
Computationally Sound Veri�ation of Soure CodeMihael BakesSaarland University, MPI-SWS Matteo Ma�eiSaarland University Dominique UnruhSaarland UniversityJuly 26, 2010AbstratInreasing attention has reently been given to the formal veri�ation of the soure ode ofryptographi protools. The standard approah is to use symboli abstrations of ryptographythat make the analysis amenable to automation. This leaves the possibility of attaks that exploitthe mathematial properties of the ryptographi algorithms themselves. In this paper, we showhow to ondut the protool analysis on the soure ode level (F# in our ase) in a omputationallysound way, i.e., taking into aount ryptographi seurity de�nitions.We build upon the prominent F7 veri�ation framework (Bengtson et al., CSF 2008) whihomprises a seurity type-heker for F# protool implementations using symboli idealizations andthe onurrent lambda alulus RCF to model a ore fragment of F#.To leverage this prior work, we give onditions under whih symboli seurity of RCF programsusing ryptographi idealizations implies omputational seurity of the same programs using rypto-graphi algorithms. Combined with F7, this yields a omputationally sound, automated veri�ationof F# ode ontaining publi-key enryptions and signatures.For the atual omputational soundness proof, we use the CoSP framework (Bakes, Hofheinz,and Unruh, CCS 2009). We thus inherit the modularity of CoSP, whih allows for easily extendingour proof to other ryptographi primitives.Contents1 Introdution 21.1 Our tehniques 31.2 Related work 61.3 Notation 62 RCF (review) 62.1 Syntax and semantis 73 CoSP Framework (review) 94 The Dolev-Yao library 124.1 The library 124.2 Dolev-Yao transition relation . . . 135 Computational soundness 15

5.1 De�nitions 155.2 Symb. vs. omputational exeution 175.3 Comp. soundness of the DY-library 245.4 Enryption and signatures 256 The sealing-based library 296.1 Dynami Sealing 296.2 Mapping DY-terms into SB-terms 326.3 Preservation of safety 346.4 Computational soundness 407 Conlusions 41A Symmetri semantis of RCF 41
1

1 IntrodutionProofs of seurity protools are known to be error-prone and, owing to the distributed-system aspetsof multiple interleaved protool runs, di�ult for humans to generate. Hene, work towards the automa-tion of suh proofs started soon after the �rst protools were developed. From the start, the atualryptographi operations in suh proofs were idealized into so-alled symboli or Dolev-Yao models,following [DY83, EG83, Mer83℄ (see, e.g., [KMM94, Sh96, AG97, Low96, Pau98, BMV04℄). This ideal-ization simpli�es proofs by freeing them from ryptographi details suh as omputational restritions,probabilisti behavior, and error probabilities. Unfortunately, these idealizations also abstrat away fromthe algebrai properties a ryptographi algorithm may exhibit. Therefore a symboli analysis may over-look attaks based on these properties. In other words, symboli seurity does not imply omputationalseurity. In order to remove this limitation, [AR02℄ introdued the onept of omputational soundness.We all a symboli abstration omputationally sound when symboli seurity implies omputationalseurity. A omputational soundness result allows us to get the best of two worlds: The analysis an beperformed (possibly automatially) using symboli abstrations, but the �nal results hold with respetto the realisti seurity models used by ryptographers.A drawbak ommon to the existing omputational soundness results, is, however, that they work onabstrat protool representations (e.g., the applied π-alulus [AF01℄). That is, although the analysistakes into aount the atual ryptographi algorithms, it still abstrats away from the atual protool im-plementation. Thus, even if we prove the protool seure, the implementation that is later deployed mayontain implementation errors that introdue new vulnerabilities. To avoid this issue, reent work hastakled the problem of verifying seurity diretly on the soure ode, e.g., [GLP05a, BFGT06, BBF+08℄.Yet, this veri�ation is again based on symboli idealizations.Thus, we are left with the hoie between veri�ation tehniques that abstrat away from the rypto-graphi algorithms, and veri�ation tehniques that abstrat from the protool implementation. To losethis gap, we need a omputational soundness result that applies diretly to protool implementations.Our result. We present a omputational soundness result for F# ode. For this, we use the RCFalulus proposed by [BBF+08℄ as semantis for (a ore fragment of) F#. RCF allows for enodingimplementation in F# by o�ering a lambda-abstration onstrutor that allows for reasoning abouthigher-order languages. Moreover, it supports onurreny primitives, indutive datastrutures, reur-sion, and an expressive treatment of symboli ryptography using sealing mehanisms. Furthermore,RCF supports very general trae-based seurity properties that are expressed in �rst-order logi, usingassumptions and assertions. (Previous omputational soundness results are restrited to aluli like theapplied π-alulus whih lak these features.) We speify a ryptographi library that internally usessymboli abstrations, and prove that if a protool is symbolially seure when linked to that library, itis omputationally seure when using atual ryptographi algorithms. Our approah enables the useof existing symboli veri�ation tools, suh as the type-heker F7 [BBF+08℄. The requirement to usethese tools in partiular ruled out potential hanges to the RCF semantis that would have simpli�ed toestablish a omputational soundness result. We stress, however, that our result does not depend on anypartiular symboli veri�ation tehnique.We have derived omputational soundness for enryptions and digital signatures. Our result is, how-ever, extensible: most of our theorems are parametri in the set of ryptographi primitives and theremaining theorems an be easily extended. Furthermore, by basing on the so-alled CoSP framework[BHU09℄, our proof solely onerns the semantis of RCF programs and does not involve any rypto-graphi arguments; thus extending our proofs to additional ryptographi abstrations supported byCoSP does not require a deep knowledge of ryptography, whih makes suh an extension aessible toa more general audiene.
2

1.1 Our tehniquesCoSP (Setion 3). The main idea of our work is to redue omputational soundness of RCF to om-putational soundness in the CoSP framework [BHU09℄. Thus, we �rst give an overview of the ideasunderlying CoSP. All de�nitions in CoSP are relative to a symboli model that spei�es a set of on-strutors and destrutors that symbolially represent omputational operations, and a omputationalimplementation that spei�es ryptographi algorithms for these onstrutors and destrutors. In CoSP,a protool is represented by an in�nite tree that desribes the protool as a labeled transition system.Suh a CoSP protool ontains ations for performing abstrat omputations (applying onstrutors anddestrutors to messages) and for ommuniating with an adversary. A CoSP protool is endowed with twosemantis, a symboli exeution and a omputational exeution. In the symboli exeution, messages arerepresented by terms. In the omputational exeution, messages are bitstrings, and the omputationalimplementation is used instead of applying onstrutors and destrutors. A omputational implementa-tion is omputationally sound if any symbolially seure CoSP protool is also omputationally seure.The advantage of expressing omputational soundness results in CoSP is that the protool model inCoSP is very general. Hene the semantis of other aluli an be embedded therein, thus transferringthe omputational soundness results from CoSP to these aluli.DY library (Setions 4, 5). To apply CoSP to RCF, we �rst de�ne a library σM
DY that enodes anarbitrary symboli model. This library internally represents all messages as terms in some datatype.Manipulation of these terms is possible only through the library, neither the program nor the adversaryan diretly manipulate messages. σM

DY also provides funtions for sending and reeiving messages. Giventhe library σM
DY , we an de�ne a notion of symboli seurity. A program A ontains ertain events andseurity poliies spei�ed in �rst-order logi. We all A robustly →-σM

DY-safe if the seurity poliies aresatis�ed in every step of the exeution when A runs in parallel with an arbitrary opponent and is linkedto the library σM
DY.Next, we speify a probabilisti omputational semantis for RCF programs A. In these semantis, wespeify an algorithm (the omputational RCF-exeution) that exeutes A. In eah step of the exeution,the adversary is asked what redution rule to apply to A. Letting the adversary make these shedulingdeisions resolves the non-determinism in the RCF program and simultaneously makes our result strongerby making the worst-ase assumption that the adversary has total ontrol over the sheduling. Allmessages are represented as bitstrings, and any invoation of σM

DY is replaed by the orrespondingomputation from the omputational implementation. Notie that in the omputational RCF-exeution,the adversary is not limited to invoking library routines; sine messages are bitstrings, the adversary anperform arbitrary polynomial-time operations on them. If all seurity poliies are satis�ed in eah stepof the omputational RCF-exeution, we all A robustly omputationally safe.Our goal is to show that, if an RCF program is robustly →-σM
DY-safe, then it is robustly omputa-tionally safe. To prove this, we introdue two intermediate semantis.

• The redution relation : This semantis is very similar to the original semantis of RCF, exeptthat all invoations of σM
DY are internalized, i.e., symboli ryptographi operations are atomioperations with respet to . This leads to the notion of robust -σM

DY-safety.
• The symboli RCF-exeution SExec: This semantis is de�ned by taking the de�nition of theomputational RCF-exeution, and by replaing all omputational operations by the orrespondingsymboli operations. That is, the symboli and the omputational RCF-exeution are essentiallythe same algorithm, one operating on terms, the other doing the orresponding operations fromthe omputational implementation. This leads to the notion of robust SExec-safety.In the �rst step (f. Figure 1), we show that robust →-σM

DY-safety implies robust -σM
DY-safety. Thisproof is fairly straightforward, beause just internalizes the de�nition of σM

DY.In the seond step, we show that robust -σM
DY-safety implies robust SExec-safety. The �rst tehnialdi�ulty here lies in the fat that robust -σM
DY-safety is de�ned with respet to adversaries that areexpressed as RCF-programs and that run interleaved with the program A, while robust SExec-safetymodels the adversary as an external non-deterministi entity. Thus, for any possible behavior of the3

rob. →-σM
DY-safety rob. -σM

DY-safetyrob. omputational safety rob. SExec-safety1. 2.3.Figure 1: Main steps of the omputational soundness proof
SExec-adversary, we have to onstrut an RCF-program Q that performs the same ations when runningin parallel with A. The seond di�ulty lies in the fat that the logi for desribing seurity propertiesis quite general. In partiular, it allows for expressing fats about the atual ode of σM

DY (e.g., the odeof one funtion is a subterm of the ode of another). Sine the library σM
DY is not present in the symboliRCF-exeution, we need to identify riteria that ensure that the poliies do not depend on the atualode of σM

DY.In the third step, we use the fat that the symboli and the omputational RCF-exeution of Ahave essentially the same de�nition, exept that one performs symboli and the other omputationaloperations. Thus, if we express these exeutions by a labeled transition system that treats operations onmessages as atomi steps, we get the same transition system for both exeutions, only with a di�erentinterpretation of these atomi steps. This transition system is a CoSP protool ΠA, and the symboliand the omputational exeution of that protool are equivalent to the symboli and the omputationalRCF-exeution of A. Thus, assuming a omputational soundness result in CoSP, we get that robust
SExec-safety implies robust omputational safety. Combining this with the previous steps, we have thatrobust →-σM

DY-safety implies robust omputational safety (Theorem 1).Note that this argumentation is fully generi, it does not depend on any partiular symboli model.One we have a new omputational soundness result in CoSP, this diretly translates into a result forRCF. Note further that no atual ryptographi proofs need to be done; all ryptographi details areoutsoured to CoSP. The library σM
DY is very similar in spirit to the one used in [BFG10℄, we believe thatthe veri�ation tehniques used there an be applied to robust →-σM

DY-safety as well.Enryption and signatures (Setion 5.4). Our results so far are fully generi. In the CoSP frame-work, a omputational soundness result exists for publi-key enryption and signatures. Combining thisresult with our generi result, we get a self-ontained omputational soundness result for enryptionsand signatures in RCF (Theorem 2). The result in the CoSP framework imposes ertain restritions onthe use of the ryptographi primitives (e.g., one is not allowed to send seret keys around). To ensurethat these restritions are met, we introdue a wrapper-library σHighlevel for σM
DY . A program that onlyinvokes funtions from σHighlevel is guaranteed to satisfy these restritions.Sealing-based library (Setion 6). In the library σM

DY , we have internally represented symboliryptography as terms in some datatype. An alternative approah is used in the F7 veri�ation framework[BBF+08℄ for analyzing RCF/F#-ode. In this approah, a library based on seals is used. Roughly, aseal onsists of a mutable referene and aessor funtions. An enryption key pair, e.g., is modeled asa sealed map. The enryption key is a funtion that inserts the plaintext into that map and returnsthe index of the plaintext. The deryption key is a funtion that retrieves the plaintext given the index.Seals have proven well-suited for seurity analysis by type-heking, sine they allow for polymorphitypes. We present a sealing-based library σS modeling enryptions and signatures. We show that robustsafety with respet to σS implies robust -σM
DY-safety by proving the existene of a simulation betweenexeutions with respet to the two libraries. Combined with Theorem 2, this immediately returns aomputational soundness result for the sealing-based library (Theorem 4). The advantage of this resultis that programs using σS an be analyzed using the F7 type-heker, sine the library itself is type-heked with polymorphi typing annotations1.Note that this part of our paper is spei� to the ase of enryptions and signatures. We believe,however, that the proof an be easily extended to other primitives on a ase-by-ase basis. Furthermore1The F# ode of the library with typing annotations is available at [BMU℄.4

our proof also gives an additional justi�ation to the approah of seals: We redue seurity with respetto seals to seurity with respet to a term-based abstration that is onsiderably simpler beause it doesnot rely on a shared state.Restritions. We brie�y disuss the limitations of our result and explain why they are present.Seurity properties. We only onsider safety properties (desribed by authorization poliies) thatare e�iently deidable (in the sense that for any given trae, it is e�iently deidable whether thesafety property is ful�lled). Both the restrition to safety properties (as opposed to liveness properties)and the restrition to e�iently deidable properties2 are state of the art in omputational soundnessresults. Computational soundness results for properties based on observational equivalene exist [CLC08℄;applying these to RCF would onstitute an interesting extension to our work.Protool onditions. We impose ertain onditions on our protools. Most prominently, we forbidto enrypt or send seret keys. (As a side e�et, this also avoids so-alled key-yles.) Again, theseonditions are state of the art in omputational soundness results, and, if removed there, they an alsobe removed from our result.Authorization poliies. Construtors that represent ryptographi operations (suh as enryptions)may not our in the formulae used to express authorization properties. This is due to the fat that astatement suh as ∃xyz.c = enc(x, y, z) does not have a sensible omputational interpretation (there isno e�ient way to hek it). Sine our treatment is generi, also onstrutors that represent �harmless�primitives suh as pairs are exluded from authorization poliies; allowing them should be possible butwould onsiderably ompliate our treatment. We believe, however, that disallowing these onstrutorsin authorization poliies does not onstitute a big restrition. In most ases, an authorization poliywill de�ne high-level rules (suh as �if P has paid for x, then P may download x�). Statements aboutthe atual format of messages (e.g., �m is a pair�) will only be used during the symboli veri�ation ofthe high-level properties, e.g., as part of a re�nement type. We do not impose any restritions on thesymboli veri�ation tehniques; arbitrary formulae an be used there as long as they do not appear inthe �nal authorization poliy.Network hannels. We assume that there is only a single publi network hannel (i.e., only a singlehannel to the adversary). This is done for simpliity only, our results ould be easily extended to asetting with more hannels. Or, one might emulate several hannels by adding a header to all messagessent over the publi hannel.Assumptions and assertions in libraries. One is not allowed to add assumptions and assertions (i.e.,authorization poliies) in the ode of the symboli libraries themselves. This is, however, not really arestrition sine one may use a wrapper library that adds these assumptions and assertions.Alternative approahes. We brie�y disuss several possible alternatives to our approah and explaintheir di�ulties.Using CryptoVerif. Instead of doing a symboli seurity veri�ation and then applying a omputa-tional soundness result, one ould perform the analysis diretly in the omputational setting using atool suh as CryptoVerif [Bla06℄. CryptoVerif is a tool that performs a seurity analysis diretly in theomputational model. To follow this approah in our setting, one would have to desribe an enodingof RCF into CryptoVerif's alulus. Although this an easily be done for a fragment of RCF, manyfeatures of RCF suh as reursion, authorization poliies in �rst-order logi, and onurreny3 are prob-ably beyond what CryptoVerif an handle. Also, CryptoVerif's approah probably does not sale wellto omplex programs. Finally, one needs to prove that the enoding of RCF into CryptoVerif preservesall required seurity properties; suh a proof might be not muh simpler than the proofs in the presentpaper. [BCFZ08℄ pursue this approah; they do not, however, prove their enoding sound.2By e�iently deidable properties, we do not mean that it an be e�iently deided whether a protool guaranteesthat the property is satis�ed, we only mean that it an be e�iently deided whether in a given exeution, the propertywas satis�ed.3CryptoVerif does support onurreny natively, but its model of onurreny assumes a uniform random hoie in eahsheduling deision whih arguably is an unrealisti assumption in most settings.5

Reduing to the applied π-alulus. An alternative approah to obtain omputational soundness wouldbe to embed F# into the applied pi-alulus and to exploit the omputational soundness result for theapplied pi-alulus established in [BHU09℄. However, establishing this embedding would arguably notbe easier than our approah: it requires to enode datastrutures, reursion, the sealing mehanism, andassertions/assumptions into the applied pi-alulus, inluding the whole FOL/F logi. Moreover, theorretness of the enoding has to be proven twie � one symbolially (the proof would follow the samelines as the proof in [BFGT06℄) and one with respet to the omputational semantis.Removing equality tests on lambda-expressions. A large part of the tehnial di�ulties in our proofsstem from the fat that RCF allows to do syntati equality tests on lambda-abstrations. It is not,however, easily possible to remove these tests: If we hange the semantis of RCF, our results beomeinompatible with existing tools like the F7 framework. A syntati restrition that disallows omparisonsof lambda-abstrations does not seem to be possible either; whih variables are instantiated with lambda-abstrations only beomes lear at runtime.1.2 Related workThe problem of omputational soundness was �rst addressed by Abadi and Rogaway in [AR02℄ for passiveadversaries and symmetri enryption. The protool language and seurity properties handled therewere extended in [AJ01, Lau01, HLM03, BCK05, ABW06℄, but still apply only to passive adversaries.Subsequent works studied omputational soundness against ative attaks (e.g., f. [BPW07, BPW03a,BPW03b, BP04, SBB+06, Lau04, MW04, JLM05, BHU09℄). Reent works also foused on omputationalsoundness in the sense of observational equivalene of ryptographi realizations of proesses (e.g., [AF06,CLC08, CL08℄). All these works do not takle the omputational soundness of protool implementations.Conurrently with the announement of this work at FCC 2009, [Fou09℄ reported independent work inprogress on a type system for RCF that entails omputational soundness.The analysis of the soure ode of protool implementations has reently reeived inreasing atten-tion. Goubault-Larreq and Parrennes developed a stati analysis tehnique [GLP05b℄ based on pointeranalysis and lause resolution for ryptographi protools implemented in C. The analysis is limited toserey properties. Chaki and Datta reently proposed a tehnique [CD09℄ based on software modelheking for the automated veri�ation of serey and authentiation properties of protools imple-mented in C. The analysis provides seurity proofs for a bounded number of sessions and is e�etive indisovering attaks. It was used to hek serey and authentiation properties of the SSL handshake pro-tool for on�gurations of up to three servers and three lients. Bhargavan et al. proposed a tehnique[BFGT06, BCFZ08℄ for the veri�ation of F# protool implementations by automatially extratingProVerif models [Bla01℄. The analysis provides seurity proofs and, despite its non-ompositional nature,sales remarkably well and was suessfully used to verify implementations of real-world ryptographiprotools suh as TLS [BCFZ08℄. None of these analysis tehniques enjoys omputational soundnessguarantees. [BCFZ08℄ also proposes an embedding of F# into the alulus of CryptoVerif. The embed-ding is not, however, proven to be sound; also, aording to [BCFZ08℄, it is di�ult to analyze reursivefuntions with CryptoVerif.1.3 NotationGiven a term t, we write t{t′/x} for the result of substituting all free ourrenes of x by t′. We assumethat substitutions are apture avoiding, i.e., bound names are renamed when neessary. We write t for alist t1, . . . , tn where the length n of the list is left impliit. Given sets P,C of logial formulae, we write
P ⊢ C i� for all F ∈ C, F is entailed by P .2 RCF (review)This setion outlines the Re�ned Conurrent FPC [BBF+08℄, a simple ore alulus extending the FixedPoint Calulus [Gun92℄ with re�nement types and onurreny. Although very simple, this alulus is6

a, b, c name
h onstrutor
M,N ::= value
x, y, z variable
() unit
λx.A funtion
(M,N) pair
h M onstrutor appliation

A,B ::= expression
M value
M N funtion appliation
M = N syntati equality
let x = A in B let
let (x, y) = M in A pair split
match M with h x then A else B onstrutor math
νa.A restrition
A � B fork
a!M transmission of M on hannel a
a? reeive message o� hannel
assume F assumption of formula F
assert F assertion of formula FFigure 2: Syntax of RCF values and expressionsStrut Refl A ≡ AStrut Trans A ≡ A′′, if A ≡ A′ and A′ ≡ A′′Strut Let let x = A in B ≡ let x = A′ in B, if A ≡ A′Strut Res νa.A ≡ νa.A′, if A ≡ A′Strut Fork 1 A � B ≡ A′ � B, if A ≡ A′Strut Fork 2 B � A ≡ B � A′, if A ≡ A′Strut Fork () () � A ≡ AStrut Msg () a!M ≡ a!M � ()Strut Assume () assume C ≡ assume C � ()Strut Res Fork 1 A′ � (νa.A) ≡ νa.A′ � A, if a 6∈ fn(A′)Strut Res Fork 2 νa.A � A′ ≡ νa.A � A′, if a 6∈ fn(A′)Strut Res Let let x = νa.A in B ≡ νa.let x = A in B, if a 6∈ fn(B)Strut Fork Asso (A � A′) � A′′ ≡ A � (A′ � A′′)Strut Fork Comm (A � A′) � A′′ ≡ (A′ � A) � A′′Strut Fork Let let x = (A � A′) in B ≡ A � (let x = A′ in B)Figure 3: Strutural equivalene relation A ≡ A′expressive enough to enode a large part of F# [BBF+08℄.2.1 Syntax and semantisThe set of values is omposed of names, variables, unit, funtions, pairs, and type onstrutors (f.Figure 2). Names are generated at run-time and are only used as hannel identi�ers, while variables areplae-holders for values. Unit, funtions, and pairs are standard. While RCF originally inludes onlythree type onstrutors (namely, introdution forms for union and reursive types), we extend the syntaxof the alulus to an arbitrary set of onstrutors.Conditionals are enoded using the following syntati sugar: true := inl(), false := inr(), and if M =

N then A else B abbreviates let y = (M = N) in match y with inl x then A else B for some fresh x, y.An expression represents a onurrent omputation that may redue to a value, or may diverge. Thesemantis of expressions is de�ned by a strutural equivalene relation ≡4 and a redution relation →.4The equivalene relation ≡ onsidered in this paper is the extension of the heating relation A ⇛ B proposed in [BBF+08℄where all heating rules are made symmetri. In Appendix A, we prove that making the heating relation symmetri is sound,i.e., it does not a�et the safety of expressions. 7

Red Fun (λx.A) N → A{N/x}Red Split let (x1, x2) = (N1, N2) in A → A{N1/x1}{N2/x2}Red Math match M with h x then A else B →

{

A{N/x} if M = h N
B otherwiseRed Eq M = N →

{

true if M = N
false otherwiseRed Comm a!M � a? → MRed Assert assert C → ()Red Let Val let x = M in A → A{M/x}Red Let let x = A in B → let x = A′ in B, if A → A′Red Res νa.A → νa.A′, if A → A′Red Fork 1 A � B → A′
� B, if A → A′Red Fork 2 B � A → B � A′, if A → A′Red Strut A → A′, if A ≡ B,B → B′, B′ ≡ A′Figure 4: Redution relation A→ A′The former enables onvenient rearrangements of expressions, while the latter desribes the semantis ofRCF ommands.Values are irreduible. The semantis of funtion appliations, onditionals, let ommands, pair splits,and onstrutor mathes is standard. Intuitively, the restrition νa.A generates a globally fresh hannel

a that an only be used in A and the name a is bound in A. The expression A � B evaluates A and
B in parallel, and returns the result of B (the result of A is disarded). The expression a!M outputs
M on hannel a and redues to the unit value (). The evaluation of a? bloks until some message M isavailable on hannel a, removes M from the hannel, and then returns M .The expressions assume F and assert F represent logial assumptions and assertions for modelingseurity poliies. The intended meaning is that at any point of the exeution, the assertions are entailedby the assumptions. The formulae F are spei�ed in FOL/F [BBF+08℄, a variant of �rst-order logi.More preisely, the formulae F ourring in an RCF-expressions are formulae in the logi FOL/F,a variant of �rst order logi extended with the onept of syntati funtion symbols. For syntatifuntion symbols f 6= f ′, we have the additional axioms ⊢ (f(x) = f(x′)) ⇒ x = x′ (F Injetive)and ⊢ f(x) 6= f ′(x′) (F Distint). All syntati elements of RCF exept for variables (e.g., lambda-abstrations, names, onstrutors) are enoded as (possibly nullary) syntati funtion symbols in FOL/F-formulae. RCF-variables are identi�ed with FOL/F-variables. For details, see [BBF+08℄.The equivalene relation ≡ introdue a normal form for RCF-expressions, a struture. A struture isan expression of the formS := νa.

(

Πi∈[1,m]assume Fi � Πj∈[1,n]cj !Mj � Πk∈[1,o]Lk{ek}
)where ek is any expression apart from a let, restrition, fork, message send, or an assumption and

L := {} | let x = L in B. Notie that any expression is struturally equivalent to a struture.The FOL/F-formulae Fi in S we all the ative assumptions , and any FOL/F-formula F with ei =
assert F for some i we all the ative assertions of S. We an now formalize the fat that the assumptionsfollow from the assertions in the exeution of an RCF expression:RCF expressions an be transformed by strutural equivalene into a normal form, whih is alleda struture and onsists of a sequene of restritions followed by a parallel omposition of assumptions,outputs, and lets. These assumptions and the assertions ready to be redued are alled ative. Intuitively,an expression is safe if all ative assertions are entailed by the ative assumptions.De�nition 1 (→-safety) A struture S is statially safe i� P ⊢ C where P are the ative assumptionsand C the ative assertions of S. 8

An expression A is →-safe if for all strutures S suh that A→∗ S, we have that S is statially safe.
⋄When reasoning about implementations of ryptographi protools, we are interested in the safety ofprograms exeuted in parallel with an arbitrary attaker. This property is alled robust safety.De�nition 2 (Opponents and robust →-safety) An expression O is an opponent if and only if Ois losed and O ontains no assertions. A losed expression A is robustly →-safe if and only if theappliation O A is →-safe for all opponents O. ⋄The notion of robust→-safety is the same as the robust safety de�ned in [BBF+08℄. Robust→-safetyan be automatially veri�ed using the F7 type heker.In the following, we will sometimes need to restrit our attention to programs that only use a ertainsubset of the set of all onstrutors. For this, we assume that the set of RCF onstrutors is partitionedinto publi onstrutors and private onstrutors . Private onstrutors are usually used inside a library.Note however, that the semantis of RCF treats private and publi onstrutors in the same way. An RCFexpression that does not ontain private onstrutors (neither in onstrutor appliations nor in pattern-mathes) is alled p-free. We all an RCF-expression A mp-free (for math-private-onstrutor-free)i� A = C[h1t1, . . . , hntn] where hi are private onstrutors and C is a ontext that does not ontainsubterms of the form match · with h · then · else for private onstrutors h. (That is, a mp-freeexpression may have pattern mathes using private onstrutors only below private onstrutors.) Weall an RCF-expression pure if it does not ontain assumptions, assertions, outputs (M !N), inputs (M?),or forks (M � N).Furthermore, we all a FOL/F-funtion symbol forbidden if it is the funtion symbol representing anRCF-lambda-abstration5 or a private RCF-onstrutor.3 CoSP Framework (review)The omputational soundness proof developed in this paper follows CoSP [BHU09℄, a general frameworkfor onduting omputational soundness proofs of symboli ryptography and for embedding these proofsinto proess aluli. CoSP enables proving omputational soundness results in a oneptually modularand generi way: every omputational soundness proof for a ryptographi abstration phrased in CoSPautomatially holds for all embedded aluli, and the proess of embedding proess aluli is oneptuallydeoupled from omputational soundness proofs.CoSP provides a general symboli model for expressing ryptographi abstrations. We �rst introduesome entral onepts suh as onstrutors, destrutors, and dedution relations.De�nition 3 (CoSP terms) A onstrutor f is a symbol with a (possibly zero) arity. We write f/n ∈ Cto denote that C ontains a onstrutor f with arity n. A none n is a symbol with zero arity. A messagetype T over C and N is a set of terms over onstrutors C and nones N. A destrutor d of arity n,written d/n, over a message type T is a partial map Tn → T. If d is unde�ned on t1, . . . , tn, we write
d(t1, . . . , tn) = ⊥. ⋄To unify the notations for onstrutors, destrutors, and nones, we de�ne the partial funtion eval f :
Tn → T as follows: If f is a onstrutor or none, eval f(t1, . . . , tn) := f(t1, . . . , tn) if f(t1, . . . , tn) ∈ T and
eval f(t1, . . . , tn) := ⊥ otherwise. If f is a destrutor, eval f(t1, . . . , tn) := f(t1, . . . , tn) if f(t1, . . . , tn) 6= ⊥and eval f(t1, . . . , tn) := ⊥ otherwise.A dedution relation ⊢CoSP between 2T and T formalizes whih terms an be dedued from otherterms. The intuition of S ⊢CoSP m for S ⊆ T and m ∈ T is that the term m an be dedued from theterms in S.5In RCF, every onstrut from the language (inluding lambda-abstrations) is represented in FOL/F formulae by aspeial funtion symbol; see the full version of [BBF+08℄. 9

De�nition 4 (Dedution relation) A dedution relation ⊢CoSP over a message type T is a relationbetween 2T and T. ⋄The onstrutors, destrutors, and nones, together with the message type and the dedution relationform a symboli model. Suh a symboli model desribes a partiular Dolev-Yao-style theory.De�nition 5 (Symboli model) A symboli model M = (C,N,T,D,⊢CoSP) onsists of a set of on-strutors C, a set of nones N, a message type T over C and N with N ⊆ T, a set of destrutors D over
T, and a dedution relation ⊢CoSP over T. ⋄A CoSP protool Π is de�ned as a tree with labelled nodes and edges. We distinguish omputationnodes, whih desribe onstrutor appliations, destrutors appliations, and none reations, output andinput nodes, whih desribe ommuniation, and ontrol nodes, whih allow the adversary to in�uene theontrol �ow of the protool. Computation and output nodes refer to earlier omputation and input nodes;the messages omputed at these earlier nodes are then taken as arguments by the onstrutor/destrutorappliations or sent to the adversary.For CoSP protools, both a symboli and a omputational exeution are de�ned by traversingthe tree. In the symboli exeution, the omputation nodes operate on terms, and the input/outputnodes reeive/send terms to the (symboli) adversary. The suessors of ontrol nodes are hosen non-deterministially. In the omputational exeution, the omputation nodes operate on bitstrings (us-ing a omputational implementation Impl), and the input/output nodes reeive/send bitstrings to the(polynomial-time) adversary. The adversary hooses the suessors of ontrol nodes.De�nition 6 (CoSP protool) A CoSP protool Π is a tree with a distinguished root and labels onboth edges and nodes. Eah node has a unique identi�er ν and one of the following types:6
• Computation nodes are annotated with a onstrutor, destrutors, or none f/n together with theidenti�ers of n (not neessarily distint) nodes. Computation nodes have exatly two suessors;the orresponding edges are labeled with yes and no, respetively.
• Output nodes are annotated with the identi�er of one node. An output node has exatly onesuessor.
• Input nodes have no further annotation. An input node has exatly one suessor.
• Control nodes are annotated with a bitstring l. A ontrol node has at least one and up to ountablymany suessors annotated with distint bitstrings l′ ∈ {0, 1}∗. (We all l the out-metadata and l′the in-metadata.)If a node ν ontains an identi�er ν′ in its annotation, then ν′ has to be on the path from the root to

ν (inluding the root, exluding ν), and ν′ must be a omputation node or input node. In ase ν′ is aomputation node, the path from ν′ to ν has to additionally go through the outgoing edge of ν′ with label
yes. ⋄De�nition 7 (Symboli exeution) Let a symboli model (C,N,T,D,⊢CoSP) and a CoSP protool Πbe given. A full trae is a (�nite) list of tuples (Si, νi, fi) suh that the following onditions hold:
• Corret start: S1 = ∅, ν1 is the root of Π, f1 is a totally unde�ned partial funtion mapping nodeidenti�ers to terms.
• Valid transition: For every two onseutive tuples (S, ν, f) and (S′, ν′, f ′) in the list, let ν̃ be thenode identi�ers in the annotation of ν and de�ne t̃ through t̃j := f(ν̃j). We have:� If ν is a omputation node with onstrutor, destrutor or none f, then S′ = S. If m :=

eval f(t̃) 6= ⊥, ν′ is the yes-suessor of ν in Π, and f ′ = f(ν := m). If m = ⊥, then ν′ is the
no-suessor of ν and f ′ = f .� If ν is an input node, then S′ = S and ν′ is the suessor of ν in Π and there exists an mwith S ⊢CoSP m and f ′ = f(ν := m).� If ν is an output node, then S′ = S ∪ {t̃1}, ν′ is the suessor of ν in Π and f ′ = f .6Note in [BHU09℄, there is an additional type of node, the non-deterministi node. We have omitted the non-deterministi nodes here beause we do not use them in the CoSP protools onstruted in this paper.10

A list of node identi�ers (νi) is a node trae if there is a full trae with these node identi�ers. ⋄De�nition 8 (Computational implementation) Let a symboli model M = (C,N,T,D,⊢CoSP) begiven. A omputational implementation of M is a family of funtions Impl = (Implx)x∈C∪D∪N suhthat Implf for f/n ∈ C ∪ D is a partial deterministi funtion N × ({0, 1}∗)n → {0, 1}∗, and Impln for
n ∈ N is a total probabilisti funtion with domain N and range {0, 1}∗ (i.e., it spei�es a probability dis-tribution on bitstrings that depends on its argument). The �rst argument of Implf and Impln representsthe seurity parameter.All funtions Implf have to be omputable in deterministi polynomial-time, and all Impln have to beomputable in probabilisti polynomial-time. ⋄De�nition 9 (Computational exeution) Let a symboli model M = (C,N,T,D,⊢CoSP), a omputa-tional implementation Impl of M, and a CoSP protool Π be given. Let a probabilisti polynomial-timeinterative mahine E (the adversary) be given (polynomial-time in the sense that the number of stepsin all ativations are bounded in the length of the �rst input of E), and let p be a polynomial. We de-�ne a probability distribution Nodes

p
M,Impl,Π,E(k), the omputational node trae, on (�nite) lists of nodeidenti�ers (νi) aording to the following probabilisti algorithm (both the algorithm and E are run oninput k):

• Initial state: ν1 := ν is the root of Π. Let f be an initially empty partial funtion from nodeidenti�ers to bitstrings, and let n be an initially empty partial funtion from N to bitstrings.
• For i = 2, 3, . . . do the following:� Let ν̃ be the node identi�ers in the annotation of ν. m̃j := f(ν̃j).� Proeed depending on the type of node ν:

∗ If ν is a omputation node with none n ∈ N: Let m′ := n(N) if n(N) 6= ⊥ and sample
m′ aording to Impln(k) otherwise. Let ν′ be the yes-suessor of ν, f ′ := f(ν := m′),and n′ := n(N := m′). Let ν := ν′, f := f ′ and n := n′.
∗ If ν is a omputation node with onstrutor or destrutor f, then m′ := Implf(k, m̃). If
m′ 6= ⊥, then ν′ is the yes-suessor of ν, if m′ = ⊥, then ν′ is the no-suessor of ν.Let f ′ := f(ν := m′). Let ν := ν′ and f := f ′.
∗ If ν is an input node, ask for a bitstring m from E. Abort the loop if E halts. Let ν′ bethe suessor of ν. Let f := f(ν := m) and ν := ν′.
∗ If ν is an output node, send m̃1 to E. Abort the loop if E halts. Let ν′ be the suessorof ν. Let ν := ν′.
∗ If ν is a ontrol node, annotated with out-metadata l, send l to E. Abort the loop if Ehalts. Upon reeiving an answer l′, let ν′ be the suessor of ν along the edge labeled l′(or the lexiographially smallest edge if there is no edge with label l′). Let ν := ν′.� Let νi := ν.� Let len be the number of nodes from the root to ν plus the total length of all bitstrings in therange of f . If len > p(k), stop.

⋄De�nition 10 (Trae property) A trae property ℘ is an e�iently deidable and pre�x-losed setof (�nite) lists of node identi�ers.Let M = (C,N,T,D,⊢CoSP) be a symboli model and Π a CoSP protool. Then Π symbolially satis�esa trae property ℘ i� every node trae of Π is in ℘.Let Impl be a omputational implementation of M and let Π be a CoSP protool. Then (Π, Impl)omputationally satis�es a trae property ℘ i� for all probabilisti polynomial-time interative mahines
E and all polynomials p, NodespM,Impl,Π,E(k) ∈ ℘ with overwhelming probability. ⋄De�nition 11 (Computational soundness) A omputational implementation Impl of a symbolimodel M = (C,N,T,D,⊢CoSP) is omputationally sound for a lass P of CoSP protools i� for everytrae property ℘ and for every e�ient CoSP protool Π, we have that (Π, Impl) omputationally satis-�es ℘ whenever Π symbolially satis�es ℘ and Π ∈ P . ⋄11

4 The Dolev-Yao libraryIn this paper, we do not restrit our attention to a spei� symboli library. We instead provide aomputational soundness result for any symboli library ful�lling ertain onditions that we detail inthis setion.4.1 The libraryWe �rst de�ne a general Dolev-Yao model, whih is a symboli model subjet to ertain natural restri-tions.De�nition 12 (DY Model) We say that a symboli model M = (C,D,N,T,⊢CoSP) is a DY model if
N = NE⊎NP for ountably in�nite NE,NP, and equals/2 ∈ D where equals(x, x) := x and equals(x, y) := ⊥for x 6= y, and ⊢CoSP is the smallest relation suh that m ∈ S ⇒ S ⊢CoSP m, n ∈ NE ⇒ S ⊢CoSP n,and suh that for any onstrutor or destrutor f/n ∈ C ∪ D and for any t1, . . . , tn ∈ T satisfying
∀i ∈ [1, n].S ⊢CoSP ti and ⊥ 6= eval f(t1, . . . , tn) ∈ T, we have S ⊢CoSP f(t1, . . . , tn). ⋄In the following, we will only reason about DY models. Intuitively, in a DY library eah CoSP term m isrepresented by message M , where message is a private onstrutor that tags all values whih the libraryoperates on and M is an enoding of m. CoSP onstrutors are represented by RCF onstrutors andnones are represented by RCF names. For eah onstrutor and destrutor f, the library exports a fun-tion lib f suh that σM

DY(lib f) (message M1, . . . , messageMn) returns some message M if eval f(m1, . . . ,mn)returns m, or none if eval f(m1, . . . ,mn) returns ⊥. In addition, the library exports a funtion nonce thatpiks a fresh name (to be used as a none) and funtions send and recv for sending and reeiving termsof the form message M over a publi hannel.For example, if we have a symboli model ontaining enryptions and deryptions (suh as theone presented in Setion 5.4), we would represent a iphertext with key ek(k) and randomness r as
message(enc(ek(k),m, r)). The deryption funtion in the library would then be de�ned by σM

DY(libdec) :=
λx.match x with (message(dk(y)),message(enc(ek(y), z, w))) then some(message(z)) else none. A nonewould be represented as message(nonce(λx.a!x)) for some fresh name a.7Instead of giving a de�nition that is spei� to a partiular DY model, we will give a general de�nitionof a DY library for a DY model. In the following, we assume an arbitrary embedding ι of terms T intothe set of losed RCF values. We further assume a �xed name achan used internally by the libraryfor ommuniation and we assume that there is a value-ontext Cι[] (a value with a hole) suh that
{Cι[a] : a 6= achan is a name} = ι(N).De�nition 13 (DY Library) A DY library for M = (C,D,N,T,⊢CoSP) is a substitution σM

DY fromvariables to RCF funtions satisfying the following onditions:
• Let message be a private onstrutor.
• domσM

DY = {lib f | f ∈ C ∪ D} ∪ {nonce, send , recv}.
• σM

DY(lib f) is a pure funtion suh that the following holds for all m1, . . . ,mn ∈ T: If m :=
eval f(m1, . . . ,mn) 6= ⊥, then σM

DY(lib f) (message ι(m1), . . . , message ι(mn))→
∗ some message ι(m).If m = ⊥, then σM

DY(lib f) (message ι(m1), . . . , message ι(mn)) →∗ none. In all other ases,
σM
DY(lib f) (. . .) is stuk.

• σM
DY(nonce) = fun _→ νa.message Cι[a].

• σM
DY(send) = (fun x→ (match x with message _ then achan !message x else stuck)). Here stuck is apure diverging RCF expression.

• σM
DY(recv) = fun _→ achan?

• fv(range(σM
DY)) = ∅ and fn(range(σM

DY)) = achan.
• For any variable x ∈ domσM

DY, and any mp-free value M 6= x, we have σM
DY(x) 6= MσM

DY. (Weall a substitution satisfying this ondition ondition equality-friendly.) ⋄7For syntati reasons, RCF forbids to simply write message(nonce(a)) if a is a name.12

The requirement that σM
DY is equality-friendly is a tehnial ondition to ensure that the outomeof equality-tests in a program exeution does not depend on the internal ode of the library funtions.For example, if we had that σM

DY(lib f1) = (λx.σM
DY(lib f2)x), the test lib f1 = (λx.lib f2x) would sueed ina program linked to σM

DY. To avoid suh dependenies on the internal ode of the library, we introdueequality-friendliness. Note that equality-friendliness is only neessary beause RCF allows syntatiequality tests on lambda-abstrations.Equality-friendliness an be enfored, e.g., by requiring that all σ(f) are expressions of the form
λx.(magic;A) for some RCF expression A where magic := (λz.match z with message y then () else ()).To interfae an expression A with a library σM

DY, we use the expression AσM
DY . We will only onsiderprograms A suh that fn(A) = ∅ and fv(A) ⊆ domσM

DY.In σM
DY , all messages M are proteted by the private onstrutor message. However, if an opponentwould be allowed to perform a pattern math on message, he ould get the internal representation of Mand thus, e.g., extrat the plaintext from an enryption. Similarly, an adversary applying message ouldprodue invalid messages. Thus, when using σM

DY , we have to restrit ourselves to p-free opponents.The following variant of robust →-safety models this.De�nition 14 (Robust →-σ-safety) Let σ be a substitution. We all an RCF expression a σ-opponenti� fv (O) ⊆ domσ and O is p-free and ontains neither assertions nor assumptions and achan /∈ fn(O).An RCF expression A with fv (A) ⊆ domσ is robustly →-σ-safe i� the appliation (O A)σ is →-safefor all σ-opponents O. ⋄Note that in ontrast to De�nition 2, we expliitly apply the substitution σ representing the libraryto the opponent. This is beause a p-free opponent has to invoke library funtions in order to performenryptions, outputs, et. Furthermore, we will also need that the programs we analyze operate on termstagged by message only through the library. In order to enfore this (and other invariants that will beused in various loations in the proofs) we introdue the following well-formedness ondition:De�nition 15 Let A be an RCF expression and M = (C,N,T,D,⊢) a DY model. We say M ⊢ A i�
fv (A) ⊆ {libf : f ∈ C ∪ D} ∪ {nonce, send , recv} and achan /∈ fn(A) and A is p-free and the FOL/F-formulae in A do not ontain forbidden funtion symbols. ⋄4.2 Dolev-Yao transition relationThe COSP framework assumes the atomiity of ryptographi operations. In general, however, Dolev-Yao libraries may de�ne these operations by a sequene of ommands, whih may lead to non-atomiomputations. For this reason, a onvenient tool for the embedding of a language in COSP is thede�nition of a symboli semantis where ryptographi operations are exeuted atomially. This isahieved by de�ning a new redution relation A B (f. Figure 5), whih di�ers from the standardredution relation A→ B in that ryptographi operations are atomially performed.Using the de�nition of , we an reformulate the notion of safety. Our formulation is justi�ed byLemma 1 below.De�nition 16 (-σ-Safety) A struture S is statially σ-safe i� Pσ ⊢ Cσ where P are the ativeassumptions and C the ative assertions of S.An expression A is -σ-safe if for all S suh that A ∗ S we have that S is statially σ-safe. ⋄In ontrast to De�nition 14, when de�ning robust safety with respet to , we to not apply σ to theopponent or the program, beause σ is hard-oded into :De�nition 17 (Robust -σ-safety) An RCF expression A with fv (A) ⊆ domσ is robustly -σ-safei� the appliation O A is -σ-safe for all σ-opponents O. ⋄A neessary ingredient for the omputational soundness result is the proof that if a program is→-safethen it is also -σM

DY-safe. 13

(λx.A)N A{N/x}

let (x1, x2) = (N1, N2) in A A{N1/x1, N2/x2}

match M with h x then A else B

{

A{N/x} if M = h N for some N

B otherwise
M = N

{

true if M = N

false otherwise
a!M � a? M

assert C ()

let x = M in A A{M/x}

A A′ ⇒ let x = A in B let x = A′

in B

A A′ ⇒ νa.A νa.A′

A A′ ⇒ (A � B) (A′

� B)

A A′ ⇒ (B � A) (B � A′)

A ≡ B B′ ≡ A′ =⇒ A A′

send (message M) achan !message M

recv N achan?

nonce M νa.message Cι[a]

σM
DY(libf) M →∗ N =⇒ libf M N (libf ∈ domσM

DY\{send , recv ,nonce})Figure 5: Redution relation A BLemma 1 Let A be p-free. If AσM
DY is →-safe then A is -σM

DY-safe.Proof. By de�nition of→-safety and -σM
DY-safety, we only have to show that A ∗ B implies AσM

DY →
∗

BσM
DY . The proof is by strutural indution on the derivation of A ∗ B. The base ase is when

A = B and no redution step is applied, and the proof is straightforward. The indution ases are alsostraightforward, exept for the equality, math, and library funtion appliation rules.Equality. Sine → tests MσM
DY = NσM

DY while tests M = N , we have to prove that MσM
DY =

NσM
DY ⇔ M = N . The ⇐ diretion is straightforward. For proving the ⇒ diretion, we atually provethat M 6= N ⇒MσM

DY 6= NσM
DY.Sine A is p-free, we an easily see that B is mp-free and therefore M and N are mp-free. Nowwe proeed by strutural indution on M . We �rst reason on the base ases:

M = a The only interesting ase is when N = x. By De�nition 13, rangeσM
DY is a set of funtions, hene

σM
DY(x) 6= a.

M = () Analogous to the previous item.
M = x The proof follows by observing that σM

DY is equality-friendly.We now reason on the indution ases:
M = h M ′ & N = h′ N ′ & h 6= h′ We learly have MσM

DY 6= NσM
DY.

M = h M ′ & N = h N ′ If h is a publi onstrutor, then the proof follows diretly from the indutionhypothesis. If h is a private onstrutor, then we do not know whether M ′ and N ′ are mp-freeor not. We do know, however, that they are losed (by an inspetion of the -semantis and byDe�nition 13). Therefore MσM
DY = M and NσM

DY = N .14

The remaining ases follow straightforwardly from the indution hypothesis.Math. We have to show that (i) if match M with h x then C else D C{N/x} (i.e., M =
h N for some N and B = C{N/x}) then match MσM

DY with h x then CσM
DY else DσM

DY →
C{N/x}σM

DY and (ii) if match M with h x then C else D D (i.e., ∄N.M = h N) then
match MσM

DY with h x then CσM
DY else DσM

DY → DσM
DY . For this, we must show (i) M = h N ⇒MσM

DY =
h NσM

DY and (ii) ∄N.M = h N ⇒ ∄N.MσM
DY = h N . The proof for (i) is straightforward (sine σM

DY isapplied on both sides). For proving (ii), we atually prove that ∀N.M 6= h N ⇒ ∀N.MσM
DY 6= h N .Sine A is p-free, we an easily see that B is mp-free and therefore M is mp-free and h is a publionstrutor. Now we proeed by strutural indution on M . We �rst reason on the base ases:

M = a Straightforward.
M = () Straightforward.
M = x Assume by ontradition that ∃N.xσM

DY = h N . By De�nition 13, rangeσM
DY is a set of funtions,therefore h N /∈ rangeσM

DY, whih yields a ontradition.We now reason on the indution ases:
M = h M ′ This ase is obvious, sine the hypothesis ∀N.M 6= h N does not hold.The remaining ases are straightforward.Appliation of library funtions. We have to show that if f M N , with f ∈ domσM

DY , then
(fσM

DY)(MσM
DY) →

∗ NσM
DY . We fous on the ase f /∈ {send , recv , nonce}, sine the other ases arestraightforward. By de�nition of , we have fσM

DY M →∗ N . By de�nition of DY library, this redutiontakes plae only if M = (message ι(m1), . . . , message ι(mn)). By de�nition of ι, ι(mi) and hene also Mis losed. Similar reasoning shows that N is losed. Hene MσM
DY = M and NσM

DY = N . This onludesthe proof. �5 Computational soundnessIn this setion, we present the omputational soundness result for Dolev-Yao libraries.5.1 De�nitionsSine RCF only has semantis in the symboli model (without probabilism and without the notionof a omputational adversary) we need to introdue the notion of a omputational exeution of RCFexpressions. In the omputational exeution, we let the adversary have the full ontrol over the shedulingand all non-deterministi deisions. This models the worst ase; a setting in whih sheduling deisionsare taken randomly an be redued to this setting. Our omputational exeution maintains a state thatonsists of the urrent proess S and an environment η. Cryptographi messages (i.e., bitstrings reeivedby the adversary or omputed by ryptographi operations) are represented in S by free variables. Thebitstrings orresponding to these variables are maintained in the environment η. In eah step of theexeution, the adversary is given the proess S (together with a set of equations E that tell him forwhih x, y we have η(x) = η(y)), and then an deide whih of the di�erent redution rules from theRCF semantis should be applied to S. Note that giving S to the adversary does not leak any serets sinethese are only ontained in η. If the adversary requests that a funtion appliation lib f(x) is exeuted,where lib f is a funtion in the DY library, the omputational implementation Implf is used to omputethe result of this funtion appliation; that bitstring is then stored in η. Similarly for an appliation
nonce(). If the adversary requests a funtion evaluation send(x) the adversary is given the bitstring η(x);in the ase recv(), the adversary provides a bitstring that is then stored in η.15

The following de�nition formalizes the omputational exeution of RCF expressions. We assume thateah RCF expression has a unique8 normal form (a struture) with the property that bound names aredistint from free names (and similarly for variables). We also assume that the bound names of thenormal form are distint from the free names of σM
DY . We follow the onvention that �fresh variable�or �name� means a variable or name that does not our in any of the variables maintained by thealgorithm, nor in σM

DY . The parts in angle brakets (〈· · · 〉) an be ignored, as they de�ne the symboliRCF-exeution whih will be disussed in the next setion.De�nition 18 (Computational 〈symboli〉 RCF-exeution) Let M be a DY model and let Implbe a omputational implementation for M. Let A be an expression suh that M ⊢ A, and let Adv bean interative mahine alled the adversary. 〈Adv is a non-deterministi mahine that only sends mif S ⊢CoSP m where S are the messages sent to Adv so far.〉 We de�ne the omputational 〈symboli〉RCF-exeution as an interative mahine ExecImpl
A (1k) 〈SExecA〉 that takes a seurity parameter k asargument 〈that does not take any argument〉 and interats with Adv:

• Start: Let η be a totally unde�ned partial funtion mapping variables to bitstrings 〈terms〉. (ηprovides an environment giving bitstring 〈term〉 interpretation to the variables ourring in theurrent expression.)
• Main Loop: Let S = νa1 . . . al. (Π

i∈1...m
assume Ci � Π

j∈1...n
cj !Mj � (Π

k∈1...o
Lk{ek})) be the normalform of A. Let E := {x = y : x 6= y, η(x) = η(y)} be a set of formulae. Send (S, E) to theadversary and proeed depending on the type of message reeived from Adv as follows:� When reeiving (sync, j, k) from Adv, if ek = cj?, then set A := B, where B is the expressionobtained from S by removing cj !Mj and replaing Lk{ek} by Lk{Mj};� When reeiving (step, k):

∗ If ek = x (y1, . . . , yn) with x = lib f for some onstrutor or destrutor f of arity n and
y1, . . . , yn ∈ dom η: Let m := Implf(η(y1), . . . , η(yn)) 〈m := eval f(η(y1), . . . , η(yn))〉. If
m 6= ⊥, set η := η ⊎ (z := m) for fresh z and m′ := some z. If m = ⊥, set η := η and
m′ := none. Set A := S{Lk{m′}/Lk{ek}};
∗ If ek = nonce M , then pik r ← Impln(1

k) for some n ∈ NP
9 〈let r be a fresh protoolnone〉 and set η := η ⊎ (z := r) for fresh z and A := S{Lk{z}/Lk{ek}}.

∗ If ek = recv M , then request a bitstring 〈term〉 m from the adversary and set η := η⊎(z :=
m) for fresh z and A := S{Lk{z}/Lk{ek}}.
∗ If ek = send x with x ∈ dom η: Send η(x) to the adversary and set A :=S{Lk{()}/Lk{ek}}.
∗ If ek = (λx.B) N , let A := S{Lk{B{N/x}}/Lk{ek}}.
∗ If Lk{ek} = L′{let x = M in B}: Set A := S{Lk{B{M/x}}/Lk{ek}}.
∗ If ek = (M = N): For every x ∈ dom η, let ρ(x) be the lexiographially �rst y ∈ dom ηwith η(x) = η(y).10 If MρσM

DY = NρσM
DY, let b := true, otherwise let b := false. Set

A := S{Lk{b}/Lk{ek}}.
∗ If ek = let (x, y) = (M1,M2) in B: Set A := S{Lk{B{M1/x,M2/y}}/Lk{ek}}.
∗ If ek = match M with h x then B1 else B2: If M is of the form hN , let B := B1{N/x},otherwise let B := B2. Set A := S{Lk{B}/Lk{ek}}.
∗ If ek = assert C: Set A := S{Lk{()}/Lk{ek}}.� If none of these ases apply, do nothing. ⋄8The uniqueness of normal forms an be ahieved, for instane, by imposing a lexiographial order on strutures.9The en-sig-implementation onditions ensure that Impln(1

k) does not depend on the hoie of n.10We use ρ to unify variables that refer to the same messages. This is neessary beause the test MσM
DY

= NσM
DY

without
ρ would treat these variables as distint terms. 16

Notie that the exeution of ExecImpl
A (1k) maintains the invariant that all bound variables and namesin A are pairwise distint and that they are distint from the variables in the domain of η. For agiven polynomial-time interative mahine Adv, a losed expression A, and a polynomial p, we let

Trace
Impl
Adv,A,p(k) denote the list of pairs (S, E) output by ExecImpl

A (1k) (at the beginning of eah loopiteration) within the �rst p(k) omputation steps (jointly ounted for Adv(1k) and ExecImpl
A (1k)).De�nition 19 (Statial equation-σ-safety) Let σ be a substitution. A pair (S, E) of a struture Sand a set E of equalities between variables is statially equation-σ-safe i� P, eqs ⊢ C where P and

C are the ative assumptions and assertions of S, vars := fv(E) ∪ domσ, exterms is the set of allFOL/F-subterms h(t) of P,C with h forbidden and t syntati losed, and
eqs := E ∪ {x 6= x′ : x, x′ ∈ vars , x 6= x′, (x = x′) /∈ E}

∪ {∀y.x 6= c(y) : x ∈ vars , c non-forbidden syntati funtion symbol}
∪ {x 6= t : x ∈ vars , t ∈ exterms}. ⋄We add the fats eqs in order to tell the logi what is known about the environment η in theomputational exeution. More preisely, we have x = x′ whenever η(x) = η(x′) and x 6= x′ otherwise.Furthermore, we have equations x 6= x′ when x 6= x′ refer to library funtions (intuitively, this is justi�edbeause we assume all our libraries to be equality-friendly), and x 6= x′ when x is a library funtion and

x′ refers to the environment (i.e., represents a bitstring). The equations x 6= t with t ∈ exterms are bestexplained by an example: Let A0 := let x = nonce in let x′ = (λz.z) in assume (x = x′); assert (false).Then A0 is robustly →-σM
DY-safe: A0σ

M
DY redues to assume (σM

DY(nonce) = λz.z) � assert (false) andwe have nonceσM
DY = (λz.z) ⊢ false (this is implied by equality-friendliness). In the omputationalexeution, however, we get the proess A = assume (nonce = λz.z) � assert (false), thus for robustomputational safety, we need that nonce = (λz.z), eqs ⊢ false holds. For this, we need the inequalities

x 6= t in eqs. Notie that these extra inequalities are neessary only beause the logi allows us toompare lambda-abstrations syntatially.De�nition 20 (Robust omputational safety) Let Impl be a omputational implementation. Let
A be an expression with M ⊢ A. We say that A is robustly omputationally safe using
Impl if for all polynomial-time interative mahines Adv and all polynomials p, we have that
Pr[all omponents of TraceAdv,A,p(1

k) are statially equation-σM
DY-safe] is overwhelming in k. ⋄At the �rst glane, it may seem strange that the de�nition of robust omputational safety isparametrized by the symboli library σM

DY . An inspetion of De�nition 19, however, reveals that thede�nition only depends on the domain of σM
DY, i.e., on the set of ryptographi operations available to A.5.2 Symboli vs. omputational exeutionAs desribed in Setion 1.1, we now introdue an intermediate semantis, the symboli RCF-exeution.This exeution is spei�ed in De�nition 18 (by reading the parts inside the 〈. . . 〉), and is the exatanalogue to the omputational RCF-exeution, exept that it performs symboli operations instead ofomputational ones.We write SExecA in the set of lists of pairs (S, E) that an be sent in the symboli exeution. Like forthe omputational RCF-exeution, these pairs (S, E) ontain the information needed to hek whetherthe ative assumptions entail the ative assertions. This allows us to express robust safety in terms ofthe symboli RCF-exeution:De�nition 21 (Robust SExec-safety) Let A be an expression and M a DY model suh that M ⊢ A.We say that A is robustly SExec-safe i� for any ((S1, E1), . . .) ∈ SExecA, we have that (Si, Ei) isstatially equation-σM

DY-safe for all i. ⋄17

We now proeed to show that robust -σM
DY-safety implies robust SExec-safety. For this, we �rstneed a bit of notation:We all a name a a protool name if Cι[a] ∈ ι(NP) and an adversary name if Cι[a] ∈ ι(NE). Notethat every name is either a protool name or an adversary name. For an expression Q and a substitution

ϕ from variables to CoSP terms, we say that Q is valid for ϕ if Q does not ontain assume or assert, Qis p-free, fn(Q) = ∅, and fv (Q) ⊆ domϕ∪ domσM
DY , and all its free names are adversary names. Let Adenote the proess from the symboli exeution before the urrent main loop, let ϕ denote a substitutionmapping x1, . . . , xk to the messages sent to the adversary. Let ιm(x) := message ι(x). For n ∈ N, let

ιN (n) be the name a with Cι(a) = ι(n). Let n be the list of all nones hosen by the protool, and
n := ιN (n).Let A′, ϕ′, N ′, n′ denote the values of A,ϕ,N, n after the urrent iteration, and let A0, ϕ0, N0, n0denote the values of A,ϕ,N, n before the �rst iteration. We now show that eah iteration of the symboliexeution an be simulated in the RCF semantis by hoosing a suitable σM

DY-opponent.Lemma 2 Consider an iteration of the main loop of the symboli exeution with M ⊢ A0. Then for allRCF expressions Q′ valid for ϕ′, there is a substitution ϕ and an RCF expression Q valid for ϕ suhthat
νn.(Q(ιm ◦ ϕ) � A(ιm ◦ η))

∗ νn′.(Q′(ιm ◦ ϕ
′) � A′(ιm ◦ η

′)).Proof. By indution over the number of iterations of the main loop, and using the fat that M ⊢ A0, weget that A is losed, p-free, and does not ontain achan .We distinguish the ases in De�nition 18.
• The adversary sends (sync, j, k): Then n = n′, ϕ = ϕ′, η = η′. And A(ιm ◦ η) A′(ιm ◦ η). Sothe lemma holds with Q := Q′.
• The adversary sends (step, k) and ek = x (y1, . . . , yn) with x = lib f for some onstrutor ordestrutor f of arity n and y1, . . . , yn ∈ dom η and m := eval f(η(y1), . . . , η(yn)) 6= ⊥: Then
η′ = η ⊎ (z 7→ m) for fresh z and A′ := A{Lk{some z}/Lk{ek}}. Furthermore n′ = n and ϕ = ϕ′.Let mi := η(yi). Then
(x(y1, . . . , yn))(ιm ◦ η) = lib f(message ι(m1), . . . ,message ι(mn))

 some(message ι(m)) = (some z)(ιm ◦ η
′)and hene A(ιm ◦ η) A′(ιm ◦ η). So the lemma holds with Q := Q′.

• The adversary sends (step, k) and ek = x (y1, . . . , yn) with x = lib f for some onstrutor ordestrutor f of arity n and y1, . . . , yn ∈ dom η and eval f(η(y1), . . . , η(yn)) = ⊥: Then η′ = η,
ϕ = ϕ′, n = n′, and A′ = A{Lk{none}/Lk{ek}}. Let mi := η(yi). Then

(x(y1, . . . , yn))(ιm ◦ η) = lib f(message ι(m1), . . . ,message ι(mn)) none = none(ιm ◦ η
′)and hene A(ιm ◦ η) A′(ιm ◦ η). So the lemma holds with Q := Q′.

• The adversary sends (step, k) and ek = nonce M : Then ϕ = ϕ′ and η′ = η ⊎ (z := r) for a freshvariable z and a fresh protool none r. Furthermore A′ = A{Lk{z}/Lk{ek}}. Sine r is a protoolnone, ι(r) = Cι[a] for some fresh protool name a. Hene a /∈ fn(σM
DY) and n′ = na. We have

ek(ιm ◦ η) = nonce (M(ιm ◦ η)) νa.message Cι[a] = νa.(z(ιm ◦ η
′))and hene A(ιm ◦ η)σM

DY νa.A′(ιm ◦ η′)σM
DY. Sine Q is valid, Q does not ontain the protoolname a, so the lemma holds with Q := Q′. 18

• The adversary sends (step, k) and ek = recv M and the adversary sends the term m: Then
η′ = η ⊎ (z := m) and ϕ′ = ϕ and n′ = n and A′ = A{Lk{z}/Lk{ek}}. Furthermore rangeϕ ⊢ m.By indution over the rules de�ning ⊢CoSP, we have that for any term t with rangeϕ ⊢ t, thereis a RCF expression e suh that e(ιm ◦ ϕ) ∗ ιm(t) where e obeys the following grammar: e ::=
xi|let x1 = e1 in . . . let xn = en in lib f(x1, . . . , xn)|a where a is an adversary name, 1 ≤ i ≤ |ϕ|, and
n is the arity of the onstrutor or destrutor f. Thus there is an RCF expression em suh that
em(ιm ◦ϕ) ∗ ιm(m). Let y, y′ be variables that are not free in Q′. Let Q := let y = em in let y′ =
send y in Q′. Sine em only ontains adversary nones, Q is valid for ϕ. We have

Q(ιm ◦ ϕ) � ek(ιm ◦ η)

= let y = em(ιm ◦ ϕ) in let y′ = send y in Q′(ιm ◦ ϕ) � recv (M(ιm ◦ η))

 ∗ let y′ = send ιm(m) in Q′(ιm ◦ ϕ) � recv (M(ιm ◦ η))

 ∗ let y′ = achan !ιm(m) in Q′(ιm ◦ ϕ) � achan?

 let y′ = () in Q′(ιm ◦ ϕ) � ιm(m)

 Q′(ιm ◦ ϕ) � ιm(m)

= Q′(ιm ◦ ϕ) � z(ιm ◦ η
′)and thus

νn.(Q(ιm ◦ ϕ) � A(ιm ◦ η))
∗ νn.(Q′(ιm ◦ ϕ) � A

′(ιm ◦ η)) = νn′.(Q′(ιm ◦ ϕ
′) � A′(ιm ◦ η

′)).

• The adversary sends (step, k) and ek = send M and M ∈ dom η: Let m := η(M). Then ϕ′ =
ϕ⊎ (xn+1 7→ m) where n := |domϕ|. Furthermore n′ = n and η′ = η and A′ = A{Lk{()}/Lk{ek}}.Let Q := let xn+1 = recv() in Q′. Then

Q(ιm ◦ ϕ) � ek(ιm ◦ η)

= let xn+1 = recv() in Q′(ιm ◦ ϕ) � send(message ι(m))

 ∗ let xn+1 = achan? in Q′(ιm ◦ ϕ) � achan !(message ι(m))

∗ let xn+1 = message(ι(m)) in Q′(ιm ◦ ϕ) � ()

 Q′(ιm ◦ ϕ
′) � ()and thus

νn.(Q(ιm ◦ ϕ) � A(ιm ◦ η))
∗ νn′.(Q′(ιm ◦ ϕ

′) � A′(ιm ◦ η
′)).

• The adversary sends (step, k) and ek = (λx.B) N : Then n = n′, ϕ = ϕ′, η = η′. And A(ιm ◦ η)
A′(ιm ◦ η). So the lemma holds with Q := Q′.
• The adversary sends (step, k) and Lk{ek} = L′{let x = M in B}: Then n = n′, ϕ = ϕ′, η = η′.And A(ιm ◦ η) A′(ιm ◦ η). So the lemma holds with Q := Q′.
• The adversary sends (step, k) and ek = (M = N) and Mρ = Nρ where ρ(x) is the lexiographially�rst y ∈ dom η with η(x) = η(y): Then M(ιm ◦ η) = Mρ(ιm ◦ η) = Nρ(ιm ◦ η) = N(ιm ◦ η). Thus
ek(ιm ◦ η) true and hene A(ιm ◦ η) A′(ιm ◦ η). So the lemma holds with Q := Q′.
• The adversary sends (step, k) and ek = (M = N) and Mρ 6= Nρ where ρ is as in the previous ase.Assume for ontradition that M(ιm ◦ η) = N(ιm ◦ η). Sine all terms in the range of ιm ◦ η are ofthe form message M ′ and M,N are mp-free (beause A is mp-free), we have that M and N di�eronly in their variables, i.e., that there is a ontext C withM = C[x1, . . . , xn] and N = C[x′

1, . . . , x
′

n].Furthermore, for all i we have ιm ◦ η(xi) = ιm ◦ η(x′

i). Sine ιm is injetive, η(xi) = η(x′

i). Byde�nition of ρ, this implies ρ(xi) = ρ(x′

i). Thus Mρ = Nρ in ontradition to Mρ 6= Nρ. Thus
M(ιm ◦ η) 6= N(ιm ◦ η). It follows that ek(ιm ◦ η) false and hene A(ιm ◦ η) A′(ιm ◦ η). Sothe lemma holds with Q := Q′. 19

• The adversary sends (step, k) and ek = let (x, y) = (M1,M2) in B: Then n = n′, ϕ = ϕ′, η = η′.And A(ιm ◦ η) A′(ιm ◦ η). So the lemma holds with Q := Q′.
• The adversary sends (step, k) and ek = match h N with h x then B1 else B2: Then n = n′, ϕ = ϕ′,
η = η′. And A(ιm ◦ η) A′(ιm ◦ η). So the lemma holds with Q := Q′.
• The adversary sends (step, k) and ek = match M with h x then B1 else B2 and M is not of theform h N for any N : If M /∈ dom η, then M(ιm ◦ η) is not of the form h N . If M ∈ dom η, then
M(ιm ◦ η) is of the form message N ′, and sine A is mp-free, h 6= message and thus message N ′is not of the form h N .Thus (match M with h x then B1 else B2)(ιm ◦ η)→ B2(ιm ◦ η) and hene A(ιm ◦ η)→ A′(ιm ◦ η).So the lemma holds with Q := Q′.
• The adversary sends (step, k) and ek = assert C: Then n = n′, ϕ = ϕ′, η = η′. Furthermore
ek () and hene A(ιm ◦ η) A′(ιm ◦ η). So the lemma holds with Q := Q′.
• All other ases: A′ = A, η′ = η, ϕ′ = ϕ, n′ = n. Thus with Q := Q′,

νn.(Q(ιm ◦ ϕ) � A(ιm ◦ η))σDY = νn′.(Q′(ιm ◦ ϕ
′) � A′(ιm ◦ η

′))σDY .

�Lemma 3 Let P,C be sets of FOL/F-formulae. Assume that P and C ontain no forbidden funtionsymbols. Let γ be a substitution mapping variables to losed FOL/F-terms. Assume that dom γ ⊆
fv (P,C). Assume that for all x ∈ dom γ we have γ(x) = h(t) for forbidden h and syntati t. Let
eqs := {x = x′ : x, x′ ∈ domγ, x 6= x′, γ(x) = γ(x′)} ∪ {x 6= x′ : x, x′ ∈ dom γ, γ(x) 6= γ(x′)}

∪ {∀y. x 6= c(y) : x′ ∈ dom γ, c non-forbidden syntati funtion symbol}.Then Pγ ⊢ Cγ =⇒ P, eqs ⊢ C.Proof. Without loss of generality, we assume that the bound variables and the free variables of P,C, eqsare disjoint. In the following, we will use x to denote variables in dom γ, y to denote variables not freein P,C, f for funtion symbols, h for forbidden funtion symbols, c for non-forbidden funtion symbols,
t for FOL/F-terms, and u for members of the universe U (de�ned below).To show that P, eqs ⊢ C, it is su�ient to show that for any modelM and any environment η with
dom η = dom γ, ifM, η � P, eqs thenM, η � C. Thus, �x suh a modelM and suh an environment η.We are left to show M, η � C. Let U be the universe of M, and for a non-forbidden funtion symbol
f , letMf denote the interpretation of f inM, and analogously for forbidden funtion symbols h. (Wetreat onstants as nullary funtion symbols, thus we do not need to treat them separately.) We write
Mη(t) for the interpretation of t in the modelM under environment η. If t is losed, we also writeM(t)instead ofMη(t).By de�nition of FOL/F, we have that for any syntati funtion symbol f , Mf is injetive. Thusfor losed terms t, t′ ontaining only syntati funtion symbols,M(t) =M(t′) i� t = t′. Furthermore,sineM, η � eqs , η(x) = η(x′) i� γ(x) = γ(x′). HeneM(γ(x)) =M(γ(x′)) i� η(x) = η(x′).SineM(γ(x)) =M(γ(x′)) i� η(x) = η(x′) for all x, x′, there is a permutation π on {η(x),M(γ(x)) :
x ∈ dom γ} ⊆ U suh that π(η(x)) =M(γ(x)) for all x. Fix suh a permutation π. We extend π to apermutation on U by setting π(u) := u for u /∈ {η(x),M(γ(x)) : x ∈ domγ} ⊆ U . We abbreviate π(u)for π(u1), π(u2), . . . and analogously for π−1.For any c, x, we have (∀y. x 6= c(y)) ∈ eqs . Sine M, η � eqs by assumption, it follows that
∀u ∈ U. η(x) 6=Mc(u). Furthermore, sineM is a FOL/F-model, ∀u, u′ ∈ U.Mh(u

′) 6=Mc(u). Sinefor all x, γ(x) = h(t) for some h, t, it follows that ∀u ∈ U. γ(x) 6= Mc(u). Thus ∀u ∈ U. Mc(u) /∈
{η(x),M(γ(x)) : x ∈ domγ}. By de�nition of π, this implies

∀u ∈ U. π(Mc(u)) =Mc(u). (1)20

We de�ne a model M′. This model M′ has universe U , M′

c(u) := π(Mc(π
−1(u))), and M′

p(u) :=
Mp(π

−1(u)) for prediate symbols p.It is left to de�ne M′

h. First note that Mh is injetive. (By de�nition of FOL/F, for syntati hwe haveM � ∀y, y′. h(y) 6= h(y′) ⇒ y 6= y′ for any model M.) Thus U × · · · × U and rangeMh havethe same ardinality. Furthermore, as seen above, M(t) = M(t′) i� t = t′ for losed terms t, t′ onlyontaining syntati funtion symbols. Thus we an �x M′

h to be some injetive funtion with range
rangeM′

h = rangeMh and satisfying: For all h(t) ∈ range γ, we haveM′

h(M
′(t)) =Mh(M(t)).Claim 1 M′ is a FOL/F-model.Obviously, M′ is a FOL-model. Thus, to show Claim 1, we only need to show that for all syntatifuntion symbols f 6= f ′, the axioms ∀y, y′.f(y) 6= f ′(y′) (F Disjoint) and ∀y, y′.f(y) 6= f(y′) ⇒ y = y′(F Injetive) are satis�ed by M′. Sine M′

f is injetive by de�nition both for forbidden and non-forbidden f , (F Injetive) is satis�ed. To show that (F Disjoint) is satis�ed, we distinguish the ases
(f, f ′) = (c, c′), (f, f ′) = (h, h′), and (f, f ′) = (c, h′) (the ase (f, f ′) = (h, c′) is analogous). If (f, f ′) =
(c, c′), then rangeMc ∩ rangeMc′ = ∅ (sine M is a FOL/F-model and c 6= c′ are syntati) andthus rangeM′

c ∩ rangeM′

c′ = π(rangeMc) ∩ π(rangeMc′) = π(∅) = ∅ (sine π is a permutation on
U). If (f, f ′) = (h, h′), we have rangeM′

h ∩ rangeM′

h′ = rangeMh ∩ rangeMh′ = ∅ by de�nition of
M′

h,M
′

h′ and sine M is a FOL/F-model and h 6= h′ are syntati. If (f, f ′) = (c, h′), we have that
rangeMc ∩ rangeMh′ = ∅ sine M is a FOL/F-model and c 6= h′ are syntati. By (1), we havethat rangeMc = π(rangeMc). Thus rangeM′

c ∩ rangeM′

h′

(∗)
= π(rangeMc) ∩ rangeMh′ = rangeMc ∩

rangeMh′ = ∅ where (∗) uses the de�nition of M′

c and M′

h′ . Thus, for all syntati funtion symbols
f 6= f ′, we have rangeM′

f ∩ rangeM′

f ′ = ∅. Thus (F Disjoint) is satis�ed and Claim 1 holds.Claim 2 For all environments ζ with dom ζ ∩ dom η = ∅, and all terms t not ontaining forbiddenfuntion symbols and fv (t) ⊆ dom η ∪ dom ζ, we have that π(Mη∪ζ(t)) =M′

π◦ζ(tγ).We show this by strutural indution on t. We distinguish the following ases:
• Case �t = c(t′)�: π(Mη∪ζ(t)) = π(Mc(Mη∪ζ(t

′)))
IH
= π(Mc(π

−1(M′

π◦ζ(t
′γ))))

(∗)
=

M′

c(M
′

π◦ζ(t
′γ)) =M′

π◦ζ(c(t
′γ)) =M′

π◦ζ(tγ). Here (∗) uses the de�nition ofM′

c.
• Case �t = h(t′)�: This ase does not our beause t does not ontain forbidden funtion symbols.
• Case �t = x ∈ dom η�: Then π(Mη∪ζ(t)) = π(η(x)) sine x ∈ dom η and M′

π◦ζ(tγ) = M′(γ(x))sine x ∈ dom γ = dom η. By de�nition of π, π(η(x)) =M(γ(x)). Furthermore, sine γ(x) is ofthe form h(t′), we have that M(γ(x)) = Mh(M(t′)) =M′

h(M
′(t′)) = M′(γ(x)). Summarizing,

π(Mη∪ζ(t)) = π(η(x)) =M(γ(x)) =M′(γ(x)) =M′

π◦ζ(tγ).
• Case �t = y ∈ dom ζ�: π(Mη∪ζ(t)) = π(η(y)) =M′

π◦ζ(y).We have shown Claim 2.Claim 3 For all environments ζ with dom ζ ∩ dom η = ∅, and all FOL/F-formulae Q not ontainingforbidden funtion symbols and fv (Q) ⊆ dom η ∪ dom ζ, we have that M, ζ ∪ η � Q i� M′, π ◦ ζ � Qγ.We show this by strutural indution on t. We distinguish the following ases:
• Case �Q = Q1 ·Q2 for · ∈ {∧,∨,⇒}�: ThenM, ζ ∪ η � Q⇔ (M, ζ ∪ η � Q1) · (M, ζ ∪ η � Q2)

IH
⇔

(M′, π ◦ η � Q1γ) · (M′, π ◦ η � Q2γ) ⇔M′, π ◦ ζ � Qγ. (This also overs Q = ¬Q′ beause ¬Q′is syntati sugar for Q′ ⇒ false.)
• Case �Q = �y.Q′ with � ∈ {∀, ∃}�: For an environment ζ and a value u ∈ U , we abbreviate
ζ(y := u) by ζu. Then

M, ζ ∪ η � Q⇐⇒ �u ∈ U. (M, ζu ∪ η � Q′)IH
⇐⇒ �u ∈ U. (M, π ◦ ζu � Q′γ)⇐⇒ �u ∈ U. (M, π ◦ ζu � Q′γ)

⇐⇒ �u ∈ U. (M, (π ◦ ζ)π(u) � Q′γ)⇐⇒M′, π ◦ ζ � �z. Q′γ

⇐⇒M′, π ◦ ζ � Qγ. 21

• Case �Q = false�: Then bothM, ζ ∪ η � Q andM′, π ◦ ζ � Q do not hold.
• Case �Q = (t = t′)�:

M, η ∪ ζ � Q⇐⇒Mη∪ζ(t) =Mη∪ζ(t
′)

⇐⇒ π(Mη∪ζ(t)) = π(Mη∪ζ(t
′))

Claim 2
⇐⇒M′

π◦ζ(tγ) =M
′

π◦ζ(t
′γ)

⇐⇒M′, π ◦ ζ � tγ = t′γ.⇐⇒M′, π ◦ ζ � Qγ.

• Case �Q = p(t) for a prediate symbol p�: We use the abbreviationMp(t) forMp(t1, t2, . . .).
M, η ∪ ζ � Q⇐⇒Mp(Mη∪ζ(t))

(∗)
⇐⇒M′

p(π(Mη∪ζ(t)))
Claim 2
⇐⇒M′

p(π(M
′

π◦ζ(tγ)))

⇐⇒M′, π ◦ ζ � p(tγ).⇐⇒M′, π ◦ ζ � Qγ.Here (∗) uses the de�nition ofM′

p.This shows Claim 3.We an now onlude the proof of Lemma 3. SineM, η � P , we haveM′, π◦η � Pγ by Claim 3 (speialase with ζ = ∅). Sine Pγ ⊢ Cγ by assumption, it follows that M′, π ◦ η � Cγ. By Claim 3 we get
M, η � C. SineM, η � C was the only remaining goal, P, eqs ⊢ C and thus Lemma 3 follows. �Lemma 4 Let P,C be sets of message-free FOL/F-formulae. Assume that fv(P,C)∩bv (P,C) = ∅. Let
γ be a substitution mapping variables to losed FOL/F-terms. Assume that fv(P,C) ⊆ domγ. Assumethat for all x, we have γ(x) = h(t) for forbidden h and syntati losed t. Let exterms be the set ofsubterms h(t) of P,C suh that h is forbidden. Assume that fv (exterms) ∩ bv (P,C) = ∅ (i.e., thevariables in exterms are not bound). Assume that all t ∈ exterms are syntati. Assume that for all
x ∈ dom γ and all message-free FOL/F-terms t /∈ dom γ, we have γ(x) 6= tγ. Let

eqs := {x = x′ : x 6= x′, x, x′ ∈ dom γ, γ(x) = γ(x′)} ∪ {x 6= x′ : x, x′ ∈ domγ, γ(x) 6= γ(x′)}

∪ {∀y. x 6= c(y) : x ∈ domγ, c non-forbidden syntati funtion symbol}
∪ {x 6= t : x ∈ dom γ, t ∈ exterms}.Then Pγ ⊢ Cγ i� P, eqs ⊢ C.Proof. We �rst show the diretion P, eqs ⊢ C ⇒ Pγ ⊢ Cγ. Sine FOL/F is an authorization logi,

P, eqs ⊢ C implies Pγ, eqs γ ⊢ Cγ. Sine for all x, γ(x) is a losed term h(t) ontaining only syntatifuntion symbols, we have ⊢ γ(x) = γ(x′) for γ(x) = γ(x′) by (FOL Re�), and ⊢ γ(x) 6= γ(x′) for
γ(x) 6= γ(x′) by (F Disjoint) and (F Injetive), and ⊢ ∀y. γ(x) 6= c(y) for all c, x by (F Disjoint), and
⊢ γ(x) 6= t for all t ∈ exterms by (F Disjoint) and (F Injetive) and γ(x) /∈ exterms. Thus ⊢ eqs γ. SineFOL/F is an authorization logi, Pγ, eqs γ ⊢ Cγ and ⊢ eqs γ ⊢ Cγ implies Pγ ⊢ Cγ. Thus we haveshown P, eqs ⊢ C ⇒ Pγ ⊢ Cγ.We proeed to show the diretion Pγ ⊢ Cγ ⇒ P, eqs ⊢ C. Assume that Pγ ⊢ Cγ holds.Let {t1, . . . , tn} := exterms where the ti are distint. Let x1, . . . , xn be fresh variables. Let σ :=
{t1/x1, . . . , tn/xn} and σ̄ := {x1/t1, . . . , xn/tn}. Let P ′ := P σ̄, C′ := Cσ̄, γ′ := γ ∪ σγ. Let

eqs0 := {xi 6= xj : i 6= j, tiγ 6= tjγ} ∪ {xi = xj : i 6= j, tiγ = tjγ}

∪ {∀y.xi 6= c(y) : c non-forbidden syntati}
eqs ′ := {x = x′ : x, x′ ∈ domγ′, γ′(x) = γ′(x′)} ∪ {x 6= x′ : x, x′ ∈ dom γ′, γ′(x) 6= γ′(x′)}

∪ {∀y. x 6= c(y) : x ∈ domγ′, c non-forbidden syntati funtion symbol}.Sine P ′γ′ = Pγ and C′γ′ = Cγ, from Pγ ⊢ Cγ we get P ′γ′ ⊢ C′γ′. P ′, C′ ontain no forbiddenfuntion symbols. Then, by Lemma 3, P ′, eqs ′ ⊢ C′. Sine FOL/F is an authorization logi, P ′σ, eqs ′σ ⊢
C′σ.Furthermore, we have that eqs ′ = eqs σ̄ ∪ eqs0. Thus P ′σ, eqs ′σ ⊢ C′σ implies P, eqs , eqs0 σ ⊢ C.We will now show that eqs ⊢ eqs0 σ. For this, we �rst need the following two fats:22

Claim 1 For all message-free subterms t1, t2 of P,C (not only those of the form h(·)) with t1γ = t2γand fv (t1, t2) ⊆ dom γ, we have eqs ⊢ t1 = t2.Claim 2 For all subterms t1, t2 of P,C (not only those of the form h(·)) with t1γ 6= t2γ and fv (t1, t2) ⊆
dom γ, we have eqs ⊢ t1 6= t2.We prove Claim 1 by strutural indution on t1, t2 and distinguish the following ases: Case �t1 = f(t′1)and t2 = f ′(t′2)�: Sine f(t′1γ) = t1γ = t2γ = f ′(t′2γ), we have f = f ′ and t′1γ = t′2γ. By indutionhypothesis, eqs ⊢ t′1 = t′2. Thus eqs ⊢ f(t′1) = f(t′2) whih is the same as eqs ⊢ t1 = t2. Case �t1 = xand t2 = f(t′2)�: Sine t2 /∈ dom γ is message-free, we have that t1γ = γ(x) 6= t2γ in ontradition tothe assumption t1γ = t2γ. Case �t1 = f(t′1) and t2 = x�: Analogous. Case �t1 = x and t2 = x′�: Sine
γ(x) = t1γ = t2γ = γ(x′), we have (x1 = x2) ∈ eqs . Thus eqs ⊢ t1 = t2. This shows Claim 1.We prove Claim 2 by strutural indution on t1, t2 and distinguish the following ases: Case �t1 = f1(t

′

1)and t2 = f2(t
′

2) with f1 6= f2�: Then eqs ⊢ t1 6= t2 by (F Disjoint). Case �t1 = f(t′) and t2 = f(t′′)�: From
f(t′γ) = t1γ 6= t2γ = f(t′′γ) we get t′iγ 6= t′′i γ from some i. Thus, by indution hypothesis, eqs ⊢ t′i 6= t′′i .By (F Injetive), it follows that eqs ⊢ f(t′) 6= f(t′′) and thus eqs ⊢ t1 6= t2. Case �t1 = x and t2 = h(t′)�:Sine t2 is a subterm of P,C, t2 ∈ exterms. Thus (x 6= t2) ∈ eqs and hene eqs ⊢ t1 6= t2. Case �t1 = xand t2 = c(t′)�: Sine (∀y. x 6= c(y)) ∈ eqs , we have eqs ⊢ x 6= c(t′), thus eqs ⊢ t1 6= t2. Case �t1 = x1and t2 = x2�: Sine t1γ 6= t2γ, we have γ(x1) 6= γ(x2). Thus (x1 6= x2) ∈ eqs and hene eqs ⊢ t1 6= t2.The remaining ases are symmetri to the ones above. This shows Claim 2.Now eqs ⊢ eqs0 σ follows: By Claim 1, we have eqs ⊢ ti = tj for all i 6= j with tiγ = tjγ. By Claim 2,we have eqs ⊢ ti 6= tj for all i, j with tiγ 6= tjγ. And sine ti = h(t′) for some h 6= c by de�nition, weget eqs ⊢ ∀y. ti 6= c(y) by (F Distint). Thus eqs ⊢ eqs0 σ holds. Together with P, eqs , eqs0 σ ⊢ C, sineFOL/F is an authorization logi, this implies that P, eqs ⊢ C. �Lemma 5 If M ⊢ A0 and A0 is robustly -σM

DY-safe, then A0 is robustly SExec-safe.Proof. Assume that A0 is not SExe-safe. Then, at some step of the symboli exeution for A0, we havethat P, eqs 0 C where P and C are the ative assumes and assertions of A and eqs is as in De�nition 19.By Lemma 2 and indution on the desending number of the iteration of the main loop of the symboliexeution (starting with Q := ()), we get that there is a RCF expression Q0 valid for ϕ0 suh that
(Q0 � A0)

∗ νn′.() � A(ιm ◦ η).Sine Q0 is valid for ϕ0 = ∅, we have that Q0 does not ontain assumptions or assertions, is p-free andsatis�es fv (Q0) ⊆ domσM
DY and achan /∈ fn(Q0). With O := (λx.Q0 � x) it follows that OA ∗ A(ιm ◦ η)and that O is a σM

DY-opponent. Hene, sine A0 is robustly -σM
DY-safe, A(ιm ◦ η) is statially σM

DY-safe.Hene C(ιm ◦ η)σM
DY ⊢ P (ιm ◦ η)σM

DY. Let γ := σM
DY ∪ (ιm ◦ η). (Note that η and σM

DY have disjointdomains by onstrution.) Then Pγ ⊢ Cγ.Sine all σM
DY(x) are lambda-abstrations (by De�nition 13), and all ιm ◦ η(x) are of the form

message(. . .), we have that for all x ∈ dom γ, γ(x) = h(t) for forbidden h and losed t. Let extermsbe the set of subterms h(t) of P,C suh that h is forbidden. Sine M ⊢ A0, A0 is message-free and, byindution over the number of iterations of the main loop of the symboli exeution, we get that P,C aremessage-free, that fv(P,C) ⊆ dom γ, that fv(P,C)∩bv (P,C) = ∅, that fv(exterms)∩bv (P,C) = ∅, andthat all t ∈ exterms are syntati. (For the last fat, note that all RCF-values are enoded as syntatiterms in FOL/F-formulae.)We have that σM
DY is equality-friendly, and ιm ◦ η(x) = message(·) is message-math-free for all x.Thus for all x ∈ domγ and all message-free FOL/F-terms t /∈ dom γ, we have γ(x) 6= tγ.Thus we an apply Lemma 4 and get P, eqs ′ ⊢ C where

eqs ′ := {x = x′ : x 6= x′, x, x′ ∈ dom γ, γ(x) = γ(x′)} ∪ {x 6= x′ : x, x′ ∈ dom γ, γ(x) 6= γ(x′)}

∪ {∀y. x 6= c(y) : x ∈ dom γ, c non-forbidden syntati funtion symbol}
∪ {x 6= t : x ∈ domγ, t ∈ exterms}. 23

Sine γ(x) 6= γ(x′) for x /∈ dom ιm ◦ η or x′ /∈ dom ιm ◦ η (this follows from the fat that σM
DY isequality-friendly and ιm ◦ η(x) = message(. . .)), we get eqs = eqs ′.Thus P, eqs ⊢ C. �5.3 Computational soundness of the DY-libraryWe will now use the CoSP framework [BHU09℄ to derive onditions under whih robust SExec-safetyimplies robust omputational safety. In order to do so, we �rst de�ne a CoSP protool ΠA0 that simul-taneously aptures the behavior of the symboli exeution and the one of the omputational exeution.Then, omputational soundness results in the CoSP framework guarantee that the seurity of ΠA0 (inter-preted symbolially) implies seurity of ΠA0 (interpreted omputationally). Hene robust SExec-safetyimplies robust omputational soundness. Together with the fat that →-safety implies SExec-safety, weget our �rst omputational soundness result for RCF.Notie that the algorithm desribing the symboli exeution performs only the following operations onCoSP-terms: Applying CoSP-onstrutors (this inludes nones) and CoSP-destrutors, doing equalitytests on terms, and sending and reeiving terms. Hene this interative mahine an be realized as aCoSP protool in the sense of De�nition 6: The state of the mahine SExecA0 is used as a node identi�er.However, CoSP-terms (i.e., the images of η) are not enoded diretly into the node identi�er; the nodein whih they were reated (or reeived) is referened instead. This is due to the fat that a CoSPprotool allows one to treat CoSP-terms only as blak boxes. Note that the urrent program A willbe enoded in the node identi�er (as a bitstring). Operations on CoSP-terms an then be performedby using onstrutor and destrutor nodes, and the input and output of CoSP-terms is handled usinginput/output nodes. Equality tests an be performed using the equals-destrutor. Sending (S, E) tothe adversary and reeiving (sync, j, k) and (step, k) is realized using ontrol nodes (assuming a suitableenoding of these values as bitstrings). A ontrol node that sends (S, E) suh that (S, E) is not statiallyequation-σM

DY-safe is alled a failure node. We all the resulting CoSP protool ΠA0 .De�nition 22 (E�iently deidable RCF expressions) Let A0 be an RCF expression. We all aformula F a possible assertion of A0 i� there is an assertion F ′ in A0 suh that F = F ′ϕ for somesubstitution ϕ. Analogously we de�ne possible assumptions.We all an RCF expression A0 e�iently deidable if for any set P of possible assumptions and anypossible assertion C, it an be deided in polynomial-time whether P ⊢ C. ⋄Theorem 1 Assume a DY model M and a omputational implementation Impl. Assume that Impl is aomputationally sound implementation of M for a lass P of CoSP protools (De�nition 11). Let σM
DYbe a DY library for M.Let A0 be an e�iently deidable11 RCF expression with M ⊢ A0 and ΠA0 ∈ P.If A0σ

M
DY is robustly →-safe or A0 is robustly -σM

DY-safe, then A0 is robustly omputationally safeusing Impl.Proof. By Lemma 1, A0 is robustly -σM
DY-safe. By Lemma 5, A0 is robustly SExec-safe. By on-strution of ΠA0 , we have that A0 is robustly SExec-safe i� the symboli CoSP-exeution of ΠA0 reahesfailure nodes only with negligible probability. Let ℘ be the set of all sequenes of node identi�ers thatdo not ontain failure nodes. Then ΠA0 symbolially satis�es the CoSP-trae property ℘. Sine A0 ise�iently deidable, it an be deided in polynomial-time whether a node is a failure node. Thus ℘ isan e�iently deidable trae property. Sine Impl is a omputationally sound implementation of M fora lass P of CoSP protools, and ΠA0 ∈ P , ΠA0 omputationally satis�es the CoSP-trae property ℘.Then, again by onstrution of ΠA0 , we have that A0 is robustly omputationally safe i� the ompu-tational CoSP-exeution of ΠA0 never reahes a failure node. (For this, note that the omputationalexeution is de�ned like the symboli exeution, exept that it stores/sends bitstrings instead of terms,11A0 is e�iently deidable if, at runtime, no assertions our for whih it annot be deided in polynomial-time whetherthey are entailed. A preise de�nition is given in the full version.24

and applies the omputational implementation of the onstrutors/destrutors/nones instead of theonstrutors/destrutors/nones themselves. The di�erene between the omputational CoSP-exeutionand the symboli CoSP-exeution is the same.) Thus A0 is robustly omputationally safe with respetto Impl. �5.4 Enryption and signaturesIn the preeding setion, we derived a generi omputational soundness result for RCF programs(Theorem 1), parametri in the symboli model. To apply that result to a spei� symboli model,we need a omputational soundness result in CoSP for that partiular model. In [BHU09℄, suh a resultis presented for a symboli model supporting enryption, signatures, and arbitrary strings as payloads.The symboli model. We �rst speify the symboli model Mes = (C,N,T,D,⊢CoSP):
• Construtors and nones: Let C := {enc/3, ek/1, dk/1, sig/3, vk/1, sk/1, pair/2, string0/1, string1/1,
empty/0, garbageSig/2, garbage/1, garbageEnc/2} and N := NP ∪ NE . Here NP and NE are ount-ably in�nite sets representing protool and adversary nones, respetively. Intuitively, enryption,deryption, veri�ation, and signing keys are represented as ek(r), dk(r), vk(r), sk(r) with a none r(the randomness used when generating the keys). enc(ek(r′),m, r) enrypts m using the enryptionkey ek(r′) and randomness r. sig(sk(r′),m, r) is a signature of m using the signing key sk(r′) andrandomness r. The onstrutors string0, string1, and empty are used to model arbitrary strings usedas payload in a protool (e.g., a bitstring 010 would be enoded as string0(string1(string0(empty)))).
garbage, garbageEnc, and garbageSig are onstrutors neessary to express ertain invalid terms theadversary may send, these onstrutors are not used by the protool.
• Message type: We de�ne T as the set of all terms M mathing the following grammar:

M ::= E(ek(n),M, n) | ek(n) | dk(n) |

sig(sk(n),M, n) | vk(n) | sk(n) |

pair(M,M) | S | n |

garbage(n) | garbageEnc(M, n) |

garbageSig(M, n)

S ::= empty | string0(S) | string1(S)where the nonterminal n stands for nones.
• Destrutors: D := {dec/2, isenc/1, isek/1, ekof/1, verify/2, issig/1, isvk/1, vkof/2, fst/1, snd/1,
unstring0/1, unstring1/1, equals/2}. The destrutors isek, isvk, isenc, and issig realize prediatesto test whether a term is an enryption key, veri�ation key, iphertext, or signature, respetively.
ekof extrats the enryption key from a iphertext, vkof extrats the veri�ation key from a sig-nature. dec(dk(r), c) derypts the iphertext c. verify(vk(r), s) veri�es the signature s with respetto the veri�ation key vk(r) and returns the signed message if suessful. The destrutors fstand snd are used to destrut pairs, and the destrutors unstring0 and unstring1 are used to parsepayload-strings. (Destrutors ispair and isstring are not neessary, they an be emulated using fst,
unstringi, and equals(·, empty).) The behavior of the destrutors is given by the following rules;an appliation mathing none of these rules evaluates to ⊥:

25

dec(dk(t1), enc(ek(t1),m, t2)) = m

isenc(enc(ek(t1), t2, t3)) = enc(ek(t1), t2, t3)

isenc(garbageEnc(t1, t2)) = garbageEnc(t1, t2)

isek(ek(t)) = ek(t)

ekof(enc(ek(t1),m, t2)) = ek(t1)

ekof(garbageEnc(t1, t2)) = t1

verify(vk(t1), sig(sk(t1), t2, t3)) = t2

issig(sig(sk(t1), t2, t3)) = sig(sk(t1), t2, t3)

issig(garbageSig(t1, t2)) = garbageSig(t1, t2)

isvk(vk(t1)) = vk(t1)

vkof(sig(sk(t1), t2, t3)) = vk(t1)

vkof(garbageSig(t1, t2)) = t1

fst(pair(x, y)) = x

snd(pair(x, y)) = y

unstring0(string0(s)) = s

unstring1(string1(s)) = s

equals(t1, t1) = t1

• Dedution relation: ⊢CoSP is the smallest relation suh that m ∈ S ⇒ S ⊢CoSP m, n ∈ NE ⇒ S ⊢CoSP

n, and suh that for any onstrutor or destrutor f/n ∈ C ∪ D and for any t1, . . . , tn ∈ T, with
∀i ∈ [1, n].S ⊢CoSP ti and ⊥ 6= eval f(t1, . . . , tn) ∈ T, we have S ⊢CoSP f(t1, . . . , tn).It is easy to see that Mes is a DY model in the sense of De�nition 12.CoSP [BHU09℄ also spei�es onditions a omputational implementation Impl for Mes should ful�ll.Essentially, these onditions ensure that the enryption sheme used is IND-CCA seure, the signaturesheme is strongly existentially unforgeable, and that ertain onventions for tagging the di�erent kindsof bitstrings are observed. We do not reprodue these onditions here but instead refer to [BHU09℄.We will all these onditions the �en-sig-implementation onditions�.Furthermore, [BHU09℄ imposes onditions on the CoSP protool. These ensure that all enryptionsand signatures are produed using fresh randomness and that seret keys are not sent around. A protoolsatisfying these onditions is alled key-safe.De�nition 23 A CoSP protool is key-safe if it satis�es the following onditions:1. The argument of every ek-, dk-, vk-, and sk-omputation node and the third argument of every
enc- and sig-omputation node is an n-omputation node with n ∈ NP . (Here and in the following,we all the nodes referened by a protool node its arguments.) We all these n-omputation nodesrandomness nodes. Any two randomness nodes on the same path are annotated with di�erentnones.2. Every omputation node that is the argument of an ek-omputation node or of a dk-omputationnode on some path p ours only as argument to ek- and dk-omputation nodes on that path p.3. Every omputation node that is the argument of a vk-omputation node or of an sk-omputationnode on some path p ours only as argument to vk- and sk-omputation nodes on that path p.4. Every omputation node that is the third argument of an enc-omputation node or of a sig-omputation node on some path p ours exatly one as an argument in that path p.5. Every dk-omputation node ours only as the �rst argument of a dec-destrutor node.6. The �rst argument of a dec-destrutor node is a dk-omputation node.7. Every sk-omputation node ours only as the �rst argument of a sig-omputation node.26

8. The �rst argument of a sig-omputation node is an sk-omputation node.9. There are no omputation nodes with the onstrutors garbage, garbageEnc, garbageSig, or n ∈ NE.
⋄Assuming that all these onditions are ful�lled, we get omputational soundness for enryptions andsignatures:Theorem 2 (Computational soundness of enryptions and signatures [BHU09℄) If Impl sat-is�es the en-sig-implementation onditions, then Impl is a omputationally sound implementation of

Mes for the lass of key-safe protools.When ombining Theorem 2 with Theorem 1, we immediately get the following lemma:Lemma 6 Let Impl be a omputational implementation satisfying the en-sig-implementation onditions.Let A0 be an e�iently deidable RCF expression suh that M ⊢ A0 and ΠA0 is key-safe.If A0σ
Mes

DY is robustly →-safe or A0 is robustly -σMes

DY -safe, then A0 is robustly omputationally safeusing Impl.This lemma still has the drawbak that one has to hek whether ΠA0 is key-safe. To be ableto simplify the lemma, we introdue a library σHighlevel that serves as a wrapper for σMes

DY and thatensures that a program A0 that never diretly alls σMes

DY but only the wrappers from σHighlevel willresult in a key-safe ΠA0 . For example, σHighlevel exports a funtion σHighlevel(encrypt) that takes anenryption key and a plaintext, hooses a fresh none for randomness, and then invokes σMes

DY (libenc).This ensures that the randomness-argument of σMes

DY (libenc) is always a fresh none. Furthermore, thefuntion σHighlevel(enckeypair) piks a fresh none and uses that none to generate an enryption anda deryption key. The deryption key is wrapped using a private onstrutor DecKey so that it anonly be used as an argument of σHighlevel(decrypt). This ensures that keys are generated with freshrandomness and that the output of σMes

DY (libdk) will only be used as the seond argument to σMes

DY (libdec).12For signatures and signing keys, we proeed similarly. �Harmless� funtions suh as pairs are simplyexported by σHighlevel (possibly with modi�ed alling onventions for more onvenient use, in partiularfor the funtions related to payload strings). Funtions that may never be alled from the protool, suhas σMes

DY (libgarbage) are not exported by σHighlevel .The exat de�nition of σHighlevel is given in Figure 6. For inreased readability, we use F#-syntaxfor the presentation of σHighlevel .The next lemma states that σHighlevel an be used to enfore key-safety.Lemma 7 Let A0 be an RCF expression with Mes ⊢ A0 and fv (A0) ∩ domσMes

DY = ∅ and not ontainingthe RCF-onstrutors DecKey and SigKey .Then ΠA0σHighlevel
is key-safe.Proof sketh. The thesis follows diretly from an inspetion of the ode of σHighlevel . �Finally, we get omputational soundness for enryptions and signatures with respet to programsusing the DY library:Theorem 3 (Computational soundness for σMes

DY) Let Impl be a omputational implementation sat-isfying the en-sig-implementation onditions. Let A0 be an e�iently deidable RCF expression suhthat fv (A0) ⊆ σHighlevel , A is p-free, A does not ontain the RCF-onstrutor DecKey or SigKey , andthe FOL/F-formulae in A do not ontain forbidden funtion symbols.Then, if A0σHighlevelσ
Mes

DY is robustly →-safe, then A0σHighlevel is robustly omputationally safe using
Impl.12Notie that this has the e�et that keys may not be orrupted during the protool exeution (no adaptive orruption).It is, however, possible to model statially orrupted parties by subsuming them into the adversary and letting him hoosetheir keys. 27

type bitstring = bool listtype 'a dekey = DeKey of 'a Lib.dekeytype 'a sigkey = SigKey of 'a Lib.sigkeylet valOf x = math x with Some m -> mlet enrypt (k,m) = valOf (Lib.en (k,m,(Lib.none())))let sign (SigKey k) m = let n = Lib.none() in valOf (Lib.sign(k,m,n))let none _ = Lib.none ()let enkeypair usage = let r = none usage in (valOf (Lib.ek r), DeKey (valOf (Lib.dk r)))let sigkeypair usage = let r = none usage in (SigKey (valOf (Lib.sk r)), valOf(Lib.vk r))let derypt ((DeKey dk),m) = Lib.de (dk,m)let verify vk s = Lib.verify (vk,s)let pair x y = valOf (Lib.pair (x,y))let frst x = Lib.frst xlet snd x = Lib.snd x(* Instead of diretly exporting payloadEmpty, payload0/1, unpayload0/1,we export the following more onvenient wrappers *)let empty_payload = valOf(Lib.payloadEmpty())let re payload str =math str with[℄ -> empty_payload| true::s -> let ps = payload s in valOf (Lib.payload1 ps)| false::s -> let ps = payload s in valOf (Lib.payload0 ps)let re unpayload msg =if msg = empty_payload then Some [℄else (math Lib.unpayload0 msg withSome m -> (math unpayload m with Some m' -> Some(false::m') | None -> None)| None -> (math Lib.unpayload1 msg withSome m -> (math unpayload m with Some m' -> Some(true::m')| None -> None)| None -> None))let send m = Lib.send mlet rev () = Lib.rev () : messagelet ekof x = Lib.ekof xlet isen x = Lib.isen xlet isek x = Lib.isek xlet issig x = Lib.issig xlet isvk x = Lib.isvk xlet vkof x = Lib.vkof xFigure 6: De�nition of σHighlevel using F# syntax. The domain of σHighlevel onsists of all funtionsde�ned here. 28

Proof. Let A′

0 := A0σHighlevel . Sine fv(A0) ⊆ σHighlevel and domσHighlevel ∩ domσMes

DY = ∅,
fv (A0) ∩ domσMes

DY = ∅. Thus by Lemma 7, ΠA′

0
is key-safe. Furthermore, Mes ⊢ A′

0 sine
Mes ⊢ σHighlevel(x) for all x ∈ domσHighlevel . Hene by Lemma 6, if A′

0σ
Mes

DY is robustly →-safe, then A′

0is robustly omputationally safe using Impl. �6 The sealing-based libraryWe �rst review the RCF sealing-based library and then show that programs that are robustly safe whenlinked to the sealing-based library are also robustly safe when linked to the Dolev-Yao library desribedin the previous setions.6.1 Dynami SealingThe notion of dynami sealing was initially introdued by Morris [Mor73℄ as a protetion mehanismfor programs. Later, Sumii and Piere [SP03, SP07℄ studied the semantis of dynami sealing within a
λ-alulus, observing a lose orrespondene with symmetri-key ryptographi primitives.In RCF [BBF+08℄ seals are enoded using pairs, funtions, referenes13, and lists. A seal is a pair ofa sealing funtion and an unsealing funtion sharing a seret referene to a list. The sealing funtiontakes as input a term M and heks whether the pair (M,N) is already stored in the list for some N . Ifit is not, then the sealing funtion returns a fresh value N , after adding the pair (M,N) to the seret list.Otherwise, the sealing funtion returns the value N that was previously stored in the list. The unsealingfuntion takes as input a value N , sans the list in searh of a pair (M,N), and returns M . Only thesealing funtion and the unsealing funtion an aess this seret list. Eah key-pair is (symbolially)implemented by means of a seal. In the ase of publi-key ryptography, the sealing funtion is used forenrypting (resp. signing), the unsealing funtion is used for derypting (resp. verifying), and the freshvalue N represents the enryption of (resp. signature on) M .14From a omputational point of view, the oneptual di�erene between the sealing-based library andthe Dolev-Yao library is that the former relies on a global state (i.e., referenes to lists of pairs (M,N)).The full ode of the sealing-based library, in the following denoted as σS, is reported in Figure 7 andFigure 8. The following proposition realls some important fats about σS.Proposition 1 (Sealing-based Library) The sealing-based library σS satis�es the following ondi-tions:
• The range of σS only ontains lambda-abstrations.
• domσMes

DY = domσS

• σS(nonce) = fun _→ νa.message Cι[a].
• σS(send) = (fun x → (match x with message x′ then achan !x else stuck)). Here stuck is a purediverging RCF expression.
• σS(recv) = fun _→ achan?

• fv(range(σS)) = ∅ and fn(range(σS)) = achan.
• σS is equality-friendly.
• The onstrutors N,EK, . . . used in the library are private.13As shown below, referenes are implemented via seret hannels.14The main advantage of the sealing-based library is polymorphism: the type of a seal is ∀α.(α → Un)∗ (Un → α), whihstates that the sealing funtion takes as input a message of an arbitrary type α and returns a message of type Un (the typeof messages possibly known to the attaker) and, onversely, the unsealing funtion takes as input a message of type Unand returns a message of type α. Dolev-Yao libraries are not polymorphi but, as shown in [BFG10℄, they an be typedwith re�nement types that are expressive enough to verify a large number of protool implementations.29

// ********** Copied from list.fs from F7 pakage:let re mem x u = math u with| y::v -> if x = y then true else mem x v| _ -> falselet re find p m = math m with| x::xs -> if p x then x else find p xs| [℄ -> failwith "not found"let re first f xs = math xs with| x::xs -> (let r = f x in math r withSome(y) -> r| None -> first f xs)| [℄ -> Nonelet left z (x,y) = if z = x then Some y else Nonelet right z (x,y) = if z = y then Some x else Nonelet re map f xs = math xs with| x::xs -> f x :: map f xs| [℄ -> [℄// ************* End: list.fslet magi x = math x with Message x -> ()// auxiliary funtions for helping the F7-type hekinglet ast_en x = xlet ast_sig x = xlet ast_enkey x = xlet ast_verkey x = x// Sealinglet deref: 'a ref -> 'a = fun x -> !xlet seal = fun s m ->let state = deref s in math first (left m) state with| Some(a) -> a| None ->let a = ref () ins := ((m,a)::state); alet unseal = fun s a ->let state = deref s inmath first (right a) state with Some t' -> t'let mkSeal() =let s = ref[℄ in(seal s, unseal s)Figure 7: De�nition of the SB-library σS. The exported funtions are (i.e., domσS) are rev, send,none, pair, frst, snd, ek, dk, ekof, isek, isen, en, de, sign, verify, sk, vk,issig, isvk, vkof, payloadEmpty, payload0, payload1, unpayload0, unpayload1, garbage,garbageEn, garbageSig. Continued in Figure 8 30

let none () = magi; None (mkSeal ())let re rev () = Pi.rev Pi.ahanlet send m = Pi.send Pi.ahan mlet pair p = magi; math p with (x,y) -> Some (Pair(x,y))let frst pair = magi; math pair with (Pair (x,y)) -> Some x | _ -> Nonelet snd pair = magi; math pair with (Pair (x,y)) -> Some y | _ -> Nonelet ek args = magi; math args with None (s,u) -> Some (EK s) | _ -> Nonelet dk args = magi; math args with None (s,u) -> Some (DK (s,u)) | _ -> Nonelet ekof msg = magi; math ast_en msg with En(k,e) -> Some k| GarbageEn(k,x) -> Some k | _ -> Nonelet isek msg = magi; math ast_enkey msg with EK k -> Some msg | _ -> Nonelet isen msg = magi; math ast_en msg with En(x,y) -> Some msg| GarbageEn(x,y) -> Some msg | _ -> Nonelet en args = magi; math args with(EK key,msg,None r) -> Some (En (EK key, key (msg,None r))) | _ -> Nonelet de msg = magi; math msg with (DK (s,u), En(k,iph)) ->if s=k then let msgrand = u iph in (Some (fst msgrand)) else None| _ -> Nonelet sign args = magi; math args with(SK (sk,vk),msg, None r) -> Some (Sign (VK vk, sk (msg,None r)))| _ -> Nonelet verify args = magi; math args with((VK key),(Sign(vk,sign))) -> if key=vk then let msgrand = key sign in Some (fst msgrand) else None| _ -> Nonelet sk args = magi; math args with (None (s,u)) -> Some (SK (s,u)) | _ -> Nonelet vk args = magi; math args with (None (s,u)) -> Some (VK u) | _ -> Nonelet issig msg = magi; math ast_sig msg with Sign(x,y) -> Some msg| GarbageSig(x,y) -> Some msg | _ -> Nonelet isvk msg = magi; math ast_verkey msg with VK k -> Some msg | _ -> Nonelet vkof msg = magi; math ast_sig msg with Sign(k,e) -> Some k| GarbageSig(k,e) -> Some k | _ -> Nonelet payloadEmpty () = magi; Some (Payload [℄)let payload0' s = Some (Payload (false::s))let payload0 msg = magi; math msg with Payload s -> payload0' s | _ -> Nonelet payload1' s = Some (Payload (true::s))let payload1 msg = magi; math msg with Payload s -> payload1' s | _ -> Nonelet unpayload0 m = magi; math m with Payload (false::m') -> Some (Payload m') | _ -> Nonelet unpayload1 m = magi; math m with Payload (true::m') -> Some (Payload m') | _ -> Nonelet garbage N = magi; math N with None n -> Some (Garbage N) | _ -> Nonelet garbageEn args = magi; math args with (EK k, None n) -> Some (GarbageEn (EK k, None n))| _ -> Nonelet garbageSig args = magi; math args with (VK k, None n) -> Some (GarbageSig (fst args, snd args))| _ -> NoneFigure 8: De�nition of σS, ontinued.31

6.2 Mapping DY-terms into SB-termsIn the next de�nition, we introdue some useful abbreviations and show the ode implementing referenesand seals15 A referene is a pair omposed of two funtions that read from and write to a private hannel,respetively. Sine eah ommuniation onsumes one input and one output, the reading funtion returnsthe ontent of the referene after outputting it again on the private hannel and, onversely, the writingfuntion reads and disards the urrent ontent of the referene before updating it.De�nition 24 (Referenes and Seals) Referenes are implemented using seret hannels as follows:
Cref

def
=

(

(λx.let y = �? in �!y; y), (λx.�?;�!x)
)

ref
def
= λx.νa.(a!x � Cref [a])

!r
def
= let (g, s) = r in g()

r := v
def
= let (g, s) = r in s vSeals are implemented using referenes and lists as follows:

C′

seal

def
= λm.let state =!� in (match first (left m) state with some x then x else

let x = ref () in (� := ((m,x) :: state);x))

C′

unseal

def
= λx.let state =!� in (match first (right x) state with some y then y else stuck)

Cseal
def
= Cseal′ [Cref [�]]

Cunseal
def
= Cunseal′ [Cref [�]]where stuck is a pure diverging RCF expression, first (left m) state returns the �rst pair in the list

state with m as �rst omponent, and first (right a) state returns the �rst pair in the list state with
a as seond omponent. The library funtions seal and unseal are de�ned in terms of these ontexts:
seal

def
= λx.Cseal [x] and unseal

def
= λx.Cunseal [x]. ⋄In the following, we will all DY-terms the RCF terms representing ryptographi messages in the DY-library and SB-terms the RCF terms representing ryptographi messages in the sealing-based library.In order to show that eah exeution of a program with the DY-library is mathed by an exeutionwith the sealing-based library, we need to map DY-terms to SB-terms. We ould de�ne this mappingdiretly, but this would make our result dependent on the spei� implementation of the DY library. Inorder to make our result general, we deided instead to de�ne a mapping from CoSP terms to SB-terms,whih naturally indues a mapping from DY-terms to SB-terms via the embedding ι of CoSP terms intoDY-terms (f. Setion 4.1).We reall that the sealing-based library depends on a global hidden state, whih traks the rypto-graphi operations performed at run-time. For this reason, the mapping from CoSP terms to SB-termshas to depend on suh a state.A state φ is a pair of funtions, denoted as (φS , φL). The former is a partial injetive funtion fromCoSP terms to RCF names, the latter is a partial injetive funtion from CoSP terms to losed RCFvalues. Intuitively, eah CoSP term (i.e., nones, keys, iphertexts, signatures, et.) is implemented bymeans of a distint seal and funtion φS is used to map CoSP terms to the name of the hannel of theorresponding seal16. For instane, if a iphertext M is implemented by means of seal a, then φS(M) = a15Our implementation of referenes di�ers from the one proposed in [BBF+08℄, sine the latter makes it possible to storemultiple messages, whih are then retrieved non-deterministially, and prevents one from reading several times from thesame referene.16Tehnially, the domain of φS onsists of iphertexts, signatures, and the randomness of keys and nones. Thisasymmetry is due to the possible ourrene of di�erent keys with the same randomness, whih is not expliitly preventedin CoSP. 32

or if a key ek(k) is implemented by means of seal b, then φS(k) = b. The funtion φL is used to mapeah key to the seret list of pairs of the form ((M,R), N) stored in the orresponding referene, where
M is the enrypted message, R is the randomness, and N is a fresh value representing the iphertext.Storing the randomness along with the enrypted message allows for modelling probabilisti enryptionsand probabilisti signatures. For instane, if M1 and M2 have been enrypted with randomness R1 and
R2, respetively, and key k, then φL(k) = [((M1, R1), N1), ((M2, R2), N2)], where N1 and N2 are thefresh values orresponding to the enryption of M1 and M2, respetively. In the following, we sometimeswrite MφS for φS(M) and MφL for φL(M).De�nition 25 (CoSP-terms to SB-terms) Given a state φ, we de�ne v-mapφ reursively as fol-lows: v-mapφ(n) = N(Cseal [n

φS], Cunseal [n
φS]) (n ∈ N)v-mapφ(ek(r)) = EK(Cseal [ek(r

φS)])v-mapφ(dk(r)) = DK(Cseal [r
φS], Cunseal [r

φS])v-mapφ(vk(r)) = VK(Cunseal [r
φS])v-mapφ(sk(r)) = DK(Cseal [r

φS], Cunseal [r
φS])v-mapφ(enc(ek(k),m, r)) = Enc(v-mapφ(ek(k)), Cref [enc(ek(k),m, r)φS])v-mapφ(sign(sk(k),m, r)) = Sign(v-mapφ(vk(k)), Cref [sign(sk(k),m, r)φS])v-mapφ(pair(m1,m2)) = Pair(v-mapφ(m1), v-mapφ(m2))v-mapφ(garbage(r)) = Garbage(v-mapφ(r))v-mapφ(garbageenc(e, r)) = GarbageE(v-mapφ(e), v-mapφ(r))v-mapφ(garbagesign(s, r)) = GarbageSig(v-mapφ(s), v-mapφ(r))and v-mapφ(m) := Payload(f(m)) if m is a payload term, where f(payloadEmpty) = [], f(payload0(m′)) = false ::

f(m′) and f(payload1(m′)) = true :: f(m′).
⋄In the following, we fous on the DY library σMes

DY for the model MES .The following de�nition introdues the notion of expression and state validity. Given an expression
A, we let CoSPterms(A) denote {ι−1(M) : message M is a subterm of A}.De�nition 26 (Valid expressions and states) An RCF expression A is valid if:
• A is a struture and ∄a,A′ suh that A ≡ νa.A′.
• fv(A) ⊆ fv(σMes

DY).
• For every subterm message A′ of A, we have that A′ ∈ ι(T).
• A is mp-free.Given a CoSP none k and a state φ, we say that L is k-valid if L is a list of pairs of RCF valuesand all its entries are of the form (N,Cref [enc(ek(k),M, r)φS]) or (N,Cref [sign(sk(k),M, r)φS]) with N =

(v-mapφ(M), v-mapφ(r)).A state φ is valid for an RCF expression A if for all CoSP nones k, r, and all CoSP terms M thefollowing holds:
• domφS = domφL.
• If k ∈ domφL, then kφL is a k-valid list. (Notie that this does not onstrain MφL for CoSP terms
M other than nones.)
• If k ours in CoSPterms(A), then k ∈ domφS.33

• enc(ek(k),M, r) ∈ domφL i� k ∈ domφL and ∃N.(N,Cref [a]) ∈ kφL with a := enc(ek(k),M, r)φS(and analogously for signatures).
• If enc(ek(k),M, r) is a subterm of CoSPterms(A), then enc(ek(k),M, r) ∈ domφS and
∃N.(N,Cref [enc(ek(k),M, r)φS]) ∈ kφL (and analogously for signatures).

⋄We an �nally formalize the mapping from a DY-expression to the orresponding SB-expression,whih is obtained by replaing eah DY-term with the orresponding SB-term and by adding the globalstate to the SB-expression. The state onsists of the lists of enrypted values, eah of them output onthe private hannel assoiated to the seal of the orresponding enryption key.De�nition 27 Given a valid expression A and a state φ valid for A, let e-mapφ(A) be the result ofreplaing every message M ourring in A by v-mapφ(ι−1(M)). Let s-mapφ(A) := ∏

M∈domφS
MφS !MφL �e-mapφ(A). (Or s-mapφ(A) := ⊥ if e-mapφ(A) = ⊥). ⋄6.3 Preservation of safetyIn this setion, we show that robust safety with respet to σS implies robust -σMes

DY -safety. This isahieved by proving the existene of a simulation between exeutions with respet to the two libraries.Lemma 8 (Preservation of Strutural Equivalene) Let A be valid and let φ be a valid state for
A. If A ≡ A′, then s-mapφ(A) ≡ s-mapφ(A′).Proof. The proof proeeds by indution on the derivation of A ≡ A′. We �rst onsider the base ases:
• Strut Re�: straightforward.
• Strut Fork () : A = () � B ≡ B = A′.We have s-mapφ(() � B) =

∏

M∈domφS
MφS !MφL � e-mapφ(() � B) =

∏

M∈domφS
MφS !MφL � () �e-mapφ(B). By Strut Fork Asso, Strut Fork Comm, and Strut Trans we get s-mapφ(() � B) ≡

() �
∏

M∈domφS
MφS !MφL � e-mapφ(B). By Strut Fork () and Strut Trans, we get s-mapφ(() �

B) ≡
∏

M∈domφS
MφS !MφL � e-mapφ(B) = s-mapφ(A′).

• Strut Msg (): A = a!M ≡ a!M � () = A′.We have s-mapφ(a!M) =
∏

M∈domφS
MφS !MφL � e-mapφ(a!M). By Strut Msg () and Strut Fork2, we get s-mapφ(a!M) ≡

∏

M∈domφS
MφS !MφL � e-mapφ(a!M) � () = s-mapφ(A′).

• Strut Assume : similar to the previous item.
• Strut Res Fork 1: A = B′ � νb.B ≡ νb.(B′ � B) = A′ if b /∈ fn(B′).We have s-mapφ(B′ � νb.B) =

∏

M∈domφS
MφS !MφL � e-mapφ(B′ � νb.B) =

∏

M∈domφS
MφS !MφL �e-mapφ(B′) � νb.e-mapφ(B).By Strut Fork 2, Strut Res Fork 1, and Strut Trans, we get s-mapφ(B′ � νb.B) ≡

∏

M∈domφS
MφS !MφL � νb.(e-mapφ(B′) � e-mapφ(B)) = s-mapφ(A′)

• The remaining base ases follow similarly to the previous item.We now disuss the indution step:
• Strut Res: A = νb.B ≡ νb.B′ = A′ by B ≡ B′.By indution hypothesis, s-mapφ(B) ≡ s-mapφ(B′). By Strut Res, we get s-mapφ(A) =
νb.s-mapφ(B) ≡ νb.s-mapφ(B′) = s-mapφ(A′).34

• The remaining indution ases follow by a similar argument.
�Lemma 9 Let A be an expression suh that A B and let φ be a valid state for A. Then thereexist valid expressions A′, B′, a state φ′ valid for B, lists of names a, b, b′ ⊇ b suh that achan /∈ a, b′,

A ≡ νa.A′, B ≡ νb.B′, and νa.s-mapφ(A′)σS →
∗ νb′.s-mapφ′(B′)σS.Proof. The proof proeeds by indution on the derivation of A A′:

• send : A = send M achan !M = B and s-mapφ(A)σS = · · · � σS(send) e-mapφ(M) → · · · �

achan !e-mapφ(M) = s-mapφ(B). Thus the lemma holds with φ′ := φ, A′ := A, B′ := B, a, b, b′ :=
∅.
• rev : A = recv M achan? = B and s-mapφ(A)σS = · · · � σS(recv) e-mapφ(M)→ · · · � achan? =s-mapφ(B). Thus the lemma holds with φ′ := φ, A′ := A, B′ := B, a, b, b′ := ∅.
• none: A = nonce M νa.message Cι[a] = B.We hoose a := ∅, A′ = A, B′ = message Cι[a], b := a. Notie that A ≡ νa.A′ and νb.B′ ≡ B by(Strut Re�).By De�nition 27, we know that there exists M ′ and a suh that s-mapφ(nonce M)σS =
∏

M∈domφS
MφS !MφL � σS(nonce)M

′ →∗ νa.
∏

M∈domφS
MφS !MφL � (a![] � N(Cseal [a], Cunseal [a])).Notie that we applied the strutural equivalene relation to move the restrition on top of thetarget expression.We set φ′

S := φS [a 7→ a] , φ′

L := φL[a 7→ []] , b′ = a. Notie that s-mapφ′(B′)σS =
∏

M∈domφ′

S

Mφ′

S !Mφ′

L � (N(Cseal [a], Cunseal [a])).
• en : A = enc(message ι(M1),message ι(M2),message ι(M3)) B, where B :=
some message ι(enc(M1,M2,M3)) or B := none. (In all other ases, en would be stuk.)We hoose a = ∅ , A′ = A , B′ = B , and b = ∅ .If M1 is not an enryption key or M3 is not a none then A none; in this ase s-mapφ(A)σS →∗

none.Hene assume M1 = ek(k) and M3 = r for nones k, r. Then A some message ι(enc(ek(k),M2, r)).Let t := (v-mapφ(M2), v-mapφ(r)).Case 1 �(t, Cref [a]) ∈ kφL with a := enc(ek(k),M2, r)
φS �. We set φ′ := φ. By an inspetion ofDe�nition 26, we an easily see that φ′ is valid for B.Notie that s-mapφ(A)σS =

∏

M∈domφS
MφS !MφL � σS(enc)(EK(Cseal [k

φS]), v-mapφ(M2), v-mapφ(r)).Sine kφL = [. . . , (t, Cref [a]), . . .], the seal funtion will retrieve Cref [a]. So s-mapφ(A) →∗

some
∏

M∈domφS
MφS !MφL � Enc(v-mapφ(ek(k)), Cref [a]) = s-mapφ(B). We �nally gets-mapφ(A)σS →∗ s-mapφ(B)σS by observing that s-mapφ(A) and s-mapφ(B) are losed.Case 2: �∄a.(t, Cref [a]) ∈ kφL�. Notie that s-mapφ(A)σS =

∏

M∈domφS
MφS !MφL �

σS(enc)(EK(Cseal [k
φS]), v-mapφ(M2), v-mapφ(r)). Sine kφL does not ontain [. . . , (t, . . .), . . .], theseal funtion will append (t, Cref [a]) for some fresh restrited name a and add a!() to the state andwill redue to some Enc(v-mapφ(ek(k)), Cref [a]).Let b′ := a , φ′

S = φS [enc(ek(k),M2, r) 7→ a] , φ′

L = φL[k 7→ kL :: (t, Cref [a]), enc(ek(k),M2, r) 7→

()]. We have that φ′ is valid for B. Then s-mapφ′(B′)σS =
∏

M∈domφ′

S

Mφ′

S !Mφ′

L �

some Enc(v-mapφ′(ek(k)), Cref [a]). Thus s-mapφ(A)σS →∗ νa.s-mapφ′(B′)σS.35

• de: A = dec(message ι(M1),message ι(M2)) B, where B := some message ι(M) or B := none.(In all other ases, de would be stuk.)We hoose a := ∅ , A′ := A′ , B′ = B , b := ∅. A = dec(message ι(M1),message ι(M2)).If M1 is not a deryption key and M2 is not an enryption with the orresponding enryption key,then A none and s-mapφ(A)σS →∗ none and, by Strut Res, νa.s-mapφ(A)σS →∗ νa.none for all
a, as desired.Hene assume M1 = dk(k) and M2 = enc(ek(k),M, r) for nones k, r and a CoSP term M.Then A some message ι(M). Sine φ is valid, kφL = [. . . , (t, Cref [M

φS

2]), . . .] with t :=
(v-mapφ(M), v-mapφ(r)).By the de�nition of the deryption funtion of the sealing-based library,we have that s-mapφ(A)σS = s-mapφ(A)σS =

∏

M∈domφS
MφS !MφL �

σS(dec)(DK(Cseal [k
φS], Cunseal [k

φS]),Enc(EK(Cseal [k
φS]), Cref [M

φS

2])) →∗ s-mapφ(B)σS =
∏

M∈domφS
MφS !MφL � some v-mapφ(M) = s-mapφ(some message ι(M))σS.

• sign: Analogous to en.
• verify : Analogous to de.
• ek : Straightforward, with A = ek message ι(r) , B = some message ι(ek(r)) , a := ∅ , b := ∅ ,
b′ = ∅. (If the argument of ek is not of the form message ι(r), then B := none.)
• dk : Analogous to ek.
• isen: Straightforward, with A = isenc(message ι(M)) , B = some message ι(M) , a := ∅ , b := ∅, b′ = ∅. (If the argument of isen is not of the form message E(ek(ι(M1))), ι(M2), ι(M3)) or
messageGarbageE(ι(M1), ι(M2)), then B := none.)
• ekof : Analogous to isen.
• isek : Analogous to isen.
• sk: Analogous to ek.
• vk : Analogous to ek.
• issig : Analogous to isen.
• isvk : Analogous to isen.
• vkof : Analogous to isen.
• pair : Straightforward, with A = pair (message ι(M1),message ι(M2)) , B =
some message ι(pair(ι(M1), ι(M2))) , a := ∅ , b := ∅ , b′ = ∅.
• frst : A = frst(message pair(ι(M1), ι(M2))) , B = some message ι(M1) , a := ∅ , b := ∅ , b′ = ∅.
• snd : Similar to frst.
• payloadEmpty : A = payloadEmpty () , B = some message PayloadEmpty , a := ∅ , b := ∅ , b′ = ∅.
• payload0 : Similar to pair.
• payload1 : Similar to pair.
• unpayload0 : Similar to frst.
• unpayload1 : Similar to frst. 36

• Red Fun: Straightforward, by an inspetion of the redution rule.
• Red Split: Straightforward, by an inspetion of the redution rule.
• Red Math: Straightforward, by observing that h 6= message.
• Red Eq: A = (M = N) true | false.We hoose a := ∅ , A′ := A , B′ = B , b := ∅.If MσMes

DY = NσMes

DY , A true, otherwise A false. By de�nition, s-mapφ(A)σS =
∏

M∈domφS
MφS !MφL � (e-mapφ(M)σS = e-mapφ(N)σS), sine e-mapφ(A)σS is equal to

(e-mapφ(M)σS = e-mapφ(N)σS). Therefore s-mapφ(A)σS
∏

M∈domφS
MφS !MφL � true i�e-mapφ(M)σS = e-mapφ(N)σS. Thus all we need to show is that MσMes

DY = NσMes

DY i�e-mapφ(M)σS = e-mapφ(N)σS.Assume that this does not hold. Then there are subterms M ′, N ′ of M and N (at the sameposition), suh that M ′σMes

DY = N ′σMes

DY not-i� e-mapφ(M ′)σS = e-mapφ(N ′)σS and suh that oneof M ′, N ′ is a variable in domσS = domσMes

DY or of the form message M ′′. Wlog, we assume that
M ′ has this property. Furthermore, N ′ 6= M ′.Case 1 �M ′ ∈ domσS�: Sine A is valid, N ′ is mp-free. Then, sine σMes

DY is equality-friendly,
M ′σMes

DY = σMes

DY (M ′) 6= N ′σMes

DY . range v-mapφ does not ontain match . . . with message . . . ,so e-mapφ(N ′) does not ontain match . . . with message Furthermore e-mapφ(M ′) = M ′.Sine σS is equality-friendly, e-mapφ(M ′)σS = σS(M
′) 6= e-mapφ(N ′)σS. Thus M ′σMes

DY = N ′σMes

DYi� e-mapφ(M ′)σS = e-mapφ(N ′)σS.Case 2 �M ′ = message M ′′ and N ′ = message N ′′�: Sine A is valid, M ′′, N ′′ ∈ range ι, henethey are losed. Thus M ′σMes

DY = M ′ 6= N ′ = N ′σMes

DY . And e-mapφ(M ′) = v-mapφ(ι−1(M ′)) 6=e-mapφ(N ′) = v-mapφ(ι−1(N ′)) sine ι and v-mapφ are injetive. Thus M ′σMes

DY = N ′σMes

DY i�e-mapφ(M ′)σS = e-mapφ(N ′)σS.Case 3 �M ′ = message M ′′ and N ′ is not of the form message N ′′�: Then M ′′ ∈ range ι and M ′ isa losed value.If N ′ is a variable, M ′σMes

DY = M ′ 6= σMes

DY (N ′) beause σMes

DY only ontains lambda-expressions (thisfollows from the operational spei�ation). If N ′ is not a variable, then N ′σMes

DY is not of the form
message . . . , hene M ′σMes

DY = M ′ 6= N ′σMes

DY .If N ′ is a variable, e-mapφ(M ′)σS = v-mapφ(ι−1(M ′)) 6= σS(N
′), sine σS only ontains lambda-expressions and range v-map does not ontain lambda-expressions, and thus e-mapφ(M ′)σS 6=e-mapφ(N ′)σS. If N ′ is not a variable, then the top-most syntati onstrut of e-mapφ(N ′)σSis not an appliation of message. Furthermore, sine all onstrutors used in v-map are assumedto be enoded as onstrutor-hains starting with message, e-mapφ(M ′)σS = v-mapφ(ι−1(M ′)) hasa message onstrutor on top-level, and thus e-mapφ(M ′)σS 6= e-mapφ(N ′)σS. Thus M ′σMes

DY =

N ′σMes

DY i� e-mapφ(M ′)σS = e-mapφ(N ′)σS.
• Red Comm: Straightforward, by an inspetion of the redution rule.
• Red Assert: Straightforward, by an inspetion of the redution rule.
• Red Let Val: Straightforward, by an inspetion of the redution rule.
• Red Let: We have A = let x = C in D let x = C′ in D = B by C C′.By indution hypothesis, we know that there exist valid RCF expressions C∗, C

′

∗
, a state φ′valid for C′, lists of names c

∗
, c′

∗
, c′ ⊇ c′

∗
suh that C ≡ νc

∗
.C∗ and νc′

∗
.C′

∗
≡ C′ and

νc
∗
.s-mapφ(C∗)σS = νc

∗
.
∏

M∈domφS
MφS !MφL � e-mapφ(C∗)σS →∗ νc′.

∏

M∈domφ′

S

Mφ′

S !Mφ′

L �e-mapφ′(C′

∗
)σS = νc′.s-mapφ′(C′

∗
)σS. 37

By Red Let, we have let x = νc
∗
.
∏

M∈domφS
MφS !MφL � e-mapφ(C∗)σS in e-mapφ(D)σS →∗ let x =

νc′.
∏

M∈domφ′

S

Mφ′

S !Mφ′

L � e-mapφ′(C′

∗
)σS in e-mapφ(D)σS.By Red Strut, Strut Fork Let, and Strut Res Let, we get νc

∗
.let x =

∏

M∈domφS
MφS !MφL � e-mapφ(C)σS in e-mapφ(D)σS →∗ νc′.

∏

M∈domφ′

S

Mφ′

S !Mφ′

L � let x =e-mapφ′(C′

∗
)σS in e-mapφ(D)σS.The proof onludes by setting a := c

∗
, b := c′

∗
, b′ := c′ , A′ := let x = C∗ in D , and

B′ := let x = C′

∗
in D.

• Red Res: We have A = νa.A′ νa.B′ = B by A′ B′.By indution hypothesis, we know that there exist valid expressions A′′, B′′, a state φ′ valid for
B′, lists of names a′, b′

∗
, b′′

∗
⊇ b′

∗
suh that A′ ≡ νa′.A′′, νb′

∗
.B′′ ≡ B′, and νa′.s-mapφ(A′′)σS →∗

νb′′
∗
.s-mapφ′(B′′)σS.By Red Res, we have νa, a′.s-mapφ(A′′)σS →∗ νa, b′′

∗
.s-mapφ(B′′)σS. The proof onludes by setting

a := a, a′ , b := a, b′
∗
, b′ := a, b′′

∗
, A′ := A′′ , and B′ := B′′.

• Red Fork 1: We have A = C � D C′ � D = B by C C′.By indution hypothesis, we know that there exist valid expressions C∗, C
′

∗
, a state φ′ valid for

C′, lists of names c
∗
, c′

∗
, c′ ⊇ c′

∗
suh that C ≡ νc

∗
.C∗, νc′∗.C′

∗
≡ C′, and νc

∗
.s-mapφ(C∗)σS →∗

νc′.s-mapφ′(C′

∗
)σS.By Red Fork 1, we have νc

∗
.
∏

M∈domφS
MφS !MφL � e-mapφ(C∗)σS � e-mapφ(D)σS →∗

νc′.
∏

M∈domφ′

S

Mφ′

S !Mφ′

L � e-mapφ′(C′

∗
)σS � e-mapφ(D)σS.The proof onludes by setting a := c∗ , b := c′

∗
, b′ := c′ , A′ := C∗ � D , and B′ := C′

∗
� D.

• Red Fork 2: Similar to Red Fork 1.
• Red Strut: We have A B by A ≡ A′, A′ B′, and B′ ≡ B.By indution hypothesis, we know that there exist valid expressions A′′, B′′, a state φ′ valid for
B′, lists of names a′, b′, b′′ ⊇ b′ suh that A′ ≡ νa′.A′′, B′ ≡ νb′.B′′, and νa′.s-mapφ(A′′)σS →∗

νb′′.s-mapφ′(B′′)σS.By Strut Trans, B ≡ νb′.B′′. This onludes the proof, sine by Strut Trans we get A ≡ νa′.A′′.
�Lemma 10 (Restritions and Heating) Forall a,A,B,C suh that C[νa.A] ≡ B, there exists B′, C′suh that B = C′[νa.B′] and C[A] ≡ C′[B′].Proof. The proof is by straightforward indution on the derivation of C[νa.A] ≡ B. �Lemma 11 Let A be an expression suh that A ∗ B. Assume that A is p-free and fv(A) ⊆ domσMes

DY .Then there exists a valid expression B′, a state φ valid for B′, lists of names b, b′ ⊇ b suh that
achan /∈ a, b′, νb.B′ ≡ B, and AσS →∗ νb′.s-mapφ(B′)σS.Notie that the SB-exeution introdues more restritions than the DY-exeution. The reason isthat eah SB-iphertext is represented by a fresh value, whih is implemented by a seal. Eah of theseseals introdues a restrition that does not have a ounterpart in the DY-exeution, where iphertextsare represented by applying a private onstrutor to the enryption key, the enrypted value, and therandomness.Proof. The proof is by indution on the length of the derivation of A ∗ B. We �rst show thebase ase A = B. Let B′ be a struture and b be a list of names suh that A ≡ νb.B′ and suh that38

∄b′′, B′′.(B′ ≡ νb′′.B′′). Let b′ := b and φ := ∅. Sine A is mp-free and fv (A) ⊆ dom(σMes

DY), the sameholds for B′. Thus B′ is valid by De�nition 26. Sine B′ is mp-free and φ = ∅, we have that φ is validfor B′ by De�nition 26 and s-mapφ(B′) = B′ by De�nition 27. Hene AσS ≡ νb.B′σS = νb′.B′σS =
νb.s-mapφ(B′)σS, so AσS →∗ νb.s-mapφ(B′)σS.For the indution step, let us suppose that A ∗ B C. By indution hypothesis, we know thatthere exist a valid expression B′, a state φ valid for B′, lists of names b and b′ ⊇ b suh that νb.B′ ≡ B,and AσS →∗ νb′.s-mapφ(B′)σS.By Lemma 9, we know that there exist valid expressions B′

∗
, C′, a state φ′ valid for C, lists of names

b
∗
, c, c′ ⊇ c suh that B ≡ νb

∗
.B′

∗
, νc.C′ ≡ C, and νb

∗
.s-mapφ(B′

∗
)σS →∗ νc′.s-mapφ′(C′)σS.By repeated appliation of Lemma 10 and by observing that heating does not anel restritions, itis easy to see that b is a permutation of b

∗
and B′ ≡ B′

∗
.By Lemma 8, s-mapφ(B′) ≡ s-mapφ(B′

∗
). By Strut Res, we get νb′.s-mapφ(B′) ≡ νb′.s-mapφ(B′

∗
).By an inspetion of the heating rules, we an easily see that this implies νb′.s-mapφ(B′)σS ≡

νb′.s-mapφ(B′

∗
)σS.By repeated appliation of Lemma 15, it is easy to see that νb

∗
.s-mapφ(B′

∗
)σS →∗ νc′.s-mapφ′(C′)σSimplies c′ = b

∗
∪ c′′, for some fresh names c′′, and s-mapφ(B′

∗
)σS →∗ νc′′.s-mapφ′(C′)σS. By Strut Reswe get νb′.s-mapφ(B′)σS → νb′, c′′.s-mapφ′(C′)σS, as desired. �We now show that →-safety with respet to σS implies -σMes

DY -safety.Lemma 12 Fix an RCF expression A and a DY model M suh that M ⊢ A. If AσS is →-safe then A is
 -σMes

DY -safe.Proof. Assume that A is not -σMes

DY -safe. Then A ∗ B for some struture B that is not statially
σMes

DY -safe. By Lemma 11, there exists a valid expression B′, lists of names b, b′ with achan /∈ b, b′ suh that
νb.B′ ≡ B and AσS →∗ νb′.s-mapφ(B′)σS. For a struture S, let P (S) denote the ative assumptionsof S, and C(S) the ative assertions of S. Sine B is not statially σMes

DY -safe, P (B)σMes

DY 0 C(B)σMes

DY .Sine B′ is valid, B′ and νb.B′ are strutures. We have P (νb.B′) = P (B′) and C(νb.B′) = C(B′).Sine νb.B′ ≡ B, (P (νb.B′), C(νb.B′)) = (P (B), C(B)) up to renaming of names other than achan (thepossibility of renaming stems from the fat that ≡ allows for α-renaming of bound names). Henealso (P (B′)σMes

DY , C(B′)σMes

DY) = (P (B)σMes

DY , C(B)σMes

DY) up to renaming of names. Hene P (B′)σMes

DY 0

C(B′)σMes

DY .By de�nition of , and due to the fat that A is p-free and message is private, we have thatany FOL/F-subterm message t of B satis�es that t is syntati and losed. By de�nition of ≡, thisimplies that any FOL/F-subterm message t of B′ and therefore of P (B′) and C(B′) is syntatiand losed. Let {t1, . . . , tn} be the set of all ti suh that message ti ours in (C,P). Let η1 :=
{message t1/x1, . . . ,message tn/xn} and η̄1 := {x1/message t1, . . . , xn/message tn}. Let C∗ := C(B′)η̄1and P ∗ := P (B′)η̄1. Then C∗, P ∗ do not ontain the onstrutor message. Sine A is p-free, and theonly private onstrutor that an introdue is message, we have that C∗, P ∗ are p-free.Let η2 := {v-mapφ(ι−1(t1))/x1, . . . , v-mapφ(ι−1(tn))/xn}. Let γ1 := σMes

DY ∪ η1. Let γ2 := σS ∪ η2.Then P (B′)σMes

DY = P ∗γ1 and C(B′)σMes

DY = C∗γ1 and, by de�nition of s-mapφ, P (s-mapφ(B′))σS = P ∗γ2and C(s-mapφ(B′))σS = C∗γ2. We write domγ for dom γ1 = dom γ2.Thus from P (B′)σMes

DY 0 C(B′)σMes

DY , we have P ∗γ1 0 C∗γ1. We will now apply Lemma 4 in order toshow
P ∗γ1 ⊢ C∗γ1 ⇐⇒ P ∗, eqs ⊢ C∗ and (2)
P ∗γ2 ⊢ C∗γ2 ⇐⇒ P ∗, eqs ⊢ C∗ (3)with eqs := {x 6= x′ : x, x′ ∈ domγ, x 6= x′}

∪ {∀y. x 6= c(y) : x ∈ domγ, c non-forbidden syntati}
∪ {x 6= t : x ∈ domγ, t ∈ exterms}where exterms is the set of subterms h(t) of P ∗, C∗ with forbidden h.39

To apply Lemma 4, we hek the following:
• P ∗, C∗ are p-free: This holds by de�nition of P ∗, C∗, and η̄1.
• fv(P ∗, C∗)∩bv (P ∗, C∗) = ∅: We an assume this without loss of generality sine ≡ is losed under
α-renaming of bound variables.
• γ1, γ2 map variables to syntati losed FOL/F-terms: This holds beause the ranges of σMes

DY and
σS are losed by de�nition, and beause the ti are losed.
• For all x and i = 1, 2, γi(x) = h(t) for forbidden h: σMes

DY (x) and σS(x) are lambda-abstrations,and the funtion symbol representing lambda-abstrations is forbidden. η1(x) = message(t), and
message is forbidden. η2(x) = h(t) by de�nition of v-map where h is one of the private onstrutorslisted in De�nition 25. Thus η2(x) = h(t) for some forbidden h.
• fv(exterms)∩ bv (P ∗, C∗) = ∅: Sine A and AσMes

DY does not ontain FOL/F-formulae that ontainterms h(t) with forbidden h, suh terms an only be introdued in P ∗ and C∗ by substituting avariable in a FOL/F-formula by an RCF-term. Hene the terms h(t) do not ontain variables thatare bound in the FOL/F-formula.
• All t ∈ exterms are syntati: All terms h(t) in P ∗, C∗ with forbidden h result from substituting avariable by an RCF-term (previous point), and RCF-terms are enoded as syntati FOL/F-termsby de�nition.
• For i = 1, 2 and x ∈ dom γ and all p-free FOL/F-terms t /∈ dom γi, we have γi(x) 6= tγi: If
x ∈ domσi (with σ1 = σMes

DY and σ2 = σS), we have that γi(x) = σi(x) 6= tηiσi = tγi sine σi isequality-friendly and tηi is mp-free. If t is a variable, then tγ is a variable sine t /∈ dom γ, andhene γi(x) 6= tγi sine γi(x) is losed. If x /∈ domσi and t is not a variable, then t = f(t′) where fis not a private onstrutor, and γi(x) = ηi(x). Furthermore, η1(x) = message(t) by de�nition (and
message is private), and η2(x) = v-mapφ(. . .) = h(t′) where h is one of the forbidden onstrutorslisted in De�nition 25. Thus γi(x) 6= tγi.
• For i = 1, 2 and x, x′ ∈ dom γ and x 6= x′, we have γi(x) 6= γi(x

′): If x, x′ ∈ dom γ, we have
γi(x) 6= γi(x

′) beause σMes

DY and σS are equality-friendly. If x, x′ /∈ dom γ, we have that γi(x) =
ηi(x) 6= ηi(x

′) = γi(x
′) beause all ti are distint and v-mapφ and ι are injetive. If x ∈ dom γand x′ /∈ dom γ, we have that γi(x

′) = ηi(x
′) = h(t) for a private onstrutor h and γi(x

′) islosed, so γi(x
′) is mp-free. Sine σ1 := σMes

DY and σ2 := σS are equality-friendly, this implies that
γi(x) = σi(x) 6= h(t)σi = γi(x

′).Thus the onditions of Lemma 4 are ful�lled and (2) and (3) follow.From P ∗γ1 0 C∗γ1, (2), and (3), we get P ∗γ2 0 C∗γ2. Sine P (νb′.s-mapφ(B′)σS) =

P (s-mapφ(B′))σS = P ∗γ2 and C(νb′.s-mapφ(B′)σS) = C(s-mapφ(B′))σS = C∗γ2, it follows that
P (νb′.s-mapφ(B′)σS) 0 C(νb′.s-mapφ(B′)σS). Hene νb′.s-mapφ(B′)σS is not statially safe. Sine
AσS →∗ νb′.s-mapφ(B′)σS, this implies that AσS is not →-safe. Thus, from the fat that A is not
 -σMes

DY -safe, it follows that AσS is not →-safe. By ontraposition, the lemma follows. �We an �nally state a main result of this setion, i.e., safety with respet to σS implies -σMes

DY -safety.Lemma 13 Fix an RCF expression A and a DY model M suh that M ⊢ A. If AσS is robustly →-safethen A is robustly -σMes

DY -safe.Proof. We �rst observe that for all σMes

DY -opponents O, M ⊢ O. The thesis follows diretly fromLemma 12, De�nition 14, and De�nition 16. �6.4 Computational soundnessBy ombining the results from the previous setion (relating the DY library and the SB library) withthe omputational soundness result for the DY library (Theorem 3), we get a omputational soundnessresult for the SB library:Theorem 4 (Computational soundness for σS) Let Impl be a omputational implementation satis-fying the en-sig-implementation onditions. Let A0 be an e�iently deidable RCF expression suh that40

fv (A0) ⊆ σHighlevel , A is p-free, A does not ontain the RCF-onstrutor DecKey or SigKey , and theFOL/F-formulae in A do not ontain forbidden funtion symbols.Then, if A0σHighlevelσS is robustly →-safe, then A0σHighlevel is robustly omputationally safe using
Impl.Proof. Let A′

0 := A0σHighlevel . We have thatMes ⊢ A′

0 sineMes ⊢ σHighlevel(x) for all x ∈ domσHighlevel .Sine A′

0σS is robustly →-safe, by Lemma 13, A′

0σ
Mes

DY is robustly -safe. Sine fv (A0) ⊆ σHighlevel and
domσHighlevel ∩dom σMes

DY = ∅, fv (A0)∩dom σMes

DY = ∅. Thus by Lemma 7, ΠA′

0
is key-safe. By Lemma 6,if A′

0 is robustly -safe, then A′

0 is robustly omputationally safe using Impl. �We type-heked the library σS using F7. Exported funtions are given polymorphi types asin [BBF+08℄, so we do not restrit the expressiveness of the veri�ation tehnique. Sine well-typedprograms are robustly →-safe [BBF+08℄, Theorem 4 implies that well-typed programs enjoy omputa-tional safety.7 ConlusionsThis paper presents a omputational soundness result for F7, a type-heker for F# programs. We showthe omputational soundness of a generi DY library as well as the omputational soundness of a sealing-based library. The proof is onduted in the CoSP framework and solely onerns the semantis of RCFprograms, without involving any ryptographi arguments. This makes our result easily extensible toadditional ryptographi primitives supported by CoSP. We remark that the proof does not depend ona spei� veri�ation tehnique, thus our omputational soundness result would automatially apply tore�nements of the type system, or even to a di�erent analysis tehnique, as long as these use the samesymboli ryptographi libraries. To the best of our knowledge, this is the �rst omputational soundnessresult for an automated veri�ation tehnique of protool implementations.Aknowledgments. This work was partially funded by the Cluster of Exellene �Multimodel Com-puting and Interation� (German Siene Foundation), the Emmy Noether Programme (German SieneFoundation), and Miur'07 Projet SOFT (Seurity Oriented Formal Tehniques).A Symmetri semantis of RCFWe start this setion by proving that making the heating relation symmetri does not a�et the safetyof programs. More formally let us de�ne ≡ aording to the rules de�ning⇛ plus the symmetri variantof the Heat Msg (), Heat Assume (), Heat Res Fork 1, Heat Res Fork 2 Heat Res Let, and Heat ForkComm rules. Similarly, let us de�ne → as →a, where the heating relation is de�ned by ≡ instead of ⇛.We let Cout
0 [·] range over the set of ontexts de�ned by the following grammar:

Cout
0 [·] = [·] | Z � Cout

0 [·] | | Cout
0 [·] � Z

Z = () | Z � ZLemma 14 (Heating to output) The set of proesses ranged over by Cout
0 [a!M] is losed by ≡.Proof. We prove that for all A and B suh that A ≡ B, A /∈ Cout

0 [a!M] or B ∈ Cout
0 [a!M]. The proof isby indution on the derivation of A ≡ B.The base ases (i.e., Heat Re�, Heat Fork (), Heat Msg (), Heat Fork Asso, and Heat Fork Comm)follow diretly from an inspetion of the heating rule.The indutive ases (i.e., Heat Trans, Heat Fork 1, and Heat Fork 2) follow straightforwardly fromthe indution hypothesis. �In the following, we let |R|r denote the number of redution rules used in the derivation of the relation

R ∈ {→,→a}. We also let |R|h denote the number of heating rules used in the derivation of R ∈ {≡,⇛}.41

Heat Refl A⇛ AHeat Trans A⇛ A′′, if A⇛ A′ and A′ ⇛ A′′Heat Let let x = A in B ⇛ let x = A′ in B, if A⇛ A′Heat Res νa.TA⇛ νa.TA′, if A⇛ A′Heat Fork 1 A � B ⇛ A′ � B, if A⇛ A′Heat Fork 2 B � A⇛ B � A′, if A⇛ A′Equiv Fork () () � A ≡a AHeat Msg () a!M ⇛ a!M � ()Heat Assume () assume C ⇛ assume C � ()Heat Res Fork 1 A′ � (νa.TA)⇛ νa.T (A′ � A), if a 6∈ fn(A′)Heat Res Fork 2 (νa.TA) � A′ ⇛ νa.T (A � A′), if a 6∈ fn(A′)Heat Res Let let x = νa.TA in B ⇛ νa.T let x = A in B, if a 6∈ fn(B)Equiv Fork Asso (A � A′) � A′′ ≡a A � (A′ � A′′)Heat Fork Comm (A � A′) � A′′ ⇛ (A′ � A) � A′′Equiv Fork Let let x = (A � A′) in B ≡a A � (let x = A′ in B)Notation: We use A ≡a A′ to mean that both A⇛ A′ and A′ ⇛ A.Figure 9: Heating relation A⇛ A′Lemma 15 (Redution, restrition, and heating) For all a,A,A,B′ suh that νa.A ≡ A′ and
A′ → B′, there exists B suh that A → B, B′ ≡ νa.B, and |A → B|r ≤ |νa.A → B′|r (where
νa.A→ B′ is proved by A′ → B′ and, if νa.A 6= A′, by νa.A ≡ A′ and Red Heat).Proof. The proof is by indution on |A′ → B′|r.The base ase is trivial sine A′ → B′ annot be of length one assuming νa.A ≡ A′. This followsfrom an inspetion of Red Fun,Red Split, Red Math, Red Eq, Red Comm, Red Assert, and Red Let Valand by observing that heating does not anel restritions.For the indution step, we proeed by ase analysis on the last rule applied:Red Fun, Red Split, Red Math, Red Eq, Red Comm, Red Assert, Red Let Val Theserules are not appliable.Red Let A′ = let x = C in D → let x = C′ in D = B′ and C → C′ Sine A′ ≡ νa.A, there exists C′′suh that C ≡ νa.C′′ and A ≡ let x = C′′ in D.Sine νa.C′′ → C′, by indution hypothesis (the onsidered heating relation is νa.C′′ ≡ νa.C′′),we know that C′ ≡ νa.C′′′ for some C′′′ suh that C′′ → C′′′ and |C′′ → C′′′|r ≤ |νa.C′′ → C′|r.By Red Let, let x = C′′ in D → let x = C′′′ in D. We set B := let x = C′′′ in D.Notie that |A → B|r ≤ |C′′ → C′′′|r + 1 (Red Let and Red Heat with A ≡ let x = C′′ in D)and |C′′ → C′′′|r ≤ |C → C′|r and |νa.A → B′|r = |C → C′|r + 2 (Red Let and Red Heat with

νa.A ≡ let x = C in D). Therefore we preserve the invariant |A→ B|r ≤ |νa.A→ B′|r.Red Res A′ = νb.C → νb.C′ = B′ and C → C′ We have two ases, depending on whether b = a ornot. The former is trivial, the latter follows straightforwardly from the indution hypothesis.Red Fork 1 A′ = C � D → C′ � D = B′ and C → C′ We must have either C ≡ νa.C′′ or D ≡ νa.D′,for some C′′, D′.Assume that D ≡ νa.D′, for some D′, i.e., A ≡ C � D′. We know that C → C′. By Red Fork 1,
C � D′ → C′ � D′. We set B := C′ � D′.Notie that |A → B|r ≤ |C → C′|r + 2 (Red Fork 1 and Red Heat with A ≡ C � D′) and
|νa.A → B′|r = |C → C′|r + 2 (Red Fork 1 and Red Heat with νa.A ≡ C � D). Therefore thelength invariant is ful�lled. 42

Assume that C ≡ νa.C′′, for some C′′, i.e., A ≡ C′′ � D.Sine νa.C′′ → C′, by indution hypothesis we know that there exists C′′′ suh that C′′ → C′′′,
C′ ≡ νa.C′′′ and |C′′ → C′′′|r ≤ |νa.C′′ → C′|r.By Red Fork 2, we get C′′ � D → C′′′ � D. We set B := C′′′ � D.Notie that |A → B|r ≤ |C′′ → C′′′′|r + 2 (Red Fork 2 and Red Heat with A ≡ C′′ � D) and
|C′′ → C′′′|r ≤ |νa.C′′ → C′|r and |νa.A→ B′|r = |νa.C′′ → C′|r + 2 (Red Fork 2 and Red Heatwith νa.A ≡ C � D). Therefore we have |A→ B|r ≤ |νa.A→ B′|r.Red Fork 2 A′ = C � D → C � D′ = B′ and D → D′ The reasoning is symmetri to Red Fork 1.Red Heat A′ = C → C′ = B′ and C ≡ D and D → D′ and D′ ≡ C′ We have νa.A ≡ C, whihimplies D ≡ νa.A. By indution hypothesis, there exists B suh that D′ ≡ νa.B and |A→ B|r ≤
|νa.A→ D′|r ≤ |D → D′|r + 1 = |A′ → B′|r. Therefore the length invariant is ful�lled.

�Lemma 16 (Symmetri redution) For every losed expressions A,A′, B′ suh that A ≡ A′ and
A′ → B′ , there exists B suh that A→a B, B′ ≡ B, and one of the following onditions holds true:
• If A = A′, then |A→a B|r ≤ |A′ → B′|r; otherwise |A→a B|r ≤ |A′ → B′|r + |A ≡ A′|h.
• If the derivation of A′ → B′ ontains one appliation of Red Comm (say a!M � a? →a M), then
A→a B is derived by Red Heat with hypotheses A⇛ a!M � a? and a!M � a?→a M .Proof. The proof proeeds by simultaneous indution on |A ≡ A′|h and |A′ → B′|r. The base ase iswhen both the derivations have length one. We proeed by ase analysis on the derivation of A′ → B′:Red Fun A′ = (λx.P) N → P{N/x} = B′ We proeed by ase analysis on the derivation of A ≡ A′.The proof for Heat Re� is straightforward, sine we know that A = A′. The proof for Heat Fork ()follows by observing that this rule is symmetri even in ⇛.Red Split, Red Math, Red Eq, Red Comm, Red Assert, Red Let Val The reasoning is simi-lar sine the only appliable heating rules are the same as those onsidered in Red Fun.For the indution step, we proeed by ase analysis on the last rule applied in the derivation of

A→ B:Red Fun A′ = (λx.P) N → P{N/x} = B′ We proeed by ase analysis on the last heating rule appliedin the derivation of A ≡ A′. The only interesting ase is Heat Trans. We know that A ≡ A′′,
A′′ ≡ A′, and |A ≡ A′|h = |A ≡ A′′|h + |A′′ ≡ A′|h + 1.We an now apply the indution hypothesis, sine |A′′ ≡ A′|h + |A′ → B′|r < |A ≡ A′|h + |A′ →
B′|r. By indution hypothesis, there exists B′′ suh that A′′ →a B′′ and B′ ≡ B′′. In addition,
|A′′ →a B′′|r ≤ |A′ →a B′|r + |A′′ ≡ A′|h. (We are onsidering the only interesting ase, i.e.,
A 6= A′ 6= A′′.) As → is larger than →, we know that A′′ → B′′ and |A′′ →a B′′|r = |A′′ → B′′|r.We an now apply the indution hypothesis, sine |A ≡ A′′|h+|A′′ → B′′|r < |A ≡ A′|h+|A′ → B′|r.By indution hypothesis, there exists B suh that A→a B and B′′ ≡ B, with |A→a B|r ≤ |A′′ →
B′′|r + |A ≡ A′′|h . By Heat Trans, B′ ≡ B.Red Split, Red Math, Red Eq, Red Assert, Red Let Val The reasoning is similar to the previ-ous ase.

43

Red Comm A′ = a!M � a?→M = B′ We proeed by ase analysis on the last heating rule applied inthe derivation of A ≡ A′. The only interesting ases are Heat Fork 1 and Heat Trans.Heat Fork 1. We know that A = A′′ � a? ≡ A′, for some A′′ suh that A′′ ≡ a!M . By Lemma 14,
A′′ ∈ Cout

0 [a!M]. It is easy to see that by repeated appliation of Heat Fork Asso, Heat ForkComm, and Heat Fork () we an derive A⇛ A′. By Red Comm, A′ →a B′. By Red Heat, we getthe desired result. Notie that |A→a B|r = |A′ → B′|r + 1.Heat Trans. We know that A ≡ A′′, A′′ ≡ A′, and |A ≡ A′|h = |A ≡ A′′|h + |A′′ ≡ A′|h + 1.We an now apply the indution hypothesis, sine |A′′ ≡ A′|h+|A′ → B′|r < |A ≡ A′|h+|A′ → B′|r.By indution hypothesis, A′′ ⇛ A′ and A′′ →a B′ is proved by Red Heat. Sine → is larger than
→, we know that A′′ → B′′ and |A′′ →a B′′|r = |A′′ → B′′|r.We an now apply the indution hypothesis, sine |A ≡ A′′|h+|A′′ → B′′|r < |A ≡ A′|h+|A′ → B′|r.By indution hypothesis, A⇛ A′′. By Heat Trans, A⇛ A′. The result follows by Red Heat. Notiethat |A→ B′|r = |A′ → B′|r + 1.The remaining redution rules are de�ned reursively on the redution of a subproess. By indutionhypothesis, this redution ould ontain one appliation of Red Comm or none. Sine the proof is thesame and the length invariant is preserved anyway, we assume that the derivation does not ontain anyappliation of Red Comm.Red Let A′ = let x = C in D → let x = C′ in D = B′ and C → C′ The two interesting ases arewhen A ≡ A′ is proved by Heat Res Let or Heat Let.Heat Res Let. Let us assume that A ≡ A′ is proved by (the symmetri variant of) Heat Res Let,i.e., there exists C′′ suh that C = νa.C′′ and A = νa.let x = C′′ in B.Sine νa.C′′ → C′, by Lemma 15 we know that C′ ≡ νa.C′′′ for some C′′′ suh that C′′ → C′′′and |C′′ → C′′′|r ≤ |νa.C′′ → C′|r. By indution hypothesis (we onsider C′′ ≡ C′′), we know thatthere exists C′′′′ suh that C′′ →a C′′′′, C′′′ ≡ C′′′′, and |C′′ →a C′′′′|r ≤ |C

′′ → C′′′|r.By Red Let, let x = C′′ in D →a let x = C′′′′ in D and, by Red Res, A = νa.let x = C′′ in D →
νa.let x = C′′′′ in D = B. Notie that |A→ B|r = |C′′ → C′′′|r + 2, while |A′ → B′|r = |νa.C′′ →
C′|r + 1. Sine |C′′ → C′′′|r ≤ |νa.C′′ → C′|r, we preserve the invariant |A →a B|r ≤ |A′ →
B′|r + |A ≡ A′|h.Sine C′ ≡ νa.C′′′, by Heat Let we get B′ = let x = C′ in D ≡ let x = νa.C′′′ in D. Sine
C′′′ ≡ C′′′′, by Heat Let we get let x = νa.C′′′ in D ≡ let x = νa.C′′′′ in D. By Heat Res Let, weget let x = νa.C′′′′ in D ≡ νa.let x = C′′′′ in D. Finally, by Heat Trans, we get B′ ≡ B.Heat Let. Let us assume now that A ≡ A′ is derived by Heat Let, i.e., there exists C′′ suh that
A = let x = C′′ in D and C′′ ≡ C. By indution hypothesis, we know that there exists C′′′ suhthat C′′ →a C′′′ and C′ ≡ C′′′. By Red Let, A = let x = C′′ in D → let x = C′′′ in D = B and
B′ ≡ B by Heat Let.Red Res A′ = νa.C → νa.C′ = B′ and C → C′ The only interesting ase is when A ⇛ A′ is provedby Heat Res, i.e., there exists C′′ suh that A = νa.C′′ and C′′ ≡ C. By indution hypothesis,there exists C′′′ suh that C′′ ≡ C′′′ and C′ ≡ C′′′. By Red Res, A = νa.C′′ →a νa.C′′′ = B and
B′ ≡ B by Heat Res.Red Fork 1 A′ = C � D → C′ � D = B′ and C → C′ The proof for Heat Fork 1 follows straightfor-wardly from the indution hypothesis. The proof for Heat Fork 2 follows from an inspetion of theheating and redution rules. We now reason on the two interesting ases, namely, Heat Res Fork 1and Heat Res Fork 2. 44

Heat Res Fork 1. We know that D = νa.D′, for some D′ and A = νa.C � D′. We know that
C →a C′. By Red Res and Red Fork 1, A = νa.C � D′ → νa.C′ � D = B. By Heat Res Fork 1,
B′ ≡ B. Notie that |A→a B|r = |A′ → B′|r + 1, whih ful�lls the length invariant.Heat Res Fork 2. We know that C = νa.C′′, for some C′′, and A = νa.C′′ � D.Sine νa.C′′ → C′, by Lemma 15 we know that there exists C′′′ suh that C′′ → C′′′ and C′ ≡
νa.C′′′ and |C′′ → C′′′|r ≤ |νa.C′′ → C′|r. By indution hypothesis (we onsider C′′ ≡ C′′), weknow that there exists C′′′′ suh that C′′ →a C′′′′ and C′′′ ≡ C′′′′ and |C′′ →a C′′′′|r ≤ |C′′ →a

C′′′|r.By Red Fork 1 and Red Res, A = νa.C′′ � D → νa.C′′ � D = B. By Heat Res Fork 2, we get
B′ ≡ B.Notie that |A ≡ A′|h = 1, |A′ →a B′|r = |C → C′|r + 1, |C → C′|r ≥ |C′′ → C′′′|r ≥ |C′′ →a

C′′′′|r, and |A→a B|r = |C′′ →a C′′′′|r + 2. Therefore |A→ B|r ≤ |A
′ →a B′|r + |A ≡ A′|h.Red Fork 2 A′ = C � D → C � D′ = B′ and D → D′ Symmetri to Red Fork 1.Red Heat The proof follows diretly from the indution hypothesis.

�Referenes[ABW06℄ M. Abadi, M. Baudet, and B. Warinshi. Guessing attaks and the omputational soundnessof stati equivalene. In Pro. 9th International Conferene on Foundations of SoftwareSiene and Computation Strutures (FOSSACS), volume 3921 of Leture Notes in ComputerSiene, pages 398�412. Springer, 2006.[AF01℄ Martín Abadi and Cédri Fournet. Mobile values, new names, and seure ommuniation. InPOPL '01: Proeedings of the 28th ACM SIGPLAN-SIGACT Symposium on Priniples ofProgramming Languages, pages 104�115, New York, NY, USA, 2001. ACM Press.[AF06℄ Pedro Adão and Cédri Fournet. Cryptographially sound implementations for ommuniat-ing proesses. In Pro. ICALP, pages 83�94, 2006.[AG97℄ Martín Abadi and Andrew D. Gordon. A alulus for ryptographi protools: The spialulus. In Pro. 4th ACM Conferene on Computer and Communiations Seurity, pages36�47, 1997.[AJ01℄ Martín Abadi and Jan Jürjens. Formal eavesdropping and its omputational interpretation.In Pro. 4th International Symposium on Theoretial Aspets of Computer Software (TACS),pages 82�94, 2001.[AR02℄ Martín Abadi and Phillip Rogaway. Reoniling two views of ryptography (the omputa-tional soundness of formal enryption). Journal of Cryptology, 15(2):103�127, 2002.[BBF+08℄ Jesper Bengtson, Karthikeyan Bhargavan, Cédri Fournet, Andrew D. Gordon, and SergioMa�eis. Re�nement types for seure implementations. In Pro. 21st IEEE Seurity Foun-dations Symposium (CSF), pages 17�32, 2008. Full version is Mirosoft Researh tehnialreport MSR-TR-2008-118.[BCFZ08℄ Karthikeyan Bhargavan, Riardo Corin, Cédri Fournet, and Eugen Z linesu. Cryptograph-ially veri�ed implementations for TLS. In 15th ACM Conferene on Computer and Com-muniations Seurity (CCS 2008), pages 459�468. ACM Press, 2008.45

[BCK05℄ M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations of equationaltheories against passive adversaries. In Pro. 32nd International Colloquium on Automata,Languages and Programming (ICALP), volume 3580 of Leture Notes in Computer Siene,pages 652�663. Springer, 2005.[BFG10℄ K. Bhargavan, C. Fournet, and A.D. Gordon. Modular veri�ation of seurity protool odeby typing. In Pro. 37th Symposium on Priniples of Programming Languages (POPL). ACMPress, 2010.[BFGT06℄ K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Veri�ed interoperable implementationsof seurity protools. In Pro. 19th IEEE Computer Seurity Foundations Workshop (CSFW),pages 139�152. IEEE, 2006.[BHU09℄ Mihael Bakes, Dennis Hofheinz, and Dominique Unruh. CoSP: A general framework foromputational soundness proofs. In ACM CCS 2009, pages 66�78. ACM Press, November2009. Full version on IACR ePrint 2009/080. Some of the de�nitions we use only our inthe full version.[Bla01℄ B. Blanhet. An e�ient ryptographi protool veri�er based on Prolog rules. In Pro. 14thIEEE Computer Seurity Foundations Workshop (CSFW), pages 82�96. IEEE ComputerSoiety Press, 2001.[Bla06℄ Bruno Blanhet. A omputationally sound mehanized prover for seurity protools. InIEEE Symposium on Seurity and Privay, Proeedings of SSP 2006, pages 140�154. IEEEComputer Soiety, 2006. Extended version online available at http://eprint.iar.org/2005/401.ps.[BMU℄ Mihael Bakes, Matteo Ma�ei, and Dominique Unruh. Library soure ode with F7 type-heking annotations. Available at http://rypto.m2i.org/unruh/mis/rf/library.zip.[BMV04℄ David Basin, Sebastian Mödersheim, and Lua Viganò. OFMC: A symboli model hekerfor seurity protools. International Journal of Information Seurity, 2004.[BP04℄ Mihael Bakes and Birgit P�tzmann. Symmetri enryption in a simulatable Dolev-Yaostyle ryptographi library. In Pro. 17th IEEE Computer Seurity Foundations Workshop(CSFW), pages 204�218, 2004.[BPW03a℄ Mihael Bakes, Birgit P�tzmann, and Mihael Waidner. A omposable ryptographi librarywith nested operations (extended abstrat). In Pro. 10th ACM Conferene on Computerand Communiations Seurity, pages 220�230, 2003. Full version in IACR Cryptology ePrintArhive 2003/015, Jan. 2003, http://eprint.iar.org/.[BPW03b℄ Mihael Bakes, Birgit P�tzmann, and Mihael Waidner. Symmetri authentiation withina simulatable ryptographi library. In Pro. 8th European Symposium on Researh in Com-puter Seurity (ESORICS), volume 2808 of Leture Notes in Computer Siene, pages 271�290. Springer, 2003.[BPW07℄ Mihael Bakes, Birgit P�tzmann, and Mihael Waidner. The reative simulatability (RSIM)framework for asynhronous systems. Information and Computation, 205(12):1685�1720,2007.[CD09℄ Sagar Chaki and Anupam Datta. Aspier: An automated framework for verifying seurityprotool implementations. In Pro. 22nd IEEE Computer Seurity Foundations Symposium(CSF), pages 172�185. IEEE, 2009. 46

http://eprint.iacr.org/2005/401.ps
http://crypto.m2ci.org/unruh/misc/rcf/library.zip
http://eprint.iacr.org/

[CL08℄ Hubert Comon-Lundh. About models of seurity protools (abstrat). In Ramesh Hariharan,Madhavan Mukund, and V Vinay, editors, Pro. FSTTCS, Dagstuhl, Germany, 2008. ShlossDagstuhl. http://drops.dagstuhl.de/opus/volltexte/2008/1766/.[CLC08℄ Hubert Comon-Lundh and Véronique Cortier. Computational soundness of observationalequivalene. In Pro. ACM CCS, pages 109�118, 2008.[DY83℄ Danny Dolev and Andrew C. Yao. On the seurity of publi key protools. IEEE Transationson Information Theory, 29(2):198�208, 1983.[EG83℄ Shimon Even and Oded Goldreih. On the seurity of multi-party ping-pong protools. InPro. 24th IEEE FOCS, pages 34�39, 1983.[Fou09℄ Cédri Fournet. On the omputational soundness of ryptographi veri�ation by typing.Workshop on Formal and Computational Cryptography (FCC 2009), 2009.[GLP05a℄ J. Goubault-Larreq and F. Parrennes. Cryptographi protool analysis on real ode. InPro. 6th International Conferene on Veri�ation, Model Cheking and Abstrat Inter-pretation (VMCAI'05), volume 3385 of Leture Notes in Computer Siene, pages 363�379.Springer-Verlag, 2005.[GLP05b℄ Jean Goubault-Larreq and Fabrie Parrennes. Cryptographi protool analysis on real Code. In 6th International Conferene on Veri�ation, Model Cheking, and Abstrat Inter-pretation, (VMCAI 2005), pages 363�379. Springer, 2005.[Gun92℄ A. Gunter. Semantis of Programming Languages: Strutures and Tehniques. MIT Press,1992.[HLM03℄ Jonathan Herzog, Moses Liskov, and Silvio Miali. Plaintext awareness via key registration. InAdvanes in Cryptology: CRYPTO 2003, volume 2729 of Leture Notes in Computer Siene,pages 548�564. Springer, 2003.[JLM05℄ Romain Janvier, Yassine Lakhneh, and Laurent Mazaré. Completing the piture: Soundnessof formal enryption in the presene of ative adversaries. In Pro. ESOP, pages 172�185,2005.[KMM94℄ Rihard Kemmerer, Catherine Meadows, and Jon Millen. Three systems for ryptographiprotool analysis. Journal of Cryptology, 7(2):79�130, 1994.[Lau01℄ Peeter Laud. Semantis and program analysis of omputationally seure information �ow. InPro. 10th European Symposium on Programming (ESOP), pages 77�91, 2001.[Lau04℄ Peeter Laud. Symmetri enryption in automati analyses for on�dentiality against ativeadversaries. In Pro. 25th IEEE Symposium on Seurity & Privay, pages 71�85, 2004.[Low96℄ Gavin Lowe. Breaking and �xing the Needham-Shroeder publi-key protool using FDR.In Pro. 2nd International Conferene on Tools and Algorithms for the Constrution andAnalysis of Systems (TACAS), volume 1055 of Leture Notes in Computer Siene, pages147�166. Springer, 1996.[Mer83℄ Mihael Merritt. Cryptographi Protools. PhD thesis, Georgia Institute of Tehnology, 1983.[Mor73℄ J. Morris. Protetion in programming languages. Communiations of the ACM, 16(1):15�21,1973.[MW04℄ Daniele Miianio and Bogdan Warinshi. Soundness of formal enryption in the preseneof ative adversaries. In Pro. 1st Theory of Cryptography Conferene (TCC), volume 2951of Leture Notes in Computer Siene, pages 133�151. Springer, 2004.47

http://drops.dagstuhl.de/opus/volltexte/2008/1766/

[Pau98℄ Lawrene Paulson. The indutive approah to verifying ryptographi protools. Journal ofCryptology, 6(1):85�128, 1998.[SBB+06℄ Christoph Sprenger, Mihael Bakes, David Basin, Birgit P�tzmann, and Mihael Waidner.Cryptographially sound theorem proving. In Pro. 19th IEEE Computer Seurity Founda-tions Workshop (CSFW), pages 153�166, 2006.[Sh96℄ Steve Shneider. Seurity properties and CSP. In Pro. 17th IEEE Symposium on Seurity& Privay, pages 174�187, 1996.[SP03℄ Eijiro Sumii and Benjamin C. Piere. Logial relations for enryption. Journal of ComputerSeurity, 11(4):521�554, 2003.[SP07℄ E. Sumii and B. Piere. A bisimulation for dynami sealing. Theoretial Computer Siene,375(1-3):169�192, 2007.Indexative assertion (RCF), 5ative assumption (RCF), 5assertionative (RCF), 5assumptionative (RCF), 5omputation node (CoSP), 6omputational soundness (CoSP), 6omputational implementation (CoSP), 6omputational RCF-exeution, 8omputationally satisfy (CoSP), 6omputationally saferobustly, 9onstrutorprivate (RCF), 5publi (RCF), 5onstrutor (CoSP), 5ontrol node (CoSP), 6CoSP, 5omputational soundness, 6omputationally satisfy, 6onstrutor, 5destrutor, 5message type, 5none, 5symboli model, 6symbolially satisfy, 6trae property, 6dedution relation (CoSP), 6destrutor (CoSP), 5Dolev-Yao model, see DY modelDY model, 6

equality-friendly, 7equation-σ-safestatially, 8
eval f (CoSP), 5exeutionomputational RCF-, 8symboli RCF-, 8expression (RCF), 4failure node, 9forbidden funtion symbol(FOL/F), 5input node (CoSP), 6message type (CoSP), 5modelDY, 6symboli (CoSP), 6mp-free, 5nodeomputation (CoSP), 6ontrol (CoSP), 6failure, 9input (CoSP), 6output (CoSP), 6none (CoSP), 5opponent, 5

σ-, 7output node (CoSP), 6p-free, 5private onstrutor48

(RCF), 5publi onstrutor(RCF), 5pure(RCF), 5RCF, 4RCF-exeutionomputational, 8symboli, 8redution (RCF), 4robustly SExec-safe, 9robustly -σ-safe, 7robustly →-σ-safe, 7robustly →-safe, 5robustly omputationally safe, 9safe
 -σ-, 7
→-, 5

robustly omputationally, 9robustly -σ-, 7robustly SExec-, 9robustly →-, 5robustly →-σ-, 7statially, 5statially σ-, 7statially equation-σ-, 8statially σ-safe, 7statially safe, 5statially equation-σ-safe, 8strutural equivalene (RCF), 4struture (RCF), 5symboli model (CoSP), 6symboli RCF-exeution, 8symbolially satisfy (CoSP), 6trae property (CoSP), 6values (RCF), 4

49

	Introduction
	Our techniques
	Related work
	Notation

	RCF (review)
	Syntax and semantics

	CoSP Framework (review)
	The Dolev-Yao library
	The library
	Dolev-Yao transition relation

	Computational soundness
	Definitions
	Symb. vs. computational execution
	Comp. soundness of the DY-library
	Encryption and signatures

	The sealing-based library
	Dynamic Sealing
	Mapping DY-terms into SB-terms
	Preservation of safety
	Computational soundness

	Conclusions
	Symmetric semantics of RCF

