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Abstract

Increasing attention has recently been given to the formal verification of the source code of
cryptographic protocols. The standard approach is to use symbolic abstractions of cryptography
that make the analysis amenable to automation. This leaves the possibility of attacks that exploit
the mathematical properties of the cryptographic algorithms themselves. In this paper, we show
how to conduct the protocol analysis on the source code level (F# in our case) in a computationally
sound way, i.e., taking into account cryptographic security definitions.

We build upon the prominent F7 verification framework (Bengtson et al., CSF 2008) which
comprises a security type-checker for F# protocol implementations using symbolic idealizations and
the concurrent lambda calculus RCF to model a core fragment of F+#-.

To leverage this prior work, we give conditions under which symbolic security of RCF programs
using cryptographic idealizations implies computational security of the same programs using crypto-
graphic algorithms. Combined with F7, this yields a computationally sound, automated verification
of F# code containing public-key encryptions and signatures.

For the actual computational soundness proof, we use the CoSP framework (Backes, Hofheinz,
and Unruh, CCS 2009). We thus inherit the modularity of CoSP, which allows for easily extending
our proof to other cryptographic primitives.
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1 Introduction

Proofs of security protocols are known to be error-prone and, owing to the distributed-system aspects
of multiple interleaved protocol runs, difficult for humans to generate. Hence, work towards the automa-
tion of such proofs started soon after the first protocols were developed. From the start, the actual
cryptographic operations in such proofs were idealized into so-called symbolic or Dolev-Yao models,
following [DY83| [EG83|, Mer83| (see, e.g., [KMM94], [Sch96, [AGIT, [Low96l [Pauds, BMV04]). This ideal-
ization simplifies proofs by freeing them from cryptographic details such as computational restrictions,
probabilistic behavior, and error probabilities. Unfortunately, these idealizations also abstract away from
the algebraic properties a cryptographic algorithm may exhibit. Therefore a symbolic analysis may over-
look attacks based on these properties. In other words, symbolic security does not imply computational
security. In order to remove this limitation, [AR02| introduced the concept of computational soundness.
We call a symbolic abstraction computationally sound when symbolic security implies computational
security. A computational soundness result allows us to get the best of two worlds: The analysis can be
performed (possibly automatically) using symbolic abstractions, but the final results hold with respect
to the realistic security models used by cryptographers.

A drawback common to the existing computational soundness results, is, however, that they work on
abstract protocol representations (e.g., the applied m-calculus [AF01]). That is, although the analysis
takes into account the actual cryptographic algorithms, it still abstracts away from the actual protocol im-
plementation. Thus, even if we prove the protocol secure, the implementation that is later deployed may
contain implementation errors that introduce new vulnerabilities. To avoid this issue, recent work has
tackled the problem of verifying security directly on the source code, e.g., BBEF0S].
Yet, this verification is again based on symbolic idealizations.

Thus, we are left with the choice between verification techniques that abstract away from the crypto-
graphic algorithms, and verification techniques that abstract from the protocol implementation. To close
this gap, we need a computational soundness result that applies directly to protocol implementations.

Our result. We present a computational soundness result for F# code. For this, we use the RCF
calculus proposed by as semantics for (a core fragment of) F#. RCF allows for encoding
implementation in F# by offering a lambda-abstraction constructor that allows for reasoning about
higher-order languages. Moreover, it supports concurrency primitives, inductive datastructures, recur-
sion, and an expressive treatment of symbolic cryptography using sealing mechanisms. Furthermore,
RCF supports very general trace-based security properties that are expressed in first-order logic, using
assumptions and assertions. (Previous computational soundness results are restricted to calculi like the
applied m-calculus which lack these features.) We specify a cryptographic library that internally uses
symbolic abstractions, and prove that if a protocol is symbolically secure when linked to that library, it
is computationally secure when using actual cryptographic algorithms. Our approach enables the use
of existing symbolic verification tools, such as the type-checker F7 [BBFT08]. The requirement to use
these tools in particular ruled out potential changes to the RCF semantics that would have simplified to
establish a computational soundness result. We stress, however, that our result does not depend on any
particular symbolic verification technique.

We have derived computational soundness for encryptions and digital signatures. Our result is, how-
ever, extensible: most of our theorems are parametric in the set of cryptographic primitives and the
remaining theorems can be easily extended. Furthermore, by basing on the so-called CoSP framework
[BHUQY|, our proof solely concerns the semantics of RCF programs and does not involve any crypto-
graphic arguments; thus extending our proofs to additional cryptographic abstractions supported by
CoSP does not require a deep knowledge of cryptography, which makes such an extension accessible to
a more general audience.



1.1 Our techniques

CoSP (Section 3). The main idea of our work is to reduce computational soundness of RCF to com-
putational soundness in the CoSP framework [BHUQ9|. Thus, we first give an overview of the ideas
underlying CoSP. All definitions in CoSP are relative to a symbolic model that specifies a set of con-
structors and destructors that symbolically represent computational operations, and a computational
implementation that specifies cryptographic algorithms for these constructors and destructors. In CoSP,
a protocol is represented by an infinite tree that describes the protocol as a labeled transition system.
Such a CoSP protocol contains actions for performing abstract computations (applying constructors and
destructors to messages) and for communicating with an adversary. A CoSP protocol is endowed with two
semantics, a symbolic execution and a computational execution. In the symbolic execution, messages are
represented by terms. In the computational execution, messages are bitstrings, and the computational
implementation is used instead of applying constructors and destructors. A computational implementa-
tion is computationally sound if any symbolically secure CoSP protocol is also computationally secure.
The advantage of expressing computational soundness results in CoSP is that the protocol model in
CoSP is very general. Hence the semantics of other calculi can be embedded therein, thus transferring
the computational soundness results from CoSP to these calculi.

DY library (Sections [}, B). To apply CoSP to RCF, we first define a library o, that encodes an
arbitrary symbolic model. This library internally represents all messages as terms in some datatype.
Manipulation of these terms is possible only through the library, neither the program nor the adversary
can directly manipulate messages. oM. also provides functions for sending and receiving messages. Given
the library oM\, we can define a notion of symbolic security. A program A contains certain events and
security policies specified in first-order logic. We call A robustly —-oM -safe if the security policies are
satisfied in every step of the execution when A runs in parallel with an arbitrary opponent and is linked
to the library oM, .

Next, we specify a probabilistic computational semantics for RCF programs A. In these semantics, we
specify an algorithm (the computational RCF-execution) that executes A. In each step of the execution,
the adversary is asked what reduction rule to apply to A. Letting the adversary make these scheduling
decisions resolves the non-determinism in the RCF program and simultaneously makes our result stronger
by making the worst-case assumption that the adversary has total control over the scheduling. All
messages are represented as bitstrings, and any invocation of oMy is replaced by the corresponding
computation from the computational implementation. Notice that in the computational RCF-execution,
the adversary is not limited to invoking library routines; since messages are bitstrings, the adversary can
perform arbitrary polynomial-time operations on them. If all security policies are satisfied in each step
of the computational RCF-execution, we call A robustly computationally safe.

Our goal is to show that, if an RCF program is robustly —-oM -safe, then it is robustly computa-
tionally safe. To prove this, we introduce two intermediate semantics.

e The reduction relation ~»: This semantics is very similar to the original semantics of RCF, except
that all invocations of oMy are internalized, i.e., symbolic cryptographic operations are atomic
operations with respect to ~~. This leads to the notion of robust w-o{‘)"Y -safety.

e The symbolic RCF-execution SExec: This semantics is defined by taking the definition of the
computational RCF-execution, and by replacing all computational operations by the corresponding
symbolic operations. That is, the symbolic and the computational RCF-execution are essentially
the same algorithm, one operating on terms, the other doing the corresponding operations from
the computational implementation. This leads to the notion of robust SExec-safety.

In the first step (cf. [Figure 1)), we show that robust —-oM-safety implies robust ~~-oM-safety. This
proof is fairly straightforward, because ~ just internalizes the definition of oM.

In the second step, we show that robust ~-oM -safety implies robust SExec-safety. The first technical
difficulty here lies in the fact that robust ~-oM -safety is defined with respect to adversaries that are
expressed as RCF-programs and that run interleaved with the program A, while robust SExec-safety
models the adversary as an external non-deterministic entity. Thus, for any possible behavior of the
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Figure 1: Main steps of the computational soundness proof

SExec-adversary, we have to construct an RCF-program @) that performs the same actions when running
in parallel with A. The second difficulty lies in the fact that the logic for describing security properties
is quite general. In particular, it allows for expressing facts about the actual code of oM, (e.g., the code
of one function is a subterm of the code of another). Since the library oM, is not present in the symbolic
RCF-execution, we need to identify criteria that ensure that the policies do not depend on the actual
code of oM.

In the third step, we use the fact that the symbolic and the computational RCF-execution of A
have essentially the same definition, except that one performs symbolic and the other computational
operations. Thus, if we express these executions by a labeled transition system that treats operations on
messages as atomic steps, we get the same transition system for both executions, only with a different
interpretation of these atomic steps. This transition system is a CoSP protocol 114, and the symbolic
and the computational execution of that protocol are equivalent to the symbolic and the computational
RCF-execution of A. Thus, assuming a computational soundness result in CoSP, we get that robust
SExec-safety implies robust computational safety. Combining this with the previous steps, we have that
robust —-oM -safety implies robust computational safety (Theorem ).

Note that this argumentation is fully generic, it does not depend on any particular symbolic model.
Once we have a new computational soundness result in CoSP, this directly translates into a result for
RCF. Note further that no actual cryptographic proofs need to be done; all cryptographic details are
outsourced to CoSP. The library oM., is very similar in spirit to the one used in [BFG10], we believe that
the verification techniques used there can be applied to robust —-oM -safety as well.

Encryption and signatures (Section 5.4). Our results so far are fully generic. In the CoSP frame-
work, a computational soundness result exists for public-key encryption and signatures. Combining this
result with our generic result, we get a self-contained computational soundness result for encryptions
and signatures in RCF (Theorem 2). The result in the CoSP framework imposes certain restrictions on
the use of the cryptographic primitives (e.g., one is not allowed to send secret keys around). To ensure
that these restrictions are met, we introduce a wrapper-library o gighiever for O'I'\)AY. A program that only
invokes functions from o gighicver is guaranteed to satisfy these restrictions.

Sealing-based library (Section 6). In the library oMy, we have internally represented symbolic
cryptography as terms in some datatype. An alternative approach is used in the F7 verification framework
for analyzing RCF/F+#-code. In this approach, a library based on seals is used. Roughly, a
seal consists of a mutable reference and accessor functions. An encryption key pair, e.g., is modeled as
a sealed map. The encryption key is a function that inserts the plaintext into that map and returns
the index of the plaintext. The decryption key is a function that retrieves the plaintext given the index.
Seals have proven well-suited for security analysis by type-checking, since they allow for polymorphic
types. We present a sealing-based library og modeling encryptions and signatures. We show that robust
safety with respect to og implies robust ~»-oM -safety by proving the existence of a simulation between
executions with respect to the two libraries. Combined with [Theorem 2| this immediately returns a
computational soundness result for the sealing-based library (Theorem 4). The advantage of this result
is that programs using og can be analyzed using the F7 type-checker, since the library itself is type-
checked with polymorphic typing annotationd].
Note that this part of our paper is specific to the case of encryptions and signatures. We believe,
however, that the proof can be easily extended to other primitives on a case-by-case basis. Furthermore

IThe F# code of the library with typing annotations is available at [BMTU].



our proof also gives an additional justification to the approach of seals: We reduce security with respect
to seals to security with respect to a term-based abstraction that is considerably simpler because it does
not rely on a shared state.

Restrictions. We briefly discuss the limitations of our result and explain why they are present.

Security properties. We only consider safety properties (described by authorization policies) that
are efficiently decidable (in the sense that for any given trace, it is efficiently decidable whether the
safety property is fulfilled). Both the restriction to safety properties (as opposed to liveness properties)
and the restriction to efficiently decidable propertiesﬁ are state of the art in computational soundness
results. Computational soundness results for properties based on observational equivalence exist [CLCOS];
applying these to RCF would constitute an interesting extension to our work.

Protocol conditions. We impose certain conditions on our protocols. Most prominently, we forbid
to encrypt or send secret keys. (As a side effect, this also avoids so-called key-cycles.) Again, these
conditions are state of the art in computational soundness results, and, if removed there, they can also
be removed from our result.

Authorization policies. Constructors that represent cryptographic operations (such as encryptions)
may not occur in the formulae used to express authorization properties. This is due to the fact that a
statement such as Jxyz.c = enc(x,y, z) does not have a sensible computational interpretation (there is
no efficient way to check it). Since our treatment is generic, also constructors that represent “harmless’
primitives such as pairs are excluded from authorization policies; allowing them should be possible but
would considerably complicate our treatment. We believe, however, that disallowing these constructors
in authorization policies does not constitute a big restriction. In most cases, an authorization policy
will define high-level rules (such as “if P has paid for z, then P may download x”). Statements about
the actual format of messages (e.g., “m is a pair”) will only be used during the symbolic verification of
the high-level properties, e.g., as part of a refinement type. We do not impose any restrictions on the
symbolic verification techniques; arbitrary formulae can be used there as long as they do not appear in
the final authorization policy.

Network channels. We assume that there is only a single public network channel (i.e., only a single
channel to the adversary). This is done for simplicity only, our results could be easily extended to a
setting with more channels. Or, one might emulate several channels by adding a header to all messages
sent over the public channel.

Assumptions and assertions in libraries. One is not allowed to add assumptions and assertions (i.e.,
authorization policies) in the code of the symbolic libraries themselves. This is, however, not really a
restriction since one may use a wrapper library that adds these assumptions and assertions.

)

Alternative approaches. We briefly discuss several possible alternatives to our approach and explain
their difficulties.

Using CryptoVerif. Instead of doing a symbolic security verification and then applying a computa-
tional soundness result, one could perform the analysis directly in the computational setting using a
tool such as CryptoVerif [Bla06]. CryptoVerif is a tool that performs a security analysis directly in the
computational model. To follow this approach in our setting, one would have to describe an encoding
of RCF into CryptoVerif’s calculus. Although this can easily be done for a fragment of RCF, many
features of RCF such as recursion, authorization policies in first-order logic, and concurrencyﬁ are prob-
ably beyond what CryptoVerif can handle. Also, CryptoVerif’s approach probably does not scale well
to complex programs. Finally, one needs to prove that the encoding of RCF into Crypto Verif preserves
all required security properties; such a proof might be not much simpler than the proofs in the present
paper. [BCEZ0§| pursue this approach; they do not, however, prove their encoding sound.

2By efficiently decidable properties, we do not mean that it can be efficiently decided whether a protocol guarantees
that the property is satisfied, we only mean that it can be efficiently decided whether in a given execution, the property
was satisfied.

3CryptoVerif does support concurrency natively, but its model of concurrency assumes a uniform random choice in each
scheduling decision which arguably is an unrealistic assumption in most settings.



Reducing to the applied w-calculus. An alternative approach to obtain computational soundness would
be to embed F# into the applied pi-calculus and to exploit the computational soundness result for the
applied pi-calculus established in [BHU09]. However, establishing this embedding would arguably not
be easier than our approach: it requires to encode datastructures, recursion, the sealing mechanism, and
assertions/assumptions into the applied pi-calculus, including the whole FOL/F logic. Moreover, the
correctness of the encoding has to be proven twice — once symbolically (the proof would follow the same
lines as the proof in [BFGTO06]) and once with respect to the computational semantics.

Removing equality tests on lambda-expressions. A large part of the technical difficulties in our proofs
stem from the fact that RCF allows to do syntactic equality tests on lambda-abstractions. It is not,
however, easily possible to remove these tests: If we change the semantics of RCF, our results become
incompatible with existing tools like the F7 framework. A syntactic restriction that disallows comparisons
of lambda-abstractions does not seem to be possible either; which variables are instantiated with lambda-
abstractions only becomes clear at runtime.

1.2 Related work

The problem of computational soundness was first addressed by Abadi and Rogaway in [AR02] for passive
adversaries and symmetric encryption. The protocol language and security properties handled there

were extended in [AJO1] Lau0Tl, [HLMO03, BCKO05, [ABWO06], but still apply only to passive adversaries.
Subsequent works studied computational soundness against active attacks (e.g., cf. [BPW07, BPW03al,

BPW03b, BP04, [SBB*06, Lau04, MW04, JTT.M05, BHUO9]). Recent works also focused on computational
soundness in the sense of observational equivalence of cryptographic realizations of processes (e.g., [AF06],
[CL.CO8, [CLO8]). All these works do not tackle the computational soundness of protocol implementations.
Concurrently with the announcement of this work at FCC 2009, [Fou09] reported independent work in
progress on a type system for RCF that entails computational soundness.

The analysis of the source code of protocol implementations has recently received increasing atten-
tion. Goubault-Larrecq and Parrennes developed a static analysis technique based on pointer
analysis and clause resolution for cryptographic protocols implemented in C. The analysis is limited to
secrecy properties. Chaki and Datta recently proposed a technique based on software model
checking for the automated verification of secrecy and authentication properties of protocols imple-
mented in C. The analysis provides security proofs for a bounded number of sessions and is effective in
discovering attacks. It was used to check secrecy and authentication properties of the SSL handshake pro-
tocol for configurations of up to three servers and three clients. Bhargavan et al. proposed a technique
for the verification of F# protocol implementations by automatically extracting
ProVerif models [Bla01]. The analysis provides security proofs and, despite its non-compositional nature,
scales remarkably well and was successfully used to verify implementations of real-world cryptographic
protocols such as TLS [BCFZ0S&|. None of these analysis techniques enjoys computational soundness
guarantees. also proposes an embedding of F# into the calculus of CryptoVerif. The embed-
ding is not, however, proven to be sound; also, according to [BCFZ08|, it is difficult to analyze recursive
functions with CryptoVerif.

1.3 Notation

Given a term t, we write ¢{t'/x} for the result of substituting all free occurrences of by t’. We assume
that substitutions are capture avoiding, i.e., bound names are renamed when necessary. We write ¢ for a
list t1,...,t, where the length n of the list is left implicit. Given sets P, C of logical formulae, we write
P Ciff for all '€ C, F is entailed by P.

2 RCF (review)

This section outlines the Refined Concurrent FPC [BBET08|, a simple core calculus extending the Fixed
Point Calculus [Gun92] with refinement types and concurrency. Although very simple, this calculus is



a,b,c name

h constructor
M,N = value
T,Y, 2 variable
O unit
Av. A function
(M,N) pair
h M constructor application

A B =

M

M N
M=N
letxz=Ain B

let (x,y) = M in A

match M with h x then A else B
va.A

AT B

alM

a?

assume F'

assert I

Figure 2: Syntax of RCF values and expressions

STRUCT REFL
STRUCT TRANS
STRUCT LET

STRUCT RES

STRUCT FORK 1
STRUCT FORK 2
STRUCT FORK ()
STRUCT Msa ()
STRUCT ASSUME ()
STRUCT RES FORK 1
STrRUCT RES FORK 2
STRUCT RES LET
STRUCT FORK ASSsocC
STRUCT ForKk CoMM
STRUCT FORK LET

A=A"if A=A and A ' = A"
letz=AinB=letzr=A"inB,if A=A
va.A=va A, if A=A
ArB=A'T Bjif A= A
BrA=Br AitA=A
OrA=A

alM =alMT ()

assume C = assume C' T ()

AT (va.A) =va. A'T Ajif a & fn(A)
va. AT A =va. Ar Ajif a & fn(A)
let z = va.Ain B=valetz = Ain B,if a & fn(B)
(AT AHr A"
(AT AHr A"
etz =(Ar A)inB= AT (letx=A"in B)

AP (AP A"
(A’ A)r A”

Figure 3: Structural equivalence relation A = A’

expressive enough to encode a large part of F# [BBFT08|.

2.1 Syntax and semantics

expression

value

function application
syntactic equality

let

pair split

constructor match
restriction

fork

transmission of M on channel a
receive message off channel
assumption of formula F
assertion of formula F

The set of wvalues is composed of names, variables, unit, functions, pairs, and type constructors (cf.
[Figure 2)). Names are generated at run-time and are only used as channel identifiers, while variables are
place-holders for values. Unit, functions, and pairs are standard. While RCF originally includes only
three type constructors (namely, introduction forms for union and recursive types), we extend the syntax
of the calculus to an arbitrary set of constructors.

Conditionals are encoded using the following syntactic sugar: true := inl(), false := inr(), and if M =
N then A else B abbreviates let y = (M = N) in match y with inl 2 then A else B for some fresh z,y.

An expression represents a concurrent computation that may reduce to a value, or may diverge. The
semantics of expressions is defined by a structural equivalence relation = and a reduction relation —.

4The equivalence relation = considered in this paper is the extension of the heating relation A = B proposed in [BBFT08]|
where all heating rules are made symmetric. In Appendix[Al we prove that making the heating relation symmetric is sound,

i.e., it does not affect the safety of expressions.



RED FunN (Az.A) N — A{N/x}

RED SpLIT let (xhxg) = (N17N2) in A — A{Nl/ml}{Ng/xg}
RED MATCH match M with h « then Aelse B — A{N/z} i M :.h N

B otherwise
ReD EqQ M=N [ tue AEM=N

false otherwise
RED Comm alM 7 a? - M
RED ASSERT  assert C - ()
RED LET VAL letz=Min A — A{M/z}
RED LET letz=Ain B —letz=A"inB, if A— A
RED RES va.A — va. A, if A— A
REp Fork 1 AT B — A'T B, if A— A
RED FOorRk 2 BT A —Br A, if A— A
RED STRUCT A — A, if A=B,B— B B =A

Figure 4: Reduction relation A — A’

The former enables convenient rearrangements of expressions, while the latter describes the semantics of
RCF commands.

Values are irreducible. The semantics of function applications, conditionals, let commands, pair splits,
and constructor matches is standard. Intuitively, the restriction va.A generates a globally fresh channel
a that can only be used in A and the name a is bound in A. The expression A ' B evaluates A and
B in parallel, and returns the result of B (the result of A is discarded). The expression a!M outputs
M on channel a and reduces to the unit value (). The evaluation of a? blocks until some message M is
available on channel a, removes M from the channel, and then returns M.

The expressions assume F' and assert F represent logical assumptions and assertions for modeling
security policies. The intended meaning is that at any point of the execution, the assertions are entailed
by the assumptions. The formulae F are specified in FOL/F [BBET08|, a variant of first-order logic.

More precisely, the formulae F' occurring in an RCF-expressions are formulae in the logic FOL/F,
a variant of first order logic extended with the concept of syntactic function symbols. For syntactic
function symbols f # f’, we have the additional axioms F (f(z) = f(z')) = = = 2’ (F Injective)
and F f(z) # f'(z’) (F Distinct). All syntactic elements of RCF except for variables (e.g., lambda-
abstractions, names, constructors) are encoded as (possibly nullary) syntactic function symbols in FOL/F-
formulae. RCF-variables are identified with FOL/F-variables. For details, see [BBFT08].

The equivalence relation = introduce a normal form for RCF-expressions, a structure. A structure is
an expression of the form

S .= va. (Hie[l’m]assume E r Hje[l,n]cj!Mj r er[l’o]ﬁk{ek})

where ej is any expression apart from a let, restriction, fork, message send, or an assumption and
L:={}|letz =L in B. Notice that any expression is structurally equivalent to a structure.

The FOL/F-formulae F; in S we call the active assumptions, and any FOL/F-formula F' with e; =
assert F' for some i we call the active assertions of S. We can now formalize the fact that the assumptions
follow from the assertions in the execution of an RCF expression:

RCF expressions can be transformed by structural equivalence into a normal form, which is called
a structure and consists of a sequence of restrictions followed by a parallel composition of assumptions,
outputs, and lets. These assumptions and the assertions ready to be reduced are called active. Intuitively,
an expression is safe if all active assertions are entailed by the active assumptions.

Definition 1 (—-safety) A structure S is statically safe iff P+ C where P are the active assumptions
and C the active assertions of S.



An expression A is —-safe if for all structures S such that A —* S, we have that S is statically safe.
o

When reasoning about implementations of cryptographic protocols, we are interested in the safety of
programs executed in parallel with an arbitrary attacker. This property is called robust safety.

Definition 2 (Opponents and robust —-safety) An expression O is an opponent if and only if O
is closed and O contains no assertions. A closed expression A is robustly —-safe if and only if the
application O A is —-safe for all opponents O. o

The notion of robust —-safety is the same as the robust safety defined in [BBET08|. Robust —-safety
can be automatically verified using the F7 type checker.

In the following, we will sometimes need to restrict our attention to programs that only use a certain
subset of the set of all constructors. For this, we assume that the set of RCF constructors is partitioned
into public constructors and private constructors. Private constructors are usually used inside a library.
Note however, that the semantics of RCF treats private and public constructors in the same way. An RCF
expression that does not contain private constructors (neither in constructor applications nor in pattern-
matches) is called pc-free. We call an RCF-expression A mpe-free (for match-private-constructor-free)
ifft A = Clhity,...,hnty] where h; are private constructors and C' is a context that does not contain
subterms of the form match - with h - then - else for private constructors h. (That is, a mpc-free
expression may have pattern matches using private constructors only below private constructors.) We
call an RCF-expression pure if it does not contain assumptions, assertions, outputs (M!N), inputs (M?),
or forks (M I N).

Furthermore, we call a FOL/F-function symbol forbidden if it is the function symbol representing an
RCF-lambda-abstraction or a private RCF-constructor.

3 CoSP Framework (review)

The computational soundness proof developed in this paper follows CoSP [BHUQ9], a general framework
for conducting computational soundness proofs of symbolic cryptography and for embedding these proofs
into process calculi. CoSP enables proving computational soundness results in a conceptually modular
and generic way: every computational soundness proof for a cryptographic abstraction phrased in CoSP
automatically holds for all embedded calculi, and the process of embedding process calculi is conceptually
decoupled from computational soundness proofs.

CoSP provides a general symbolic model for expressing cryptographic abstractions. We first introduce
some central concepts such as constructors, destructors, and deduction relations.

Definition 3 (CoSP terms) A constructor f is a symbol with a (possibly zero) arity. We write f/n € C
to denote that C contains a constructor f with arity n. A nonce n is a symbol with zero arity. A message
type T over C and N is a set of terms over constructors C and nonces N. A destructor d of arity n,

written d/n, over a message type T is a partial map T™ — T. If d is undefined on ti,...,t,, we write
d(ty,...,tn) = L. o

To unify the notations for constructors, destructors, and nonces, we define the partial function evals :
T™ — T as follows: If f is a constructor or nonce, evals(t1, ..., t,) :=f(t1,...,t,) if f(t1,...,t,) € T and
evalg(ty,...,tn) := L otherwise. If f is a destructor, evale(ty, ..., t,) :=f(t1, ..., tn) if f(t1,...,tn) # L
and evals(ty,...,t,) := L otherwise.

A deduction relation be.op between 27 and T formalizes which terms can be deduced from other
terms. The intuition of S Fcogp m for S € T and m € T is that the term m can be deduced from the
terms in S.

5Tn RCF, every construct from the language (including lambda-abstractions) is represented in FOL/F formulae by a
special function symbol; see the full version of [BBFT08].



Definition 4 (Deduction relation) A deduction relation bFc.sp over a message type T is a relation
between 27 and T. o

The constructors, destructors, and nonces, together with the message type and the deduction relation
form a symbolic model. Such a symbolic model describes a particular Dolev-Yao-style theory.

Definition 5 (Symbolic model) A symbolic model M = (C,N, T,D,Fc.sp) consists of a set of con-
structors C, a set of nonces N, a message type T over C and N with N C T, a set of destructors D over
T, and a deduction relation c.sp over T. o

A CoSP protocol 11 is defined as a tree with labelled nodes and edges. We distinguish computation
nodes, which describe constructor applications, destructors applications, and nonce creations, output and
input nodes, which describe communication, and control nodes, which allow the adversary to influence the
control flow of the protocol. Computation and output nodes refer to earlier computation and input nodes;
the messages computed at these earlier nodes are then taken as arguments by the constructor/destructor
applications or sent to the adversary.

For CoSP protocols, both a symbolic and a computational execution are defined by traversing
the tree. In the symbolic execution, the computation nodes operate on terms, and the input/output
nodes receive/send terms to the (symbolic) adversary. The successors of control nodes are chosen non-
deterministically. In the computational execution, the computation nodes operate on bitstrings (us-
ing a computational implementation Impl), and the input/output nodes receive/send bitstrings to the
(polynomial-time) adversary. The adversary chooses the successors of control nodes.

Definition 6 (CoSP protocol) A CoSP protocol II is a tree with a distinguished root and labels on
both edges and nodes. Each node has a unique identifier v and one of the following types@

e Computation nodes are annotated with a constructor, destructors, or nonce f/n together with the
identifiers of n (not necessarily distinct) nodes. Computation nodes have exactly two successors;
the corresponding edges are labeled with yes and no, respectively.

e Output nodes are annotated with the identifier of one node. An output node has exactly one
successor.

e Input nodes have no further annotation. An input node has exactly one successor.

e Control nodes are annotated with a bitstring [. A control node has at least one and up to countably
many successors annotated with distinct bitstrings I € {0,1}*. (We call | the out-metadata and I’
the in-metadata.)

If a node v contains an identifier v in its annotation, then v’ has to be on the path from the root to
v (including the root, excluding v), and v/ must be a computation node or input node. In case V' is a
computation node, the path from v’ to v has to additionally go through the outgoing edge of v/ with label
yes. o

Definition 7 (Symbolic execution) Let a symbolic model (C,N, T,D,Fc.sp) and a CoSP protocol 11
be given. A full trace is a (finite) list of tuples (Si,vi, fi) such that the following conditions hold:
e Correct start: S; = @, vy is the root of 11, f1 is a totally undefined partial function mapping node
identifiers to terms.
e Valid transition: For every two consecutive tuples (S,v, ) and (S’,V', ') in the list, let U be the
node identifiers in the annotation of v and define t through t; := f(7;). We have:

— If v is a computation node with constructor, destructor or nonce f, then S’ = S. If m :=
eval¢(t) # L, ' is the yes-successor of v in 11, and f' = f(v:=m). If m = L, then v/’ is the
no-successor of v and f' = f.

— If v is an input node, then S' = S and V' is the successor of v in Il and there exists an m
with S Feosp m and f' = f(v:=m).

— If v is an output node, then S' = S U {t,}, ' is the successor of v in Il and f' = f.

6Note in [BHUQY|, there is an additional type of node, the non-deterministic node. We have omitted the non-
deterministic nodes here because we do not use them in the CoSP protocols constructed in this paper.
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A list of node identifiers (v;) is a node trace if there is a full trace with these node identifiers. o

Definition 8 (Computational implementation) Let a symbolic model M = (C,N,T,D,Fc,cp) be
given. A computational implementation of M is a family of functions Impl = (Impl,)zecupun Such
that Tmpl; for f/n € CUD is a partial deterministic function N x ({0,1}*)" — {0,1}*, and Impl, for
n € N is a total probabilistic function with domain N and range {0,1}* (i.e., it specifies a probability dis-
tribution on bitstrings that depends on its argument). The first argument of Tmple and Impl represents
the security parameter.

All functions Impl; have to be computable in deterministic polynomial-time, and all Impl, have to be
computable in probabilistic polynomial-time. o

Definition 9 (Computational execution) Let a symbolic model M = (C,N, T, D, Fcosp), a computa-
tional implementation Impl of M, and a CoSP protocol 11 be given. Let a probabilistic polynomial-time
interactive machine E (the adversary) be given (polynomial-time in the sense that the number of steps
in all activations are bounded in the length of the first input of E), and let p be a polynomial. We de-
fine a probability distribution Nodesf,,ylmpLH’E(k), the computational node trace, on (finite) lists of node
identifiers (v;) according to the following probabilistic algorithm (both the algorithm and E are run on
input k):
e Initial state: v := v is the root of II. Let f be an initially empty partial function from node
identifiers to bitstrings, and let n be an initially empty partial function from N to bitstrings.
e Fori=2,3,... do the following:
— Let v be the node identifiers in the annotation of v. m; := f(v;).
— Proceed depending on the type of node v:
« If v is a computation node with nonce n € N: Let m' := n(N) if n(N) # L and sample
m’ according to Impl, (k) otherwise. Let v' be the yes-successor of v, f' := f(v :=m'),
and n' :=n(N:=m'). Letv:=v', f:=f and n:=n'.
x If v is a computation node with constructor or destructor f, then m’ := Imple(k,m). If
m' # L, then V' is the yes-successor of v, if m’ = L, then V' is the no-successor of v.
Let f':= f(v:=m). Letv:=1" and f:= f'.
x If v is an input node, ask for a bitstring m from E. Abort the loop if E halts. Let v/ be
the successor of v. Let f := f(v:=m) and v :=1'.
x If v is an output node, send m, to E. Abort the loop if E halts. Let V' be the successor
of v. Letv:=1".
x If v is a control node, annotated with out-metadata I, send | to E. Abort the loop if E
halts. Upon receiving an answer l’, let v/ be the successor of v along the edge labeled '
(or the lexicographically smallest edge if there is no edge with label ). Let v :=1'.
— Lety; :=v.
— Let len be the number of nodes from the root to v plus the total length of all bitstrings in the
range of f. If len > p(k), stop.
o

Definition 10 (Trace property) A trace property p is an efficiently decidable and prefiz-closed set
of (finite) lists of node identifiers.

Let M = (C,N, T,D,Fcosp) be a symbolic model and I1 a CoSP protocol. Then II symbolically satisfies
a trace property p iff every node trace of 11 is in p.

Let Tmpl be a computational implementation of M and let II be a CoSP protocol. Then (II, Impl)
computationally satisfies a trace property @ iff for all probabilistic polynomial-time interactive machines
E and all polynomials p, NOdesz,Impl,n,E(k) € p with overwhelming probability. o

Definition 11 (Computational soundness) A computational implementation Impl of a symbolic
model M = (C,N, T,D,Fc,sp) is computationally sound for a class P of CoSP protocols iff for every
trace property o and for every efficient CoSP protocol 11, we have that (II,Impl) computationally satis-
fies p whenever 11 symbolically satisfies p and I1 € P . o
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4 The Dolev-Yao library

In this paper, we do not restrict our attention to a specific symbolic library. We instead provide a
computational soundness result for any symbolic library fulfilling certain conditions that we detail in
this section.

4.1 The library

We first define a general Dolev-Yao model, which is a symbolic model subject to certain natural restric-
tions.

Definition 12 (DY Model) We say that a symbolic model M = (C,D,N, T,Fc,sp) is a DY model if
N = NgWNp for countably infinite Ng, Np, and equals/2 € D where equals(x, x) := x and equals(z,y) := L
for © # vy, and boosp is the smallest relation such that m € S = S beosp m, n € Ng = S Foosp N,
and such that for any constructor or destructor f/n € CUD and for any t1,...,t, € T satisfying
Vi € [1,n].S Feosp ti and L # evale(ty, ... t,) € T, we have S Feoosp f(t1, ... th). o

In the following, we will only reason about DY models. Intuitively, in a DY library each CoSP term m is
represented by message M, where message is a private constructor that tags all values which the library
operates on and M is an encoding of m. CoSP constructors are represented by RCF constructors and
nonces are represented by RCF names. For each constructor and destructor f, the library exports a func-
tion libs such that o (lib) (message My, ... ,message M,,) returns some message M if eval¢(my,...,m;)
returns m, or none if evals(my,..., m,) returns L. In addition, the library exports a function nonce that
picks a fresh name (to be used as a nonce) and functions send and recv for sending and receiving terms
of the form message M over a public channel.

For example, if we have a symbolic model containing encryptions and decryptions (such as the
one presented in [Section 5.4), we would represent a ciphertext with key ek(k) and randomness r as
message(enc(ek(k), m, r)). The decryption function in the library would then be defined by oM\, (libgec) :=
Az.match x with (message(dk(y)), message(enc(ek(y), z,w))) then some%nessage(z)) else none. A nonce
would be represented as message(nonce(Az.alx)) for some fresh name a

Instead of giving a definition that is specific to a particular DY model, we will give a general definition
of a DY library for a DY model. In the following, we assume an arbitrary embedding ¢ of terms T into
the set of closed RCF values. We further assume a fixed name a.p,, used internally by the library
for communication and we assume that there is a value-context C,[] (a value with a hole) such that
{C\,[a] : a # achan is a name} = ¢(N).

Definition 13 (DY Library) A DY library for M = (C,D,N,T,Fc.sp) is a substitution ol from
variables to RCF functions satisfying the following conditions:

e Let message be a private constructor.

e domoM, = {lib¢ | f € CUD} U {nonce, send, recv}.

e oM, (libf) is a pure function such that the following holds for all my,...,m, € T: If m =
evalg(my,...,m,) # L, then ol (lib¢) (message t(my),...,message t(m,)) —* some message +(m).
If m = 1, then oM (libs) (message t(my),...,message t(m,)) —* none. In all other cases,

oM. (libs) (...) is stuck.

e oM, (nonce) = fun _ — va.message C,[a].

e oM, (send) = (fun 2 — (match x with message _ then a.pn.n!message w else stuck)). Here stuck is a
pure diverging RCF expression.

o oM (recv) =fun _ — acnan?

fo(range(oM,)) = 0 and fn(range(oMy)) = achan-

e For any variable x € dom oMy, and any mpe-free value M # x, we have oy (z) # MaMy. (We
call a substitution satisfying this condition condition equality-friendly.) o

"For syntactic reasons, RCF forbids to simply write message(nonce(a)) if a is a name.
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The requirement that oMy is equality-friendly is a technical condition to ensure that the outcome
of equality-tests in a program execution does not depend on the internal code of the library functions.
For example, if we had that oM\ (libs,) = (A\z.oMy (libs,)7), the test libs, = (\x.libs,) would succeed in
a program linked to oM,. To avoid such dependencies on the internal code of the library, we introduce
equality-friendliness. Note that equality-friendliness is only necessary because RCF allows syntactic
equality tests on lambda-abstractions.

Equality-friendliness can be enforced, e.g., by requiring that all o(f) are expressions of the form
Az.(magic; A) for some RCF expression A where magic := (Az.match z with message y then () else ()).

To interface an expression A with a library oM, we use the expression AoM,,. We will only consider
programs A such that fn(A) = () and fo(A) C dom o, .

In oM, , all messages M are protected by the private constructor message. However, if an opponent
would be allowed to perform a pattern match on message, he could get the internal representation of M
and thus, e.g., extract the plaintext from an encryption. Similarly, an adversary applying message could
produce invalid messages. Thus, when using UI'SAY, we have to restrict ourselves to pc-free opponents.
The following variant of robust —-safety models this.

Definition 14 (Robust —-o-safety) Let o be a substitution. We call an RCF expression a o-opponent
iff fo(O) C domo and O is pe-free and contains neither assertions nor assumptions and achan ¢ frn(O).

An RCF expression A with fu(A) C domo is robustly —-o-safe iff the application (O A)o is —-safe
for all o-opponents O. o

Note that in contrast to [Definition 2, we explicitly apply the substitution o representing the library
to the opponent. This is because a pc-free opponent has to invoke library functions in order to perform
encryptions, outputs, etc. Furthermore, we will also need that the programs we analyze operate on terms
tagged by message only through the library. In order to enforce this (and other invariants that will be
used in various locations in the proofs) we introduce the following well-formedness condition:

Definition 15 Let A be an RCF expression and M = (C,N, T,D,) a DY model. We say M + A iff
fo(A) C {libe : f € CUD} U {nonce, send, recv} and achan ¢ fn(A) and A is pc-free and the FOL/F-
formulae in A do not contain forbidden function symbols. o

4.2 Dolev-Yao transition relation

The COSP framework assumes the atomicity of cryptographic operations. In general, however, Dolev-
Yao libraries may define these operations by a sequence of commands, which may lead to non-atomic
computations. For this reason, a convenient tool for the embedding of a language in COSP is the
definition of a symbolic semantics where cryptographic operations are executed atomically. This is
achieved by defining a new reduction relation A ~» B (cf. [Figure 5), which differs from the standard
reduction relation A — B in that cryptographic operations are atomically performed.

Using the definition of ~», we can reformulate the notion of safety. Our formulation is justified by

[Lemma. Tl below.

Definition 16 (~>-o-Safety) A structure S is statically o-safe iff Po = Co where P are the active
assumptions and C the active assertions of S.
An expression A is ~-o-safe if for all S such that A ~~* S we have that S is statically o-safe. o

In contrast to [Definition 14] when defining robust safety with respect to ~, we to not apply o to the
opponent or the program, because o is hard-coded into ~-:

Definition 17 (Robust ~+-o-safety) An RCF expression A with fu(A) C domo is robustly ~»-o-safe
iff the application O A is ~>-o-safe for all o-opponents O. o

A necessary ingredient for the computational soundness result is the proof that if a program is —-safe
then it is also ~-oM -safe.
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(Ax.A)N ~ A{N/z}
Iet ($1,$2) = (N17N2) in A~ A{N1/$’1,N2/$’2}
A{N/x} if M =h N for some N

match M with h x then A else B ~
B otherwise

M_Nw{true if M =N
false otherwise
alM 7 a?~ M
assert C' ~ ()
letx = Min A~ A{M/z}

A~ A =>letz=AinB~letz=A"inB
A~ A= va.A -~ va Al
A~ A" = (AP B)~ (A'7 B)
A~ A = (Br A)~ (Br A
A=BwB =A== A~ A
send (message M) ~ Gchan!message M
recv N ~ Qehan?

nonce M ~ va.message C,[a]

oy (libf) M —* N = libs M ~> N (libs € dom oy \{send, recv, nonce})

Figure 5: Reduction relation A ~~ B

Lemma 1 Let A be pe-free. If Aol is —-safe then A is ~-oM\, -safe.

Proof. By definition of —-safety and ~-oM, -safety, we only have to show that A ~* B implies Ao}, —*
BolM,,. The proof is by structural induction on the derivation of A ~»* B. The base case is when
A = B and no reduction step is applied, and the proof is straightforward. The induction cases are also
straightforward, except for the equality, match, and library function application rules.

Equality. Since — tests MoM,, = NoM,, while ~ tests M = N, we have to prove that MoM, =
N o{‘)"Y < M = N. The < direction is straightforward. For proving the = direction, we actually prove
that M # N = MoM,, # NoM .

Since A is pc-free, we can easily see that B is mpc-free and therefore M and N are mpc-free. Now
we proceed by structural induction on M. We first reason on the base cases:

M = a The only interesting case is when N = x. By [Definition 13] range ol is a set of functions, hence
M
opy (%) # a.

M = () Analogous to the previous item.

M = z The proof follows by observing that ol is equality-friendly.
We now reason on the induction cases:

M=hM & N=h N & h#h We clearly have MoM,, # NoM, .

M =hM" & N =h N’ If h is a public constructor, then the proof follows directly from the induction
hypothesis. If h is a private constructor, then we do not know whether M’ and N’ are mpc-free
or not. We do know, however, that they are closed (by an inspection of the ~»-semantics and by

[Definition 13). Therefore MoM,, = M and NoM, = N.
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The remaining cases follow straightforwardly from the induction hypothesis.

Match. We have to show that (i) if match M with h z then C else D ~» C{N/z} (ie., M =
h N for some N and B = C{N/x}) then match Mo¥, with h z then CoMy else DoM, —
C{N/z}oM, and (ii) if match M with h z then C else D ~ D (ie, #IN.M = h N) then
match MoM,, with h = then CoM\, else Do\, — DoM,,. For this, we must show (i) M = h N = MoM,, =
h NoW¥, and (ii) AN.M = h N = AN.Mo¥, = h N. The proof for (i) is straightforward (since ol is
applied on both sides). For proving (ii), we actually prove that VN.M # h N = VN.MoM, # h N.
Since A is pc-free, we can easily see that B is mpc-free and therefore M is mpc-free and h is a public
constructor. Now we proceed by structural induction on M. We first reason on the base cases:

M = a Straightforward.
M = () Straightforward.

M =z Assume by contradiction that IN.zoM, = h N. By [Definition 13} range o is a set of functions,
therefore h N ¢ range oM., which yields a contradiction.

We now reason on the induction cases:
M = h M’ This case is obvious, since the hypothesis VN.M # h N does not hold.

The remaining cases are straightforward.

Application of library functions. We have to show that if f M ~ N, with f € domol,, then
(foM)(MoM,) —* NoM,. We focus on the case f ¢ {send,recv, nonce}, since the other cases are
straightforward. By definition of ~, we have foM\. M —* N. By definition of DY library, this reduction

takes place only if M = (message ¢(m1),...,message t(m,)). By definition of ¢, ¢«(m;) and hence also M
is closed. Similar reasoning shows that N is closed. Hence MoM,, = M and NoM, = N. This concludes
the proof. O

5 Computational soundness

In this section, we present the computational soundness result for Dolev-Yao libraries.

5.1 Definitions

Since RCF only has semantics in the symbolic model (without probabilism and without the notion
of a computational adversary) we need to introduce the notion of a computational execution of RCF
expressions. In the computational execution, we let the adversary have the full control over the scheduling
and all non-deterministic decisions. This models the worst case; a setting in which scheduling decisions
are taken randomly can be reduced to this setting. Our computational execution maintains a state that
consists of the current process S and an environment 7. Cryptographic messages (i.e., bitstrings received
by the adversary or computed by cryptographic operations) are represented in S by free variables. The
bitstrings corresponding to these variables are maintained in the environment 7. In each step of the
execution, the adversary is given the process S (together with a set of equations F that tell him for
which z,y we have n(z) = n(y)), and then can decide which of the different reduction rules from the
RCF semantics should be applied to S. Note that giving S to the adversary does not leak any secrets since
these are only contained in 7. If the adversary requests that a function application libs(z) is executed,
where libs is a function in the DY library, the computational implementation Impl¢ is used to compute
the result of this function application; that bitstring is then stored in 7. Similarly for an application
nonce(). If the adversary requests a function evaluation send(x) the adversary is given the bitstring n(z);
in the case recv(), the adversary provides a bitstring that is then stored in 7.
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The following definition formalizes the computational execution of RCF expressions. We assume that
each RCF expression has a uniqu normal form (a structure) with the property that bound names are
distinct from free names (and similarly for variables). We also assume that the bound names of the
normal form are distinct from the free names of oM. We follow the convention that “fresh variable”
or “name” means a variable or name that does not occur in any of the variables maintained by the
algorithm, nor in oMy,. The parts in angle brackets ({---)) can be ignored, as they define the symbolic
RCF-execution which will be discussed in the next section.

Definition 18 (Computational (symbolic) RCF-execution) Let M be a DY model and let Tmpl
be a computational implementation for M. Let A be an expression such that M+ A, and let Adv be
an interactive machine called the adversary. (Adv is a non-deterministic machine that only sends m
if S Fcosp m where S are the messages sent to Adv so far.) We define the computational (symbolic)
RCF-execution as an interactive machine Execgnpl(lk) (SExecn) that takes a security parameter k as
argument (that does not take any argument) and interacts with Adv:

e Start: Let 1 be a totally undefined partial function mapping variables to bitstrings (terms). (n
provides an environment giving bitstring (term) interpretation to the variables occurring in the
current expression.)

e Main Loop: Let § = va;...aq. (_EH assume C; T _G{I c!M; T (k 11_1 Lr{er})) be the normal
. Jjel...n cl...o

1€l...m
form of A. Let E:={x =y :xz # vy, n(r) = n(y)} be a set of formulae. Send (S,E) to the
adversary and proceed depending on the type of message received from Adv as follows:

— When receiving (sync, j, k) from Adv, if e, = ¢;7, then set A := B, where B is the expression
obtained from S by removing c¢;\M; and replacing Lr{er} by Lx{M,};

— When receiving (step,k):

x If e, = (Y1,...,Yn) with x = libs for some constructor or destructor f of arity n and
Y1y, Yn € domn: Let m = Impli(n(y1), ..., n(yn)) {(m = evals(n(y1),...,n(yn))). If
m# L, setn:=nW(z:=m) for fresh z and m' := somez. If m = L, set n :==n and
m’ :=none. Set A:= S{Lx{m'}/Li{er}};

* If ex = nonce M, then pick r + Impl (1¥) for some n € N A% (let v be a fresh protocol
nonce) and set n:=nW (z:=7) for fresh z and A := S{Ly{z}/Lr{ex}}.

« If e, = recv M, then request a bitstring (term) m from the adversary and setn := nW(z :=
m) for fresh z and A := S{Lx{z}/Lr{er}}.

x If e, = send x with x € dommn: Send n(x) to the adversary and set A =
S{L{O}/Lr{er}}

x If e, = (Ax.B) N, let A:= S{Li{B{N/x}}/Lr{er}}.

« If Lr{er} = L'{letx = M in B}: Set A:= S{Li{B{M/x}}/Li{ex}}.

x If e, = (M = N): For every x € domp, let p(z) be the lexicographically first y € dommn
with n(z) = n(y) M 1 Mpo¥, = Npo¥,, let b := true, otherwise let b := false. Set
A= S{ﬁk{b}/ﬁk{ek}}.

x If e, = let (x,y) = (M1, M2) in B: Set A := S{L{B{M1/x,Ms/y}}/Lir{er}}-

« If e, = match M with h x then Bj else By: If M is of the form h N, let B := B1{N/x},
otherwise let B := By. Set A := S{Li{B}/Lir{er}}-

« If e, = assert C: Set A:= S{Lx{0}/Lr{er}}.

— If none of these cases apply, do nothing. o

8The uniqueness of normal forms can be achieved, for instance, by imposing a lexicographical order on structures.

9The enc-sig-implementation conditions ensure that Impln(lk) does not depend on the choice of n.

10We use p to unify variables that refer to the same messages. This is necessary because the test MO”\SY = NO”\SY without
p would treat these variables as distinct terms.
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Notice that the execution of Execzmpl(lk) maintains the invariant that all bound variables and names

in A are pairwise distinct and that they are distinct from the variables in the domain of 7. For a
given polynomial-time interactive machine Adv, a closed expression A, and a polynomial p, we let

TmcefleﬁA’p(k) denote the list of pairs (S, E) output by Execi™'(1%) (at the beginning of each loop

iteration) within the first p(k) computation steps (jointly counted for Adv(1*) and Execzmpl(lk)).
Definition 19 (Statical equation-o-safety) Let o be a substitution. A pair (S, E) of a structure S
and a set E of equalities between wvariables is statically equation-o-safe iff P, eqs = C where P and

C are the active assumptions and assertions of S, vars := fo(E) Udomo, exterms is the set of all
FOL/F-subterms h(t) of P,C with h forbidden and t syntactic closed, and

eqs ;= EU{z #2" :x,2' €vars, x #2', (x=12") ¢ E}
U{Vy.x # c(y) : © € vars, c non-forbidden syntactic function symbol}
U{z #t:x €vars, t € exterms}. o

We add the facts egs in order to tell the logic what is known about the environment 7 in the
computational execution. More precisely, we have © = 2’ whenever n(z) = n(z’) and = # 2/ otherwise.
Furthermore, we have equations x # &’ when z # 2’ refer to library functions (intuitively, this is justified
because we assume all our libraries to be equality-friendly), and x # 2’ when z is a library function and
2’ refers to the environment (i.e., represents a bitstring). The equations x # t with ¢ € exterms are best
explained by an example: Let Ay := let x = nonce in let ' = (Az.z) in assume (x = z’); assert (false).
Then Ay is robustly —-opy-safe: Agoly reduces to assume (oM (nonce) = Az.z) I assert (false) and
we have nonceoM, = (A\z.z) I false (this is implied by equality-friendliness). In the computational
execution, however, we get the process A = assume (nonce = Az.z) ' assert (false), thus for robust
computational safety, we need that nonce = (A\z.z), egs F false holds. For this, we need the inequalities
x # t in egs. Notice that these extra inequalities are necessary only because the logic allows us to
compare lambda-abstractions syntactically.

Definition 20 (Robust computational safety) Let Impl be a computational implementation. Let
A be an expression with M F A. We say that A is robustly computationally safe using
Impl if for all polynomial-time interactive machines Adv and all polynomials p, we have that
Prlall components of Trace ag,a(1%) are statically equation-o -safe] is overwhelming in k. o

At the first glance, it may seem strange that the definition of robust computational safety is
parametrized by the symbolic library oM\,. An inspection of [Definition 19, however, reveals that the
definition only depends on the domain of oMy, i.e., on the set of cryptographic operations available to A.

5.2 Symbolic vs. computational execution

As described in we now introduce an intermediate semantics, the symbolic RCF-execution.
This execution is specified in [Definition 18§ (by reading the parts inside the (...)), and is the exact
analogue to the computational RCF-execution, except that it performs symbolic operations instead of
computational ones.

We write SExecy in the set of lists of pairs (S, E) that can be sent in the symbolic execution. Like for
the computational RCF-execution, these pairs (S, E) contain the information needed to check whether
the active assumptions entail the active assertions. This allows us to express robust safety in terms of
the symbolic RCF-execution:

Definition 21 (Robust SExec-safety) Let A be an expression and M a DY model such that M  A.
We say that A is robustly SErec-safe iff for any ((S1,E1),...) € SEzeca, we have that (S;, E;) is

statically equation-oMy -safe for all i. o
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We now proceed to show that robust ~-oM -safety implies robust SExec-safety. For this, we first
need a bit of notation:

We call a name a a protocol name if C,[a] € «(Np) and an adversary name if C,[a] € «(Ng). Note
that every name is either a protocol name or an adversary name. For an expression () and a substitution
o from variables to CoSP terms, we say that @ is valid for ¢ if () does not contain assume or assert, )
is pe-free, fn(Q) = @, and fv(Q) C dom pUdom oMy, and all its free names are adversary names. Let A
denote the process from the symbolic execution before the current main loop, let ¢ denote a substitution

mapping x1,...,x; to the messages sent to the adversary. Let ¢, (x) := message ¢(z). For n € N, let
tn(n) be the name a with C,(a) = ¢(n). Let n be the list of all nonces chosen by the protocol, and
n:=y(n).

Let A, ¢, N',n/ denote the values of A, ¢, N,n after the current iteration, and let Ao, ¢o, Ny, n,
denote the values of A, p, N, n before the first iteration. We now show that each iteration of the symbolic
execution can be simulated in the RCF semantics by choosing a suitable JI'\)/'Y—opponent.

Lemma 2 Consider an iteration of the main loop of the symbolic execution with M = Ay. Then for all
RCF expressions Q' wvalid for ¢, there is a substitution @ and an RCF expression Q walid for ¢ such
that

v (Q(tm ©9) T Altm 01)) ~" v/ (Q'(1m 0 @) I Al (1 0 7).

Proof. By induction over the number of iterations of the main loop, and using the fact that M - Ay, we
get that A is closed, pc-free, and does not contain a.pqap-

We distinguish the cases in [Definition 18

e The adversary sends (sync,j, k): Then n
the lemma holds with @ := Q’.

n,o=¢,n=n". And A(tm 0on) ~ A (tmon). So

e The adversary sends (step,k) and ex = = (y1,...,yn) with & = libs for some constructor or
destructor f of arity n and yi1,...,yn, € domn and m := eval¢(n(y1),...,n7(yn)) # L: Then
7 =nW (z+— m) for fresh z and A’ := A{Li{some z}/L;{ex}}. Furthermore n’ = n and ¢ = ¢’.
Let m; := n(y;). Then

(Y1, -+, Yn))(tm on) = libs(message t(my), ..., message t(my,))
~> some(message +(m)) = (some z)(tm 0 7)
and hence A(iy, 0n) ~» A'(tm o n). So the lemma holds with @ := Q.

e The adversary sends (step,k) and ex = = (y1,...,yn) with & = libs for some constructor or
destructor f of arity n and y1,...,y, € domn and eval¢(n(y1),...,m(yn)) = L: Then n' = n,
p=¢,n=n',and A" = A{Li{none}/Li{er}}. Let m; := n(y;). Then

(x(y1,--->Yn))(tm o) = libs(message t(m1), ..., message t(my)) ~> none = none(ty, on)
and hence A(ty, o) ~» A'(tym, o). So the lemma holds with Q := Q.

e The adversary sends (step, k) and e = nonce M: Then ¢ = ¢’ and ¥’ = nW (z := r) for a fresh
variable z and a fresh protocol nonce r. Furthermore A’ = A{Ly{z}/Lr{exr}}. Since r is a protocol
nonce, (r) = C,[a] for some fresh protocol name a. Hence a ¢ fn(oMy) and n’ = na. We have

ek (tm om) = nonce (M (1, 01m)) ~ va.message C,la] = va.(z(tm on'))

and hence A(tp, o n)oMy ~ va.A' (1, on')oM,. Since Q is valid, @ does not contain the protocol
name a, so the lemma holds with @ := Q’.
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e The adversary sends (step,k) and ep = recv M and the adversary sends the term m: Then
7 =nW(z:=m)and ¢’ = p and n’ =n and A’ = A{Li{z}/Li{er}}. Furthermore rangep F m.
By induction over the rules defining Fc,sp, we have that for any term ¢ with range ¢ F ¢, there
is a RCF expression e such that e(t, o ) ~* 1, (t) where e obeys the following grammar: e ::=
x;|let xy = ey in ...let x, = e, in libe(x1,...,2,)|a where a is an adversary name, 1 <4 < |p|, and
n is the arity of the constructor or destructor f. Thus there is an RCF expression e,, such that
em(tm 0 p) ~* t,(m). Let y,y" be variables that are not free in Q'. Let Q :=lety = e, inlety’ =
send y in Q’'. Since e,, only contains adversary nonces, () is valid for . We have

Qltm 0 @) T ex(tm on)

=lety =en(tmoy)inlety’ = send yin Q (tm o) recv (M (i 0n))
~*lety = send tm(m) in Q' (tm o @) I recv (M (L, on))

~*let y' = achanltm(m) in Q' (tm 0 @) ¥ achan?

~lety =) inQ (tmow) T tm(m)

> Q' (tm o) T tim(m)

=Q'(tm o @) T 2(tm o)

and thus

v (Q(tm 09) T Altm 01)) " v1.(Q'(tm © ) 7 A'(tm 0 n)) = v’ (Q'(tm 0 ') T A (tm 0 17')).

The adversary sends (step,k) and ey = send M and M € domn: Let m := n(M). Then ¢’ =
oW (xpy1 — m) where n := |dom ¢|. Furthermore n’ =n and ' =n and A’ = A{L{()}/Lr{er}}-
Let Q := let x,,41 = recv() in @Q’. Then

Q(tm o) I ex(tm on)

= let 41 = recv() in Q' (tm 0 @) I’ send(message t(m))
~*let Tpa1 = achan? IN Q' (tm © ©) T achan!(message t(m))
~* let xp41 = message(c(m)) in Q' (tm o) I ()

> Q' (tm o)1 ()

and thus
v (Q(tm 0 @) T At 0m)) ~" v/ (Q (tm 0 @) T A'(tm 0 1))

The adversary sends (step, k) and e, = (Ax.B) N: Thenn=n', p = ¢, n=7". And A(t;, 07) ~
A’(tm 0m). So the lemma holds with @ := Q.

The adversary sends (step,k) and Li{er} = L'{let x = M in B}: Thenn=1n', p = ¢, n =17
And A(iy, 0n) ~ A'(tm 0om). So the lemma holds with @ := Q’.

The adversary sends (step, k) and e, = (M = N) and M p = Np where p(z) is the lexicographically
first y € domn with n(x) = n(y): Then M (¢, 0n) = Mp(tm on) = Np(tm on) = N(tm on). Thus
er(tm on) ~ true and hence A(tp, 0n) ~ A'(ty, o1). So the lemma holds with @ := Q.

The adversary sends (step, k) and e, = (M = N) and Mp # Np where p is as in the previous case.
Assume for contradiction that M (¢, 0 1) = N(tm 0n). Since all terms in the range of ¢,, on are of
the form message M’ and M, N are mpc-free (because A is mpc-free), we have that M and N differ
only in their variables, i.e., that there is a context C with M = Clx1,...,z,] and N = Clx}, ..., 2 ].
Furthermore, for all ¢ we have ¢y, o n(z;) = tm, o n(z}). Since ty, is injective, n(z;) = n(a}). By
definition of p, this implies p(x;) = p(«}). Thus Mp = Np in contradiction to Mp # Np. Thus
M (tm 0n) # N(tm on). It follows that ey (i, o) ~ false and hence A(ty, 0n) ~» A'(tm 0 n). So
the lemma holds with Q := Q’.
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/ /

e The adversary sends (step,k) and e = let (z,y) = (M1, M) in B: Then n =n/, o = ¢', n =17'.
And Ay, 0n) ~» A'(tm om). So the lemma holds with @ := Q’.

e The adversary sends (step, k) and er = match h N with h 2 then Bj else Bo: Then n =n’, ¢ = ¢/,
n=n'". And A(tm on) ~ A (L, on). So the lemma holds with @ := @’'.

e The adversary sends (step,k) and er = match M with h x then Bj else By and M is not of the
form h N for any N: If M ¢ domn, then M (s, on) is not of the form h N. If M € dommn, then
M (1 0 m) is of the form message N’, and since A is mpc-free, h # message and thus message N’
is not of the form h N.

Thus (match M with h = then By else Bs)(tm, 0 1) — Ba(tm on) and hence A(im o n) — A’ (1 o 1).
So the lemma, holds with @ := Q.

e The adversary sends (step, k) and e, = assert C: Then n = n/, ¢ = ¢/, n = n/. Furthermore
er ~ () and hence A(iy, on) ~ A'(tm on). So the lemma holds with @ := Q.

e All other cases: A’ = A, ' =n, ¢ =, n' =n. Thus with Q := @',

v (Q(tm 0 @) T At on))opy = vn/ (Q'(tm 0 ") T A'(tm o 1'))oDY -
O

Lemma 3 Let P,C be sets of FOL/F-formulae. Assume that P and C contain no forbidden function
symbols. Let v be a substitution mapping variables to closed FOL/F-terms. Assume that dom~y C
fu(P,C). Assume that for all x € dom~y we have y(x) = h(t) for forbidden h and syntactic t. Let

eqs :={x=2": 2,2 € dom~, x #2', y(z) =v(@")}U{z # 2" :2,2" € dom~,~(z) # v(z')}
U{Vy. = # c(y) : 2’ € dom~, ¢ non-forbidden syntactic function symbol}.

Then Pyt Cy = P,eqs + C.

Proof. Without loss of generality, we assume that the bound variables and the free variables of P, C, egs
are disjoint. In the following, we will use x to denote variables in dom~, y to denote variables not free
in P,C, f for function symbols, h for forbidden function symbols, ¢ for non-forbidden function symbols,
t for FOL/F-terms, and u for members of the universe U (defined below).

To show that P, eqs - C, it is sufficient to show that for any model M and any environment 1 with
domn = dom~, if M,nE P, eqs then M,n E C. Thus, fix such a model M and such an environment, 7.
We are left to show M,n E C. Let U be the universe of M, and for a non-forbidden function symbol
f, let My denote the interpretation of f in M, and analogously for forbidden function symbols h. (We
treat constants as nullary function symbols, thus we do not need to treat them separately.) We write
M,,(t) for the interpretation of ¢ in the model M under environment 7. If ¢ is closed, we also write M(t)
instead of M, (¢).

By definition of FOL/F, we have that for any syntactic function symbol f, M is injective. Thus
for closed terms t,t' containing only syntactic function symbols, M(t) = M(¢') iff ¢ = t’. Furthermore,
since M, n F egs, n(x) = n(2') iff y(z) = y(2'). Hence M(y(z)) = M(y(a")) iff n(z) = n(a’).

Since M(y(z)) = M(v(2)) iff n(z) = n(z’) for all z,2’, there is a permutation = on {n(x), M(y(z)) :
x € dom~} C U such that w(n(z)) = M(v(z)) for all z. Fix such a permutation 7. We extend 7 to a
permutation on U by setting 7(u) := u for u ¢ {n(z), M(v(z)) : = € dom~} C U. We abbreviate 7(w)
for m(u1),7(uz), ... and analogously for 7—1.

For any c,z, we have (Vy.  # c(y)) € egs. Since M,n E egs by assumption, it follows that
Vu € U. n(z) # M. (u). Furthermore, since M is a FOL/F-model, Yu,u' € U. My(u') # M, (u). Since
for all z, y(z) = h(t) for some h,t, it follows that Yu € U. y(z) # M.(u). Thus Vu € U. M.(u) ¢
{n(z), M(y(x)) : « € dom~}. By definition of 7, this implies

Vu € U. 1(Mc(w)) = M(u). (1)
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We define a model M’. This model M’ has universe U, M/(u) := n(Mc(r""(w))), and M) (u) :=
M, (771 (u)) for predicate symbols p.

It is left to define M} . First note that My, is injective. (By definition of FOL/F, for syntactic h
we have M EVy,y'. h(y) # h(y') = y # ¢/ for any model M.) Thus U x --- x U and range M, have
the same cardinality. Furthermore, as seen above, M(t) = M(t') iff t = ¢’ for closed terms ¢, only
containing syntactic function symbols. Thus we can fix Mj to be some injective function with range
range M}, = range M}, and satisfying: For all h(t) € range~y, we have M} (M'(t)) = My (M(t)).

Claim 1 M’ is a FOL/F-model.

Obviously, M’ is a FOL-model. Thus, to show [Claim 1l we only need to show that for all syntactic
function symbols f # f', the axioms Vy,y'.f(y) # f'(y') (F Disjoint) and Vy,y".f(y) # f(y') =y =¥
(F Injective) are satisfied by M’. Since ./\/l’ is injective by definition both for forbidden and non-
forbidden f, (F Injective) is satisfied. To show that (F Disjoint) is satisfied, we distinguish the cases
(f, £) = (&), (f, ') = (h, 1), and (f, ') = (¢, ') (the case (f, f) = (h,') is analogous). If (f, f') =
(¢c,c'), then range M, Nrange M. = & (since M is a FOL/F-model and ¢ # ¢ are syntactic) and
thus range M/, N range M/, = m(range M.) N w(range M) = 7(&) = @ (since 7 is a permutation on
U). If (f,f') = (h, k'), we have range M) Nrange M}, = range M}, Nrange My, = & by definition of

h, M), and since M is a FOL/F-model and h # h’ are syntactic. If (f, f') = (c,h’), we have that
range M. Nrange My, = & since M is a FOL/F-model and ¢ # h’ are syntactic. By (), we have
that range M. = 7(range M.). Thus range M, N range M/, = 7r(range M.) N range M}, = range M, N
range My, = @ where (x) uses the definition of M/, and Mj},. Thus, for all syntactic function symbols
[ # f', we have range M/; N range M’;, = @. Thus (F Disjoint) is satisfied and holds.

Claim 2 For all environments ( with dom{ N domn = &, and all terms t not containing forbidden
function symbols and fv(t) C domn U dom ¢, we have that m(M,uc(t)) = M (ty).

We show this by structural induction on ¢. We distinguish the following cases:
e Case “t — () m(Myclt) = M Mycl) T a(Molr (M (7)) 2
MM (H'7) = Mo (e(t'y)) = M (ty). Here (x) uses the definition of M;.
e Case “t = h(t')”: This case does not occur because ¢ does not contain forbidden function symbols.
o Case “t = x € domn™ Then 7(Myuc(t)) = m(n(z)) since x € domn and M/ . (ty) = M'(y(z))
since © € dom~y = domy. By definition of 7, m(n(x)) = M(v(x)). Furthermore, since y(z) is of
the form h(t'), we have that M(y(z)) = Mp(M(t')) = M} (M'(t')) = ./\/l’('y(:c)) Summarizing,
T(Mysc(8) = (1(z)) = M(3(2)) = M'(3(2)) = M?,_((£7).
e Case “t = y € dom ™ m(Myuc(t)) = 7(n(y)) = Mer (3):
We have shown [Claim 2]

Claim 3 For all environments ¢ with dom¢ Ndomn = &, and all FOL/F-formulae Q) not containing
forbidden function symbols and fv(Q) C domn U dom ¢, we have that M,(UnE Q iff M',mo(E Q.

We show this by structural induction on ¢t. We distinguish the following cases:

o Case “Q = Q- Qs for - € {A,V,=} Then M,(UnEQ & (M,(UnEQ) - (M,(UnE Q) &
(M monE Q1Y) (M monE Qay) & M',mo( E Qv. (This also covers Q = Q' because —Q’
is syntactic sugar for Q' = false.)

e Case “Q = Oy.Q" with O € {V,3}” For an environment ¢ and a value u € U, we abbreviate
¢(y :=u) by {,. Then

MCUnEQ <<= TuelU. (M,(,UnEQ")

S Ouel Mmool EQy) <= TuecU. (M,m0l, Q)
= OueclU M,(moQ)rw F Q) = M molEOz Q'y
= M 1ok Qy.
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e Case “Q) = false” Then both M,(UnE Q and M’ 7o ( F @ do not hold.
o Case“Q = (t =t/

MnUCEQ &= Myuc(t) = MWUC(t/)
= m(Myuc(t)) = m(Mauc(t)FB M (t7) = Mioc(t7)
=S M rolEFty=ty. <= M 10l E Q.
e Case “Q = p(t) for a predicate symbol p”: We use the abbreviation M,,(t) for M, (t1,t2,...).
MnUCFEQ <= M,(Myuc(t))
5 My (r(Myuc () FBM, (1(Mioc (1))
= M mo(Fp(ty). &= M mo(F Q.

Here (*) uses the definition of M;,.
This shows [Claim 3|

We can now conclude the proof of [Lemma 3l Since M,n E P, we have M’, mon E P~y by[Claim 3| (special
case with ( = @). Since Py F Cv by assumption, it follows that M’, 7 o E C~. By [Claim 3] we get
M,nE C. Since M,nE C was the only remaining goal, P, eqs - C and thus [Lemma. 3] follows. O

Lemma 4 Let P,C be sets of message-free FOL/F-formulae. Assume that fo(P,C)Nbv(P,C) = &. Let
v be a substitution mapping variables to closed FOL/F-terms. Assume that fu(P,C) C dom~. Assume
that for all x, we have y(x) = h(t) for forbidden h and syntactic closed t. Let exterms be the set of
subterms h(t) of P,C such that h is forbidden. Assume that fv(exterms) N bv(P,C) = @ (i.e., the
variables in exterms are not bound). Assume that all t € exterms are syntactic. Assume that for all
x € dom~ and all message-free FOL/F-terms t ¢ dom~y, we have ~(x) # t~y. Let

eqs ={r=a":2#2, v, €dom~,y(z) =)} U{zr#2": 22" € dom~,y(x) # v(z')}
U{Yy.  # c(y) : « € dom~y, c non-forbidden syntactic function symbol}
U{z #t:x € dom~,t € exterms}.

Then Pyt Cv iff P,egs + C.

Proof.  We first show the direction P, eqgs - C = Py F C#v. Since FOL/F is an authorization logic,
P, eqs F C implies Py, eqsy F C~. Since for all z, y(z) is a closed term h(t) containing only syntactic
function symbols, we have - y(z) = (') for v(x) = v(2’) by (FOL Refl), and F ~(x) # ~(a’) for

( ) # ~(2') by (F Disjoint) and (F Injective), and F Vy. v(z) # c(y ) for all ¢, by (F Disjoint), and

F ~(x) # t for all t € exterms by (F Disjoint) and (F Injective) and y(z) ¢ exterms. Thus - egs~. Since
FOL/F is an authorization logic, Pv, eqgsy F Cv and  egsy F Cv implies Py + Cv. Thus we have
shown P, eqs - C' = Py CH.

We proceed to show the direction Py F Cv = P, eqs - C. Assume that Py C# holds.

Let {t1,...,t,} := exterms where the t; are distinct. Let x1,...,x, be fresh variables. Let o :=
{t1/x1,...,tn/xn} and & := {1 /t1,..., 2, /tn}. Let P' := P5, C" := Cq,~' :=vUoy. Let

egso == £ w1 i # J, iy F vy U{m =z 10 £ §, tiy =t}
U {Vy.x; # c(y) : ¢ non-forbidden syntactic}

eqs' :={x =2 :z,2’ € dom~,y () =+ (@)U {x # 2’ : 2,2’ € dom~/, 7 (x) #+'(2")}
U{Vy. = # c(y) : © € dom~’, ¢ non-forbidden syntactic function symbol}.

Since P'y' = P~ and C'y' = C%, from Py Cvy we get P'v' F C'y'. P’,C’ contain no forbidden
function symbols. Then, by Lemma 3l P’, eqs’ = C’. Since FOL/F is an authorization logic, P'c, eqs’c +
C'o.

Furthermore, we have that egs’ = eqs 3 U eqsy. Thus P’o, eqs’c F C’o implies P, egs, eqsp o - C.

We will now show that egs - egs, 0. For this, we first need the following two facts:
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Claim 1 For all message-free subterms t1,to of P,C (not only those of the form h(:)) with t1y = tory
and fv(t1,t2) C dom~y, we have eqs b t1 = ta.

Claim 2 For all subterms t1,t2 of P,C (not only those of the form h(-)) with t1y # tay and fv(t1,t2) C
dom~y, we have eqs - t1 # ta.

We prove [Claim 1] by structural induction on ¢1,¢2 and distinguish the following cases: Case “t; = f(#})
and to = f/(t5)” Since f(t)vy) = t1y = toy = f/'(t47), we have f = f’ and ¢}y = t}y. By induction
hypothesis, egs - t; = t,. Thus egs - f(t}) = f(t5) which is the same as egs - t; = t5. Case “t; =z
and to = f(t4)” Since t2 ¢ dom+y is message-free, we have that t;7 = y(z) # t27y in contradiction to
the assumption t1y = toy. Case “t; = f(t]) and ta = 2”2 Analogous. Case “t; = x and t2 = 2 Since
y(x) = t1y = tay = y(2'), we have (x1 = x2) € egs. Thus egs b t; = to. This shows [Claim 11

We prove by structural induction on #1, %2 and distinguish the following cases: Case “t; = f1(t])
and ty = fo(th) with f1 # fo” Then egs F t1 # t2 by (F Disjoint). Case “t; = f(t') and to = f(¢”)”: From
fly) =tiy # tay = f(t"y) we get ty # ¢~ from some i. Thus, by induction hypothesis, egs b t; # /.
By (F Injective), it follows that egs - f(t') # f(¢”) and thus egs - t; # to. Case “t1 = x and t2 = h(t')”
Since to is a subterm of P, C, ty € exterms. Thus (x # t2) € egs and hence egs b t1 # to. Case “t; =z
and to = ¢(t')”: Since (Vy. = # c(y)) € eqs, we have egs - x # ¢(t'), thus egs F t1 # ta2. Case “t; = 21
and to = x2™ Since t1y # toy, we have v(z1) # v(x2). Thus (1 # 22) € egs and hence egs b t1 # to.
The remaining cases are symmetric to the ones above. This shows

Now egs - egsy o follows: By [Claim 1l we have egs - t; = ¢; for all ¢ # j with t;y = t;v. By
we have egs - t; # t; for all ¢, j with ¢;v # t;7. And since t; = h(t') for some h # ¢ by definition, we
get eqs F Vy. t; # c(y) by (F Distinct). Thus egs F egs, o holds. Together with P, egs, egsg o = C, since
FOL/F is an authorization logic, this implies that P, egs - C. O

Lemma 5 If M Ay and Ag is robustly ~-oW -safe, then Aq is robustly SExec-safe.

Proof. Assume that Ag is not SExec-safe. Then, at some step of the symbolic execution for Ay, we have
that P, egs ¥ C where P and C are the active assumes and assertions of A and egs is as in [Definition 191
By [Lemma. 2] and induction on the descending number of the iteration of the main loop of the symbolic
execution (starting with @ := ()), we get that there is a RCF expression Qg valid for ¢g such that

(Qo T Ag) ~" vn.()  A(tm o).

Since Qg is valid for g = &, we have that Q¢ does not contain assumptions or assertions, is pc-free and
satisfies fv(Qo) C dom oMy and achan & fn(Qo). With O := (Ax.Qo I z) it follows that OA ~* A(iy, on)
and that O is a oMy -opponent. Hence, since Ag is robustly ~-oM-safe, A(i,, on) is statically oM, -safe.
Hence C(ty, 0 n)oMy = Pty o n)ody. Let v := oMy U (tm on). (Note that n and oMy, have disjoint
domains by construction.) Then Py C7.

Since all oMy () are lambda-abstractions (by [Definition 13), and all ¢, o n(x) are of the form
message(. .. ), we have that for all z € dom+, y(z) = h(t) for forbidden h and closed ¢t. Let exterms
be the set of subterms h(t) of P,C such that h is forbidden. Since M F Ay, A is message-free and, by
induction over the number of iterations of the main loop of the symbolic execution, we get that P,C are
message-free, that fv(P,C) C dom~, that fo(P,C)Nbv(P,C) = @, that fv(exterms)Nbv(P,C) = &, and
that all ¢t € exterms are syntactic. (For the last fact, note that all RCF-values are encoded as syntactic
terms in FOL/F-formulae.)

We have that oM, is equality-friendly, and t,, o n(z) = message(-) is message-match-free for all .
Thus for all 2 € dom~ and all message-free FOL/F-terms ¢ ¢ dom~y, we have v(x) # ty.

Thus we can apply [Lemma 4] and get P, eqs’ - C where

eqs' i={x=2"1x#2, z,2 € dom~,y(z) =@} U{x #2 : 2,2 € dom~,~(z) #v(z')}
U{Vy. x # c(y) : * € dom~, ¢ non-forbidden syntactic function symbol}
U{z #t:2z € dom~,t € exterms}.
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Since y(x) # v(2') for x ¢ domu,, on or 2’ ¢ domuy,, on (this follows from the fact that ol is
equality-friendly and ¢,, o n(x) = message(...)), we get eqs = egs’.
Thus P, eqs - C. O

5.3 Computational soundness of the DY-library

We will now use the CoSP framework [BHUQ9] to derive conditions under which robust SExec-safety
implies robust computational safety. In order to do so, we first define a CoSP protocol 114, that simul-
taneously captures the behavior of the symbolic execution and the one of the computational execution.
Then, computational soundness results in the CoSP framework guarantee that the security of IT4, (inter-
preted symbolically) implies security of I14, (interpreted computationally). Hence robust SExec-safety
implies robust computational soundness. Together with the fact that —-safety implies SExec-safety, we
get our first computational soundness result for RCF.

Notice that the algorithm describing the symbolic execution performs only the following operations on
CoSP-terms: Applying CoSP-constructors (this includes nonces) and CoSP-destructors, doing equality
tests on terms, and sending and receiving terms. Hence this interactive machine can be realized as a
CoSP protocol in the sense of [Definition 6t The state of the machine SExecy, is used as a node identifier.
However, CoSP-terms (i.e., the images of 1) are not encoded directly into the node identifier; the node
in which they were created (or received) is referenced instead. This is due to the fact that a CoSP
protocol allows one to treat CoSP-terms only as black boxes. Note that the current program A will
be encoded in the node identifier (as a bitstring). Operations on CoSP-terms can then be performed
by using constructor and destructor nodes, and the input and output of CoSP-terms is handled using
input/output nodes. Equality tests can be performed using the equals-destructor. Sending (S, FE) to
the adversary and receiving (sync, j, k) and (step, k) is realized using control nodes (assuming a suitable
encoding of these values as bitstrings). A control node that sends (S, E) such that (S, F) is not statically
equation-op -safe is called a failure node. We call the resulting CoSP protocol I 4,.

Definition 22 (Efficiently decidable RCF expressions) Let Ay be an RCF expression. We call a
formula F a possible assertion of Aq iff there is an assertion F' in Ag such that F = F'¢ for some
substitution p. Analogously we define possible assumptions.

We call an RCF expression Ag efficiently decidable if for any set P of possible assumptions and any
possible assertion C, it can be decided in polynomial-time whether P+ C. o

Theorem 1 Assume a DY model M and a computational implementation Impl. Assume that Impl is a
computationally sound implementation of M for a class P of CoSP protocols (Definition 11)). Let ol
be a DY library for M.

Let Ag be an efficiently decidabld’] RCF expression with M F Ay and 114, € P.

If Ao, is robustly —-safe or Ag is robustly ~-oW -safe, then Ay is robustly computationally safe
using Impl.

Proof. By [Lemma 1 Ag is robustly ~-oM -safe. By Ap is robustly SExec-safe. By con-
struction of I14,, we have that Ag is robustly SExec-safe iff the symbolic CoSP-execution of Il 4, reaches
failure nodes only with negligible probability. Let ¢ be the set of all sequences of node identifiers that
do not contain failure nodes. Then Il4, symbolically satisfies the CoSP-trace property p. Since Ay is
efficiently decidable, it can be decided in polynomial-time whether a node is a failure node. Thus p is
an efficiently decidable trace property. Since Impl is a computationally sound implementation of M for
a class P of CoSP protocols, and 114, € P, 114, computationally satisfies the CoSP-trace property .
Then, again by construction of Il4,, we have that Ay is robustly computationally safe iff the compu-
tational CoSP-execution of II4, never reaches a failure node. (For this, note that the computational
execution is defined like the symbolic execution, except that it stores/sends bitstrings instead of terms,

11 Aq is efficiently decidable if, at runtime, no assertions occur for which it cannot be decided in polynomial-time whether
they are entailed. A precise definition is given in the full version.
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and applies the computational implementation of the constructors/destructors/nonces instead of the
constructors/destructors/nonces themselves. The difference between the computational CoSP-execution
and the symbolic CoSP-execution is the same.) Thus Ag is robustly computationally safe with respect
to Impl. (I

5.4 Encryption and signatures

In the preceding section, we derived a generic computational soundness result for RCF programs
(Theorem 1), parametric in the symbolic model. To apply that result to a specific symbolic model,
we need a computational soundness result in CoSP for that particular model. In [BHUQ9], such a result
is presented for a symbolic model supporting encryption, signatures, and arbitrary strings as payloads.

The symbolic model. We first specify the symbolic model M5 = (C,N, T, D, Fcosp):

e Constructors and nonces: Let C := {enc/3,ek/1,dk/1,sig/3,vk/1,sk/1, pair/2,string,/1,string; /1,
empty/0, garbageSig/2, garbage/1, garbageEnc/2} and N := Np UNg. Here Np and Ng are count-
ably infinite sets representing protocol and adversary nonces, respectively. Intuitively, encryption,
decryption, verification, and signing keys are represented as ek(r), dk(r), vk(r), sk(r) with a nonce r
(the randomness used when generating the keys). enc(ek(r’), m,r) encrypts m using the encryption
key ek(r') and randomness r. sig(sk(r'),m,r) is a signature of m using the signing key sk(r') and
randomness r. The constructors string, string;, and empty are used to model arbitrary strings used
as payload in a protocol (e.g., a bitstring 010 would be encoded as string (string; (string,(empty)))).
garbage, garbageEnc, and garbageSig are constructors necessary to express certain invalid terms the
adversary may send, these constructors are not used by the protocol.

e Message type: We define T as the set of all terms M matching the following grammar:

M ::= E(ek(n),M,n) | ek(n) | dk(n) |
sig(sk(n), M, n) | vk(n) | sk(n) |
pair(M,M) | S| n |
garbage(n) | garbageEnc(M, n) |
garbageSig(M, n)

S ::= empty | string,(S) | string,(S)

where the nonterminal n stands for nonces.

e Destructors: D := {dec/2,isenc/1,isek/1,ekof/1,verify/2, issig/1,isvk/1, vkof/2,fst/1,snd/1,
unstring,/1, unstring, /1, equals/2}. The destructors isek, isvk, isenc, and issig realize predicates
to test whether a term is an encryption key, verification key, ciphertext, or signature, respectively.
ekof extracts the encryption key from a ciphertext, vkof extracts the verification key from a sig-
nature. dec(dk(r),c) decrypts the ciphertext c. verify(vk(r),s) verifies the signature s with respect
to the verification key vk(r) and returns the signed message if successful. The destructors fst
and snd are used to destruct pairs, and the destructors unstring, and unstring; are used to parse
payload-strings. (Destructors ispair and isstring are not necessary, they can be emulated using fst,
unstring,;, and equals(-, empty).)  The behavior of the destructors is given by the following rules;
an application matching none of these rules evaluates to L:
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dec(dk(t1), enc(ek(ty), m,t2)
isenc(enc(ek(t1), t2, t3)
isenc(garbageEnc(t1, t2)
isek(ek(t
ekof(enc(ek(t1), m, t2
ekof(garbageEnc(ty, to

)
)
ta)

verify (vk(t1), sig(sk(t1), ta, t3)
issig(sig(sk(t1), ta, t3)
issig(garbageSig(t1, ta)
isvk(vk(t1)

vkof (sig(sk(t1), ta, t3)

ta)

)

)

)

)

vkof (garbageSig(t1, ta

fst(pair(z,y
snd(pair(z,y
unstring (stringg (s
unstring, (string, (s

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

equals(ty, t;

m
enc(ek(ty), ta, t3)
garbageEnc(t1, t2)
ek(t)

ek(t1)

t1

ta

sig(sk(t1), ta, t3)
garbageSig(t1,t2)
vk(t1)

vk(t1)

1

T

s
s
tq

e Deduction relation: Fo.gp is the smallest relation such that m € S = Skosp m,n € Ng = S Foosp

n, and such that for any constructor or destructor f/n € CUD and for any t1,...,t, € T, with

Vi € [1,n].S Feosp t; and L # evals(ty, ..., t,) € T, we have S Feosp f(t1,. .., tn).

It is easy to see that M., is a DY model in the sense of [Definition 12

CoSP [BHUOQY] also specifies conditions a computational implementation Impl for M., should fulfill.
Essentially, these conditions ensure that the encryption scheme used is IND-CCA secure, the signature
scheme is strongly existentially unforgeable, and that certain conventions for tagging the different kinds
We do not reproduce these conditions here but instead refer to [BHUQ9].
We will call these conditions the “enc-sig-implementation conditions”.

Furthermore, [BHUQ9|] imposes conditions on the CoSP protocol. These ensure that all encryptions
and signatures are produced using fresh randomness and that secret keys are not sent around. A protocol
satisfying these conditions is called key-safe.

of bitstrings are observed.

Definition 23 A CoSP protocol is key-safe if it satisfies the following conditions:
1. The argument of every ek-, dk-, vk-, and sk-computation node and the third argument of every

S &

enc- and sig-computation node is an n-computation node with n € Np. (Here and in the following,
we call the nodes referenced by a protocol node its arguments.) We call these n-computation nodes
randomness nodes.

Any two randomness nodes on the same path are annotated with different
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Every computation node that is the argument of an ek-computation node or of a dk-computation
node on some path p occurs only as argument to ek- and dk-computation nodes on that path p.
Every computation node that is the argument of a vk-computation node or of an sk-computation
node on some path p occurs only as argument to vk- and sk-computation nodes on that path p.
Every computation node that is the third argument of an enc-computation mnode or of a sig-
computation node on some path p occurs exactly once as an argument in that path p.

Every dk-computation node occurs only as the first argument of a dec-destructor node.

The first argument of a dec-destructor node is a dk-computation node.

Every sk-computation node occurs only as the first argument of a sig-computation node.



8. The first argument of a sig-computation node is an sk-computation node.
9. There are no computation nodes with the constructors garbage, garbageEnc, garbageSig, or n € Ng.
o

Agsuming that all these conditions are fulfilled, we get computational soundness for encryptions and
signatures:

Theorem 2 (Computational soundness of encryptions and signatures [BHUO09]) If Tmpl sat-
isfies the enc-sig-implementation conditions, then Impl is a computationally sound implementation of
Mes for the class of key-safe protocols.

When combining [Theorem 2| with [Theorem T we immediately get the following lemma:

Lemma 6 Let Impl be a computational implementation satisfying the enc-sig-implementation conditions.
Let Ay be an efficiently decidable RCF expression such that M Ao and 114, is key-safe.

If AOJI'\)/'{; is robustly —-safe or Ay is robustly w—al'\)/'\e; -safe, then Ag is robustly computationally safe
using Impl.

This lemma still has the drawback that one has to check whether 114, is key-safe. To be able
to simplify the lemma, we introduce a library omighiever that serves as a wrapper for a]'\jl'{; and that
ensures that a program Ay that never directly calls ag'{; but only the wrappers from ogighiever Will
result in a key-safe II4,. For example, o mighicver €xports a function omigniever(encrypt) that takes an
encryption key and a plaintext, chooses a fresh nonce for randomness, and then invokes JI'\)/'{;(libenc).
This ensures that the randomness-argument of ogff(libenc) is always a fresh nonce. Furthermore, the
function o gighlever(enckeypair) picks a fresh nonce and uses that nonce to generate an encryption and
a decryption key. The decryption key is wrapped using a private constructor DecKey so that it can
only be used as an argument of opigniever(decrypt). This ensures that keys are generated with fresh
randomness and that the output of o%‘{; (libgk) will only be used as the second argument to JI'\)/'{; (libdec)
For signatures and signing keys, we proceed similarly. “Harmless” functions such as pairs are simply
exported by o gighiever (Possibly with modified calling conventions for more convenient use, in particular
for the functions related to payload strings). Functions that may never be called from the protocol, such
as o%"{? (libgarbage) are not exported by o mighievel-

The exact definition of o gighiever 1S given in For increased readability, we use F#-syntax
for the presentation of o mighievel-

The next lemma states that o gighicver can be used to enforce key-safety.

Lemma 7 Let Ay be an RCF expression with M.s - Ay and fv(Ap) Ndom Ug'{; = @& and not containing
the RCF-constructors DecKey and SigKey.
Then T Ayo yiiena 18 key-safe.

Proof sketch. The thesis follows directly from an inspection of the code of onighicver- O
Finally, we get computational soundness for encryptions and signatures with respect to programs
using the DY library:

Theorem 3 (Computational soundness for al'\)/'{;) Let Tmpl be a computational implementation sat-
isfying the enc-sig-implementation conditions. Let Ay be an efficiently decidable RCF expression such
that fo(Ao) C o Highievel, A is pe-free, A does not contain the RCF-constructor DecKey or SigKey, and
the FOL/F-formulae in A do not contain forbidden function symbols.

Then, if AOUHighzevergff is robustly —-safe, then Aoo mighicver S Tobustly computationally safe using
Impl.

12Notice that this has the effect that keys may not be corrupted during the protocol execution (no adaptive corruption).
It is, however, possible to model statically corrupted parties by subsuming them into the adversary and letting him choose
their keys.
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type bitstring = bool list

type ’a deckey
type ’a sigkey

let

let
let

let
let

let
let
let

let
let
let

DecKey of ’a Lib.deckey
SigKey of ’a Lib.sigkey

val0f x = match x with Some m -> m

encrypt (k,m) = val0f (Lib.enc (k,m,(Lib.nonce())))

sign (SigKey k) m = let n = Lib.nonce() in valOf (Lib.sign(k,m,n))
nonce _ = Lib.nonce ()
enckeypair usage = let r = nonce usage in (valOf (Lib.ek r), DecKey (valOf (Lib.dk r)))

sigkeypair usage = let r = nonce usage in (SigKey (valOf (Lib.sk r)), valOf(Lib.vk r))
decrypt ((DecKey dk),m) = Lib.dec (dk,m)
verify vk s = Lib.verify (vk,s)

pair x y = val0f (Lib.pair (x,y))
frst x = Lib.frst x
scnd x = Lib.scnd x

(* Instead of directly exporting payloadEmpty, payload0/1, unpayloadO/1,

let
let

let

let
let

let
let
let
let
let
let

we export the following more convenient wrappers *)

empty_payload = valOf (Lib.payloadEmpty())
rec payload str =
match str with
[1 -> empty_payload
| true::cs -> let pcs = payload cs in valOf (Lib.payloadl pcs)
| false::cs -> let pcs = payload cs in valOf (Lib.payloadO pcs)
rec unpayload msg =
if msg = empty_payload then Some []
else (match Lib.unpayload0 msg with
Some m -> (match unpayload m with Some m’ -> Some(false::m’) | None -> None)
| None -> (match Lib.unpayloadl msg with
Some m -> (match unpayload m with Some m’ -> Some(true::m’)
| None -> None)
| None -> None))

send m = Lib.send m
recv () = Lib.recv () : message

ekof x = Lib.ekof x
isenc x = Lib.isenc x
isek x = Lib.isek x
issig x = Lib.issig x
isvk x = Lib.isvk x
vkof x = Lib.vkof x

Figure 6: Definition of o jgniever using F# syntax. The domain of o pygniever consists of all functions
defined here.
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I : Mes
Proof. Let AO = AOUHighlevel- Since f’U(Ao) - O Highlevel and domUHighlevel N domo vy = 9,

fo(Ag) N domopyy = @. Thus by Iy, is key-safe. Furthermore, M., F Ajf since

M¢s b O Highiever(x) for all © € dom o gighiever. Hence by if A{)JI'\DAQS is robustly —-safe, then A}
is robustly computationally safe using Impl. (I

6 The sealing-based library

We first review the RCF sealing-based library and then show that programs that are robustly safe when
linked to the sealing-based library are also robustly safe when linked to the Dolev-Yao library described
in the previous sections.

6.1 Dynamic Sealing

The notion of dynamic sealing was initially introduced by Morris [Mor73| as a protection mechanism
for programs. Later, Sumii and Pierce [SP03| [SP07] studied the semantics of dynamic sealing within a
A-calculus, observing a close correspondence with symmetric-key cryptographic primitives.

In RCF seals are encoded using pairs, functions, reference, and lists. A seal is a pair of
a sealing function and an unsealing function sharing a secret reference to a list. The sealing function
takes as input a term M and checks whether the pair (M, N) is already stored in the list for some N. If
it is not, then the sealing function returns a fresh value N, after adding the pair (M, N) to the secret list.
Otherwise, the sealing function returns the value N that was previously stored in the list. The unsealing
function takes as input a value N, scans the list in search of a pair (M, N), and returns M. Only the
sealing function and the unsealing function can access this secret list. Each key-pair is (symbolically)
implemented by means of a seal. In the case of public-key cryptography, the sealing function is used for
encrypting (resp. signing), the unsealing function is used for decrypting (resp. verifying), and the fresh
value N represents the encryption of (resp. signature on) M

From a computational point of view, the conceptual difference between the sealing-based library and
the Dolev-Yao library is that the former relies on a global state (i.e., references to lists of pairs (M, N)).

The full code of the sealing-based library, in the following denoted as og, is reported in and
The following proposition recalls some important facts about og.

Proposition 1 (Sealing-based Library) The sealing-based library og satisfies the following condi-
tions:

e The range of os only contains lambda-abstractions.
e dom 0M§; = domog
e os(nonce) =fun _ — va.message C,[a).

e os(send) = (fun  — (match = with message =’ then acpan!® else stuck)). Here stuck is a pure
diverging RCF' expression.

o os(recv) =fun _ — achan?
e fu(range(os)) = 0 and fn(range(os)) = dchan-
e o5 is equality-friendly.

e The constructors N, EK| ... used in the library are private.

13 As shown below, references are implemented via secret channels.

4 The main advantage of the sealing-based library is polymorphism: the type of a seal is Va.(a — Un) * (Un — «), which
states that the sealing function takes as input a message of an arbitrary type « and returns a message of type Un (the type
of messages possibly known to the attacker) and, conversely, the unsealing function takes as input a message of type Un
and returns a message of type a. Dolev-Yao libraries are not polymorphic but, as shown in [BEGI0], they can be typed
with refinement types that are expressive enough to verify a large number of protocol implementations.

29



// *x*xxx*x*xx Copied from list.fs from F7 package:
let rec mem x u = match u with
| y::v -> if x = y then true else mem x v
| _ -> false
let rec find p m = match m with
| x::xs -> if p x then x else find p xs
| [1 -> failwith "not found"
let rec first f xs = match xs with
| x::xs -> (let r = f x in match r with
Some(y) -> r
| None -> first f xs)
| [T -> None
let left z (x,y) = if z = x then Some y else None
let right z (x,y) = if z = y then Some x else None
let rec map f xs = match xs with
| x::xs -> f x :: map f xs
IO ->1

[/ **xkkkkkkkkkkx End: list.fs
let magic x = match x with Message x -> ()

// auxiliary functions for helping the F7-type checking
let cast_enc x = x

let cast_sig x = x

let cast_enckey x = x

let cast_verkey x = x

// Sealing
let deref: ’a ref -> ’a = fun x -> !x

let seal = fun s m ->
let state = deref s in match first (left m) state with
| Some(a) -> a

| None ->
let a = ref () in
s := ((m,a)::state); a

let unseal = fun s a ->
let state = deref s in
match first (right a) state with Some t’ -> t’

let mkSeal() =
let s = ref[] in
(seal s, unseal s)

Figure 7: Definition of the SB-library og. The exported functions are (i.e., domog) are recv, send,
nonce, pair, frst, scnd, ek, dk, ekof, isek, isenc, enc, dec, sign, verify, sk, vk,
issig, isvk, vkof, payloadEmpty, payload0, payloadl, unpayload0, unpayloadl, garbage,
garbageEnc, garbageSig. Continued in
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let
let
let

let
let
let

let
let
let

let
let

let

let

let

let

let
let
let

let
let

let
let
let
let
let
let
let

let
let

let

nonce ()

magic; Nonce (mkSeal ())

rec recv () = Pi.recv Pi.achan
Pi.send Pi.achan m

send m =

pair p = magic; match p with (x,y) -> Some (Pair(x,y))
frst pair =

scnd pair

ek args =
dk args
ekof msg

isek msg
isenc msg

magic; match pair with (Pair (x,y)) -> Some x | _ -> None
= magic; match pair with (Pair (x,y)) -> Some y | _ -> None
magic; match args with Nonce (s,u) -> Some (EK s) | _ -> None
magic; match args with Nonce (s,u) -> Some (DK (s,u)) | _ -> None
= magic; match cast_enc msg with Enc(k,e) -> Some k
| GarbageEnc(k,x) -> Some k | _ -> None
= magic; match cast_enckey msg with EK k -> Some msg | _ -> None

magic; match cast_enc msg with Enc(x,y) -> Some msg

| GarbageEnc(x,y) -> Some msg | _ -> None

enc args = magic; match args with
(EK key,msg,Nonce r) -> Some (Enc (EK key, key (msg,Nonce r))) | _ -> None
dec msg = magic; match msg with (DK (s,u), Enc(k,ciph)) ->
if s=k then let msgrand = u ciph in (Some (fst msgrand)) else None

sign args

verify ar

gs

_ -> None

magic; match args with
(SK (sk,vk),msg, Nonce r) -> Some (Sign (VK vk, sk (msg,Nonce r)))
| _ -> None

magic; match args with

((VK key),(Sign(vk,sign))) -> if key=vk then let msgrand = key sign in Some (fst msgrand) else

| _ -> No
sk args =
vk args =
issig msg

isvk msg
vkof msg

ne

magic; match args with (Nonce (s,u)) -> Some (SK (s,u)) | _ -> None
magic; match args with (Nonce (s,u)) -> Some (VK u) | _ -> None
magic; match cast_sig msg with Sign(x,y) -> Some msg

| GarbageSig(x,y) -> Some msg | _ -> None

magic; match cast_verkey msg with VK k -> Some msg | -> None
magic; match cast_sig msg with Sign(k,e) -> Some k

payloadEmpty (O
payload0’ s = Some (Payload (false::s))
payload0 msg = magic; match msg with Payload s -> payload0’ s | _ -> None
payloadl’ s = Some (Payload (true::s))

payloadl msg =
unpayload0 m =
unpayloadl m =

garbage N

garbageEnc args

garbageSig args

| GarbageSig(k,e) -> Some k | _ -> None

magic; Some (Payload [])

magic; match msg with Payload s -> payloadl’ s | _ -> None
magic; match m with Payload (false::m’) -> Some (Payload m’) | _ -> None
magic; match m with Payload (true::m’) -> Some (Payload m’) | _ -> Nomne

magic; match N with Nonce n -> Some (Garbage N) | _ -> None
magic; match args with (EK k, Nonce n) -> Some (GarbageEnc (EK k, Nonce n))
| _ -> None
magic; match args with (VK k, Nonce n) -> Some (GarbageSig (fst args, snd args

| _ -> None

Figure 8: Definition of og, continued.
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6.2 Mapping DY-terms into SB-terms

In the next definition, we introduce some useful abbreviations and show the code implementing references
and seald™d A reference is a pair composed of two functions that read from and write to a private channel,
respectively. Since each communication consumes one input and one output, the reading function returns
the content of the reference after outputting it again on the private channel and, conversely, the writing
function reads and discards the current content of the reference before updating it.

Definition 24 (References and Seals) References are implemented using secret channels as follows:

Cres = ((Azlet y = 07 in Oly;y), (Aa.07; 0la))
ref d:ef)\:c.ya.(a!:c P Crerlal)
Ir Zlet (g,5) = rin g()

ri=vZlet(g,s)=rinsv

Seals are implemented using references and lists as follows:

Lol = Amlet state =0 in (match first (left m) state with some z then x else

seal —
let x = ref() in (O := ((m, x) :: state); x))

Csear = Mz.let state =!00in (match first (right x) state with some y then y else stuck)

def

Cseal - C’seal’ [Cref [DH

def

Cunseal - Cunseal’ [Cref [D]]

where stuck is a pure diverging RCF expression, first (left m) state returns the first pair in the list
state with m as first component, and first (right a) state returns the first pair in the list state with
a as second component. The library functions seal and unseal are defined in terms of these contexts:

seal Z \2.Csenl [x] and unseal LI \2.Cunseal [x]. o

In the following, we will call DY-terms the RCF terms representing cryptographic messages in the DY-
library and SB-terms the RCF terms representing cryptographic messages in the sealing-based library.
In order to show that each execution of a program with the DY-library is matched by an execution
with the sealing-based library, we need to map DY-terms to SB-terms. We could define this mapping
directly, but this would make our result dependent on the specific implementation of the DY library. In
order to make our result general, we decided instead to define a mapping from CoSP terms to SB-terms,
which naturally induces a mapping from DY-terms to SB-terms via the embedding ¢ of CoSP terms into
DY-terms (cf. Section 4.7]).

We recall that the sealing-based library depends on a global hidden state, which tracks the crypto-
graphic operations performed at run-time. For this reason, the mapping from CoSP terms to SB-terms
has to depend on such a state.

A state ¢ is a pair of functions, denoted as (¢, ¢r). The former is a partial injective function from
CoSP terms to RCF names, the latter is a partial injective function from CoSP terms to closed RCF
values. Intuitively, each CoSP term (i.e., nonces, keys, ciphertexts, signatures, etc.) is implemented by
means of a distinct seal and function ¢g is used to map CoSP terms to the name of the channel of the
corresponding seal'd. For instance, if a ciphertext M is implemented by means of seal a, then ¢pg(M) = a

150ur implementation of references differs from the one proposed in [BBFT08], since the latter makes it possible to store
multiple messages, which are then retrieved non-deterministically, and prevents one from reading several times from the
same reference.

16Technically, the domain of ¢g consists of ciphertexts, signatures, and the randomness of keys and nonces. This
asymmetry is due to the possible occurrence of different keys with the same randomness, which is not explicitly prevented
in CoSP.
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or if a key ek(k) is implemented by means of seal b, then ¢g(k) = b. The function ¢, is used to map
each key to the secret list of pairs of the form ((M, R), N) stored in the corresponding reference, where
M is the encrypted message, R is the randomness, and NV is a fresh value representing the ciphertext.
Storing the randomness along with the encrypted message allows for modelling probabilistic encryptions
and probabilistic signatures. For instance, if M; and Ms have been encrypted with randomness R; and
R, respectively, and key k, then ¢ (k) = [((M1, R1), N1), ((Ma, R2), N2)], where N1 and N» are the
fresh values corresponding to the encryption of M; and Ms, respectively. In the following, we sometimes
write M?s for ¢s(M) and M?z for ¢, (M).

Definition 25 (CoSP-terms to SB-terms) Given a state ¢, we define v-map, recursively as fol-
lows:

v map¢(n) = N(Cseal[n¢5],Cu7lseal[n¢5]) (n€N)
v—map¢(ek(r)) = EK(Cseal [ek(rd’s)])
v-map, (dk(r)) = DK(Cseal[r¢5],Cumeal[rd’s])
v-map, (vk(r)) = VK(Cu7lseal[r¢S])
v mapd)(sk(r)) = DK(C'seal[r‘zaS]7 Cumeal[rd’s])
v-map,, (enc(ek(k), m,r)) = Enc(v-map, (ek(k)), Cyer[enc(ek(k), m, r?®s])
v-map, (sign(sk(k), m, r)) = Sign(v-map,, (vk(k)), Cyes[sign(sk(k), m, r?s])
v-map,(pair(mi, m2)) = Pair(v-map,(m1), v-map,(mz2))
v-map,,(garbage(r)) = Garbage(v-map,(r))
v-map,, (garbageenc(e, r)) = GarbageE(v-map(e), v-mapy(r))
v-map,, (garbagesign(s, r)) = GarbageSig(v-map,(s), v-map,(r))

and v-map,(m) := Payload(f(m)) if m is a payload term, where f(payloadEmpty) = [|, f(payload0(m’)) = false ::
f(m") and f(payloadl(m’)) = true :: f(m’).
S

In the following, we focus on the DY library JI'\)/'{; for the model Mgg.
The following definition introduces the notion of expression and state validity. Given an expression
A, we let CoSPterms(A) denote {¢t=1(M) : message M is a subterm of A}.

Definition 26 (Valid expressions and states) An RCF expression A is valid if:
o A is a structure and Ba, A’ such that A = va.A'.
o fu(A) C folopy).
e For every subterm message A’ of A, we have that A" € «(T).
o A is mpc-free.

Given a CoSP nonce k and a state ¢, we say that L is k-valid if L is a list of pairs of RCF values
and all its entries are of the form (N, Cyerlenc(ek(k), M, r)?s]) or (N, Cyes[sign(sk(k), M, r)?s]) with N =
(v-map, (M), v-map,(r)).

A state ¢ is valid for an RCF expression A if for all CoSP nonces k,r, and all CoSP terms M the
following holds:

e dom ¢s = dom ¢y,.

o Ifk € dom¢r, then k?L is a k-valid list. (Notice that this does not constrain M?®L for CoSP terms
M other than nonces.)

o If k occurs in CoSPterms(A), then k € dom ¢g.
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e enc(ek(k),M,r) € dom ¢y, iff k € dom ¢y, and IN.(N, Crefla]) € k?= with a := enc(ek(k), M, r)?s
(and analogously for signatures).

o If enc(ek(k),M,r) is a subterm of CoSPterms(A), then enc(ek(k),M,r) € dom¢s and
IN.(N, Cyeflenc(ek(k), M, r)?s]) € k?2 (and analogously for signatures).

<

We can finally formalize the mapping from a DY-expression to the corresponding SB-expression,
which is obtained by replacing each DY-term with the corresponding SB-term and by adding the global
state to the SB-expression. The state consists of the lists of encrypted values, each of them output on
the private channel associated to the seal of the corresponding encryption key.

Definition 27 Given a valid expression A and a state ¢ valid for A, let e-map,(A) be the result of
replacing every message M occurring in A by v—mapd)(L_l(M)). Let s-mapy(A) := [ Tyecdom s M®sIMeL
e-mapy(A). (Or s-map,(A) := L if e-mapy(A) = L). o

6.3 Preservation of safety

In this section, we show that robust safety with respect to og implies robust w—o]'\j/'{;—safety. This is

achieved by proving the existence of a simulation between executions with respect to the two libraries.

Lemma 8 (Preservation of Structural Equivalence) Let A be valid and let ¢ be a valid state for
A If A= A, then s-map,(A) = s-map,(A”).

Proof. The proof proceeds by induction on the derivation of A = A’. We first consider the base cases:
e Struct Refl: straightforward.

e Struct Fork (): A=()rB=B=A".
We hase s-map () © B) = TTeau g M*IM% © cmapy () © B) = Togeaon o, MPIMP 7 () 7
e-map,(B). By Struct Fork Assoc, Struct Fork Comm, and Struct Trans we get s-map,(() I B) =
0 7 Tumedomgs M?5IM? P e-map,(B). By Struct Fork () and Struct Trans, we get s-mapg(()
B) = [Ivecdom o5 M?SIMPL P e-map,, (B) = s-mapy(A’).

e Struct Msg (): A=alM=alMr ()=A4".
We have s-mapy(alM) = [[ycdom ¢ M#sIMPL P e-map,(alM). By Struct Msg () and Struct Fork
2, we get s-mapy(alM) = [[ycdom ps M?SIM?E 1 e-mapy, (alM) P () = s-map,(A').

e Struct Assume : similar to the previous item.

e Struct Res Fork 1: A= B'rvb.B=vb.(B'T B) = A" ifb ¢ fn(B’).

We have s-map,, (B’ I" vb.B) = [[mecdom ¢ MPSIM?2 1 e-map, (B’ T vb.B) = [vedom o5 M?sIM#L p
e-map,(B’) I vb.e-map,(B).

By Struct Fork 2, Struct Res Fork 1, and Struct Trans, we get s-map,(B’ I vb.B) =
HMEdom¢s MesIMeL 1 Vb.(e—map¢(B’) r e—map¢(B)) = s—map¢(A')

e The remaining base cases follow similarly to the previous item.
We now discuss the induction step:

e Struct Res: A=vb.B=vb.B'=A"by B=B'.

By induction hypothesis, s-map,(B) = s-maps(B’). By Struct Res, we get s-map,(A) =
vb.s-mapy(B) = vb.s-map,(B') = s-map,(A’).
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e The remaining induction cases follow by a similar argument.
O

Lemma 9 Let A be an expression such that A~ B and let ¢ be a valid state for A. Then there

A=va A", B=vb.B, and yg.s map,(A')os —* VQ .s-mapy (B')os.

Proof. The proof proceeds by induction on the derivation of A ~ A’:

e send: A = send M ~ achan!M = B and s-mapy(A)os = --- T os(send) e-mapy(M) — --- T
chan!e-map, (M) = s-map,(B). Thus the lemma holds with ¢' := ¢, A" := A, B := B, a,, V=
.

e recv: A= recv M ~ achan? = B and s-map,(A)os = --- T os(recv) e-mapy(M) — -+ T acpan? =

s-map,(B). Thus the lemma holds with ¢’ := ¢, A" := A, B’ := B, a,b, b’ := @.

e nonce: A = nonce M ~» va.message C,[a] = B.
We choose a := &, A’ = A, B’ = message C,[a], b := a. Notice that A = va.A" and vb.B’ = B by
(Struct Refl).
By [Definition 27] we know that there exists M’ and a such that s-map,(nonce M)os =
HMedom¢ M?sIM?E 1 og(nonce) M’ —* va. HMGdom¢s M?sIM? 1 (al]] P N(Cseatla], Cunseatlal))-
Notice that we applied the structural equivalence relation to move the restriction on top of the
target expression.
We set ¢ = ¢gla — a] , ¢ := ¢rfa — [] , B’ = a. Notice that s-mapy (B')os
HMedom¢/S M?sIM?% (N(Csearlal, Cunseat[al))-

eenc : A = enc(message ((My), message ((Mz), message ¢(M3)) ~» B, where B :=
some message t(enc(M1, My, M3)) or B := none. (In all other cases, enc would be stuck.)
We choosea=2 ,A'=A,B =B ,andb=9
If My is not an encryption key or M3 is not a nonce then A ~» none; in this case s-map,(A)og —*
none.
Hence assume My = ek(k) and M3 = r for nonces k, r. Then A ~» some message t(enc(ek(k), Mz, r)).
Let ¢ := (v-map,(Mz), v-map,(r)).
Case 1 “(t,Crefla]) € k?2 with a := enc(ek(k), Ma,r)?s”. We set ¢/ := ¢. By an inspection of

we can easily see that ¢’ is valid for B.

Notice that s-map,(A4)os = [Iycdom o5 M?sIM?E 1 og(enc)(EK(Ciear [k?9]), v-map, (Ma), v-map(r)).
Since k?* = [...,(t,Crelal),...], the seal function will retrieve Cref[a]. So s-mapy(A) —*
some [ Tyicaom os M?sIM?E 1 Enc(v-mapgy(ek(k)), Creglal) = s-mapy(B).  We finally get
s-mapy(A)os —* s-map,(B)os by observing that s-map,(A) and s-map,(B) are closed.
Case 2: “Pa.(t,Crela]) € k?7.  Notice that s-mapy(A)os = [Iycdomos M?IMP2 P
os(enc)(EK(Csear[k?]), v-maps(Mz), v-mapy(r)). Since k¢~ does not contain [...,(¢,...),...], the
seal function will append (¢, Cyesla]) for some fresh restricted name a and add a!() to the state and
will reduce to some Enc(v-map(ek(k)), Crerlal).
Let b’ := a , ¢'s = ¢slenc(ek(k),Ma,r) > a] , ¢} = ¢rlk > ki =2 (¢, Crerlal), enc(ek(k), M2, r) —
(].  We have that ¢' is valid for B. Then s-mapy,(B')os = [Iucdom o M?sIMeL P
some Enc(v-map, (ek(k)), Crerla]). Thus s-map,(A)os —* va.s-mapy (B')os.
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e dec: A = dec(message ¢(M1), message t(Ms)) ~» B, where B := some message +(M) or B := none.
(In all other cases, dec would be stuck.)

We choosea: =9 , A':=A" , B =B ,b:=9. A= dec(message (M), message t(M3)).

If M; is not a decryption key and Ms is not an encryption with the corresponding encryption key,
then A ~~ none and s-map,(A)os —* none and, by Struct Res, va.s-map,(A)os —* va.none for all
a, as desired.

Hence assume My = dk(k) and My = enc(ek(k),M,r) for nonces k,r and a CoSP term M.
Then A ~ some message ((M). Since ¢ is valid, k%2 = [...,(t,Cref[M$%]),...] with ¢ :=
(v-map, (M), v-map,(r)).

By the definition of the decryption function of the sealing-based library,
we have that s-map,(A)og = s-map,(A)os = [Tvcdom o M?5IM?2 r

o5 (dec) (DK (Coeat[k?%], Cunsear k??]), ENc(EK(Cueark?]), Creg [M5°])) =" s-mapy(Bos =
[vedom o5 M?sIM?2 1 some v-map, (M) = s-map,(some message ¢(M))os.

e sign: Analogous to enc.
e verify: Analogous to dec.

o ek: Straightforward, with A = ek message «(r) , B = some message t(ek(r)) , a:=@ ,b:= o,
b = @. (If the argument of ek is not, of the form message ¢(r), then B := none.)

e dk: Analogous to ek.

e isenc: Straightforward, with A = isenc(message «(M)) , B = some message (M) ,a: =@ ,b:=0
, V' = @. (If the argument of isenc is not of the form message E(ek(¢:(M1))),¢(Ms),¢(M3)) or
messageGarbageE(¢(M1), :(M2)), then B := none.)

e ckof: Analogous to isenc.
e isek: Analogous to isenc.
e sk: Analogous to ek.

e vk: Analogous to ek.

e issig: Analogous to isenc.
e isvk: Analogous to isenc.
e vkof: Analogous to isenc.

® pair: Straightforward, with A

=  pair(message ((M;), message ((Mg)) , B =
some message ((pair(¢(M1),t(M2))) ,a:=9@ , b

=0, =0.

Q
Q

e frst: A = frst(message pair(¢(M1),1(Mz))) , B = some message :(M;) ,a: =9 ,b:=2 ,b =

S

e scnd: Similar to frst.

e payloadEmpty: A = payloadEmpty() , B = some message PayloadEmpty , a:= @ ,b:=9 ,V = 2.
e payloadl: Similar to pair.

e payload!: Similar to pair.

e unpayload(: Similar to frst.

e unpayload?: Similar to frst.
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Red Fun: Straightforward, by an inspection of the reduction rule.
Red Split: Straightforward, by an inspection of the reduction rule.
Red Match: Straightforward, by observing that h # message.

Red Eq: A= (M = N) ~ true | false.

We choose a:=@ ,A':=A,B' =B ,b:=0.

If Mog'{; = Nog{;, A~ true, otherwise A ~» false. By definition, s-map,(A)os =
[Tvedom o5 MPsIM?2 P (e-mapy(M)os = e-mapy(N)os), since e-mapy(A)os is equal to
(e-mapy(M)os = e-map,(N)os). Therefore s-map,(A)os ~ [Iycdom¢s M?sIMPz P true iff
e-map,(M)os = e-mapy(N)os. Thus all we need to show is that Moyyg = Nop iff
e-map,(M)os = e-map,(N)os.

Assume that this does not hold. Then there are subterms M’ , N’ of M and N (at the same
position), such that M'olyg = N'opg not-iff e-map,(M')os = e-map,;(N')os and such that one
of M', N’ is a variable in domog = dom Jg'{; or of the form message M". Wlog, we assume that
M’ has this property. Furthermore, N’ # M’.

Case 1 “M’ € domog”: Since A is valid, N’ is mpc-free. Then, since a%"{? is equality-friendly,

Mol = o (M') # N'ope. range v-map, does not contain match ... with message...,
so e-mapy(N') does not contain match ... with message.... Furthermore e-map,(M') = M'.

Since o is equality-friendly, e-map,(M')os = os(M') # e-map,(N')os. Thus M'oys = N'ob
iff e-mapy(M')os = e-mapy(N')os.

Case 2 “M’ = message M and N’ = message N””: Since A is valid, M"” , N € range:, hence
they are closed. Thus M'oMg = M’ # N’ = N'op. And e-mapy(M') = v-map, (1= (M")) #
e-mapy(N') = v-mapy(:="(N')) since + and v-map, are injective. Thus M'ols = N'obe iff
e-map,(M')os = e-map,(N')os.

Case 3 “M’ = message M" and N’ is not of the form message N'””: Then M" € range: and M’ is
a closed value.

If N' is a variable, M'opg = M’ # op (N') because afy only contains lambda-expressions (this
follows from the operational specification). If N’ is not a variable, then N’ o%‘{; is not of the form
message. . ., hence M'U%A? =M # N’Ugff.

If N’ is a variable, e-map,(M")os = v-mapy(v~"(M')) # os(N’), since og only contains lambda-
expressions and rangev-map does not contain lambda-expressions, and thus e-map,(M')os #
e-mapy(N')os. If N is not a variable, then the top-most syntactic construct of e-map,(N')os
is not an application of message. Furthermore, since all constructors used in v-map are assumed
to be encoded as constructor-chains starting with message, e-map,,(M’)os = v-map,(.="(M")) has
a message constructor on top-level, and thus e-map,(M')os # e-map,(N')os. Thus M'oys =

N'obe iff e-mapy,(M')os = e-map,(N')os.

Red Comm: Straightforward, by an inspection of the reduction rule.

Red Assert: Straightforward, by an inspection of the reduction rule.

Red Let Val: Straightforward, by an inspection of the reduction rule.

Red Let: We have A=letz =CinD~letz=C"inD=Bby C~ C'.

By induction hypothesis, we know that there exist valid RCF expressions C,,C., a state ¢’
valid for C’, lists of names ¢,, c.,d O ¢, such that C = ve,.C, and vc,.C, = C' and
ve,.s-mapy(Ci)os = ve,. [Imedom ¢s M?sIM?L 1 e-map,(Ci)os —* Vg’.HMedom% M%s 1Mz P
e-mapy (Cy)os = vc'.s-mapy, (C,)os.
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By Red Let, we have let 2 = ve,. [ [ycqom ¢ M?sIMO2 P e-map,(Cy)os in e-map,(D)os —* let z =
v HMEdomd)’S M?s 1ML P e-mapy, (Cy)os in e-mapy(D)os.

By Red Struct, Struct Fork Let, and Struct Res Let, we get wvc,.let = =
[vedom o5 MPsIM?2 P e-map,(C)os in e-mapy(D)os —* VQ/'HMedom¢'S MPsIMPL P let = =
e-mapy (C})os in e-map,(D)os.

ybi=¢ b =¢ ,A :=letx=C,inD, and

k =

The proof concludes by setting a := ¢
B':=letx=C]in D.

e Red Res: We have A =va. A’ ~ va.B' = Bby A’ ~ B'.
By induction hypothesis, we know that there exist valid expressions A", B”, a state ¢’ valid for
B, lists of names o', b,,b” D b, such that A’ = va’. A", vb,.B” = B’, and z/g’.s—map¢(A”)JS —*
vby, .s-map, (B")os.
By Red Res, we have va,a’.s-map,(A")os —* va, lgi’.s-map¢(B”)os. The proof concludes by setting
a:=a,a ,b:=ab, ,b :=a!, A:=A" and B’ := B".

vk 0 2 » Ly

e Red Fork 1: Wehave A=Cr D~ C'"D=BbyC~C.
By induction hypothesis, we know that there exist valid expressions C,,C., a state ¢’ valid for
C', lists of names c,,c.,c’ 2 ¢, such that C = vc,.Cs, vc,.C, = (', and ve,.s-map,(Ci)os —*
vc'.s-mapy (C})os.
By Red Fork 1, we have vec,.[[ycdom ¢s MesIM?L 7 e-map,(Ci)os T e-mapy(D)os —*
v HMedom¢>’S M%sIM?L p e-mapy (Cy)os I e-map,(D)os.
The proof concludes by setting a :=c. ,b:=c. ,b':==¢ ,A':=C,7 D ,and B':=C’. 1 D.

e Red Fork 2: Similar to Red Fork 1.

e Red Struct: We have A~ Bby A= A’, A’ ~ B’, and B’ = B.
By induction hypothesis, we know that there exist valid expressions A”, B”, a state ¢’ valid for
B, lists of names a/,b’,b"” D b such that A’ = va’.A”, B’ = vb'.B", and VQ’.s-map¢(A”)os —*
VQ".s—map¢, (B")os.

By Struct Trans, B = vb'.B”. This concludes the proof, since by Struct Trans we get A = va’.A".
O

Lemma 10 (Restrictions and Heating) Forall a, A, B, C such that C[va.A] = B, there exists B',C’
such that B = C'[va.B'] and C[A] = C'[B’].

Proof. The proof is by straightforward induction on the derivation of C[ra.A] = B. O

Lemma 11 Let A be an expression such that A ~* B. Assume that A is pc-free and fo(A) C dom ops .
b

Then there exists a valid expression B', a state ¢ valid for B', lists of names b, b’ D b such that
Achan ¢ a, b, vb0.B' = B, and Aog —* Vl_)'.s—map¢(B’)os.

Notice that the SB-execution introduces more restrictions than the DY-execution. The reason is
that each SB-ciphertext is represented by a fresh value, which is implemented by a seal. Each of these
seals introduces a restriction that does not have a counterpart in the DY-execution, where ciphertexts
are represented by applying a private constructor to the encryption key, the encrypted value, and the
randomness.

Proof.  The proof is by induction on the length of the derivation of A ~»* B. We first show the
base case A = B. Let B’ be a structure and b be a list of names such that A = vb.B’ and such that
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3", B".(B' = vb".B"). Let b := b and ¢ := @. Since A is mpc-free and fu(A) C dom(ops), the same
holds for B’. Thus B’ is valid by [Definition 26l Since B’ is mpc-free and ¢ = @, we have that ¢ is valid
for B’ by [Definition 26 and s-map,(B') = B’ by Hence Aog = vb.B'og = vb .Blog =
vb.s-map,(B')os, so Aos —* vb.s-mapy(B')os.

For the induction step, let us suppose that A ~~* B ~» C. By induction hypothesis, we know that
there exist a valid expression B’, a state ¢ valid for B’, lists of names b and ¥’ D b such that vb.B’ = B,
and Aog —* vb'.s-map,(B')os.

By ﬂm we know that there exist valid expressions B.,, C’, a state ¢’ valid for C, lists of names
b,, ¢, ¢ 2 csuch that B =vb,.B,, ve.C' = C, and vb,.s-map,(B,)os —* vc'.s-map, (C')os.

By repeated application of [Cemma 10l and by observing that heating does not cancel restrictions, it
is easy to see that b is a permutation of b, and B’ = B..

By Lemma 8 s-map,(B') = s-map,(B.). By Struct Res, we get vb'.s-map,(B') = vb'.s-map (B
By an inspection of the heating rules, we can easily see that this implies vb’.s- map,(B')os =
Z/Q'.s—map¢(B;)oS.

By repeated application of Lemma T3, it is easy to see that vb,.s-mapy(B,)os —* vc'.s-mapy (C')og
implies ¢’ = b, U c”, for some fresh names c¢”, and s-map,(B.)os —* vc".s-map, (C')os. By Struct Res
we get vb'.s-mapy(B')os — vb', ¢ .s-map,, (C')os, as desired. O

We now show that —-safety with respect to og implies ~- O'D :-safety.

Lemma 12 Fiz an RCF expression A and a DY model M such that M A. If Aog is —-safe then A is

—JI'\)/'Y -safe.

Pmof Assume that A is not ~- JI'\)/'{;—safe Then A ~~* B for some structure B that is not statically
O’DY -safe. By [Lemma 111 there exists a valid expression B’, lists of names b, b’ with acpan ¢ b, b’ such that
vb.B' = B and Aog —* vb.s- map,(B')os. For a structure S, let P(S) denote the active assumptions
of S, and C(S) the active assertions of S. Since B is not statically ol -safe, P(B)oms ¥ C(B)ons.
Since B’ is valid, B’ and vb.B’ are structures. We have P(vb.B’) = P(B’) and C(vb.B') = C(B’).
Since vb.B' = B, (P(vb.B’),C(vb.B")) = (P(B),C(B)) up to renaming of names other than apq.n, (the
possibility of renaming stems from the fact that = allows for a-renaming of bound names). Hence
also (P (B')agl{;,C(B')oDY) = (P(B)op,C(B)ops) up to renaming of names. Hence P(B')oM ¥
C(BI)UDY

By definition of ~», and due to the fact that A is pc-free and message is private, we have that
any FOL/F-subterm message ¢ of B satisfies that ¢ is syntactic and closed. By definition of =, this
implies that any FOL/F-subterm message ¢ of B’ and therefore of P(B’) and C(B’) is syntactic
and closed. Let {t1,...,t,} be the set of all ¢; such that message ¢; occurs in (C,P). Let n; :=
{message t1/x1,...,message t,,/x,} and 7, := {x1/message ti,...,x,/message t,}. Let C* := C(B')ij
and P* := P(B’)ij1. Then C*, P* do not contain the constructor message. Since A is pc-free, and the
only private constructor that ~~» can introduce is message we have that C*, P* are pc-free.

Let 1y := {v-mapy,(t='(t1))/x1,. .., v-mapy(t= ' (tn))/zn}. Let v := obe Um. Let yo := og Una.
Then P(B')oMy = P*y; and C(B')ols = C*v; and, by definition of s-map,,, P(s-mapy(B'))os = P*v,
and C(s-mapy(B'))os = C*yo. We write dom~y for dom~; = dom ;.

Thus from P(B')ops ¥ C(B')ols, we have P*vy; ¥ C*~;. We will now apply [Lemma 4l in order to
show

Py F C*y <= P*,eqs - C* and (2)
Pryo b C*yy <= P*, eqs - C* (3)
with eqs :={x # 2’ :x,2' € dom~, x # 2’}

U{Vy. x # c(y) : © € dom~, ¢ non-forbidden syntactic}

U{z #t:2 €domn, t € exterms}

where exterms is the set of subterms h(t) of P*, C* with forbidden h.
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To apply [Lemma 4}, we check the following:

e P* C* are pc-free: This holds by definition of P*, C*, and 7.

e fu(P*,C*)Nbu(P*, C*) = @: We can assume this without loss of generality since = is closed under
a-renaming of bound variables.

e 71,72 map variables to syntactic closed FOL/F-terms: This holds because the ranges of a]'\jl'{; and
og are closed by definition, and because the ¢; are closed.

e For all z and i = 1,2, ~;(x) = h(t) for forbidden h: oy () and os(z) are lambda-abstractions,
and the function symbol representing lambda-abstractions is forbidden. n;(z) = message(t), and
message is forbidden. nq(x) = h(t) by definition of v-map where h is one of the private constructors
listed in [Definition 251 Thus n2(z) = h(t) for some forbidden h.

e fo(exterms) N bv(P*,C*) = @: Since A and Aol does not contain FOL/F-formulae that contain
terms h(¢) with forbidden h, such terms can only be introduced in P* and C* by substituting a
variable in a FOL/F-formula by an RCF-term. Hence the terms h(t) do not contain variables that
are bound in the FOL/F-formula.

e All ¢t € exterms are syntactic: All terms h(¢t) in P*, C* with forbidden h result from substituting a
variable by an RCF-term (previous point), and RCF-terms are encoded as syntactic FOL/F-terms
by definition.

e For i = 1,2 and z € dom~ and all pc-free FOL/F-terms ¢ ¢ dom~;, we have ~;(x) # tv;: If
2z € domo; (with o1 = ag'{; and o2 = o0g), we have that v;(z) = o;(x) # tn;0; = ty; since o; is
equality-friendly and tn; is mpc-free. If ¢ is a variable, then tv is a variable since ¢ ¢ dom+y, and
hence ~;(x) # t; since v;(x) is closed. If x ¢ domo; and t is not a variable, then ¢t = f(¢') where f
is not a private constructor, and ~;(z) = n;(x). Furthermore, n;(x) = message(t) by definition (and
message is private), and na(x) = v-map,(...) = h(t') where h is one of the forbidden constructors
listed in [Definition 251 Thus v;(z) # t;.

e For i = 1,2 and 2,2’ € dom~ and © # 2/, we have ~v;(z) # vi(2'): If 2,2’ € dom~, we have
vi(z) # ~i(z') because op and og are equality-friendly. If z, 2’ ¢ dom~, we have that ~;(z) =
ni(z) # ni(z') = ~i(2') because all ¢; are distinct and v-map, and ¢ are injective. If x € dom~y
and ' ¢ dom~, we have that v;(«’) = n;(¢’) = h(t) for a private constructor h and ~;(z’) is
closed, so ~;(z') is mpe-free. Since oy := JI'\)/'{; and oy := og are equality-friendly, this implies that
vi(x) = 0i(x) # h(t)oi = vi(x').

Thus the conditions of [Lemma 4] are fulfilled and (2)) and (@) follow.

From P*y, ¥ C*y, @), and @), we get P*yp ¥ C*y. Since P(vb.s-map,(B')os) =
P(s-mapy(B'))os = P*yy and C(vb.s-mapy(B')os) = C(s-mapy(B'))os = C*ya, it follows that
PVl .s-mapy(B')os) ¥ C(vb'.s-mapy(B')os). Hence vb'.s-map,(B')os is not statically safe. Since
Aog —* Vbl.s-map¢(B’)os, this implies that Acg is not —-safe. Thus, from the fact that A is not

w—ol'\)/'{;—safe, it follows that Aog is not —-safe. By contraposition, the lemma follows. O

We can finally state a main result of this section, i.e., safety with respect to og implies w—oE"{;—safety.

Lemma 13 Fiz an RCF expression A and a DY model M such that M+ A. If Aog is robustly —-safe

then A is robustly W—aMff -safe.

Proof. We first observe that for all og{?—opponents O, M+ O. The thesis follows directly from
(Lemma 12} [Definition 14) and [Definition 16l O

6.4 Computational soundness

By combining the results from the previous section (relating the DY library and the SB library) with
the computational soundness result for the DY library (Theorem 3)), we get a computational soundness
result for the SB library:

Theorem 4 (Computational soundness for og) Let Impl be a computational implementation satis-
fying the enc-sig-implementation conditions. Let Ay be an efficiently decidable RCF expression such that
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fo(Ao) C THighlever, A is pe-free, A does not contain the RCF-constructor DecKey or SigKey, and the
FOL/F-formulae in A do not contain forbidden function symbols.

Then, if Ao0 HighlevelOs 1S Tobustly —-safe, then Ao Highiever 1S TObustly computationally safe using
Impl.

Proof. Let Aj) := A0 Highievel- We have that My F Aj since Mes b 0 prighiever () for all z € dom o gighiever -
Since Afjos is robustly —-safe, by [Lemma 13, A{)JI'\DAQS is robustly ~-safe. Since fv(Ao) C 0 Highlever and
dom o mighiever Ndom o%‘{; =g, fu(4p)Ndom o%‘{; = @. Thus by [Lemma. 7, [T, is key-safe. By [Lemma. 6]
if A is robustly ~~-safe, then Aj is robustly computationally safe using Impl. O

We type-checked the library og using F7. Exported functions are given polymorphic types as
in [BBET08|, so we do not restrict the expressiveness of the verification technique. Since well-typed
programs are robustly —-safe [BBET08|, [Theorem 4] implies that well-typed programs enjoy computa-
tional safety.

7 Conclusions

This paper presents a computational soundness result for F7, a type-checker for F# programs. We show
the computational soundness of a generic DY library as well as the computational soundness of a sealing-
based library. The proof is conducted in the CoSP framework and solely concerns the semantics of RCF
programs, without involving any cryptographic arguments. This makes our result easily extensible to
additional cryptographic primitives supported by CoSP. We remark that the proof does not depend on
a specific verification technique, thus our computational soundness result would automatically apply to
refinements of the type system, or even to a different analysis technique, as long as these use the same
symbolic cryptographic libraries. To the best of our knowledge, this is the first computational soundness
result for an automated verification technique of protocol implementations.

Acknowledgments. This work was partially funded by the Cluster of Excellence “Multimodel Com-
puting and Interaction” (German Science Foundation), the Emmy Noether Programme (German Science
Foundation), and Miur’07 Project SOFT (Security Oriented Formal Techniques).

A Symmetric semantics of RCF

We start this section by proving that making the heating relation symmetric does not affect the safety

of programs. More formally let us define = according to the rules defining = plus the symmetric variant

of the Heat Msg (), Heat Assume (), Heat Res Fork 1, Heat Res Fork 2 Heat Res Let, and Heat Fork

Comm rules. Similarly, let us define — as —,, where the heating relation is defined by = instead of =.
We let C§U*[-] range over the set of contexts defined by the following grammar:

Cgll = 1120 G| | opidr 2
Z = (O|zrz

Lemma 14 (Heating to output) The set of processes ranged over by C§"[a!M] is closed by =.

Proof. We prove that for all A and B such that A= B, A ¢ C§"*[a!M] or B € C§"*[a!M]. The proof is
by induction on the derivation of A = B.

The base cases (i.e., Heat Refl, Heat Fork (), Heat Msg (), Heat Fork Assoc, and Heat Fork Comm)
follow directly from an inspection of the heating rule.

The inductive cases (i.e., Heat Trans, Heat Fork 1, and Heat Fork 2) follow straightforwardly from
the induction hypothesis. O

In the following, we let |R|, denote the number of reduction rules used in the derivation of the relation
R € {—,—=.}. We also let |R|;, denote the number of heating rules used in the derivation of R € {=,=}.
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HEAT REFL A=A

HeAT TRANS A= A" ifA= A and A = A"

HEAT LET letzr=AinB=letz=A"inB,if A= A
HEAT RES va.TA = vaTA if A= A

HeAT FORK 1 ArB= A'r Bif A= A

HEAT FORK 2 BrA= Br A ifA= A

EqQurv Fork () Ord=, A

HeAaT Msa () alM = a!M 7 ()

HEAT ASSUME () assume C' = assume C'T" ()

HEeAT RES Fork 1 A’ 7 (va.TA) = vaT(A' 7 A),if a & fn(A4’)

HEAT RES FORK 2 (va.TA)r A’ = vaT(AT A'),if a & fn(A")

HEAT RES LET let z =va.TAin B=vaTletz=Ain B,if a & fn(B)
EqQuiv FOork Assoc (Ar Ar A" =, Ar (A'r A")

HEAT Fork CoMmMm (AT A)r A" = (A'r A)yr A”

EqQuiv FOrRk LET letx =(Ar A)inB=, AT (letx = A" in B)

Notation: We use A =, A’ to mean that both A = A’ and A’ = A.

Figure 9: Heating relation A = A’

Lemma 15 (Reduction, restriction, and heating) For all a, A, A, B’ such that va.A = A’ and
A" — B, there exists B such that A — B, B’ = va.B, and |A — B|, < |va.A — B’'|,. (where
va.A — B’ is proved by A’ — B’ and, if va.A # A, by va.A = A’ and Red Heat).

Proof. The proof is by induction on |A" — B’|,.

The base case is trivial since A’ — B’ cannot be of length one assuming va.A = A’. This follows
from an inspection of Red Fun,Red Split, Red Match, Red Eq, Red Comm, Red Assert, and Red Let Val
and by observing that heating does not cancel restrictions.

For the induction step, we proceed by case analysis on the last rule applied:

Red Fun, Red Split, Red Match, Red Eq, Red Comm, Red Assert, Red Let Val These
rules are not applicable.

Red Let A’ =letz=CinD —letz=C"inD=DB"and C — C’' Since A’ = va.A, there exists C”
such that C = va.C"” and A=letx =C" in D.

Since va.C"” — C’, by induction hypothesis (the considered heating relation is va.C” = va.C"),
we know that C’ = va.C" for some C" such that C” — C"" and |C" — C"|, < |va.C" — C'|,.
By Red Let, letz =C" inD — letz =C" inD. Weset B:=letz=C"inD.

Notice that |[A — B|, < |C" — C"'|, + 1 (Red Let and Red Heat with A = let z = C” in D)
and |C" — C"|, < |C — (|, and |va.A — B'|, = |C — C’|, + 2 (Red Let and Red Heat with
va.A =let x = Cin D). Therefore we preserve the invariant |[A — B|, < |va.A — B’|,.

Red Res A’ =vb.C — vb.C' = B’ and C — C’ We have two cases, depending on whether b = a or
not. The former is trivial, the latter follows straightforwardly from the induction hypothesis.

Red Fork 1 A =Cr D—C'7" D=B" and C — C’' We must have either C = va.C"” or D = va.D’,
for some C", D’.

Assume that D = va.D’, for some D', i.e., A= C 71T D’. We know that C — C’. By Red Fork 1,
CrD —C'rD.Weset B:=C'1 D'

Notice that |[A — BJ, < |C — C'|, +2 (Red Fork 1 and Red Heat with A = C 1 D’) and
lva.A — B'|, = |C — C’|, +2 (Red Fork 1 and Red Heat with va.A = C' " D). Therefore the
length invariant is fulfilled.
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Assume that C = va.C”, for some C” ie., A=C" " D.

Since va.C” — C’, by induction hypothesis we know that there exists C"” such that C" — C"”,
C' = va.C" and |C” — C"|, < |va.C" — C'),.

By Red Fork 2, we get C”" 7 D — C""' " D. We set B:=C"' 1 D.

Notice that |A — B|, < |[C” — C""|, + 2 (Red Fork 2 and Red Heat with A = C” " D) and

|C" — C"|, < |va.C" — C'|, and |va.A — B'|, = [va.C" — C'|,- + 2 (Red Fork 2 and Red Heat
with va.A = C 1 D). Therefore we have |[A — B|, < |va.A — B’|,.

Red Fork 2 A/ =CrP D —-Cr D'=B and D — D’ The reasoning is symmetric to Red Fork 1.

Red Heat A’ =C —-C'"=B" and C=D and D — D' and D’'=C’" We have va.A = C, which
implies D = va.A. By induction hypothesis, there exists B such that D' = va.B and |A — B|, <
lva.A — D'|, <|D — D’|, +1=|A" — B’|,. Therefore the length invariant is fulfilled.

O

Lemma 16 (Symmetric reduction) For every closed expressions A, A’, B’ such that A = A’ and
A’ — B’ | there exists B such that A —, B, B’ = B, and one of the following conditions holds true:

o I[f A=A, then |A —, B, <|A" — B'|,; otherwise |A —, B|, < |A" = B'|, + |[A = A'|;.

o If the derivation of A" — B’ contains one application of Red Comm (say a!M T a? —, M), then
A —, B is derived by Red Heat with hypotheses A = a!M I a? and a!M T a? —, M.

Proof. The proof proceeds by simultaneous induction on |A = A’|;, and |A" — B’|,.. The base case is
when both the derivations have length one. We proceed by case analysis on the derivation of A’ — B’:

Red Fun A’ = (A\z.P) N — P{N/xz} = B’ We proceed by case analysis on the derivation of A = A’.
The proof for Heat Refl is straightforward, since we know that A = A’. The proof for Heat Fork ()
follows by observing that this rule is symmetric even in =.

Red Split, Red Match, Red Eq, Red Comm, Red Assert, Red Let Val The reasoning is simi-
lar since the only applicable heating rules are the same as those considered in Red Fun.

For the induction step, we proceed by case analysis on the last rule applied in the derivation of
A—B:

Red Fun A’ = (Axz.P) N — P{N/z} = B’ We proceed by case analysis on the last heating rule applied
in the derivation of A = A’. The only interesting case is Heat Trans. We know that A = A",
A"= A and |[A= A, = |[A= A"|, + |A" = A + 1.

We can now apply the induction hypothesis, since |[A” = A’|, + |4’ = B'|, < |[A= A | + |4’ —
B'|,. By induction hypothesis, there exists B” such that A” —, B” and B’ = B”. In addition,
|A” —, B"|, < |A" =, B'|, +|A” = A’|5. (We are considering the only interesting case, i.e.,
A#£ A+ A”) As — is larger than —, we know that A” — B” and |A” —, B"|, = |A” — B"|,.
We can now apply the induction hypothesis, since [A = A”|,+|A” — B"|, < |A = A'|,+|A" — B'|,.
By induction hypothesis, there exists B such that A —, B and B” = B, with |[A —, B|, < |A" —
B"|.+|A= A"|; . By Heat Trans, B’ = B.

Red Split, Red Match, Red Eq, Red Assert, Red Let Val The reasoning is similar to the previ-

ous case.
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Red Comm A’ =a!M " a? — M = B’ We proceed by case analysis on the last heating rule applied in
the derivation of A = A’. The only interesting cases are Heat Fork 1 and Heat Trans.

Heat Fork 1. We know that A = A” 1" a? = A’, for some A” such that A” = a!M. By [Lemma 14}

A" € C§"ta!M]. Tt is easy to see that by repeated application of Heat Fork Assoc, Heat Fork
Comm, and Heat Fork () we can derive A = A’. By Red Comm, A" —, B’. By Red Heat, we get
the desired result. Notice that |A —, B|, = |4’ — B'|, + 1.

Heat Trans. We know that A= A", A" =A",and |[A=A|,=|A=A"|, +|A"=A|n+ 1.

We can now apply the induction hypothesis, since |A” = A'|,+|A" — B'|, < |A= A'|p+|A" — B'|,.
By induction hypothesis, A” = A’ and A” —, B’ is proved by Red Heat. Since — is larger than
—, we know that A” — B"” and |A" —, B"|, = |A" — B"|,.

We can now apply the induction hypothesis, since [A = A”|,+|A” — B"|, < |A = A'|,+|A" — B’'|,.
By induction hypothesis, A = A”. By Heat Trans, A = A’. The result follows by Red Heat. Notice
that |A — B'|, =|A" — B’|, + 1.

The remaining reduction rules are defined recursively on the reduction of a subprocess. By induction
hypothesis, this reduction could contain one application of Red Comm or none. Since the proof is the
same and the length invariant is preserved anyway, we assume that the derivation does not contain any
application of Red Comm.

Red Let A/ =letx=CinD —letz=C"inD=DB" and C — C' The two interesting cases are
when A = A’ is proved by Heat Res Let or Heat Let.

Heat Res Let. Let us assume that A = A’ is proved by (the symmetric variant of) Heat Res Let,
i.e., there exists C” such that C = va.C” and A = va.let x = C" in B.

Since va.C” — C’, by [Lemma 15| we know that C’ = va.C"" for some C"” such that C" — C"
and |C" — C"|, < |va.C"” — C’|,. By induction hypothesis (we consider C"” = C"), we know that
there exists C""" such that C"" —, C"", C"" = C"", and |C" —, C""|, <|C" — C"|,.

By Red Let, let z = C” in D —, let = C”” in D and, by Red Res, A = va.letz =C"in D —
va.let z = C"" in D = B. Notice that |A — B|, = |C" — C"'|, + 2, while |A" - B'|, = [va.C" —
C'l, + 1. Since |C" — C"|, < |va.C" — C'|,, we preserve the invariant |[A —, B|, < |A" —
B+ A=A

Since C' = va.C", by Heat Let we get B = let z = C' in D = let x = va.C"” in D. Since
C" = C" by Heat Let we get let z = va.C"" in D = let x = va.C"" in D. By Heat Res Let, we
get let z = va.C"" in D = va.let x = C"" in D. Finally, by Heat Trans, we get B’ = B.

Heat Let. Let us assume now that A = A’ is derived by Heat Let, i.e., there exists C” such that
A=letx=C"in D and C” = C. By induction hypothesis, we know that there exists C"”’ such
that C"” —, C" and C' = C". By Red Let, A=letz =C"inD —letz=C" in D= B and
B’ = B by Heat Let.

Red Res A’ =va.C — va.C'’ =B’ and C — C’ The only interesting case is when A = A’ is proved
by Heat Res, i.e., there exists C” such that A = va.C” and C” = C. By induction hypothesis,
there exists C"” such that C” = C"” and C' = C"’. By Red Res, A = va.C"” —, va.C""" = B and
B’ = B by Heat Res.

Red Fork 1 A/ =CrP D —-C'7 D=B" and C — C" The proof for Heat Fork 1 follows straightfor-
wardly from the induction hypothesis. The proof for Heat Fork 2 follows from an inspection of the
heating and reduction rules. We now reason on the two interesting cases, namely, Heat Res Fork 1
and Heat Res Fork 2.
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Heat Res Fork 1. We know that D = va.D’, for some D’ and A = va.C T D’. We know that
C —, C’. By Red Res and Red Fork 1, A = va.C 7 D' — va.C' T D = B. By Heat Res Fork 1,
B’ = B. Notice that |[A —, B|, = |A" — B’'|, + 1, which fulfills the length invariant.

Heat Res Fork 2. We know that C = va.C”, for some C”, and A = va.C" T D.

Since va.C"” — C', by [Lemma 15| we know that there exists C"”” such that C” — C"" and C' =
va.C" and |C" — C"|, < |va.C"” — C’|,. By induction hypothesis (we consider C” = C"), we
know that there exists C""”” such that C” —, C"" and C""" = C"" and |C" —, C""|, < |C" —,
C///|T-

By Red Fork 1 and Red Res, A = va.C”" " D — va.C" T D = B. By Heat Res Fork 2, we get
B’ = B.

Notice that |[A = A'|, =1, |A =, B, =|C = C'|.+1,|C = . > |C" = C"|, > |C" =,
C",., and |A =, B, = |C" —4 C""|, + 2. Therefore |A — B|, < |A" =, B'|, + |[A = A'|;.

Red Fork 2 A/ =CrP D —-CrD'=B and D — D’ Symmetric to Red Fork 1.

Red Heat The proof follows directly from the induction hypothesis.
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