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In this paper, we present a class of 2k-variable balanced Boolean functions and a

class of 2k-variable 1-resilient Boolean functions for an integer k ≥ 2, which both

have the maximal algebraic degree and very high nonlinearity. Based on a newly

proposed conjecture by Tu and Deng, it is shown that the proposed balanced

Boolean functions have optimal algebraic immunity and the 1-resilient Boolean

functions have almost optimal algebraic immunity. Among all the known results

of balanced Boolean functions and 1-resilient Boolean functions, our new func-

tions possess the highest nonlinearity. Based on the fact that the conjecture has

been verified for all k ≤ 29 by computer, at least we have constructed a class of

balanced Boolean functions and a class of 1-resilient Boolean functions with the

even number of variables ≤ 58, which are cryptographically optimal or almost

optimal in terms of balancedness, algebraic degree, nonlinearity, and algebraic

immunity.
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1 Introduction

Boolean functions are the building blocks of symmetric cryptographic systems. They

are used for S-box designing in block ciphers and utilized as nonlinear filters and combiners

in stream ciphers. Generally speaking, before 2003 cryptographic Boolean functions were

required to satisfy various criteria simultaneously, mainly balancedness, large algebraic de-

gree, and high nonlinearity. In addition, 1-resilient property is commonly preferred in the

filter model [6].
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In 2003, Courtois and Meier successfully proposed algebraic attacks on several stream

ciphers [7]. As a result, a new criterion called algebraic immunity was imposed on crypto-

graphic Boolean functions.

Definition 1 ([20]). Given two n-variable Boolean functions f and h, h is said to be an

annihilator of f if f · h = 0. The algebraic immunity AI(f) of Boolean function f is

defined to be the minimum algebraic degree of nonzero Boolean functions h such that h is

an annihilator of f or f + 1.

For resisting the standard algebraic attack, a Boolean function should have algebraic

immunity as high as possible. But in [7] it was proved that AI(f) ≤ ⌈n
2 ⌉ for any n-variable

Boolean function f . In this paper, f is said to have optimal algebraic immunity if it achieves

the equality, and have almost optimal algebraic immunity if AI(f) = ⌈n
2 ⌉ − 1.

Up to now, several classes of Boolean functions achieving optimal algebraic immunity

haven been proposed [3, 4, 9, 16, 17]. However, the nonlinearities of most such functions

are often not exceeding 2n−1 −
(n−1

⌊n
2
⌋

)

, which is almost the worst possible value according

to Lobanov’s bound [18]. Even when they do exceed it, they are not much larger than this

number. Hence, they are insufficient for the resistance to fast correlation attacks.

In 2008, Carlet and Feng presented an infinite class of n-variable balanced Boolean

functions with optimal algebraic immunity, maximal algebraic degree, and high nonlinear-

ity ≥ 2n−1 − n2n/2 · ln 2 − 1 [5]. It is the first class of Boolean functions almost satis-

fying all the cryptographic necessities. In [28], the nonlinearity was further improved to

max
{

6⌊2n−1

2n ⌋ − 2, 2n−1 −
(

ln 2
3 (n − 1) + 3

2

)

2
n
2

}

by Wang et al.

Very recently, applying the similar idea to a class of Partial Spread bent functions,

Tu and Deng constructed 2k-variable balanced Boolean functions with maximal algebraic

degree, and higher nonlinearity ≥ 2n−1−2n/2−1−(n/2)2n/4 ·ln 2−1 where n = 2k [26]. Most

notably, based on a combinatorial conjecture, they were able to show that their Boolean

functions possess optimal algebraic immunity. Indeed, they validated the conjecture until

k = 29. In this sense, a class of functions with the even number of variables n ≤ 58 was

obtained, which is cryptographically optimal in terms of balancedness, algebraic degree,

nonlinearity, and algebraic immunity. Later in [27], Tu and Deng constructed a class of

1-resilient Boolean functions with maximal algebraic degree, high nonlinearity, and almost

optimal algebraic immunity by a modification.

In this paper, firstly we slightly modify Tu-Deng’s method to get a class of 2k-variable

balanced Boolean functions. The new function still maintains optimal algebraic immunity,

and maximal algebraic degree. Specifically, the nonlinearity of the new function is dramat-

ically increased to ≥ 2n−1 −
t−1
∑

i=0
2

n

2i+1
−1 − 2

m−1

2 where n = 2k = 2tm for some positive
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integers t and m such that gcd(m, 2) = 1. We believe that the new function achieves the

best nonlinearity of the balanced Boolean functions with optimal algebraic immunity since

its nonlinearity is as good as the best result of the known balanced Boolean functions. Next,

extending our technique to Tu-Deng’s 1-resilient function, we also improve the nonlinearity

but keep the almost optimal algebraic immunity and maximal algebraic degree unchanged.

Even compared with all the known 1-resilient ones without considering the optimality of

the algebraic immunity, our function still has better nonlinearity.

The remainder of this paper is organized as follows. In Section 2 we introduce some

necessary notations and related results of Boolean functions. In Section 3, firstly we review

an iterative construction of balanced Boolean functions with very high nonlinearity by

Dobbertin. Next, we give a degree optimized method such that balanced Boolean functions

also possess maximal algebraic degree. In Sections 4 and 5, we present our main results.

2 Preliminaries

Throughout this paper, let Fn
2 be the vector space of n-tuples over the field F2 = {0, 1}

of two elements, and F2n be the finite field of order 2n. For a vector a = (a1, · · · , an) ∈ Fn
2 ,

its support Supp(a) is the set {1 ≤ i ≤ n | ai = 1}, and its Hamming weight wt(a) is defined

as the cardinality of its support, i.e., wt(a) = |Supp(a)|.

2.1 Boolean functions over Fn
2

Let Bn be the set of Boolean functions of n variables. Normally, a Boolean function is

defined from Fn
2 into F2. A basic representation for a Boolean function f(x1, · · · , xn) is

given by its truth table, namely the binary string of length 2n which lists all of its output

values, i.e.,

f =
[

f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), f(1, 1, · · · , 0), · · · , f(1, 1, · · · , 1)
]

.

We say that a Boolean function f is balanced if its truth table contains an equal number

of ones and zeros, that is, if its Hamming weight equals to 2n−1. The Hamming weight of

f , wt(f), is defined as the Hamming weight of this string, or in other words, the size of

the support supp(f) = {x ∈ Fn
2 | f(x) = 1}. The Hamming distance dH(f, g) between two

Boolean functions f and g is the Hamming weight of their difference f + g, i.e., dH(f, g) =

|{x ∈ Fn
2 | f(x) + g(x) = 1}| (by abuse of notation, we use + to denote the addition on F2,

i.e., the XOR, and also for a usual integer addition).
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Any Boolean function has a unique representation as a multivariate polynomial over F2,

called the algebraic normal form (ANF),

f(x1, · · · , xn) =
∑

u∈Fn
2

au

(

n
∏

j=1

x
uj

j

)

where au ∈ F2 and u = (u1, · · · , un) ∈ Fn
2 . The algebraic degree, deg(f), is the number of

variables in a highest order term with non zero coefficient, i.e., deg(f) = max{wt(u)|au 6=

0, u ∈ Fn
2}. A Boolean function is affine if it is of algebraic degree at most 1. The set of

all affine functions is denoted by An. To resist the Berlekamp-Massey attack, the Boolean

functions used in a cryptographic system should have high algebraic degree [6].

Besides, cryptographic Boolean functions must have high nonlinearity to withstand lin-

ear and correlation attacks [1, 11]. The nonlinearity of an n-variable function f is its

distance from the set of all n-variable affine functions, i.e.,

Nf = min
g∈An

(dH(f, g)).

This parameter can also be expressed by means of the Walsh transform. Let x = (x1, · · · , xn)

and a = (a1, · · · , an) both belong to Fn
2 and a ·x = a1x1 + · · ·+anxn. The Walsh transform

of an n-variable Boolean function f(x) is an integer valued function over Fn
2 which is defined

as

Wf (a) =
∑

x∈Fn
2

(−1)f(x)+a·x.

Consequently, the nonlinearity of f can be equivalently expressed as

Nf = 2n−1 − 1
2 max

a∈Fn
2

|Wf (a)|.

2.2 Boolean functions over F2n

Note that F2n is isomorphic to Fn
2 by some basis of F2n over F2. In this paper, sometimes

for convenience we need another representation of Boolean function over the finite field F2n .

Let α be a primitive element of F2n . A Boolean function f(x) can be defined from F2n to

F2 as

[f(0), f(1), f(α), · · · , f(α2n−2)],

which is equivalent to the truth table from Fn
2 to F2.

Similarly to ANF of its vector version over Fn
2 , the Boolean function over F2n can also

be uniquely expressed by a univariate polynomial [5]

f(x) =

2n−1
∑

i=0

aix
i
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where a0, a2n−1 ∈ F2, ai ∈ F2n for 1 ≤ i < 2n − 1 such that ai = a2i( mod 2n−1), and the

addition is modulo 2. In [5], it was shown that the algebraic degree deg(f) = max{wt(i)|ai 6=

0, 0 ≤ i < 2n}.

Besides, over F2n the Walsh transform of the Boolean function f can be equivalently

defined by

Wf (a) =
∑

x∈Fn
2

(−1)f(x)+tr(ax)

where tr(x) =
∑n−1

i=0 x2i

is the trace function from F2n to F2.

2.3 PSap bent class

Definition 2 ([6]). A Boolean function f ∈ Bn is called bent function if its Walsh transform

spectrum is two-valued, i.e., Wf (a) = ±2n/2 for all a ∈ Fn
2 where n is necessarily even.

The nonlinearity of bent function equals 2n−1−2n/2−1, which achieves the optimal non-

linearity according to the well-known Parseval’s relation
∑

a∈Fn
2

W 2
f (a) = 22n. Bent functions

are not balanced and they exist only for even number of variables, then they are improper

for direct cryptographic use.

The class of bent functions called partial spread (PS) was introduced by Dillon [10],

whose supports are the unions of 2
n
2
−1 or 2

n
2
−1 + 1 disjoint n

2 -dimensional subspaces of Fn
2 ,

where n is an even positive integer and “disjoint” means that any two of these subspaces

intersect in 0 only. In particular, Dillon exhibited a subclass of PS, denoted by PSap, in

an explicit form.

For n = 2k, the finite field F2n can be viewed as a 2-dimensional vector space F2k ×F2k

over F2k , which is equal to the disjoint union of its 2
n
2 + 1 lines through the origin. By

arbitrarily picking up 2k−1 lines except for the origin as the support, Dillon presented the

PSap bent function class f(x, y) from F2n to F2 as

f(x, y) = g

(

x

y

)

(1)

where g is a balanced Boolean function on F2k with g(0) = 0, and x
y is defined to be 0 if
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y = 0. The function f(x, y) is a bent function since

Wf (a, b) =
∑

x∈F
2k

∑

y∈F∗

2k

(−1)g(x/y)+tr(ax+by) +
∑

x∈F
2k ,y=0

(−1)tr(ax+by)

=
∑

y∈F∗

2k

(−1)tr(by)
∑

z∈F
2k

(−1)g(z)+tr(ayz) +
∑

x∈F
2k

(−1)tr(ax)

=
∑

z∈F
2k

(−1)g(z)





∑

y∈F
2k

(−1)tr((b+az)y) − 1



 +
∑

x∈F
2k

(−1)tr(ax)

=
∑

z∈F
2k

(−1)g(z)
∑

y∈F
2k

(−1)tr((b+az)y) +
∑

x∈F
2k

(−1)tr(ax)

=

{

2k, a = 0

2k(−1)g(b/a), a 6= 0
(2)

where the balanced property of g is used in the fourth identity and fifth identity (for the

case of a = 0) and
∑

y∈F
2k

(−1)tr((b+az)y) = 0 unless z = b/a when a 6= 0 in the fifth identity.

2.4 Tu-Deng’s conjecture

Very recently, based on a combinatorial conjecture, Tu and Deng proved that PSap

function f(x, y) given in (1) has optimal algebraic immunity by a suitable choice of the

support of g.

Conjecture ([26]): Let k > 1 be an integer. Denote x the binary expansion of the

integer 0 ≤ x < 2k − 1. For any 0 < t < 2k − 1, define

St =
{

(a, b)|0 ≤ a, b < 2k − 1, a + b = t (mod2k − 1),wt(a) + wt(b) ≤ k − 1
}

(3)

then |St| ≤ 2k−1.

Proposition 1 ([26]). Let α be the primitive root of the finite field F2k . Set ∆ = {1, α, · · · ,

α2k−1−1}. Assume that the conjecture is correct, then the PSap bent function f(x, y) given

by (1) satisfies

AI(f) =
n

2
= k

if Supp(g) = ∆.

Tu and Deng validated the conjecture by computer for k ≤ 29. Towards this conjecture,

some advances have been achieved. In [8, 13], the authors proved it is true in many cases.

However, the complete proof remains open.
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3 Degree optimized balanced Boolean functions in Dobbertin’s

construction

Up to now, for the balanced Boolean functions of even variables, Dobbertin’s construc-

tion provides highest nonlinearity [12]. In this section, we present a degree optimized

method for Dobbertin’s construction such that balanced Boolean functions have both high-

est nonlinearity and maximal algebraic degree.

From now on, let 0n and 1n be the all zero and one vectors of dimension n respectively.

Definition 3 ([12]). A 2n-variable Boolean function u is said to be normal if u(x, y) = 0

on an affine subspace W with dimension n. Without loss of generality, W can be assumed

to be {x = 0n, y ∈ Fn
2}, i.e., u(0n, y) = 0 for all y ∈ Fn

2 .

Based on normal bent functions, Dobbertin proposed an iterative method for construct-

ing balanced Boolean function with very high nonlinearity [12].

Dobbertin’s iterative construction [12]: Let n be even integer no less than 4. Write

n = 2tm such that t ≥ 1 and m is an odd integer. Then a balanced Boolean function

u(x, y) ∈ Bn over Fn
2 is defined by

u(x, y) =

{

u0(x, y), if x 6= 0n
2

v1(y), if x = 0n
2

(4)

where u0(x, y) is an n-variable normal bent function and v1 is generated by an iterative

procedure as

vi(x, y) =







ui(x, y), if x 6= 0 n

2i+1

vi+1(y), if x = 0 n

2i+1
,

i = 1, · · · , (5)

where x, y ∈ F
n

2i+1

2 . The iterative process will continue until i = t − 1 with vt = s ∈ Bm

being a balanced m-variable Boolean function with maxa∈Fm
2
|Ws(a)| ≤ 2

m+1

2 and s(0) = 0.

In each iterative step for 1 ≤ i < t, ui is an n
2i -variable normal bent function.

Theorem 1 ([12]). Let u be the balanced Boolean function given by (4) and (5), then

max
a∈Fn

2

|Wu(a)| ≤
t−1
∑

i=0

2
n

2i+1 + 2
m+1

2 .

That is,

Nu ≥ 2n−1 −
t−1
∑

i=0

2
n

2i+1
−1 − 2

m−1

2 .
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However, the algebraic degree of u in (4) was not considered in [12]. In what follows,

we discuss it.

Lemma 1 ([31]). Let u ∈ Bn and a = (a1, · · · , an) be a vector in Fn
2 . Then the term

xa1

1 · · · xan
n appears in u if and only if

∑

γ�a
u(γ) = 1 where γ � a means Supp(γ) ⊆ Supp(a)

and the addition is taken modulo 2.

Lemma 2. Let s ∈ Bk with deg(s) = d, 1 ≤ d ≤ k. Let v(x, y) be a 2k-variable normal

Boolean function with deg(v) < k + d. Then the 2k-variable Boolean function defined by

u(x, y) =

{

v(x, y), if x 6= 0k

s(y), if x = 0k

has deg(u) = k + d.

Proof : Without loss of generality, we assume that the term y1 · · · yd appears in the

ANF of s(x), which implies that
∑

γ�(1d0k−d)

s(γ) = 1 by Lemma 1. Applying Lemma 1 to

the function u, we have

∑

γ�(1k ,1d0k−d)

u(γ)

=
∑

γ1 6=0,γ1�1k,γ2�(1d0k−d)

u(γ1, γ2) +
∑

γ1=0,γ2�(1d0k−d)

u(γ1, γ2)

=
∑

γ1�1k,γ2�(1d0k−d)

v(γ1, γ2) +
∑

γ1=0,γ2�(1d0k−d)

s(γ2)

=
∑

γ1=0,γ2�(1d0k−d)

s(γ2)

= 1

where we make use of the fact that v(γ1,0k) = 0 in the second identity since v is a normal

Boolean function and the fact that

∑

γ1�1k,γ2�(1d0k−d)

v(γ1, γ2) = 0

in the third identity again by Lemma 1 since deg(v) < k + d. That is, deg(u) ≥ k + d.

Further, by a similar argument we can conclude that
∑

γ�δ

u(γ) = 0 for all vectors δ ∈ Fk
2

with wt(δ) > k + d, which indicates deg(u) ≤ k + d. Hence, deg(u) = k + d.

�

Rothaus’s inequality states that any n-variable bent function has algebraic degree at

most n/2 when n ≥ 4 [22]. When n = 2, obviously bent function u(x1, x2) has deg(u) = 2.
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That is, all the bent functions ui(x, y) in (4) and (5), 0 ≤ i < t, satisfy the hypothesis of

Theorem 2 except for the case that m = 1 and i = t − 1.

For the balanced function, we have the following result on its algebraic degree.

Lemma 3 ([23]). For a balanced Boolean function f ∈ Bn, deg(f) ≤ n − 1 for n ≥ 2.

Therefore, sequentially applying Lemma 2 to the Boolean functions vi(x, y), i = t −

1, · · · , 0 if m > 1 otherwise i = t− 2, · · · , 0, and then u(x, y) in (4), we can get the Boolean

function with maximal algebraic degree by the Dobbertin’s construction.

Theorem 2. Suppose that deg(vt−1) = 1 when m = 1 and deg(s) = m − 1 when m > 1.

Let u be the balanced Boolean function iteratively generated by (4) and (5). Then,

deg(u) = n − 1,

which is optimal by Lemma 3.

By means of Theorems 1 and 2, we are able to construct balanced function u ∈ Bn with

both maximal algebraic degree n − 1 and very high nonlinearity. The key is to have

1. 2-variable balanced function vt−1 has algebraic degree 1 when m = 1; and

2. m-variable balanced function s with maximal algebraic degree m − 1 and very high

nonlinearity when m > 1.

Straightforwardly, when m = 1, it is easy to verify that s(x) = x yields the desirable

2-variable balanced function vt−1(x, y) = x by choosing ut−1(x, y) = x · y. For the case

of m > 1, many such functions can be obtained from the Maiorana-McFarland bent class

construction or its modifications in [23]. But, as pointed out in [2], there may exist a

weakness in these functions as the derived functions, by fixing certain input bits of these

functions, are affine. To avoid this drawback, Zeng and Hu have constructed balanced n-

variable Boolean functions with a high nonlinearity and an optimal algebraic degree n − 1

for n ≥ 6, by modifying the Maiorana-McFarland’s superclass functions [29].

Then, employing the following m-variable Boolean function s:

• s(x) = x is the 1-variable balanced function with with maxa∈F2
|Ws(a)| = 2 and

deg(s) = 1;

• s is a balanced semi-bent function on F3
2 for m = 3 with maxa∈F3

2
|Ws(a)| = 4 and

deg(s) = 2;
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• s = x2x3x4+x3x4x5+x1x2x5+x2x4x5+x2x3x5+x1x3x5+x1+x1x2+x5+x1x2x3x5+

x2x5 + x4x5 is a balanced Boolean fucntion of 5 variables with maxa∈F3
2
|Ws(a)| = 8

and deg(s) = 4;

• s is a balanced function on Fm
2 given in [29] for m ≥ 7 with maxa∈Fm

2
|Ws(a)| = 2

m+1

2

and deg(s) = m − 1.

we can construct n-variable balanced Boolean function with Nu ≥ 2n−1−
t−1
∑

i=0
2

n

2i+1
−1−2

m−1

2

from Theorem 1 and the maximal algebraic degree n−1 from Theorem 2, where n = 2tm and

gcd(m, 2) = 1. In the forthcoming sections, the function u will be used in our constructions.

It should be noted that u(0) = 0 which follows from the fact that s(0) = 0.

Furthermore, it is possible to improve the nonlinearity by taking s as the balanced

function proposed in [19, 24], which has the highest nonlinearity among all the known

balanced functions of odd variables. However, in view that its algebraic degree is unknown

yet, we can modify it to get the balanced functions s by the following degree optimization

method by Sarkar and Maitra.

Lemma 4 ([23]). Given a balanced function f ∈ Bn with nonlinearity Nf , one can construct

balanced function f ′ ∈ Bn with nonlinearity Nf ′ = Nf − 2 and deg(f ′) = n − 1.

In contrast to the original one, the resultant s has the maximal algebraic degree but

little decrease of nonlinearity by 2. Table 1 summarizes these nonlinearity values.

Table 1. Summary of the best nonlinearity results for odd n ≥ 13

n 13 15 n ≥ 17

Semi-bent function 4032 16256 2n−1 − 2
n−1

2

Balanced function in [19, 24] 4036 16272 2n−1 − 2
n−1

2 + 16 · 2
n−15

2

Balanced function s 4034 16270 2n−1 − 2
n−1

2 + 16 · 2
n−15

2 − 2

4 Balanced Boolean functions with optimal algebraic immu-

nity, maximal algebraic degree, and very high nonlinearity

From now on, we always assume that α is a primitive root of the finite field F2k , and

the set ∆ = {1, α, · · · , α2k−1−1}.

Construction 1: Let n = 2k = 2tm be an even integer no less than 4 such that t ≥ 1

and gcd(m, 2) = 1. Over F2n construct

F (x, y) =

{

g(x/y), x 6= 0 or (x = 0 and y = 0)

u(y), else

10



where Supp(g) = ∆ and u(y) is the balanced Boolean function over F2k discussed in the

last section satisfying u(0) = 0, deg(u) = k − 1, and maxa∈Fk
2
|Wu(a)| ≤

t−1
∑

i=1
2

n

2i+1 + 2
m+1

2 .

The fact wt(F ) = wt(g) + wt(u) = wt(g) + 2k−1 = 2k−1(2k − 1) + 2k−1 = 2n−1 implies

that F is balanced.

4.1 Algebraic immunity and algebraic degree of the constructed functions

In contrast to the specific PSap bent functions in Proposition 1 by Tu-Deng, F (x, y)

given by Construction 1 is almost the same except that the all zero function over x = 0 and

y ∈ F∗
2k is replaced by a balanced function s. But the change does not effect the optimality

of the algebraic immunity.

Theorem 3. Let F (x, y) be the n-variable Boolean function generated by Construction 1.

If Tu-Deng’s conjecture is true, then AI(F ) = n
2 .

Proof : The proof is the same as that of Proposition 1 in [26]. For completeness, we

describe a sketch.

Let h(x, y) =
2k−1
∑

i=0

2k−1
∑

j=0
hi,jx

iyj, hi,j ∈ Fk
2, be a polynomial from F2k × F2k → F2.

Assume that deg(h) < k. Then, h2k−1,t and ht,2k−1 have to be 0 for all 0 ≤ t < 2k,

otherwise deg(h) = k by the definition since wt(t)+wt(2k − 1, t) = k. Thus, we can rewrite

the polynomial h(x) as

h(x, y) =
2k−2
∑

i=0

2k−2
∑

j=0

hi,jx
iyj ,

where hi,j ∈ Fk
2.

R1. If h is an annihilator of F , then h(γy, y) = 0 for all γ ∈ ∆ and y ∈ F∗
2k . By some

manipulations, it follows that

ht(γ) =
2k−2
∑

i=0

hi,t−iγ
i = 0,

for 1 ≤ t < 2k − 1 and ∀ γ ∈ ∆. In fact, ~ = (h0,t, · · · , ht,0, ht+1,2k−2, · · · , h2k−2,t+1)

is a 2k-ary BCH code of length 2k − 1 with designed distance 2k−1 + 1. According to

the well-known BCH bound, then wt(~) ≥ 2k−1 + 1 if ~ is nonzero codeword, which

contradicts the conjecture.
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R2. If h is an annihilator of F + 1, then it indicates h(x, 0) = 0 for x ∈ F2k , i.e., ht,0 = 0,

1 ≤ t < 2k − 1. Additionally, it results in ht(γ) = 0, 1 ≤ t < 2k − 1 and ∀ γ ∈ F2k \∆.

Then, ~ = (h0,t, · · · , ht,0, ht+1,2k−2, · · · , h2k−2,t+1) is a 2k-ary BCH code of length

2k − 1 with designed distance 2k−1, having wt(~) ≥ 2k−1 if ~ 6= 02k−1. But by the

conjecture and ht,0 = 0, the weight should be less than 2k−1, a contradiction.

Summarized from the above two cases, both F and F + 1 have no annihilators with

algebraic degrees less than k. According to bound that AI(F ) ≤ ⌈n
2 ⌉ = k, AI(F ) then

equals k achieving the optimal algebraic immunity.

�

By Lemma 2, the function F (x, y) possesses the maximal algebraic degree as well.

Theorem 4. Let F (x, y) be the n-variable Boolean function generated by Construction 1,

then deg(F ) = n − 1.

4.2 Nonlinearity

In this subsection, we show that F (x, y) has very high nonlinearity.

Theorem 5. Let F (x, y) be the n-variable Boolean function generated by Construction 1,

then

max
a,b∈F

2k

|WF (a, b)| ≤
t−1
∑

i=0

2
n

2i+1 + 2
m+1

2 .

That is,

NF ≥ 2n−1 −
t−1
∑

i=0

2
n

2i+1
−1 − 2

m−1

2

Proof : The Fourier transform of the PSap function f(x, y) in (2) can be rewritten as

Wf (a, b) =
∑

x∈F∗

2k

∑

y∈F
2k

(−1)f(x,y)+tr(ax+by) +
∑

x=0,y∈F
2k

(−1)f(x,y)+tr(ax+by)

=
∑

x∈F∗

2k

∑

y∈F
2k

(−1)g(x/y)+tr(ax+by) +
∑

x=0,y∈F
2k

(−1)tr(ax+by)

= WT (a, b) +
∑

y∈F
2k

(−1)tr(by)

=

{

WT (a, 0) + 2k, b = 0

WT (a, b), b 6= 0

where WT (a, b) =
∑

x∈F∗

2k

∑

y∈F
2k

(−1)g(x/y)+tr(ax+by).

12



Associating (2) and the above equation, we get

WT (a, b) =



























0, a = b = 0

2k, a = 0, b 6= 0

0, a 6= 0, b = 0

±2k, a 6= 0, b 6= 0

Then for the new function F (x, y) generated by Construction 1, clearly

|WF (a, b)| =

∣

∣

∣

∣

∣

∣

∑

x∈F∗

2k

∑

y∈F
2k

(−1)F (x,y)+tr(ax+by) +
∑

x=0,y∈F
2k

(−1)F (x,y)+tr(ax+by)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

x∈F∗

2k

∑

y∈F
2k

(−1)g(x/y)+tr(ax+by) + (−1)F (0,0) +
∑

y∈F∗

2k

(−1)u(y)+tr(by)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

x∈F∗

2k

∑

y∈F
2k

(−1)g(x/y)+tr(ax+by) + 1 +
∑

y∈F∗

2k

(−1)u(y)+tr(by)

∣

∣

∣

∣

∣

∣

= |WT (a, b) + Wu(b)|

≤ |WT (a, b)| + |Wu(b)|

=

t−1
∑

i=0

2
n

2i+1 + 2
m+1

2 ,

where F (0, 0) = 0 and u(0) = 0 are used in the third and fourth identity. This completes

the proof.

�

In Theorem 5, our lower bound is based on the k-variable balanced functions generated

from Dobbertin’s iterative construction by choosing s as an m-variable semi-bent function.

As mentioned in Section 3, the nonlinearity can be increased by employing the balanced

function s in Table 1.

4.3 Comparison with the known results

For convenience, let N1 = 2n−1 − 2 ln 2
π n2

n
2 , N2 = 2n−1 − 2

n
2
−1 − ln 2

2 n2
n
4 − 1, N3 =

max
{

6⌊2n−1

2n ⌋ − 2, 2n−1 −
(

ln 2
3 (n − 1) + 3

2

)

2
n
2

}

denote the lower bounds of the nonlinearity

of the results in [5], [26], [28], respectively, where n = 2tm with gcd(2,m) = 1.

Roughly speaking, our NF = 2n−1 −
t−1
∑

i=0
2

n

2i+1
−1 − 2

m−1

2 is much better than N1, N2,

and N3. More precisely, by a tedious computation we can verify that NF is larger than N1,

N2, and N3 if n ≥ 4. In [5], [26], and [28], some concrete values of the nonlinearity were

13



given, which are respectively denoted by N1, N2, and N3 for short, which are much better

than their bounds. For comparison, we list our NF for even 4 ≤ n ≤ 18 in Table 2.

Table 2. Comparison of the nonlinearity of balanced Boolean functions (n even)

n N1 = N3 in [5, 28] N2 in [26] Our result NF

4 4 4 4

6 24 26 26

8 112 116 116

10 478 490 492

12 1970 2008 2010

14 8036 8118 8120

16 32530 32624 32628

18 130442 130792 130800

5 1-Resilient functions with high nonlinearity and almost op-

timal algebraic immunity

In this section, we modify Construction 1 to obtain Boolean function with 1-resilient

property at the cost of a little decrease of its algebraic immunity.

Definition 4 ([6]). A Boolean function f ∈ Bn is called 1-resilient if the Walsh transform

Wf (a) = 0 for all a ∈ Fn
2 satisfying wt(a) ≤ 1.

Construction 2: Let n = 2k = 2tm be an even integer no less than 4 such that t ≥ 1

and gcd(m, 2) = 1. We construct an n-variable Boolean function over F2n as follows

F (x, y) =



























g(x/y), x · y 6= 0, x 6= y

1 + u(x), x = y 6= 0

u(x), x ∈ F2k , y = 0

u(y), x = 0, y ∈ F∗
2k

where Supp(g) = ∆ and u(y) is balanced Boolean over Fk
2 discussed in Section 3 satisfying

u(0) = 0, deg(u) = k − 1, and maxa∈Fk
2
|Wu(a)| ≤

t−1
∑

i=1
2

n

2i+1 + 2
m+1

2 .

Denote U = Supp(u). Then, the support of F consists of the following four parts:

• {γy, y}, γ ∈ ∆ \ {1}, y ∈ F∗
2k

• {x, y}, x = y ∈ U \ {0}

• {x, 0}, x ∈ U

14



• {0, y}, y ∈ U

Compared with Construction 1, much more values are changed in Construction 2. Due

to these changes, we are not able to guarantee that the new function has optimal algebraic

immunity. But we can show that at least it has almost optimal algebraic immunity, and

further it has 1-resilient property.

5.1 1-resiliency

Theorem 6. Let F (x, y) ∈ Bn generated by Construction 2. Then, F is 1-resilient.

Proof : Firstly, F is balanced, i.e, wt(F ) = (2k−1−1)(2k−1)+2k−1−1+2·2k−1 = 2n−1,

which implies WF (0) = 0. So, it is sufficient to investigate

WF (a, b) =
∑

x,y∈F
2k

(−1)F (x,y)+tr(ax+by)

=
∑

x,y∈F
2k

(−1)tr(ax+by) − 2
∑

(x,y)∈Supp(F )

(−1)tr(ax+by)

= −2
∑

(x,y)∈Supp(F )

(−1)tr(ax+by)

= −2
∑

γ∈∆\{1}

∑

y∈F∗

2k

(−1)tr((aγ+b)y) − 2
∑

y∈U\{0}

(−1)tr((a+b)y)

−2
∑

x∈U

(−1)tr(ax) − 2
∑

y∈U

(−1)tr(by)

in following two cases, where a 6= 0 or b 6= 0. Basically, our discuss is built on the fact that
∑

x∈F
2k

(−1)tr(ax) = 2k if a = 0 and
∑

x∈F
2k

(−1)tr(ax) = 0 otherwise.

Case 1. a 6= 0 and b = 0.

WF (a, b) = −2
∑

γ∈∆\{1}

∑

y∈F∗

2k

(−1)tr(aγy) − 2
∑

y∈U\{0}

(−1)tr(ay)

−2
∑

x∈U

(−1)tr(ax) − 2|U |

= −2
∑

γ∈∆\{1}





∑

y∈F
2k

(−1)tr(aγy) − 1



− 2
∑

y∈U\{0}

(−1)tr(ay)

−2
∑

x∈U

(−1)tr(ax) − 2|U |

= 2(2k−1 − 1) − 2
∑

x∈F
2k

(−1)tr(ax) + 2 − 2 · 2k−1

= 0

15



Case 2. a = 0 and b 6= 0. Similarly,

WF (a, b) = −2
∑

γ∈∆\{1}

∑

y∈F∗

2k

(−1)tr(by) − 2
∑

y∈U\{0}

(−1)tr(by)

−2|U | − 2
∑

y∈U

(−1)tr(by)

= 0

Suppose that k elements c1, · · · , ck ∈ F2k are linearly independent over F2. It is easy

to see that {(ci, 0), (0, ci), 1 ≤ i ≤ k} form a basis of F2n over F2. By the above two cases,

we have WF (ci, 0) = WF (0, ci) = 0 for all 1 ≤ i ≤ n. That is, the vector representation of

f over Fn
2 under this basis is 1-resilient.

�

5.2 Algebraic immunity and algebraic degree

Theorem 7. Let F (x, y) be the n-variable Boolean function generated by Construction 2.

If the conjecture is true, then AI(F ) ≥ n−2
2 .

Proof : Let

h(x, y) =
2k−2
∑

i=0

2k−2
∑

j=0

hi,jx
iyj, hi,j ∈ Fk

2,

be a polynomial from F2k × F2k → F2 with deg(h) < k − 1.

Similarly to R1 and R2 in the proof of Theorem 3, if h is an annihilator of f or f + 1,

then

ht(γ) =

2k−2
∑

i=0

hi,t−iγ
i = 0

holds for 1 ≤ t < 2k−1 and ∀γ ∈ ∆′, where ∆′ = ∆\{1} if h is an annihilator of f and ∆′ =

∆∪{1} if h is an annihilator of f+1. Consequently, ~ = (h0,t, · · · , ht,0, ht+1,2k−2, · · · , h2k−2,t+1)

is a 2k-ary BCH code of length 2k −1 with designed distance 2k−1−1, having wt(~) ≥ 2k−1

if ~ 6= 02k−1.

On the other hand, it was proved in [27] that the equations a + b = t(mod2k − 1) and

w(a) + w(b) = k − 1 has at least one pair of solution for every 1 ≤ t < 2k − 1. Then

wt(~) < 2k−1 if the conjecture is true, which leads to a contradiction.

Therefore, neither f nor f + 1 have annihilators with algebraic degrees less than k − 1.

Hence, AI(f) ≥ k − 1 has almost optimal algebraic immunity.
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�

Additionally, the Boolean function F has algebraic degree n−2, which achieves the upper

bound on the algebraic degree of a 1-resilient Bollean function according to Siegenthaler’s

inequality [25].

Theorem 8. Let F (x, y) be the n-variable Boolean function generated by Construction 2.

Then, deg(F ) = n − 2.

Proof : Let x, y ∈ Fk
2. Write the Boolean function F in its vector expression F (x, y) =

g(x, y)+u(x, y) over Fk
2 , where Supp(u) = {(0k, y)|u(y) = 1, y ∈ Fk

2}
⋃

{(x,0k|u(x) = 1, x ∈

Fk
2)}
⋃

{(x, x)|u(x) = 1, x ∈ Fk
2 \ {0k}}.

Since deg(u) = k − 1, without loss of generality, we suppose that the term x1x2 · · · xk−1

appears in u(x). Then by Lemma 1 we have

∑

γ�(1k−10,1k−10)

F (γ)

=
∑

γ�(1k−10,1k−10)

g(γ) +
∑

γ1�(1k−10)

u(γ1) +
∑

γ2�(1k−10)

u(γ2) +
∑

γ1�(1k−10)

u(γ1)

= 1 + 1 + 1

= 1

which means that the term x1x2 · · · xk−1y1y2 · · · yk−1 appears in the ANF of F , i.e. deg(F ) ≥

2k − 2. Further, by Siegenthaler’s inequality in [25], which indicates that deg(F ) ≤ 2k − 2

for a 1-resilient function f ∈ Bn. Hence, we have deg(F ) = 2k − 2.

�

5.3 Nonlinearity

Theorem 9. Let F (x, y) be the n-variable Boolean function generated by Construction 2,

then

max
a,b∈F

2k

|WF (a, b)| ≤ 2k + 3

[

t−1
∑

i=1

2
n

2i+1 + 2
m+1

2

]

.

That is,

NF ≥ 2n−1 − 2k−1 − 3

[

t−1
∑

i=1

2
n

2i+1
−1 + 2

m−1

2

]
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Proof : We express the Fourier transform in (2) as another manner

WF (a, b)

=
∑

x·y 6=0,x 6=y

(−1)g(x/y)+tr(ax+by) −
∑

x∈F∗

2k

(−1)tr((a+b)x)

+
∑

x∈F
2k

(−1)tr(ax) +
∑

y∈F∗

2k

(−1)tr(by)

= WT (a, b) −
∑

x∈F∗

2k

(−1)tr((a+b)x) +
∑

x∈F
2k

(−1)tr(ax) +
∑

y∈F∗

2k

(−1)tr(by)

=



































WT (a, b) + 2k, a = 0, b = 0

WT (a, b) + 2k, a = 0, b 6= 0

WT (a, b) + 2k, a 6= 0, b = 0

WT (a, b) − 2k, a = b 6= 0

WT (a, b), a 6= 0, b 6= 0, a 6= b

where WT (a, b) =
∑

x·y 6=0,x 6=y

(−1)g(x/y)+tr(ax+by). Associated with (2), it gives

WT (a, b) =



































0, a = 0, b = 0

0, a = 0, b 6= 0

0, a 6= 0, b = 0

0, a = b 6= 0

±2k, a 6= 0, b 6= 0, a 6= b

Immediately, we get

WF (a, b) = |WT (a, b) + Wu(a + b) + Wu(a) + Wu(b)|

≤ |WT (a, b)| + 3max
b

|Wu(b)|

≤ 2k + 3

t−1
∑

i=1

2
n

2i+1 + 3 · 2
m+1

2

and then the desired nonlinearity.

�

Except for the case of m = 1, we can further improve the nonlinearity by constructing

s ∈ Bm as follows.

1. Let m = 2m1 + 1. Choose a injection π from F2m1 to F2m1+1 \ {0m1+1} such that

x, y ∈ Ω ⇒ x + y 6∈ Ω where Ω = π(F2m1 );

2. Set s′(x, y) = π(x) · y for x ∈ F2m1 and y ∈ F2m1+1 ;

18



3. Obtain s ∈ Bm by applying the Sakar-Maitra’s degree optimization method to the

balanced function s′.

It is easy to check that s′ ∈ Bm is a balanced semi-bent function, i.e., Ws′(a) ∈

{0,±2
m+1

2 } and Ns′ = 2m −2
m−1

2 . Specifically, s′ satisfies that Ws′(x+y) = 0 if Ws′(x) 6= 0

and Ws′(y) 6= 0 for all x, y ∈ F2m . According to Lemma 4, we have that s ∈ Bm is a

balanced function with Ns = 2m − 2
m−1

2 − 2, the maximal degree m − 1,

|Ws(a)| ≤ 2m − 2Ns

= 2m − 2(Ns − 2)

= max
c∈F2m

|Ws′(c)| + 4,

and

|Ws(a + b) + Ws(a) + Ws(b)| ≤ 2 max
c∈F2m

|Ws′(c)| + 12

for all a, b ∈ F2m . Employing s to construct the balanced Boolean function u in the

Dobbertin’s iterative construction and then using u for our Construction 2, we can increase

the nonlinearity.

Theorem 10. When n = 2tm and m > 1. Let s be the above m-variable balanced boolean

function, and F be the resultant n-variable Boolean function generated by Construction 2,

then

NF ≥ 2n−1 − 2k−1 − 3 ·
t−1
∑

i=1

2
n

2i+1
−1 − 2

m+1

2 − 6

5.4 Comparison with the known results

Finally we compare the nonlinearity of our result with the 1-resilient Boolean function

in [27], which has almost optimal algebraic immunity n/2 − 1 as well. In general, it is easily

seen that our bounds are much better than the bound in [27]. In addition, Table 3 compares

our bounds with the numerical result of the bound and some concrete values given [27] for

even 4 ≤ n ≤ 18, which are respectively denoted by N4 and N4 for short.

Table 3. Comparison of the nonlinearity of 1-resilient Boolean functions (n even)
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N4 N4 Our bound Our bound
n

in [27] in [27] in Theorem 9 in Theorem 10

4 0 4 0 −

6 4 24 22 18

8 80 112 108 103

10 431 484 484 482

12 1910 1996 1998 1994

14 7957 8100 8104 8106

16 32367 32588 32604 −

18 130386 130760 130768 130778

When compared with the newly proposed 1-resilient function in [30], which is recorded

to have the best nonlinearity among all the known 1-resilient function constructions, our

function still has better nonlinearity, even the algebraic immunity property of that function

is unknown yet. For the comparison, first of all we establish an upper bound on the

nonlinearity of the 1-resilient function in [30].

Theorem 11. Let f ∈ Bn be the 1-resilient Boolean function constructed in [30], then the

nonlinearity

Nf < 2n−1 − 2n/2−1 − 2n/4−⌈log2(n/2)⌉/2−3/2

Proof : Let w = ⌊n/4⌋ − 1. According to Theorem 1 in [30],

Nf = max
A

(

2n−1 − 2n/2−1 −
w
∑

k=1

ak · 2
n/2−k−1

)

, (6)

where A = {(a1, · · · , aw) : ak ∈ F2, 1 ≤ k ≤ w} satisfies

w
∑

k=1

ak ·

n/2−2k
∑

j=2

(

n/2 − 2k

j

)

≥
n

2
+ 1.

Define r to be the integer such that ar = 1 and ai = 0 for all i < r. To attain the

maximal nonlinearity, it is easily seen from (6) that r should be as large as possible, say

close to w.

Clearly,
n/2−2k
∑

j=2

(n/2−2k
j

)

< 2n/2−2k and then

w
∑

k=r

n/2−2k
∑

j=2

(

n/2 − 2k

j

)

< 2n/2−2r+1
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which leads to

2n/2−2r+1 >
n

2
.

Hence, r < (n + 2)/4 − ⌈log2(n/2)⌉/2. Then,

Nf ≤ 2n−1 − 2n/2−1 − 2n/2−r−1

< 2n−1 − 2n/2−1 − 2n/4+⌈log2(n/2)⌉/2−3/2

�

Set n = 2tm in Theorem 11, we arrive at Nf < 2n−1−2n/2−1−2n/4+(t−1)/2+⌈log2 m⌉/2−3/2,

which is worse than our bounds in Theorems 9 and 10 provided that t+⌈log2 m⌉ > 2 log2 3+

2. Therefore, our bounds are much better in most cases.

Finally, in Table 4 we compare some small concrete values.

Table 4. Comparison of the nonlinearity of 1-resilient Boolean functions (n even)

NF Our bound Our bound
n

in [30] in Theorem 9 in Theorem 10

12 1996 1998 1994

14 8092 8104 8106

16 32604 32604 −

18 130748 130768 130778

20 523708 523716 523714

22 2095996 2096032 2096058

24 8386300 8386446 8386442

26 33550076 33550144 33550202

28 134209020 134209320 134209322

30 536854012 536854144 536854266

32 2147449852 2147450460 −

34 8589868028 8589868288 8589868538

36 34359605244 34359606480 34359606490

38 137438689276 137438689792 137438690298

40 549755285500 549755288004 549755288002

42 2199022202876 2199022203904 2199022204922

44 8796090916860 8796090921888 8796090921914

46 35184367886332 35184367888384 35184367890426

48 140737479950332 140737479960462 140737479960458

50 562949936627708 562949936631808 562949936635898
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