′ → C′, by indu
tion hypothesis (the
onsidered heating relation is νa.C′′ ≡ νa.C′′),we know that C′ ≡ νa.C′′′ for some C′′′ su
h that C′′ → C′′′ and |C′′ → C′′′|r ≤ |νa.C′′ → C′|r.By Red Let, let x = C′′ in D → let x = C′′′ in D. We set B := let x = C′′′ in D.Noti
e that |A → B|r ≤ |C′′ → C′′′|r + 1 (Red Let and Red Heat with A ≡ let x = C′′ in D)and |C′′ → C′′′|r ≤ |C → C′|r and |νa.A → B′|r = |C → C′|r + 2 (Red Let and Red Heat with

νa.A ≡ let x = C in D). Therefore we preserve the invariant |A→ B|r ≤ |νa.A→ B′|r.Red Res A′ = νb.C → νb.C′ = B′ and C → C′ We have two
ases, depending on whether b = a ornot. The former is trivial, the latter follows straightforwardly from the indu
tion hypothesis.Red Fork 1 A′ = C � D → C′ � D = B′ and C → C′ We must have either C ≡ νa.C′′ or D ≡ νa.D′,for some C′′, D′.Assume that D ≡ νa.D′, for some D′, i.e., A ≡ C � D′. We know that C → C′. By Red Fork 1,
C � D′ → C′ � D′. We set B := C′ � D′.Noti
e that |A → B|r ≤ |C → C′|r + 2 (Red Fork 1 and Red Heat with A ≡ C � D′) and
|νa.A → B′|r = |C → C′|r + 2 (Red Fork 1 and Red Heat with νa.A ≡ C � D). Therefore thelength invariant is ful�lled. 42

Assume that C ≡ νa.C′′, for some C′′, i.e., A ≡ C′′ � D.Sin
e νa.C′′ → C′, by indu
tion hypothesis we know that there exists C′′′ su
h that C′′ → C′′′,
C′ ≡ νa.C′′′ and |C′′ → C′′′|r ≤ |νa.C′′ → C′|r.By Red Fork 2, we get C′′ � D → C′′′ � D. We set B := C′′′ � D.Noti
e that |A → B|r ≤ |C′′ → C′′′′|r + 2 (Red Fork 2 and Red Heat with A ≡ C′′ � D) and
|C′′ → C′′′|r ≤ |νa.C′′ → C′|r and |νa.A→ B′|r = |νa.C′′ → C′|r + 2 (Red Fork 2 and Red Heatwith νa.A ≡ C � D). Therefore we have |A→ B|r ≤ |νa.A→ B′|r.Red Fork 2 A′ = C � D → C � D′ = B′ and D → D′ The reasoning is symmetri
 to Red Fork 1.Red Heat A′ = C → C′ = B′ and C ≡ D and D → D′ and D′ ≡ C′ We have νa.A ≡ C, whi
himplies D ≡ νa.A. By indu
tion hypothesis, there exists B su
h that D′ ≡ νa.B and |A→ B|r ≤
|νa.A→ D′|r ≤ |D → D′|r + 1 = |A′ → B′|r. Therefore the length invariant is ful�lled.

�Lemma 16 (Symmetri
 redu
tion) For every
losed expressions A,A′, B′ su
h that A ≡ A′ and
A′ → B′ , there exists B su
h that A→a B, B′ ≡ B, and one of the following
onditions holds true:
• If A = A′, then |A→a B|r ≤ |A′ → B′|r; otherwise |A→a B|r ≤ |A′ → B′|r + |A ≡ A′|h.
• If the derivation of A′ → B′
ontains one appli
ation of Red Comm (say a!M � a? →a M), then
A→a B is derived by Red Heat with hypotheses A⇛ a!M � a? and a!M � a?→a M .Proof. The proof pro
eeds by simultaneous indu
tion on |A ≡ A′|h and |A′ → B′|r. The base
ase iswhen both the derivations have length one. We pro
eed by
ase analysis on the derivation of A′ → B′:Red Fun A′ = (λx.P) N → P{N/x} = B′ We pro
eed by
ase analysis on the derivation of A ≡ A′.The proof for Heat Re� is straightforward, sin
e we know that A = A′. The proof for Heat Fork ()follows by observing that this rule is symmetri
 even in ⇛.Red Split, Red Mat
h, Red Eq, Red Comm, Red Assert, Red Let Val The reasoning is simi-lar sin
e the only appli
able heating rules are the same as those
onsidered in Red Fun.For the indu
tion step, we pro
eed by
ase analysis on the last rule applied in the derivation of

A→ B:Red Fun A′ = (λx.P) N → P{N/x} = B′ We pro
eed by
ase analysis on the last heating rule appliedin the derivation of A ≡ A′. The only interesting
ase is Heat Trans. We know that A ≡ A′′,
A′′ ≡ A′, and |A ≡ A′|h = |A ≡ A′′|h + |A′′ ≡ A′|h + 1.We
an now apply the indu
tion hypothesis, sin
e |A′′ ≡ A′|h + |A′ → B′|r < |A ≡ A′|h + |A′ →
B′|r. By indu
tion hypothesis, there exists B′′ su
h that A′′ →a B′′ and B′ ≡ B′′. In addition,
|A′′ →a B′′|r ≤ |A′ →a B′|r + |A′′ ≡ A′|h. (We are
onsidering the only interesting
ase, i.e.,
A 6= A′ 6= A′′.) As → is larger than →, we know that A′′ → B′′ and |A′′ →a B′′|r = |A′′ → B′′|r.We
an now apply the indu
tion hypothesis, sin
e |A ≡ A′′|h+|A′′ → B′′|r < |A ≡ A′|h+|A′ → B′|r.By indu
tion hypothesis, there exists B su
h that A→a B and B′′ ≡ B, with |A→a B|r ≤ |A′′ →
B′′|r + |A ≡ A′′|h . By Heat Trans, B′ ≡ B.Red Split, Red Mat
h, Red Eq, Red Assert, Red Let Val The reasoning is similar to the previ-ous
ase.

43

Red Comm A′ = a!M � a?→M = B′ We pro
eed by
ase analysis on the last heating rule applied inthe derivation of A ≡ A′. The only interesting
ases are Heat Fork 1 and Heat Trans.Heat Fork 1. We know that A = A′′ � a? ≡ A′, for some A′′ su
h that A′′ ≡ a!M . By Lemma 14,
A′′ ∈ Cout

0 [a!M]. It is easy to see that by repeated appli
ation of Heat Fork Asso
, Heat ForkComm, and Heat Fork () we
an derive A⇛ A′. By Red Comm, A′ →a B′. By Red Heat, we getthe desired result. Noti
e that |A→a B|r = |A′ → B′|r + 1.Heat Trans. We know that A ≡ A′′, A′′ ≡ A′, and |A ≡ A′|h = |A ≡ A′′|h + |A′′ ≡ A′|h + 1.We
an now apply the indu
tion hypothesis, sin
e |A′′ ≡ A′|h+|A′ → B′|r < |A ≡ A′|h+|A′ → B′|r.By indu
tion hypothesis, A′′ ⇛ A′ and A′′ →a B′ is proved by Red Heat. Sin
e → is larger than
→, we know that A′′ → B′′ and |A′′ →a B′′|r = |A′′ → B′′|r.We
an now apply the indu
tion hypothesis, sin
e |A ≡ A′′|h+|A′′ → B′′|r < |A ≡ A′|h+|A′ → B′|r.By indu
tion hypothesis, A⇛ A′′. By Heat Trans, A⇛ A′. The result follows by Red Heat. Noti
ethat |A→ B′|r = |A′ → B′|r + 1.The remaining redu
tion rules are de�ned re
ursively on the redu
tion of a subpro
ess. By indu
tionhypothesis, this redu
tion
ould
ontain one appli
ation of Red Comm or none. Sin
e the proof is thesame and the length invariant is preserved anyway, we assume that the derivation does not
ontain anyappli
ation of Red Comm.Red Let A′ = let x = C in D → let x = C′ in D = B′ and C → C′ The two interesting
ases arewhen A ≡ A′ is proved by Heat Res Let or Heat Let.Heat Res Let. Let us assume that A ≡ A′ is proved by (the symmetri
 variant of) Heat Res Let,i.e., there exists C′′ su
h that C = νa.C′′ and A = νa.let x = C′′ in B.Sin
e νa.C′′ → C′, by Lemma 15 we know that C′ ≡ νa.C′′′ for some C′′′ su
h that C′′ → C′′′and |C′′ → C′′′|r ≤ |νa.C′′ → C′|r. By indu
tion hypothesis (we
onsider C′′ ≡ C′′), we know thatthere exists C′′′′ su
h that C′′ →a C′′′′, C′′′ ≡ C′′′′, and |C′′ →a C′′′′|r ≤ |C

′′ → C′′′|r.By Red Let, let x = C′′ in D →a let x = C′′′′ in D and, by Red Res, A = νa.let x = C′′ in D →
νa.let x = C′′′′ in D = B. Noti
e that |A→ B|r = |C′′ → C′′′|r + 2, while |A′ → B′|r = |νa.C′′ →
C′|r + 1. Sin
e |C′′ → C′′′|r ≤ |νa.C′′ → C′|r, we preserve the invariant |A →a B|r ≤ |A′ →
B′|r + |A ≡ A′|h.Sin
e C′ ≡ νa.C′′′, by Heat Let we get B′ = let x = C′ in D ≡ let x = νa.C′′′ in D. Sin
e
C′′′ ≡ C′′′′, by Heat Let we get let x = νa.C′′′ in D ≡ let x = νa.C′′′′ in D. By Heat Res Let, weget let x = νa.C′′′′ in D ≡ νa.let x = C′′′′ in D. Finally, by Heat Trans, we get B′ ≡ B.Heat Let. Let us assume now that A ≡ A′ is derived by Heat Let, i.e., there exists C′′ su
h that
A = let x = C′′ in D and C′′ ≡ C. By indu
tion hypothesis, we know that there exists C′′′ su
hthat C′′ →a C′′′ and C′ ≡ C′′′. By Red Let, A = let x = C′′ in D → let x = C′′′ in D = B and
B′ ≡ B by Heat Let.Red Res A′ = νa.C → νa.C′ = B′ and C → C′ The only interesting
ase is when A ⇛ A′ is provedby Heat Res, i.e., there exists C′′ su
h that A = νa.C′′ and C′′ ≡ C. By indu
tion hypothesis,there exists C′′′ su
h that C′′ ≡ C′′′ and C′ ≡ C′′′. By Red Res, A = νa.C′′ →a νa.C′′′ = B and
B′ ≡ B by Heat Res.Red Fork 1 A′ = C � D → C′ � D = B′ and C → C′ The proof for Heat Fork 1 follows straightfor-wardly from the indu
tion hypothesis. The proof for Heat Fork 2 follows from an inspe
tion of theheating and redu
tion rules. We now reason on the two interesting
ases, namely, Heat Res Fork 1and Heat Res Fork 2. 44

Heat Res Fork 1. We know that D = νa.D′, for some D′ and A = νa.C � D′. We know that
C →a C′. By Red Res and Red Fork 1, A = νa.C � D′ → νa.C′ � D = B. By Heat Res Fork 1,
B′ ≡ B. Noti
e that |A→a B|r = |A′ → B′|r + 1, whi
h ful�lls the length invariant.Heat Res Fork 2. We know that C = νa.C′′, for some C′′, and A = νa.C′′ � D.Sin
e νa.C′′ → C′, by Lemma 15 we know that there exists C′′′ su
h that C′′ → C′′′ and C′ ≡
νa.C′′′ and |C′′ → C′′′|r ≤ |νa.C′′ → C′|r. By indu
tion hypothesis (we
onsider C′′ ≡ C′′), weknow that there exists C′′′′ su
h that C′′ →a C′′′′ and C′′′ ≡ C′′′′ and |C′′ →a C′′′′|r ≤ |C′′ →a

C′′′|r.By Red Fork 1 and Red Res, A = νa.C′′ � D → νa.C′′ � D = B. By Heat Res Fork 2, we get
B′ ≡ B.Noti
e that |A ≡ A′|h = 1, |A′ →a B′|r = |C → C′|r + 1, |C → C′|r ≥ |C′′ → C′′′|r ≥ |C′′ →a

C′′′′|r, and |A→a B|r = |C′′ →a C′′′′|r + 2. Therefore |A→ B|r ≤ |A
′ →a B′|r + |A ≡ A′|h.Red Fork 2 A′ = C � D → C � D′ = B′ and D → D′ Symmetri
 to Red Fork 1.Red Heat The proof follows dire
tly from the indu
tion hypothesis.

�Referen
es[ABW06℄ M. Abadi, M. Baudet, and B. Warins
hi. Guessing atta
ks and the
omputational soundnessof stati
 equivalen
e. In Pro
. 9th International Conferen
e on Foundations of SoftwareS
ien
e and Computation Stru
tures (FOSSACS), volume 3921 of Le
ture Notes in ComputerS
ien
e, pages 398�412. Springer, 2006.[AF01℄ Martín Abadi and Cédri
 Fournet. Mobile values, new names, and se
ure
ommuni
ation. InPOPL '01: Pro
eedings of the 28th ACM SIGPLAN-SIGACT Symposium on Prin
iples ofProgramming Languages, pages 104�115, New York, NY, USA, 2001. ACM Press.[AF06℄ Pedro Adão and Cédri
 Fournet. Cryptographi
ally sound implementations for
ommuni
at-ing pro
esses. In Pro
. ICALP, pages 83�94, 2006.[AG97℄ Martín Abadi and Andrew D. Gordon. A
al
ulus for
ryptographi
 proto
ols: The spi
al
ulus. In Pro
. 4th ACM Conferen
e on Computer and Communi
ations Se
urity, pages36�47, 1997.[AJ01℄ Martín Abadi and Jan Jürjens. Formal eavesdropping and its
omputational interpretation.In Pro
. 4th International Symposium on Theoreti
al Aspe
ts of Computer Software (TACS),pages 82�94, 2001.[AR02℄ Martín Abadi and Phillip Rogaway. Re
on
iling two views of
ryptography (the
omputa-tional soundness of formal en
ryption). Journal of Cryptology, 15(2):103�127, 2002.[BBF+08℄ Jesper Bengtson, Karthikeyan Bhargavan, Cédri
 Fournet, Andrew D. Gordon, and SergioMa�eis. Re�nement types for se
ure implementations. In Pro
. 21st IEEE Se
urity Foun-dations Symposium (CSF), pages 17�32, 2008. Full version is Mi
rosoft Resear
h te
hni
alreport MSR-TR-2008-118.[BCFZ08℄ Karthikeyan Bhargavan, Ri
ardo Corin, Cédri
 Fournet, and Eugen Z lines
u. Cryptograph-i
ally veri�ed implementations for TLS. In 15th ACM Conferen
e on Computer and Com-muni
ations Se
urity (CCS 2008), pages 459�468. ACM Press, 2008.45

[BCK05℄ M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations of equationaltheories against passive adversaries. In Pro
. 32nd International Colloquium on Automata,Languages and Programming (ICALP), volume 3580 of Le
ture Notes in Computer S
ien
e,pages 652�663. Springer, 2005.[BFG10℄ K. Bhargavan, C. Fournet, and A.D. Gordon. Modular veri�
ation of se
urity proto
ol
odeby typing. In Pro
. 37th Symposium on Prin
iples of Programming Languages (POPL). ACMPress, 2010.[BFGT06℄ K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Veri�ed interoperable implementationsof se
urity proto
ols. In Pro
. 19th IEEE Computer Se
urity Foundations Workshop (CSFW),pages 139�152. IEEE, 2006.[BHU09℄ Mi
hael Ba
kes, Dennis Hofheinz, and Dominique Unruh. CoSP: A general framework for
omputational soundness proofs. In ACM CCS 2009, pages 66�78. ACM Press, November2009. Full version on IACR ePrint 2009/080. Some of the de�nitions we use only o

ur inthe full version.[Bla01℄ B. Blan
het. An e�
ient
ryptographi
 proto
ol veri�er based on Prolog rules. In Pro
. 14thIEEE Computer Se
urity Foundations Workshop (CSFW), pages 82�96. IEEE ComputerSo
iety Press, 2001.[Bla06℄ Bruno Blan
het. A
omputationally sound me
hanized prover for se
urity proto
ols. InIEEE Symposium on Se
urity and Priva
y, Pro
eedings of SSP 2006, pages 140�154. IEEEComputer So
iety, 2006. Extended version online available at http://eprint.ia
r.org/2005/401.ps.[BMU℄ Mi
hael Ba
kes, Matteo Ma�ei, and Dominique Unruh. Library sour
e
ode with F7 type-
he
king annotations. Available at http://
rypto.m2
i.org/unruh/mis
/r
f/library.zip.[BMV04℄ David Basin, Sebastian Mödersheim, and Lu
a Viganò. OFMC: A symboli
 model
he
kerfor se
urity proto
ols. International Journal of Information Se
urity, 2004.[BP04℄ Mi
hael Ba
kes and Birgit P�tzmann. Symmetri
 en
ryption in a simulatable Dolev-Yaostyle
ryptographi
 library. In Pro
. 17th IEEE Computer Se
urity Foundations Workshop(CSFW), pages 204�218, 2004.[BPW03a℄ Mi
hael Ba
kes, Birgit P�tzmann, and Mi
hael Waidner. A
omposable
ryptographi
 librarywith nested operations (extended abstra
t). In Pro
. 10th ACM Conferen
e on Computerand Communi
ations Se
urity, pages 220�230, 2003. Full version in IACR Cryptology ePrintAr
hive 2003/015, Jan. 2003, http://eprint.ia
r.org/.[BPW03b℄ Mi
hael Ba
kes, Birgit P�tzmann, and Mi
hael Waidner. Symmetri
 authenti
ation withina simulatable
ryptographi
 library. In Pro
. 8th European Symposium on Resear
h in Com-puter Se
urity (ESORICS), volume 2808 of Le
ture Notes in Computer S
ien
e, pages 271�290. Springer, 2003.[BPW07℄ Mi
hael Ba
kes, Birgit P�tzmann, and Mi
hael Waidner. The rea
tive simulatability (RSIM)framework for asyn
hronous systems. Information and Computation, 205(12):1685�1720,2007.[CD09℄ Sagar Chaki and Anupam Datta. Aspier: An automated framework for verifying se
urityproto
ol implementations. In Pro
. 22nd IEEE Computer Se
urity Foundations Symposium(CSF), pages 172�185. IEEE, 2009. 46

http://eprint.iacr.org/2005/401.ps
http://crypto.m2ci.org/unruh/misc/rcf/library.zip
http://eprint.iacr.org/

[CL08℄ Hubert Comon-Lundh. About models of se
urity proto
ols (abstra
t). In Ramesh Hariharan,Madhavan Mukund, and V Vinay, editors, Pro
. FSTTCS, Dagstuhl, Germany, 2008. S
hlossDagstuhl. http://drops.dagstuhl.de/opus/volltexte/2008/1766/.[CLC08℄ Hubert Comon-Lundh and Véronique Cortier. Computational soundness of observationalequivalen
e. In Pro
. ACM CCS, pages 109�118, 2008.[DY83℄ Danny Dolev and Andrew C. Yao. On the se
urity of publi
 key proto
ols. IEEE Transa
tionson Information Theory, 29(2):198�208, 1983.[EG83℄ Shimon Even and Oded Goldrei
h. On the se
urity of multi-party ping-pong proto
ols. InPro
. 24th IEEE FOCS, pages 34�39, 1983.[Fou09℄ Cédri
 Fournet. On the
omputational soundness of
ryptographi
 veri�
ation by typing.Workshop on Formal and Computational Cryptography (FCC 2009), 2009.[GLP05a℄ J. Goubault-Larre
q and F. Parrennes. Cryptographi
 proto
ol analysis on real

ode. InPro
. 6th International Conferen
e on Veri�
ation, Model Che
king and Abstra
t Inter-pretation (VMCAI'05), volume 3385 of Le
ture Notes in Computer S
ien
e, pages 363�379.Springer-Verlag, 2005.[GLP05b℄ Jean Goubault-Larre
q and Fabri
e Parrennes. Cryptographi
 proto
ol analysis on real C
ode. In 6th International Conferen
e on Veri�
ation, Model Che
king, and Abstra
t Inter-pretation, (VMCAI 2005), pages 363�379. Springer, 2005.[Gun92℄ A. Gunter. Semanti
s of Programming Languages: Stru
tures and Te
hniques. MIT Press,1992.[HLM03℄ Jonathan Herzog, Moses Liskov, and Silvio Mi
ali. Plaintext awareness via key registration. InAdvan
es in Cryptology: CRYPTO 2003, volume 2729 of Le
ture Notes in Computer S
ien
e,pages 548�564. Springer, 2003.[JLM05℄ Romain Janvier, Yassine Lakhne
h, and Laurent Mazaré. Completing the pi
ture: Soundnessof formal en
ryption in the presen
e of a
tive adversaries. In Pro
. ESOP, pages 172�185,2005.[KMM94℄ Ri
hard Kemmerer, Catherine Meadows, and Jon Millen. Three systems for
ryptographi
proto
ol analysis. Journal of Cryptology, 7(2):79�130, 1994.[Lau01℄ Peeter Laud. Semanti
s and program analysis of
omputationally se
ure information �ow. InPro
. 10th European Symposium on Programming (ESOP), pages 77�91, 2001.[Lau04℄ Peeter Laud. Symmetri
 en
ryption in automati
 analyses for
on�dentiality against a
tiveadversaries. In Pro
. 25th IEEE Symposium on Se
urity & Priva
y, pages 71�85, 2004.[Low96℄ Gavin Lowe. Breaking and �xing the Needham-S
hroeder publi
-key proto
ol using FDR.In Pro
. 2nd International Conferen
e on Tools and Algorithms for the Constru
tion andAnalysis of Systems (TACAS), volume 1055 of Le
ture Notes in Computer S
ien
e, pages147�166. Springer, 1996.[Mer83℄ Mi
hael Merritt. Cryptographi
 Proto
ols. PhD thesis, Georgia Institute of Te
hnology, 1983.[Mor73℄ J. Morris. Prote
tion in programming languages. Communi
ations of the ACM, 16(1):15�21,1973.[MW04℄ Daniele Mi

ian
io and Bogdan Warins
hi. Soundness of formal en
ryption in the presen
eof a
tive adversaries. In Pro
. 1st Theory of Cryptography Conferen
e (TCC), volume 2951of Le
ture Notes in Computer S
ien
e, pages 133�151. Springer, 2004.47

http://drops.dagstuhl.de/opus/volltexte/2008/1766/

[Pau98℄ Lawren
e Paulson. The indu
tive approa
h to verifying
ryptographi
 proto
ols. Journal ofCryptology, 6(1):85�128, 1998.[SBB+06℄ Christoph Sprenger, Mi
hael Ba
kes, David Basin, Birgit P�tzmann, and Mi
hael Waidner.Cryptographi
ally sound theorem proving. In Pro
. 19th IEEE Computer Se
urity Founda-tions Workshop (CSFW), pages 153�166, 2006.[S
h96℄ Steve S
hneider. Se
urity properties and CSP. In Pro
. 17th IEEE Symposium on Se
urity& Priva
y, pages 174�187, 1996.[SP03℄ Eijiro Sumii and Benjamin C. Pier
e. Logi
al relations for en
ryption. Journal of ComputerSe
urity, 11(4):521�554, 2003.[SP07℄ E. Sumii and B. Pier
e. A bisimulation for dynami
 sealing. Theoreti
al Computer S
ien
e,375(1-3):169�192, 2007.Indexa
tive assertion (RCF), 5a
tive assumption (RCF), 5assertiona
tive (RCF), 5assumptiona
tive (RCF), 5
omputation node (CoSP), 6
omputational soundness (CoSP), 6
omputational implementation (CoSP), 6
omputational RCF-exe
ution, 8
omputationally satisfy (CoSP), 6
omputationally saferobustly, 9
onstru
torprivate (RCF), 5publi
 (RCF), 5
onstru
tor (CoSP), 5
ontrol node (CoSP), 6CoSP, 5
omputational soundness, 6
omputationally satisfy, 6
onstru
tor, 5destru
tor, 5message type, 5non
e, 5symboli
 model, 6symboli
ally satisfy, 6tra
e property, 6dedu
tion relation (CoSP), 6destru
tor (CoSP), 5Dolev-Yao model, see DY modelDY model, 6

equality-friendly, 7equation-σ-safestati
ally, 8
eval f (CoSP), 5exe
ution
omputational RCF-, 8symboli
 RCF-, 8expression (RCF), 4failure node, 9forbidden fun
tion symbol(FOL/F), 5input node (CoSP), 6message type (CoSP), 5modelDY, 6symboli
 (CoSP), 6mp
-free, 5node
omputation (CoSP), 6
ontrol (CoSP), 6failure, 9input (CoSP), 6output (CoSP), 6non
e (CoSP), 5opponent, 5

σ-, 7output node (CoSP), 6p
-free, 5private
onstru
tor48

(RCF), 5publi

onstru
tor(RCF), 5pure(RCF), 5RCF, 4RCF-exe
ution
omputational, 8symboli
, 8redu
tion (RCF), 4robustly SExec-safe, 9robustly -σ-safe, 7robustly →-σ-safe, 7robustly →-safe, 5robustly
omputationally safe, 9safe
 -σ-, 7
→-, 5

robustly
omputationally, 9robustly -σ-, 7robustly SExec-, 9robustly →-, 5robustly →-σ-, 7stati
ally, 5stati
ally σ-, 7stati
ally equation-σ-, 8stati
ally σ-safe, 7stati
ally safe, 5stati
ally equation-σ-safe, 8stru
tural equivalen
e (RCF), 4stru
ture (RCF), 5symboli
 model (CoSP), 6symboli
 RCF-exe
ution, 8symboli
ally satisfy (CoSP), 6tra
e property (CoSP), 6values (RCF), 4

49

	Introduction
	Our techniques
	Related work
	Notation

	RCF (review)
	Syntax and semantics

	CoSP Framework (review)
	The Dolev-Yao library
	The library
	Dolev-Yao transition relation

	Computational soundness
	Definitions
	Symb. vs. computational execution
	Comp. soundness of the DY-library
	Encryption and signatures

	The sealing-based library
	Dynamic Sealing
	Mapping DY-terms into SB-terms
	Preservation of safety
	Computational soundness

	Conclusions
	Symmetric semantics of RCF

