
Synchronized Aggregate Signatures:

New Definitions, Constructions and Applications

Jae Hyun Ahn
Johns Hopkins University

arjuna@cs.jhu.edu

Matthew Green
Johns Hopkins University

mgreen@cs.jhu.edu

Susan Hohenberger
Johns Hopkins University

susan@cs.jhu.edu

July 29, 2010

Abstract

An aggregate signature scheme is a digital signature scheme where anyone given n signatures
on n messages from n users can aggregate all these signatures into a single short signature.
Unfortunately, no “fully non-interactive” aggregate signature schemes are known outside of the
random oracle heuristic; that is, signers must pass messages between themselves, sequentially or
otherwise, to generate the signature. Interaction is too costly for some interesting applications.

In this work, we consider the task of realizing aggregate signatures in the model of Gentry
and Ramzan (PKC 2006) when all signers share a synchronized clock, but do not need to be
aware of or interactive with one another. Each signer may issue at most one signature per time
period and signatures aggregate only if they were created during the same time period. We call
this synchronized aggregation.

We present a practical synchronized aggregate signature scheme secure under the Compu-
tational Diffie-Hellman assumption in the standard model. Our construction is based on the
stateful signatures of Hohenberger and Waters (Eurocrypt 2009). Those signatures do not ag-
gregate since each signature includes unique randomness for a chameleon hash and those random
values do not compress. To overcome this challenge, we remove the chameleon hash from their
scheme and find an alternative method for moving from weak to full security that enables ag-
gregation. We conclude by discussing applications of this construction to sensor networks and
software authentication.

1 Introduction

Aggregate signatures, as introduced by Boneh, Gentry, Lynn and Shacham [10], are digital signa-
tures where any party, given n signatures on n messages from n users can combine all of these
signatures into a single short signature. This primitive is useful in many applications where storage
or bandwidth is at a premium, and thus one wants to reduce the total cryptographic overhead.

While a number of aggregate signature schemes have been proposed [10, 23, 22, 15, 7, 5, 25, 2],
all but one of these schemes is secure only in the random oracle model. The sole scheme in
the standard model, by Lu, Ostrovsky, Sahai, Shacham and Waters [22], permits only sequential
aggregation [22]. Sequentially-aggregate signatures [23] are a variant where signatures can only be
aggregated by sequentially passing the (partially formed) aggregate from one signer to the next.

While sequential aggregation is useful for some applications, such as Secure BGP routing [19, 22],
it is inappropriate for many important applications where signers cannot be conveniently arranged

1

in sequence. This includes any situation where signers may operate independently of one another,
e.g., when archiving signed email messages or compressing signatures on software applications. We
highlight two such applications in Section 6.

1.1 Our Contributions

Our main goal is to improve the state of the art for aggregate signatures and to consider how they
can best be used to secure important communications in practice.

Re-visiting the Gentry-Ramzan model. Since aggregate signatures have proven difficult to
build, the vast majority of research effort in this area has gone into building schemes that require
that signers have some knowledge of and interaction with each other during the creation of the
aggregate, either by sequential or broadcast messages.

In 2006, Gentry and Ramzan [15] proposed a solution to get around this dependence on interac-
tion. In their model, signers do not need to be aware of or pass any messages between themselves,
provided that they have a global strategy for choosing a unique value w that is used during signing,
e.g., w can be the current time period. Only signatures with the same w value can be aggregated.
They argue that this model is useful and realistic for some interesting applications. They provided
the first construction, in the random oracle model.

In this work, we revisit their model, calling it synchronized aggregation, and provide additional
formalizations. Signers can issue at most one signature per time period1 and only signatures issued
during the same time period can be efficiently aggregated.

If the signers’ clocks become out of sync in our model, then there is no security loss, but there
is an efficiency loss, i.e., the out-of-sync messages cannot be aggregated. If a signer’s clock is
turned back in time causing them to issue two signatures during the same time period, then the
unforgeability guarantee may no longer hold in our model (and indeed, it will not hold in this case
for our constructions.) Although, for example, a sensor network under this sort of active attack is
likely to be compromised in other ways and it is better that the adversary recover only the key for
this single node than a symmetric key shared by many sensors.

For many applications, the clock need only be loosely synchronized. For example, see Liang et
al. [21] which requires that each sensor have a clock, so that it can report on soil moisture conditions
every 30 seconds.

A New Construction. We present the first synchronized aggregate signature scheme which is
provably secure in the standard model. Prior synchronized or full schemes, due to Boneh, Gentry,
Lynn and Shacham [10] and Gentry and Ramzan [15], only offered heuristic security arguments in
the random oracle model. Similarly, prior to this work, only one aggregate scheme with a standard
security proof existed, due to Lu, Ostrovsky, Sahai, Shacham and Waters [22], and it required
sequential interaction among the signers. In this work, we offer the best of both worlds, by showing
for the first time how to build a non-interactive scheme with a standard security proof.

Our construction is based on the Computational Diffie-Hellman (CDH) assumption in bilinear
groups. The scheme is practical: an aggregate signature requires two group elements and one
integer, and user public keys require one group element. To verify an aggregate of N signatures,
requires only k+ 3 pairings, where k is a security parameter (which could be five in practice), plus
two full exponentiations and N small exponentiations (which could be 32 bits each in practice.)

1As described in Section 5, we can allow the signer to issue x signatures per time period at a cost of x elements
in the public key.

2

Scheme Type Assumption Model PP Size PK Size Agg Size Agg Verify
(in Pairings)

BGLS [10] full CDH ROM O(1) 1 1 N + 1
LMRS [23] seq cert TDP ROM – – – –
LOSSW [22] seq CDH standard O(1) O(k) 2 2
LOSSW [22] seq CDH ROM O(1) 3 2 2
BGOY [8] seq IBSAS-CDH ROM O(1) identity 3 4
Neven [25] seq uncert CFP ROM – – – –
BJ [2] int RSA ROM – – – –
GR [15] sync CDH ROM O(1) identity 3 3
Our Work (§4) sync CDH standard O(k) 1 3 k + 3
Our Work (§A) sync CDH ROM O(1) 1 3 4

Figure 1: Summary of Full, Sequential and Synchronized Aggregate Signatures. TDP stands
for trapdoor permutation and CFP stands for claw-free permutation. Let N be the number of
individual signatures and k be a special security parameter (which could be five in practice).
Identity-based schemes have a public-key size of “identity”. Sizes for the public parameters (PP),
public keys (PK) and aggregate signatures (Agg) count group elements and integers.

Applications. We have several applications in mind for this technology, including aggregation
of multicast messages (as in a sensor network) and reduction of storage requirements for signed
executable code, as highlighted in Section 6. These applications each share the property that
signers will produce messages independently of one another (making sequential aggregation or
multi-signatures inapplicable). We show that, in this scheme, much of the work of signing a
message can be performed before the message is known. This is important for sensors and other
low-power devices.

1.2 Comparison with Prior Work

Interestingly, there seems to be an inherent need for coordination among the signing parties or some
other method for combing the randomness in the signatures to allow aggregation. This has typically
been created through interaction by the signers (either broadcast or sequential) or artificially in
the random oracle model. We review what is known in these models and then discuss new progress
that does not require either interaction or random oracles, in the presence of a synchronized clock.

Full Aggregation with Random Oracles. Boneh et al. [10] presented the first practical aggre-
gate signatures (BGLS) under the CDH assumption in the random oracle model. (Technically, it
required that all messages be distinct, although the authors [10] suggested a way to overcome this
restriction, which was later fully explored by Bellare, Namprempre and Neven [5].) Unfortunately,
to date, this is the only known full aggregate signature scheme and it is in the random oracle model.

Sequential Aggregation. In sequential aggregation, introduced by Lysyanskaya, Micali, Reyzin
and Shacham [23], the partially formed aggregate signature is passed from signer i to signer i+ 1,
who then adds his information to the aggregate before passing it to the next signer. They gave a
construction in the random oracle model based on families of certified trapdoor permutations.

Subsequently, Lu, Ostrovsky, Sahai, Shacham and Waters [22] provided the first sequential
aggregate signatures secure in the standard model under the CDH assumption.

3

In 2007, Boldyreva, Gentry, O’Neill and Yum [7] presented an identity-based sequentially ag-
gregate signature in the random oracle model, under an interactive complexity assumption, which
was later shown to be false [18]. This highlights the importance of keeping the complexity assump-
tions simple, which is a goal of this work. Boldyreva et al. subsequently provided an alternate
construction under a different interactive complexity assumption [8]. In 2008, Neven [25] proposed
sequentially aggregate signed data as a new primitive that minimizes the total amount of transmit-
ted data, rather than just the signature length, based on uncertified claw-free permutations in the
random oracle model.

Interactive Aggregation. In the interactive model, as introduced by Bellare and Neven [6] for
multisignatures, the signing process is an interactive protocol, where the signers communicate with
each other to create the signature. In the recent scheme of Bagherzandi and Jarecki [2], to produce
an aggregate signature, each signer must broadcast a message to all other signers. This requires
that each signer be aware of and wait for all other signers before issuing a signature. On small
devices, where transmissions are costly, this interaction could be prohibitively expensive and could
eliminate the efficiency benefits of the aggregation. Their construction is secure under RSA in
the random oracle model. Sequential aggregation can be considered a special case of interactive
aggregation, where the signers only need to transmit messages to one another in a linear sequence.

Synchronized Aggregation. Ideally, one would like to eliminate the need for signer interaction.
In 2006, Gentry and Ramzan [15] proposed an aggregate signature scheme where no interaction
between signers was required, provided that all signers have a global strategy for choosing a value
w that is used during signing (w can be the current time period.) Only signatures with the same w
value can be aggregated. In this non-interactive model, Gentry and Ramzan were able to provide
an identity-based scheme under CDH in the random oracle model, where the verification time is
much more efficient than BGLS.

What is known in the standard model? To our knowledge, only two aggregation schemes are
known that do not require random oracles. The first is the sequential scheme of Lu et al. [22]. The
second is presented in this work. We remove the need for interaction by working in the synchronized
model. Their public keys require O(k) elements for security parameter k, whereas ours require only
one group element. Since public keys may form part of the transmission overhead and the goal of
aggregation is to reduce this overhead, our scheme may offer a significant advantage.

1.3 Overview of the Construction

Our design goals are three-fold. We want an efficient aggregate signature that is: (1) non-interactive,
(2) secure under a standard assumption, such as CDH, and (3) not in the random oracle model. For
basic signature schemes, there are currently only two “short” signature schemes that are fully secure
in the standard model under the CDH assumption: the Waters signatures [28] and the more recent
Hohenberger-Waters (HW) signatures [17]. The standard-model, sequentially-aggregate signatures
of Lu et al. [22] are based on the Waters signatures, but it is not clear how to get around the
sequential restriction (even if synchronized clocks are assumed.)

Building on HW Signatures. The more recent (stateful) HW signatures do not aggregate well
at first blush. Recall that in that construction, the public key is of the form (g, ga, u, v, d, w, z, h)
where these are random generators of a bilinear group G of prime order p and the secret key is a.

4

The signer keeps a counter s. To sign a message M , she increments s, chooses two random values
r, t ∈ Zp and outputs the signature σ = (σ1, σ2, r, s) where

σ1 = (uMvrd)a(wdlg(s)ezsh)t and σ2 = gt.

Verification checks that
e(σ1, g) = e(ga, uMvrd) · e(σ2, w

dlg(s)ezsh).

The uMvr value is a chameleon hash of M with randomness r. Aggregating these signatures requires
the compression or coordination of the r values. It is not clear how to do this without breaking the
security (since in the proof the simulator must be free to choose an r after seeing the message that
the adversary asks him to sign.)

Attempt One. Our first observation is that, if we remove the randomized chameleon hash, then
we can elegantly aggregate signatures with the same s value. Unfortunately, the HW security proof
is fundamentally dependent on this chameleon hash. Absent this hash, the simulator must be able
to guess not only the time period s∗ that the adversary will use in her forgery (only in the case
that s∗ is “small”, the proof handles “large” values of s∗ another way), but also the message M
which the adversary will query on during time period s∗. Since the message space is exponentially
large, the simulator will fail to guess M with high probability.

Attempt Two. To solve this, we propose an alternative technique that reduces an exponential
message space to a set of k polynomially-sized subspaces (each of size 2`, for some ` logarithmic in
the security parameter). Our simulator need only guess one message from one of these subspaces.
In practice, this requires that we divide our messages into k `-bit chunks. The public parameters
are (g, u0, u1, . . . , uk, w, z, h), which all signers share, and public keys are pk i = gai . A signature
on message M = M1 . . .Mk during time period s is of the form σ = (σ1, σ2, s) where

σ1 = (u0

k∏
i=1

uMi
i)a(wdlg(s)ezsh)t and σ2 = gt

and t is random. The signatures aggregate nicely (as we show in Section 4), but are they provably
secure?

Attempt Three. A natural idea is to focus on one uMi
i part, which now has a small enough

message space to guess from, and treat it like an original HW signature (minus the chameleon
hash.) Unfortunately, our aggregate security does not follow from the unforgeability of HW [17].
For ` = 1, the adversary could ask for signature queries on the binary messages 001, 010, 100 and
then forge on the message 000. Thus, no chunk (i.e., bit) of the forgery message is “new”; meaning
that no part of the aggregate forgery is an HW forgery. Fortunately, we make a key observation:
the above scheme is not only existentially-unforgeable with respect to adaptive chosen message
attacks, but also with respect to adaptive chosen state-message pair attacks, provided that each
state is used only once. That is, it is hard to produce a signature on any “new” (s,M) pair, not
just on a new message M .

Final Solution. Our new proof strategy takes advantage of this. We guess the time period s∗

that the adversary will use in her forgery (only in the case that s∗ is “small”; we continue to handle
“large” s∗ values as before) and then guess (1) which message block β ∈ [1, k] will differ between the
message queried during s∗ and the forgery message and (2) the value of this `-bit message chunk.

5

We succeed in our guess with non-negligible probability. Then, we can use our guess to contrive
values for the public parameters and challenge public key which allow us to base our security on
CDH, while maintaining our ability to aggregate signatures and handle those issues throughout the
proof. We finally note that although aspects of this construction seem superficially related to the
signatures of Waters [28] (which do not fully aggregate), our proof techniques are quite different.

2 Definitions of Security

In an aggregate signature scheme, anyone given n signatures on n messages from n users can
aggregate all these signatures into a single short signature. This aggregate signature (together
with the n public keys and n messages) can be publicly verified to convince anyone that user i
authenticated message i for i = 1 to n. This is also true for synchronized aggregate signatures
except that we assume all signers have a synchronized clock and the following restrictions apply:

1. A signer can issue at most one signature per time period and keeps state to ensure this.

2. Only signatures created during the same time period can be aggregated.

Gentry and Ramzan [15] were the first to consider this “synchronized” setting in the context
of aggregate signatures. In their model, they assumed that signatures were issued using a special
random tag w (which could not be re-used) and that only signatures with the same tag could be
aggregated. They left open how signers coordinated their choice of w. Here, we use what seems to
us the most natural coordination strategy– a synchronized clock.

Definition 2.1 (Synchronized Aggregate Signatures) A synchronized aggregate signature
scheme is a tuple of algorithms (Setup,KeyGen, Sign,Verify,Aggregate,AggVerify) such that

Setup(1λ) : the setup algorithm outputs public parameters pp.2

KeyGen(1λ, pp) : the key generation algorithm outputs a keypair (pk , sk). Without loss of gener-
ality, we will assume that pk and sk contain pp.

Sign(sk ,M, s) : the signing algorithm takes in a secret key sk, a message M , the current time
period s, and produces a signature σ.

Verify(pk ,M, σ) : the verification algorithm takes in a public key pk, a message M , and a pur-
ported signature σ, and returns 1 if the signature is valid and 0 otherwise.

Aggregate((pk1,M1, σ1), . . . , (pkN ,MN , σN)) : On input a sequence of public keys (pk1, . . . , pkN),
messages (M1, . . . ,MN), and purported signatures (σ1, . . . , σN), it outputs an aggregate sig-
nature σagg or error message ⊥.

AggVerify((pk1, . . . , pkN), (M1, . . . ,MN), σagg) : On input a sequence of public keys (pk1, . . . , pkN)
and messages (M1, . . . ,MN), and a purported aggregate signature σagg, the aggregate-verification
algorithm outputs 1 if σagg is a valid aggregate signature and 0 otherwise.

The correctness property states that the Verify and AggVerify algorithms will always output 1 when
run on correctly generated inputs.

2In some schemes, pp may be empty. These parameters are included to capture many practical scenarios where
multiple public keys are generated from the same algebraic group (e.g., [10, 15, 5]).

6

Unforgeability We recall the definition of Boneh et al. [10], which extends the standard security
notion of existential unforgeability with respect to chosen-message attacks as formalized by Gold-
wasser, Micali and Rivest [16], to the case of aggregate signatures. It is defined using the following
game between a challenger and an adversary A.

Setup: The challenger runs Setup(1λ) to obtain the public parameters pp. Then it runs
KeyGen(1λ, pp) a total of N times to obtain the key pairs (pk1, sk1), . . . , (pkN , skN).
The adversary is sent (pk1, (pk2, sk2), . . . , (pkN , skN)), which include pp.

Queries: Proceeding adaptively, for each time period 1 to q, the adversary can request a
signature on a message of its choice under sk1, provided that at most one query is made
per time period. The challenger responds to a query for Mi at time period si ∈ [1, q] as
Sign(sk1,Mi, si).

Output: Eventually, the adversary outputs a tuple ((pk1, . . . , pkN), (M ′1, . . . ,M
′
N), σ) and

wins the game if:

1. M ′1 is not any of M1, . . . ,Mq; and
2. AggVerify((pk1, . . . , pkN), (M ′1, . . . ,M

′
N), σ) = 1.

We define SigAdvA to be the probability that the adversary A wins in the above game, taken
over the coin tosses made by A and the challenger.

Definition 2.2 (Unforgeability) A forger A (t, q, N, ε)-breaks an N -user aggregate signature
scheme if A runs in time at most t, A makes at most q signature queries and SigAdvA is at least
ε. An aggregate signature is (t, q,N, ε)-existentially unforgeable under an adaptive chosen message
attack if there is no forger that (t, q,N, ε)-breaks it.

Discussion In the unforgeability definition, without loss of generality, we assume that the first
public key in the challenge list is the challenge key pk1. We also require that the non-challenge public
keys be chosen honestly instead of adversarially. Alternatively, we can operate in the Knowledge
of Secret Key (KOSK) model, where users register their keys with a CA and prove some necessary
properties of the keys at that time [3]. In our construction and its proof (as in [22]), the adversary
may choose her own public key (i.e., ga), if she can prove knowledge of the corresponding secret
key (i.e., a). In our proof, we assume there exists a public, honest clock function clock(), but do
not give the simulator control over it. We also assume that the Setup algorithm is run by a trusted
party or realized via secure multiparty computation. In the Section 4 construction, if a malicious
party executes Setup and knows the discrete logarithms of the ui values base g, then she can forge
messages.

Finally, we note that one might want to consider a (seemingly) “stronger” definition, where we
relax the nontriviality condition of the unforgeability game to allow the forgery message, M ′1, to
have been previously queried to the signing oracle provided that it was not done during the same
time period used in the forgery. Observe that this “stronger” notion can be achieved by any scheme
satisfying our unforgeability definition by simply having the signer incorporate the time period into
each message.

7

3 Algebraic Setting

Notation. For sets X, let x ← X denote selecting an element x ∈ X uniformly at random. For
algorithms A, let a← A(y) denote that A output a when run on input y.

Bilinear Groups. Let G1,G2 and GT be groups of prime order p. A bilinear map is an efficient
mapping e : G1 × G2 → GT which is both: (bilinear) for all g ∈ G, h ∈ G2 and a, b ← Zp,
then e(ga, hb) = e(g, h)ab; and (non-degenerate) if g generates G1 and h generates G2, then
e(g, h) 6= 1. This is called an asymmetric bilinear map. For simplicity of notation, we will present
our constructions using symmetric bilinear maps, where we treat G = G1 = G2, assuming efficient
isomorphisms between them. All of our constructions can operate in the less restrictive asymmetric
setting, which often allows smaller group sizes in practice. We make the following assumption in a
bilinear group.

Our sole complexity assumption is the standard CDH [12].

Assumption 3.1 (Computational Diffie-Hellman) An algorithm A solves the CDH problem
in G with advantage ε if

Pr[g ← G; a, b,← Zp; z ← A(g, ga, gb) : z = gab] ≥ ε.

We say that the (t, ε)-CDH assumption holds in G if no t-time algorithm has advantage at least ε
in solving the CDH problem in G.

4 A Synchronized Construction in the Standard Model

Our aggregate scheme is based on the stateful, CDH signatures of Hohenberger and Waters [17].

Setup(1λ) The setup algorithm selects a bilinear group G of prime order p > 2λ. Let Z ∈ O(λ)
be the number of bits in the message space. Let `, k be two security parameters such that `k = Z.
This will logically divide the Z-bit message space into k chunks of ` bits each. (As we discuss
shortly, in practice one might set λ = 80, use a collision-resistant hash function to map arbitrarily-
long strings into Z = 160 bits and then set ` = 32 and k = 5.) It chooses random elements
g, u0, . . . , uk, w, z, h ∈ G. It outputs the public parameters as

pp = (`, k, p,G, g, u0, . . . , uk, w, z, h).

All parties have access to a function clock() that on no input, returns the current time period.3

KeyGen(1λ, pp) The key generation algorithm takes as input the parameters pp and selects a
random a ∈ Zp. It outputs the public key as PK = (pp, ga) and the secret key as SK = (pp, a). It
also initializes sprev to be zero.

3The function clock() need not measure actual time. It can be replaced by any global strategy for choosing a
unique integer s in the range [1, T], where T is some fixed polynomial in the security parameter. This is the same as
the Gentry-Ramzan aggregate signatures [15] except that they allow T to be exponentially large.

8

Sign(SK,M ∈ {0, 1}Z , s) The message space is Z bits; to sign arbitrarily-long messages one could
first apply a collision-resistant hash function. We assume the signer is given the value s = clock()
as input to the algorithm. It keeps as internal state sprev denoting the last time period on which
it issued a signature. If sprev = s or s ≥ 2λ, then it aborts. Otherwise, it records the current time
period as sprev := s. Let M = M1M2 . . .Mk, where each block Mi is ` bits. The signing algorithm
selects a random t ∈ Zp and then outputs a signature on M under key SK and time period s as:

σ1 = (u0

k∏
i=1

uMi
i)a · (wdlg(s)ezsh)t, σ2 = gt, s.

Verify(PK,M, σ = (σ1, σ2, s)) The verification algorithm first makes sure that 0 < s < 2λ. If
this is false, then it rejects. It parses M = M1M2 . . .Mk and verifies the signature by checking that

e(σ1, g) = e(ga, u0

k∏
i=1

uMi
i) · e(σ2, w

dlg(s)ezsh).

Aggregate((pk1,M1, σ1), . . . , (pkN ,MN , σN)) Parse σi as (σi,1, σi,2, si). The aggregation algo-
rithm verifies that s1 is the third element of σi for i = 2 to N . If any check fails, it outputs ⊥.
Otherwise, it parses σi as (σi,1, σi,2, s) and computes

γ1 =
N∏
i=1

σi,1 , γ2 =
N∏
i=1

σi,2

The aggregate signature is output as (γ1, γ2, s).

AggVerify((pk1, . . . , pkN), (M1, . . . ,MN), σ) The verification algorithm parses σ = (γ1, γ2, s)
and checks that 0 < s < 2λ. If this is false, it rejects. Let Mi = Mi,1Mi,2 . . .Mi,k, where each
division is ` bits. The algorithm extracts gai ∈ pk i, computes

V := e(
N∏
i=1

gai , u0) ·
k∏
j=1

e(
N∏
i=1

gaiMi,j , uj)

and verifies the signature by checking that

e(γ1, g) = V · e(γ2, w
dlg(s)ezsh).

Efficiency Discussion. Our signatures require two elements in G plus a (small) integer, which
may already be included in the payload (i.e.,“x is my sensor reading at time s”.) Unlike the
sequential-aggregate signatures of Lu et al. [22] which are based on Waters signatures, we are able
to move the ui values to the public parameters and thereby have public keys of only one element
in G (whereas theirs require O(λ) elements). Security degrades linearly in k but exponentially
in `, so the sizes of the message chunks cannot be too big. In practice, one could first apply a
collision-resistant hash function to obtain a 160-bit message, then set k = 5 and ` = 32, which
breaks up the message into five 32-bit message chunks [24]. This would keep the size of the public

9

parameters to a reasonable 10 elements in G; it would also allow anyone to verify an aggregate of
n signatures using only 8 pairings and no hashes into G.

Using Asymmetric Groups. Our above construction can be set in an asymmetric bilinear
group, where e : G1×G2 → GT . We will not require homomorphisms between G1 and G2 (in either
direction) nor will we require the ability to hash into either group. This may allow a wider class of
curve choices [14]. Let G1,G2,GT be groups of prime order p, g1 generate G1 and g2 generate G2.
Then to set the public parameters one would choose random u′0, . . . , u

′
k, w

′, z′, h′ ∈ Zp and output

pp = (`, k, p,G1,G2, g1, g2, ({ui,1 = g
u′i
1 }i∈[0,k], w1 = gw

′
1 , z1 = gz

′
1 , h1 = gh

′
1) ∈ Gk+4

1 ,

({ui,2 = g
u′i
2 }i∈[0,k], w2 = gw

′
2 , z2 = gz

′
2 , h2 = gh

′
2) ∈ Gk+4

2).

The public key would be pk = ga1 ∈ G1 with secret key sk = a. Both signature elements σ1, σ2

would be in G1. Instantiating our construction using the appropriate choice of pairing-friendly
elliptic curves [13], we obtain very short signatures (approximately 320 bits plus a short integer for
the time period for an 80 bit security level). The subsequent security proofs would follow in the
same manner based on the hardness of the co-Computational Diffie-Hellman problem, defined as
follows. An algorithm A solves the co-CDH problem in (G1,G2) with advantage ε if

Pr[g1 ← G1; g2 ← G2; a, b,← Zp; z ← A(g1, ga1 , g
b
1, g2, g

a
2 , g

b
2) : z = gab1] ≥ ε.

4.1 Security Analysis

We refer the reader to Section 1 for intuition on our construction and its proof strategy.

Theorem 4.1 Suppose the (t′, ε′)-CDH assumption holds in group G of prime order p. Then the
aggregate signature scheme above is (t, q,N, ε)-secure against existential forgery under an adaptive
chosen message attack provided that

ε ≥ 2ε′ ·max(λ, 2`+1 · q · k) , t ≤ t′ −Θ(T (N + q + k))

where q is the number of signing queries, Z = ` · k ∈ O(λ) is the message length, 2λ < p, and T is
the maximum time for an exponentiation in G or GT .

Proof. As in [17], we consider two types of adversaries, using either to solve CDH.

Type I The adversary forges for a message with period s greater than 2dlg(q)e.

Type II The adversary forges for a message with period s less than or equal to 2dlg(q)e.

Suppose that an adversary A breaks this signature with total probability ε, probability ε1 when
acting as a type I forger, and probability ε2 when acting as a type II forger. Let P1 (resp., P2) be
the probability that A chooses to be a type I (resp., type II) forger. Then ε = P1 · ε1 + P2 · ε2.

In Lemma 4.2, we show that if A breaks this scheme as a type I forger with probability ε1, then
the simulator can break CDH with probability ε1/λ. In Lemma 4.3, we show that if A breaks this
scheme as a type II forger with probability ε2, then the simulator can break CDH with probability
ε2/(2`+1 · q · k). The simulator chooses her setup parameters differently depending on which type
of adversary she is interacting with. At the start of this game, let the simulator randomly choose

10

which type of adversary she will interact with. She will guess correctly with probability exactly
one half and abort otherwise. Both type I and type II simulations will be indistinguishable from
the view of the adversary. Thus, the probability of solving the CDH problem is

ε′ ≥ 1
2

(
P1 · ε1 ·

1
λ

+ P2 · ε2 ·
1

2`+1 · q · k

)
≥ P1 · ε1 + P2 · ε2

2 ·max(λ, 2`+1 · q · k)
=

ε

2 ·max(λ, 2`+1 · q · k)
.

�

4.1.1 Type I Adversary

Lemma 4.2 Suppose the (t′, ε′)-CDH assumption holds in G of prime order p. Then the aggregate
signature scheme above is (t, q,N, ε)-secure against type I existential forgery under an adaptive
chosen message attack provided that

ε ≥ ε′ · λ , t ≤ t′ −Θ(T (N + q + k))

where q is the number of signing queries, Z = ` · k ∈ O(λ) is the message length, 2λ < p, and T is
the maximum time for an exponentiation in G or GT .

Proof. Given a CDH challenge (g, ga, gb), proceed as:

Setup The simulator begins by guessing a value α∗ in the range 1 to λ. This represents a guess
that the adversary will forge on some period s such that α∗ = dlg(s)e. For type I adversaries, recall
that if the adversary forges using a time period that maps to α∗, it will not ask enough signing
queries to see an original signature with a time period that maps to α∗. The verification algorithm
rejects on all indexes greater than or equal to 2λ.

Next, choose random y1, . . . , yk ∈ Zp and set u1 = gy1 , . . . , uk = gyk . Then set u0 = gb,
w = gbgxw , z = gxz and h = g−bα

∗
gxh , for random xw, xz, xh ∈ Zp.

The simulator outputs the public parameters as (g, u0, . . . , uk, w, z, h). For the challenge keys,
it sets the public key as pk1 = ga, implicitly sets the secret key as sk1 = a, and sets the internal
time record as sprev = 1. For all other keys i = 2 to N , it chooses a random ai ∈ Zp, sets pk i = gai

and sk i = ai. It outputs the key information as (pk1, (pk2, sk2), . . . , (pkN , skN)).

Queries When the adversary asks for a signature on message M = M1M2 . . .Mk ∈ {0, 1}Z , the
simulator first checks the clock as s = clock(). If s ≤ sprev or s ≥ 2λ, it outputs ⊥. Otherwise, it
updates its time period recorder sprev := s.

If α∗ = dlg(s)e, the simulator’s guess was incorrect and it aborts. Otherwise, it computes the
signature by choosing random t′ ∈ Zp, computing α = dlg(s)e and

σ2 = gt
′
/(ga)1/(α−α

∗) = gt
′−a/(α−α∗)

σ1 = (ga)
Pk
i=1 yiMi · σxwα+xzs+xh

2 · (gb)t′(α−α∗)

and outputting (σ1, σ2, s).
Let us implicitly set the randomness t = t′− a/(α−α∗) (here t′ gives t the proper distribution)

and we have

σ1 = (
k∏
i=1

uMi
i)a · (gxwαzsgxh)t · gbt′(α−α∗) , σ2 = gt , s.

11

To verify correctness, notice that we can rewrite σ1 as follows:

σ1 = (
k∏
i=1

uMi
i)a · gab · (gxwαzsgxh)t · gbt′(α−α∗) · g−ab(α−α∗)/(α−α∗)

= (gb
k∏
i=1

uMi
i)a(gxwαzsgxh)t · gbα(t′−a/(α−α∗)) · g−bα∗(t′−a/(α−α∗))

= (u0

k∏
i=1

uMi
i)a · (gxwαzsgxh)t · gbαt · g−bα∗t

= (u0

k∏
i=1

uMi
i)a · ((gbgxw)αzs(g−bα

∗
gxh))t

= (u0

k∏
i=1

uMi
i)a · (wαzsh)t

Output Eventually, the type I adversary outputs a valid aggregate signature σ̃ = (γ̃1, γ̃2, s̃) on
some message sequence (M1, . . . ,MN) ∈ {0, 1}Z×N under public keys (pk1, . . . , pkN) such that
2dlg(q)e < s̃ < 2λ. We parse each Mi in chunks as Mi,1 . . .Mi,k, where each chunk is ` bits. From
the verification equation, we see that

e(γ̃1, g) = e(
N∏
i=1

gai , u0) · e(γ̃2, w
dlg(s̃)ezs̃h) ·

k∏
j=1

e(
N∏
i=1

gaiMi,j , uj).

Interpreting γ̃2 as gt, for some t ∈ Zp, it follows from the above equation that

γ̃1 =
N∏
i=1

(u0

k∏
j=1

u
Mi,j

j)ai(wdlg(s̃)ezs̃h)t.

Let α̃ = dlg(s̃)e. If α∗ = α̃, then the simulator guessed correctly and, since a1 = a, we have that:

γ̃1 =
N∏
i=1

(gb
k∏
j=1

gyjMi,j)ai · ((gb+xw)α̃(gxz)s̃(g−bα
∗+xh))t

=
N∏
i=1

(gb
k∏
j=1

gyjMi,j)ai · (gt)xwα̃+xz s̃+xh

= gab · (gb)
PN
i=2 ai · (ga)

Pk
j=1 yjM1,j ·

N∏
i=2

k∏
j=1

gyjMi,jai · (gt)xwα̃+xz s̃+xh

= gab · (gb)
PN
i=2 ai · (ga)

Pk
j=1 yjM1,j · g

PN
i=2(ai(

Pk
j=1Mi,jyj)) · (gt)xwα̃+xz s̃+xh

The simulator outputs gab computed as

γ̃1

(gb)
PN
i=2 ai · (ga)

Pk
j=1 yjM1,j · g

PN
i=2(ai(

Pk
j=1Mi,jyj)) · (gt)xwα̃+xz s̃+xh

12

If α∗ 6= α̃, the simulator aborts. The simulator guesses correctly with probability 1/λ. Therefore,
if a type I adversary can break this scheme with probability of ε, then the simulator can solve the
CDH problem with probability of at least ε/λ. �

4.1.2 Type II Adversary

Proof of Lemma 4.2 appears just above. It covers the case where the adversary forges with a time
period that is “too high” and thus is similar to [17]. Our proof of the following lemma is more
interesting, as we no longer have a chameleon hash function to help answer the adversary’s signing
queries and thus must find a new strategy. We break the message into `-bit chunks (instead of
chameleon hashing it). This allows us to keep all portions of the signed message “out from under”
any fresh randomness in the signature, which enable aggregation. In the proof, the simulator makes
three guesses: s∗ ∈ [1, 2dlg(q)e], M ′ ∈ [0, 2` − 1] and β∗ ∈ [1, k]. These individual guesses represent
a single guess that the β∗th chunk of the forgery message will differ from the value M ′ which will
be the β∗th chunk of the message that the adversary asks to sign at time period s∗. We can then
use techniques by Boneh and Boyen [9] to simulate.

Lemma 4.3 Suppose the (t′, ε′)-CDH assumption holds in G of prime order p. Then the aggregate
signature scheme above is (t, q,N, ε)-secure against type II existential forgery under an adaptive
chosen message attack provided that

ε ≥ ε′ · (2`+1 · q · k) , t ≤ t′ −Θ(T (N + q + k))

where q is the number of signing queries, Z = ` · k ∈ O(λ) is the message length, 2λ < p, and T is
the maximum time for an exponentiation in G or GT .

Proof. Given a CDH challenge (g, ga, gb), proceed as:

Setup The simulator begins by making three guesses. First, it guesses the time period s∗ in the
range 1 to 2dlg(q)e which the adversary will use to forge. Second, it guesses an `-bit message chunk
M ′. Third, it guesses a special message chunk β∗ in [1, k]. These individual guesses represent a
single guess that the β∗th chunk of the forgery message will differ from the value M ′ which will be
the β∗th chunk of the message that the adversary asks to sign at time period s∗.

Next, choose random values x0, . . . , xk ∈ Zp and set u0 = g−bM
′
gx0 , uβ∗ = gb and ui = gxi

for all other i from 1 to k. Then choose random xw, xz, xh ∈ Zp and set w = gxw , z = gbgxz and
h = g−bs

∗
gxh .

The simulator outputs the public parameters as (g, u0, . . . , uk, w, z, h). For the challenge keys,
it sets the public key as pk1 = ga, implicitly sets the secret key as sk1 = a, and sets the internal
time record as sprev = 1. For all other keys i = 2 to N , it chooses a random ai ∈ Zp, sets pk i = gai

and sk i = ai. It outputs the key information as (pk1, (pk2, sk2), . . . , (pkN , skN)).

Queries When the adversary asks for a signature on message M = M1M2 . . .Mk ∈ {0, 1}Z , the
simulator first checks the clock as s = clock(). If s ≤ sprev or s ≥ 2λ, it outputs ⊥. Otherwise, it
updates its time period recorder sprev := s. There are now two ways the simulator will proceed.

If s = s∗, then check that Mβ∗ = M ′. If this is not true, then the simulator’s guess was incorrect
and it must abort. Otherwise, let I := {1, . . . , k} − {β∗}. It chooses a random t ∈ Zp and sets

σ1 = (ga)x0+
P
i∈I xiMi · (wdlg(s)ezsh)t , σ2 = gt , s.

13

To verify correctness, observe that we can rewrite σ1 as follows:

σ1 = (gab)−M
′+M ′(ga)x0+

P
i∈I xiMi · (wdlg(s)ezsh)t

= (g−bM+x0gbM
′
g

P
i∈I xiMi)a · (wdlg(s)ezsh)t

= (u0

k∏
i=1

uMi
i)a · (wdlg(s)ezsh)t

If s 6= s∗, then choose random t′ ∈ Zp, and for I = {1, . . . , k} − {β∗}, output (σ1, σ2, s) where

σ2 = gt
′
/(ga)(Mβ∗−M ′)/(s−s∗) = gt

′−a(Mβ∗−M ′)/(s−s∗)

σ1 = (ga)x0+
P
i∈I xiMi · σxwdlg(s)e+xzs+xh

2 · (gb)t′(s−s∗)

Let us implicitly set the randomness t = t′ − a(Mβ∗ −M ′)/(s − s∗) (here t′ gives t the proper
distribution) and we have

σ1 = (gx0
∏
i∈I

uMi
i)a · (wdlg(s)egxzsgxh)t · (gb)t′(s−s∗), σ2 = gt

To verify correctness, notice that we can rewrite σ1 as:

σ1 = (gab)(Mβ∗−M ′) · (gx0
∏
i∈I

uMi
i)a · (wdlg(s)egxzsgxh)t · (gb)t′(s−s∗) · (g−ab)(Mβ∗−M ′)

= (g−bM
′+x0gbMβ∗

∏
i∈I

uMi
i)a · (wdlg(s)egxzsgxh)t · (gb)t′(s−s∗) · (g−ab)(Mβ∗−M ′)

= (u0

k∏
i=1

uMi
i)a · (wdlg(s)egxzsgxh)t · (gb(s−s∗))t

= (u0

k∏
i=1

uMi
i)a · (wdlg(s)ezsh)t

Output Eventually, the type II adversary outputs a valid aggregate signature σ̃ = (γ̃1, γ̃2, s̃)
on a message sequence (M1, . . . , MN) ∈ {0, 1}Z×N under public keys (pk1, . . . , pkN) such that
0 < s̃ ≤ 2dlg(q)e ≤ 2q. We parse each Mi in chunks as Mi,1 . . .Mi,k, where each chunk is ` bits.
From the verification equation, we see that

e(γ̃1, g) = e(
N∏
i=1

gai , u0) · e(γ̃2, w
dlg(s̃)ezs̃h) ·

k∏
j=1

e(
N∏
i=1

gaiMi,j , uj).

If s∗ = s̃ and M1,β∗ 6= M ′, the simulator guessed correctly. In this case, let J := {1, . . . , k} − {β∗}.
Interpreting γ̃2 as gt, for some t ∈ Zp, it follows from the above equation that

γ̃1 = (g−bM
′+x0)

PN
i=1 ai · gb

PN
i=1 aiMi,β∗ · g

PN
i=1 ai

P
j∈J xjMi,j · ((gxw)dlg(s̃)e(gb+xz)s̃(g−bs

∗+xh))t

= (g−bM
′+x0)

PN
i=1 ai · gb

PN
i=1 aiMi,β∗ · g

PN
i=1 ai

P
j∈J xjMi,j · gt(xwdlg(s̃)e+xz s̃+xh)

= gab(M1,β∗−M ′) · gax0 · (g−bM ′+x0)
PN
i=2 ai · gb

PN
i=2 aiMi,β∗ · g

PN
i=1 ai

P
j∈J xjMi,j

· gt(xwdlg(s̃)e+xz s̃+xh)

= gab(M1,β∗−M ′) · ga(x0+
P
j∈J xjM1,j) · gb(

PN
i=2 ai(Mi,β∗−M ′)) · g

PN
i=2 ai(x0+

Pk
j=1 xjMi,j)

· gt(xwdlg(s̃)e+xz s̃+xh)

14

The simulator outputs gab as(
γ̃1

(ga)x0+
P
j∈J xjM1,j · g

PN
i=2 ai(x0+

Pk
j=1 xjMi,j) · (gb)

PN
i=2 ai(Mi,β∗−M ′) · (gt)xwdlg(s̃)e+xz s̃+xh

) 1
M1,β∗−M

′

.

Otherwise, the simulator aborts. The probability that it does not abort at any point during the
simulation is

1
k
· 1

2dlg qe
· 1

2`
=

1
k · 2dlg qe · 2`

≥ 1
k · 2q · 2`

Therefore, if a type II adversary can break this scheme with probability of ε, then the simulator
can solve the CDH problem with probability of at least ε/(2`+1 · q · k). �

5 Discussion

We discuss features and extensions of the construction.

Aggregating Aggregates. In our scheme, anyone can combine two aggregate signatures into a
single aggregate signature simply by multiplying them together, provided that the time periods
match. This is also a useful property of other existing schemes [10, 15, 5].

Self-Aggregation and Multiple Signatures per Period. In Section 4, a signer can only issue
one signature per time period, however, this requirement can be relaxed if the size of a user’s
public key is allowed to grow in proportion to the total number of messages to be signed in any
time period. The technique is based on the ability to self-aggregate. A user who wishes to sign
at most j messages per time period must select a public key pk = (ga1 , . . . , gaj). To sign δ (≤ j)
messages M1,M2, . . . ,Mδ where Mi = Mi,1Mi,2 . . .Mi,k in the current time period s, the signer can
the generate an aggregate signature on all δ messages, with randomness t ∈ Zp, as:

σ1 = (
δ∏
j=1

(u0

k∏
i=1

u
Mj,i

i)aj) · (wdlg(s)ezsh)t, σ2 = gt, s.

Most Signing Work Can Be Done Offline. If the signer knows a future time period s during
which she wants to issue a signature, then she can precompute the values (wdlg(s)ezsh)t and gt. If
we let messages chunks be bits and the signer stores her secret key in the form ua0, u

a
1, . . . , u

a
Z , then

she can compute the signature once it is known using Z + 1 multiplications to get (u0
∏Z
i=1 u

Mi
i)a

and then one final multiplication to obtain

(u0

Z∏
i=1

uMi
i)a(wdlg(s)ezsh)t.

This might help a lower-resource device get its signatures off quickly once the message value becomes
known.

Batch Verification. A batch verification algorithm [4] takes as input n signatures on n messages
from n users and outputs 1 if all individual signatures verify (with probability 1) and 0 otherwise
(with probability 1− 2−L for security parameter L.)

15

The same signatures we aggregated in Section 4 also batch verify. The batching algorithm
works even for different signers on different messages at different time periods. It requires only
k + 5 pairings for N signatures, where k is the security parameter from before which in practice
could be 5. Let L be a security parameter, which in practice could be 80. It works as follows:

Batch((pk1,M1, σ1), . . . , (pkN ,MN , σN)) The batch verification algorithm parses each signature
σi = (σ1,i, σ2,i, si) and checks that 0 < si < 2λ for all i = 1, . . . , N . If this is false, it rejects.
Let Mi = Mi,1Mi,2 . . .Mi,k, where each division is ` bits. The algorithm extracts gai ∈ pk i
and batch verifies the signatures by checking the group membership of all (σ1,i, σ2,i) values,
choosing r1, . . . , rN ∈ {0, 1}L and testing that:

e(
N∏
i=1

σri1,i, g) = e(
N∏
i=1

gairi , u0) · e(
N∏
i=1

σ
ridlg(si)e
2,i , w) · e(

N∏
i=1

σrisi2,i , z) · e(
N∏
i=1

σri2,i, h) ·
k∏
j=1

e(
N∏
i=1

gairiMi,j , uj)

Theorem 5.1 The above algorithm is a batch verifier for the Section 4 signatures with error 2−L.

In many applications, signatures may be streaming into a collector, who batch verifies them, and
then aggregates the most interesting of them for storage or transmission purposes. Even existing
random oracle schemes do not provide this functionality. The full aggregate signatures of [10, 5] do
not batch verify for different signers on different messages and the (synchronized) signatures of [15]
do not batch verify across synchronization values. The sequential signatures of [22] also require
Ω(N) pairings to verify N signatures, as they employ O(λ) different group elements per signer.

One can extend this algorithm to batch verify a group of aggregate signatures in a straightfor-
ward manner. Thus, a central database could receive a group of aggregate signatures at various
times during the day and then quickly batch verify them all together.

Better Efficiency in the Random Oracle Model. In Appendix A, we provide a synchronized
aggregate signature construction in the random oracle model which is strictly more efficient than
our standard model construction, but also has properties which may make it more desirable for
some applications than existing random oracle schemes. Our Section 4 scheme has O(λ) elements in
the public parameters, which results in verification times of the same order (although independent
of N .) In our random oracle model scheme, we require only 6 elements in the public parameters,
and both our signatures and aggregate signatures can be verified using at most 4 pairings. Our
random oracle model scheme also batch verifies efficiently.

In contrast, the Boneh et al. [10] scheme requires N+1 pairings to verify an aggregate signature
from N signers on N different messages. In Gentry and Ramzan’s synchronized scheme [15],
verifications require only 3 pairings. However, all prior full or synchronized aggregate signatures [10,
15, 5] require a hash function H : {0, 1}∗ → G, where G is a bilinear group, where as our random-
oracle construction only requires a hash H ′ : {0, 1}∗ → Zp. Since there are some candidate elliptic
curve implementations of bilinear groups where efficient algorithms for hashing into G are unknown
or are rather costly [14], our constructions (both in and out of the random oracle model) allow for a
potentially wider set of implementation options and possibly significantly faster verification times.

6 Applications

We now briefly describe some of the applications for synchronized aggregate signatures.

16

(a) (b)

Figure 2: Sensor networks with a single collector. Line shadings indicate the total message band-
width on each link. Figure (a) shows a typical routing pattern that might be used in a distributed
network; by aggregating at each hop, synchronized aggregate signatures ultimately reduce the total
signature bandwidth to approximately the size of a single signature. Figure (b) illustrates a con-
trived routing structure necessary to achieve the same result with a sequential aggregate signature.

Reducing bandwidth in sensor and ad-hoc networks. Sensor networks [1, 21] consist of
limited, often battery-powered devices that collect measurements over a wide area and route them
to one or more central base stations for collection. In some applications, it may be necessary to
cryptographically authenticate these measurements in order to mitigate the possibility of false data
being injected. This is particularly important when the authenticity of the data being collected
must be assured, e.g., patient vital signs in a hospital setting [20] or status messages in a vehicular
communication network [11].

While various solutions to the problem of authenticating sensor messages have been proposed
(e.g., [27, 26]), most authenticate only on a hop by hop basis or provide only temporary (non-
repudiable) security (for example, using MACs). Unfortunately, this may not be sufficient to
protect communications in a sensor network, where it is relatively easy to compromise intermediate
nodes and inject false data.

Digital signatures offer better security properties, but can add significant bandwidth overhead.
This is problematic given that sensors often run on battery power and must minimize radio commu-
nications. Furthermore, the extra transmission requirements fall disproportionately on those nodes
closest to the base station. Figure 2 (a) shows a typical routing configuration for such a network.

Synchronized aggregate signatures may reduce the bandwidth requirements that message signing
imposes on a network. Rather than carry all signature data, intermediate routing nodes can perform
signature aggregation at any point where multiple signatures must be routed towards the collector.
Of course, for aggregation to work in our scheme we require that many nodes sign their messages
under the same state. This can easily be achieved by deriving state from a loosely synchronized
clock. Indeed this requirement is not unreasonable given that many networks already carry time
synchronization messages [21]. Since aggregate signatures can themselves be aggregated in our
scheme (Section 5), the base station of Figure 2 only needs to store a single final aggregate. In
Figure 2 (b), we contrast this with the impractical routing pattern necessary to achieve the same
result using sequential aggregate signatures [22], which require that messages be aggregated in a
sequential path.

17

We note that unlike systems such as TESLA [26], which also relies on synchronized clocks for
authentication, loss of clock synchronization in our approach does not compromise security. Should
nodes become out-of-synch, this will only reduce the efficiency of the aggregation process until such
time as synchronization can be achieved. Of course, it is necessary to prevent individual signers
from reusing state. This is possible to avoid through correct system design.

Software authentication. Mobile and embedded operating systems are increasingly using code
signing to ensure that only legitimate binaries have privileges to run on a device. In constrained
systems where storage is at a premium, the additional storage cost of these signatures may be
significant. This is particularly true in systems that contain many small signed binaries, e.g.,
dynamic libraries.

For applications where signature verification can be performed all at once, for instance at boot
time, it might be feasible to sign all binaries under a single signature. However, the contents of a
system may change periodically (due to software patches and installation of new software), which
would not be supported by this approach. We propose to instead reduce the signature overhead by
aggregating signatures using a synchronized scheme. Due to the dynamic nature of the aggregation
process, new applications and libraries can be dynamically installed on the system as necessary,
and the aggregate can be periodically updated.

In a synchronized aggregate signature it is necessary that all signatures under aggregation share
the same state value. While a synchronized clock does not seem appropriate here, software version
numbers may offer an alternative source for signature state. Signatures on all binaries with revision
number 1 could be aggregated together, as could signatures with software revision 2 and so on. If
there is a significant degree of overlap, this could result in meaningful savings.

7 Conclusion

We presented the first aggregate signature construction in the standard model that does not re-
quire any form of interaction among signers to generate. It requires that signers have access to a
synchronized clock and only signatures from the same period can be aggregated. Our construction
is practical and based on the Computational Diffie-Hellman assumption. It is also the first (non-
sequential) aggregate scheme where the underlying signatures can be batch verified across different
signers, messages and time periods. Thus, it is a good candidate for a variety of communication ap-
plications where routing flexibility, speed and low bandwidth are needed. We discussed the benefits
of using this approach over sequential aggregation or symmetric authentication in sensor network
and software authentication applications.

It remains open to construct a practical aggregation scheme in the standard model without (1)
timing or interactive restrictions or (2) requiring that each user be able to prove knowledge of her
secret key. We are not certain whether or not the former, in particular, is possible. If it is not, it
would be interesting to prove this. It is also open to explore other relaxations of the full aggregation
model.

Acknowledgments

The authors are grateful to Brent Waters and the ACM CCS 2010 anonymous reviewers for their
helpful comments. The authors were supported by NSF Grant CNS-0716142 and Department of

18

Homeland Security Grant 2006-CS-001-000001-02 (subaward 641). In addition, Matthew Green
was supported by NSF Grant CNS-1010928 and Susan Hohenberger was supported by a Microsoft
New Faculty Fellowship and a Google Research Award.

References

[1] I. F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor
networks. Communications Magazine, IEEE, 40(8):102–114, 2002.

[2] Ali Bagherzandi and Stanislaw Jarecki. Identity-Based Multi-Signatures based on RSA. In
PKC ’10, volume 6056 of LNCS, pages 480–498, 2010.

[3] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable
protocols with relaxed set-up assumptions. In 45th Symposium on Foundations of Computer
Science (FOCS), pages 186–195. IEEE Computer Society, 2004.

[4] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular exponenti-
ation and digital signatures. In Advances in Cryptology – EUROCRYPT ’98, volume 1403 of
LNCS, pages 236–250, 1998.

[5] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures.
In ICALP ’07, volume 4596 of LNCS, pages 411–422, 2007.

[6] Mihir Bellare and Gregory Neven. Identity-Based Multi-signatures from RSA. In CT-RSA
’07, volume 4377 of LNCS, pages 145–162, 2007.

[7] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisigna-
tures and identity-based sequential aggregate signatures, with applications to secure routing.
In ACM Conference on Computer and Communications Security (CCS), pages 276–285, 2007.

[8] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisigna-
tures and identity-based sequential aggregate signatures, with applications to secure routing,
2010. Full version available at http://www.cc.gatech.edu/~amoneill/bgoy.html.

[9] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity-based encryption without
random oracles. In Advances in Cryptology – EUROCRYPT ’04, volume 3027, pages 223–238,
2004.

[10] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In EUROCRYPT ’03, volume 2656 of LNCS, pages 416–432,
2003.

[11] Car 2 Car. Communication consortium. http://car-to-car.org.

[12] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22:644–654, 1976.

[13] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic
curves. Journal of Cryptology, 23:224–280, 2010.

19

[14] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers.
Discrete Applied Mathematics, 156(16):3113–3121, 2008.

[15] Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Public Key Cryp-
tography ’06, volume 3958 of LNCS, pages 257–273, 2006.

[16] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal of Computing, 17(2):281–308, 1988.

[17] Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under standard
assumptions. In EUROCRYPT ’09, volume 5479 of LNCS, pages 333–350, 2009.

[18] Jung Yeon Hwang, Dong Hoon Lee, and Moti Yung. Universal forgery of the identity-based
sequential aggregate signature scheme. In ASIACCS ’09, pages 157–160, 2009.

[19] Stephen Kent, Charles Lynn, and Karen Seo. Secure Border Gateway Protocol (S-BGP). IEEE
Journal on Selected Areas in Communications, 18(4):582–592, 2000.

[20] JeongGil Ko, Tia Gao, Richard Rothman, and Andreas Terzis. Wireless sensing systems
in clinical environments: Improving the efficiency of the patient monitoring process. IEEE
Engineering in Medicine and Biology (EMB) Magazine, 29(2):103–109, 2010.

[21] Chieh-Jan Mike Liang, Jie Liu, Liqian Luo, Andreas Terzis, and Feng Zhao. RACNet: A
high-fidelity data center sensing network. In ACM Conference on Embedded Networked Sensor
Systems (SenSys) ’09, pages 15–28, 2009.

[22] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential ag-
gregate signatures and multisignatures without random oracles. In EUROCRYPT ’06, volume
4004 of LNCS, pages 465–85, 2006. Full version at http://cseweb.ucsd.edu/~hovav/dist/
agg-sig.pdf.

[23] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggregate
signatures from trapdoor permutations. In EUROCRYPT ’04, volume 3027 of LNCS, pages
74–90, 2004.

[24] David Naccache. Secure and practical identity-based encryption, 2005. Cryptology ePrint
Archive: Report 2005/369.

[25] Gregory Neven. Efficient sequential aggregate signed data. In EUROCRYPT ’08, volume 4965
of LNCS, pages 52–69, 2008.

[26] Adrian Perrig, Ran Canetti, Dawn Song, and J. D. Tygar. Efficient and secure source authen-
tication for multicast. In NDSS ’01, pages 35–46, February 2001.

[27] Harald Vogt. Exploring message authentication in sensor networks. In Security in Ad-hoc and
Sensor Networks, volume 3313 of LNCS, pages 19–30. Springer, 2005.

[28] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT ’05, volume 3494, pages 320–329, 2005.

20

A A Random Oracle Construction with Better Efficiency

We provide an optimized version of the synchronized aggregate construction in Section 4. The
primary savings are a reduction in the size of the public key and a quicker verification algorithm.
We analyze the specifics of the improvements after presenting the scheme.

Setup(1λ) The setup algorithm selects a bilinear group G of prime order p > 2λ. Select a
pairing e : G × G → GT . Let H : {0, 1}∗ → Zp be a hash function treated as a random oracle.
It chooses random group elements g, u, v, w, z, h ∈ G. It outputs the public parameters as pp =
(G,GT , H, g, u, v, w, z, h). As before, we assume all parties have access to a function clock() that
on no input, returns the current time period as an element in Z.

KeyGen(1λ, pp) The key generation algorithm takes as input the parameters pp and selects a
random a ∈ Zp. It outputs the public key as PK = (pp, ga) and the secret key as SK = (pp, a). It
also initializes sprev to be zero.

Sign(SK,M ∈ {0, 1}∗, s) The signer obtains s = clock(). If s ≤ sprev or s ≥ 2λ, then abort.
Otherwise, record the current time period as sprev := s. The signing algorithm selects a random
t ∈ Zp and then outputs a signature on M under key SK and time period s as:

σ1 = (vuH(M))a · (wdlg(s)ezsh)t, σ2 = gt, s.

Verify(PK,M, σ = (σ1, σ2, s)) The verification algorithm first makes sure that 0 < s < 2λ. If
this is false, then it rejects. It verifies the signature by checking that

e(σ1, g) = e(ga, vuH(M)) · e(σ2, w
dlg(s)ezsh).

Aggregate((pk1,M1, σ1), . . . , (pkN ,MN , σN)) Parse σ1 as (σ1,1, σ1,2, s). The aggregation algo-
rithm checks that Verify(pk i,Mi, σi) = 1 and that s is the third element of σi for i = 1 to N . If any
check fails, it outputs ⊥. Otherwise, it parses σi as (σi,1, σi,2, s) and computes

γ1 =
N∏
i=1

σi,1 , γ2 =
N∏
i=1

σi,2

The aggregate signature is output as (γ1, γ2, s).

AggVerify((pk1, . . . , pkN), (M1, . . . ,MN), σ) The verification algorithm checks that 0 < s < 2λ.
If this is false, it rejects. The algorithm extracts gai ∈ pk i and verifies the signature by checking
that

e(γ1, g) = e(
N∏
i=1

gai , v) · e(
N∏
i=1

gaiH(Mi), u) · e(γ2, w
dlg(s)ezsh)

21

Theorem A.1 Suppose the (t′, ε′)-CDH assumption holds in group G of prime order p. Then
the aggregate signature scheme above is (t, qs, qH , N, ε)-secure against existential forgery under an
adaptive chosen message attack provided that

ε ≥ 2ε′ ·max(2qs · qH , λ) , t ≤ t′ −Θ(T (N + qs))

where qs is the number of signing queries, qH is the number of random oracle queries, 2λ < p, and
T is the maximum time for an exponentiation in G or GT .

The proof of this theorem appears in Appendix B.

Efficiency Discussion. The public parameters are 6 elements in G; public keys are 1 element
in G, and signatures are two elements in G plus a small integer. Aggregate verification of n
signatures requires only 4 pairing operations and, to our knowledge, this is the first aggregate
construction in bilinear groups (except for Section 4) which does not require hashing a string into
G. For some choices of elliptic curve implementations, efficient hash functions are not known and
in some others, they are rather expensive (comparable to the cost of a pairing itself). Because our
construction requires a simple hash into Zp instead of a more complex hash into G, we can allow
for a wider class of implementation options as well as significantly improve the verification time in
some implementations.

B Security Proof of the Random Oracle Construction

Here we prove Theorem A.1 for the random oracle construction in Section A.

Proof. As in [17] and in Theorem 4.1, we consider two types of adversaries, using either to solve
CDH.

Type I The adversary forges for a message with period s greater than 2dlg(qs)e.

Type II The adversary forges for a message with period s less than or equal to 2dlg(qs)e.

Suppose that an adversary A breaks this signature with total probability ε, probability ε1 when
acting as a type I forger, and probability ε2 when acting as a type II forger. Let P1 (resp., P2) be
the probability that A chooses to be a type I (resp., type II) forger. Then ε = P1 · ε1 + P2 · ε2.

In Lemma B.1, we show that if A breaks this scheme as a type I forger with probability ε1, then
the simulator can break CDH with probability ε1/λ. In Lemma B.2, we show that if A breaks this
scheme as a type II forger with probability ε2, then the simulator can break CDH with probability
ε2/(2qs · qH). The simulator chooses her setup parameters differently depending on which type of
adversary she is interacting with. At the start of this game, let the simulator randomly choose
which type of adversary she will interact with. She will guess correctly with probability exactly
one half and abort otherwise. Both type I and type II simulations will be indistinguishable from
the view of the adversary.

Thus, the probability of solving the CDH problem is

ε′ ≥ 1
2
·(P1 ·ε1 ·

1
λ

+P2 ·ε2 ·
1

2qs · qH
) ≥ 1

2
·(P1 · ε1

max(2qs · qH , λ)
+

P2 · ε2
max(2qs · qH , λ)

) =
ε

max(2qs · qH , λ)

�

22

B.1 Type I Adversary

Lemma B.1 Suppose the (t′, ε′)-CDH assumption holds in G of prime order p. Then the aggregate
signature scheme above is (t, qs, qH , N, ε)-secure against type I existential forgery under an adaptive
chosen message attack provided that

ε ≥ ε′ · λ , t ≤ t′ −Θ(T (N + qs))

where λ = ` · k is the message length, 2λ < p, and T is the maximum time for an exponentiation
in G or GT .

Proof. Given a CDH challenge (g, ga, gb), proceed as follows.

Setup The simulator begins by guessing a value α∗ in the range 1 to λ. This represents a guess
that the adversary will forge on period s such that α∗ = dlg(s)e. For type I adversaries, recall that
if the adversary forges using value α∗, it will not ask signing queries to see an original signature
using α∗. Recall that the verification algorithm rejects on all indexes greater than or equal to 2λ.

Next, the simulator chooses random xu, xv, xw, xz, xh ∈ Zp and sets u = gxu , v = gbgxv ,
w = gbgxw , z = gxz and h = g−bα

∗
gxh , and sets the random oracle H() responds to query for

message M as follows:

1. If M has already queried, it returns the same value it answered.
2. Otherwise, it returns a value randomly chosen in Zp.

The simulator outputs the public parameters as (G,GT , H, g, u, v, w, z, h). For the challenge
keys, it sets the public key as pk1 = ga, implicitly sets the secret key as sk1 = a1 = a, and sets the
internal time record as sprev = 1. For all other keys i = 2 to N , it chooses a random ai ∈ Zp, sets
pk i = gai and sk i = ai. It outputs the key information as (pk1, (pk2, sk2), . . . , (pkN , skN)).

Queries When the adversary asks for a signature on message M ∈ Zp, the simulator first checks
the clock as s = clock(). If s ≤ sprev or s ≥ 2λ, it outputs ⊥. Otherwise, it updates its time period
recorder sprev := s.

If α∗ = dlg(s)e, the simulator’s guess was incorrect and it aborts. Otherwise, it computes
α = dlg(s)e, chooses random t′ ∈ Zp and outputs (σ1, σ2, s) where

σ2 = gt
′
/(ga)1/(α−α

∗) = gt
′−a/(α−α∗)

σ1 = (ga)xv+H(M)xu · σ2
xwα+xzs+xh · (gb)t′(α−α∗)

The simulator implicitly sets the randomness t = t′ − a/(α − α∗), and here t′ gives t the proper
distribution. To verify correctness, notice that we can rewrite σ1 as follows:

σ1 = (ga)xv+H(M)xu · gab · σ2
xwα+xzs+xh · (gb)t′(α−α∗) · g−ab(α−α∗)/(α−α∗)

= (ga)b+xv+H(M)xu · (gt)xwα+xzs+xh · (gb)t′(α−α∗)−a(α−α∗)/(α−α∗)

= (gbgxvgxuH(M))a · ((gxw)α(gxz)sgxh)t · (gb)t(α−α∗)

= (gbgxv(gxu)H(M))a · ((gbgxw)α(gxz)sg−α
∗
gxh)t

= (vuH(M))a · (wαzsh)t

23

Output Eventually, the type I adversary outputs a valid aggregate signature σ̃ = (γ̃1, γ̃2, s̃)
on a message sequence (M1, . . . ,MN) ∈ {0, 1}λ×N under public keys (pk1, . . . , pkN) such that
s̃ > 2dlg(qs)e.

Let α̃ = dlg(s̃)e and gt = γ̃2. If α∗ = α̃, then the simulator guessed correctly and, since a1 = a,
we have that:

γ̃1 = (
N∏
i=1

vaiuaiH(Mi)) · (wα̃zsh)t

= ga1(b+xv+xuH(M1)) · (
N∏
i=2

gai(xv+xuH(Mi))(gb)ai) · (gxwα̃+xzs+xh(gb)αg−bα
∗
)t

= gab · (ga)xv+xuH(M1) · g
PN
i=2 ai(xv+xuH(Mi)) · (gb)

PN
i=2 ai · γ̃2

xwα̃+xzs+xh

The simulator outputs
γ̃1

(ga)xv+xuH(M1) · g
PN
i=2 ai(xv+xuH(Mi)) · (gb)

PN
i=2 ai · γ̃2

xwα̃+xzs+xh
= gab.

If α∗ 6= α̃, the simulator aborts. The simulator guesses correctly with probability 1/λ. Therefore,
if a type I adversary can break this scheme with probability of ε, then the simulator can solve the
CDH problem with probability of at least ε/λ. �

B.2 Type II Adversary

Lemma B.2 Suppose the (t′, ε′)-CDH assumption holds in G of prime order p. Then the aggregate
signature scheme above is (t, qs, qH , N, ε)-secure against type II existential forgery under an adaptive
chosen message attack provided that

ε ≥ ε′ · (2qs · qH) , t ≤ t′ −Θ(T (N + qs))

where T is the maximum time for an exponentiation in G or GT .

Proof. Given a CDH challenge (g, ga, gb), proceed as follows.

Setup The simulator begins by making two guesses. First, it guesses the time period s∗ in the
range 1 to 2dlg(qs)e which the adversary will use to forge. Second, it guesses j such that the j-th
distinct message queried to random oracle is the signature-queried message when s = s∗. This j-th
distinct query may have been queried by the signature oracle when s = s∗, or it may have been
queried by the signature oracle when s < s∗ or by the adversary directly.

Next, choose random xv, xu, J ∈ Zp and set v = g−bJgxv and u = gbgxu . Then choose random
xw, xz, xh ∈ Zp and set w = gxw , z = gbgxz and h = g−bs

∗
gxh . Now set the random oracle H()

responds to query for message M as follows:

1. If M has already queried, it returns the same value it answered.
2. If M is a new query and it is j-th distinct query, it returns J .
3. Otherwise, it returns a value randomly chosen in Zp.
The simulator outputs the public parameters as (G,GT , H, g, u, v, w, z, h). For the challenge

keys, it sets the public key as pk1 = ga, implicitly sets the secret key as sk1 = a1 = a, and sets the
internal time record as sprev = 1. For all other keys i = 2 to N , it chooses a random ai ∈ Zp, sets
pk i = gai and sk i = ai. It outputs the key information as (pk1, (pk2, sk2), . . . , (pkN , skN)).

24

Queries When the adversary asks for a signature on message M ∈ {0, 1}λ, the simulator first
checks the clock as s = clock(). If s ≤ sprev or s ≥ 2λ, it outputs ⊥. Otherwise, it updates its time
period recorder sprev := s. There are now two ways the simulator will proceed.

If s = s∗, then check that H(M) = J . If this is not true, then the simulator’s guess was incorrect
and it aborts. Otherwise, it chooses a random t ∈ Zp and sets

σ1 = (ga)xv+xuJ · (wdlg(s)ezsh)t , σ2 = gt , s.

To verify correctness, observe that we can rewrite σ1 as follows:

σ1 = (gab)−J+J(ga)xv+xuJ · (wdlg(s)ezsh)t

= (g−bJ+xvg(b+xu)J · (wdlg(s)ezsh)t

= (vuH(M))a · (wdlg(s)ezsh)t

If s 6= s∗, then the simulator chooses random t′ ∈ Zp and outputs (σ1, σ2, s) where

σ2 = gt
′
/(ga)(H(M)−J)/(s−s∗) = gt

′−a(H(M)−J)/(s−s∗)

σ1 = (ga)xv+xuH(M) · σ2
xwdlg(s)e+xzs+xh · (gb)t′(s−s∗)

The simulator implicitly sets the randomness t = t′ − a(H(M)− J)/(s− s∗). t′ gives t the proper
distribution. To verify correctness, notice that we can rewrite σ1 as follows:

σ1 = (gab)(H(M)−J) · (ga)xv+xuH(M) · σ2
xwdlg(s)e+xzs+xh · (gb)t′(s−s∗) · (g−ab)(H(M)−J)

= (g−bJ+xvg(b+xu)H(M) · (wdlg(s)egxzsgxh)t · (gb)t′(s−s∗) · (g−ab)(H(M)−J)

= (vuH(M))a · (wdlg(s)egxzsgxh)t · (gb(s−s∗))t

= (vuH(M))a · (wdlg(s)ezsh)t

Output Eventually, the type II adversary outputs a valid aggregate signature σ̃ = (γ̃1, γ̃2, s̃)
on a message sequence (M1, . . . ,MN) ∈ {0, 1}λ×N under public keys (pk1, . . . , pkN) such that
0 < s̃ ≤ 2dlg(qs)e < 2qs. From the verification equation, we see that

e(γ̃1, g) = e(
N∏
i=1

gai , v) · e(
N∏
i=1

gaiH(Mi), u) · e(γ̃2, w
dlg(s̃)ezs̃h).

If s∗ = s̃ and H(M1) 6= J , then the simulator guessed correctly. Interpreting γ̃2 as gt, for some
t ∈ Zp, it follows from the above equation that

γ̃1 = (g−bJgxv)
PN
i=1 ai(gbgxu)

PN
i=1H(Mi)ai(gxwdlg(s̃)e+(b+xz)s̃+(−bs̃+xh))t

= (ga1b)H(M1)−J(gb)
PN
i=2 ai(H(Mi)−J)(ga1)xv+H(M1)xug

PN
i=2 ai(xv+H(Mi)xu)(gt)xwdlg(s̃)e+xz s̃+xh

= (gab)H(M1)−J(gb)
PN
i=2 ai(H(Mi)−J)(ga)xv+H(M1)xug

PN
i=2 ai(xv+H(Mi)xu)γ̃2

xwdlg(s̃)e+xz s̃+xh

The simulator outputs(
γ̃1

(gb)
PN
i=2 ai(H(Mi)−J)(ga)xv+H(M1)xug

PN
i=2 ai(xv+H(Mi)xu)γ̃2

xwdlg(s̃)e+xz s̃+xh

) 1
H(M1)−J

= gab.

25

Otherwise, the simulator aborts. The probability it does not abort is

1
2dlg qse

· 1
qH
≥ 1

2qs · qH

Therefore, if a type II adversary can break this scheme with probability of ε, then the simulator
can solve CDH problem with probability of at least ε/(2qs · qH). �

26

