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Abstract. Anonymous digital signatures such as Direct Anonymous Attestation (DAA) and group
signatures have been a fundamental building block for anonymous entity authentication. In this paper,
we show how to incorporate DAA schemes into a key exchange protocol between two entities to achieve
anonymous authentication and to derive a shared key between them. We propose a modification to
the SIGMA key exchange protocol used in the Internet Key Exchange (IKE) standards to support
anonymous authentication using DAA. Our key exchange protocol can be also extended to support
group signature schemes instead of DAA. We present a secure model for key exchange with anonymous
authentication derived from the Canetti-Krawczyk key-exchange security model. We prove that our
DAA-SIGMA protocol is secure under our security model.

1 Introduction

Anonymous digital signatures such as group signatures [22, 2, 5, 6], Direct Anonymous Attestation
(DAA) [7, 8, 23, 24, 14], and anonymous credentials [15–17] play an important role in privacy en-
hanced technologies. They allow an entity (e.g., a user, a computer platform, or a hardware device)
to create a signature without revealing its identity. Anonymous signatures also enable anonymous
entity authentication.

The concept of group signature scheme was first introduced by Chaum and van Heyst [22] in
1991. In a group signature scheme, all the group members share a group public key, yet each member
has a unique private key. A group signature created by a group member is anonymous to all the
entities except a trusted group manager. Many group signature schemes have been proposed, e.g.,
in [2, 5, 6, 29]. Direct Anonymous Attestation (DAA) was first introduced by Brickell, Camenisch,
and Chen [7] for remote anonymous authentication of a Trusted Platform Module (TPM). DAA
can be seen as a special group signature scheme without the “open” feature. DAA has received a lot
of attentions in the trusted computing community, and many DAA schemes have been developed
recently, e.g., in [8, 23, 25, 24, 14].

Anonymous digital signatures have attracted a lot of industry attentions recently. For example,
the Trusted Computing group (TCG), a global industrial standard body [35], adopted the original
DAA scheme [7] and standardized it in the TCG TPM Specification v1.2 [34]. The same DAA
scheme has recently been adopted by ISO/IEC as an international standard [1]. DAA has been
implemented and already shipped in millions of TPMs. Intel has implemented an extension of DAA
called Enhanced Privacy ID [10–12] in the Intel P55 Ibex Peak chipsets [13]. Recently, ISO/IEC
starts to develop two new international standards: one on anonymous digital signatures including
group signature schemes and DAA schemes, the other on anonymous entity authentication using
anonymous digital signatures.

DAA can be used for anonymous authentication in a straight-forward manner: a verifier sends a
challenge message including a nonce to a group member; the group member can authenticate to the



verifier anonymously using his private key to create a DAA signature on the message. After verifying
the DAA signature, the verifier is convinced that the group member is a valid DAA signer, but he
does not learn who created the signature. TPM uses this method for anonymous authentication in
order to obtain an attestation identity key credential from an issuer. This authentication method
is limited because the group member did not verify the verifier’s credential and there is no shared
key derived from the authentication.

Consider the following scenario: a trusted computing platform wants to download some pro-
tected resources from an Internet server and may also upload some of its sensitive data to the server.
The platform wants to authenticate the server before it sends the data out. In the same time the
server wants to make sure the platform is indeed trusted, e.g., ensure that the platform can protect
the server’s resources. DAA can be used in this example if the platform wants to authenticate to
the server anonymously. However the näıve authentication method in the previous paragraph does
not work well in this scenario for the following reasons:

1. The platform and server need to authenticate to each other at the same time.

2. It is desired to have a session key derived after the mutual authentication so that the platform
does not need to repeatedly authenticate to the server, when each time it wants to get some
resources from the server.

A natural extension of DAA in anonymous authentication is to embed DAA in a Diffie-Hellman
key exchange protocol, so that two entities can authenticate to each other and derive a shared ses-
sion key for future communication. There have been several proposals to incorporate DAA into key
exchange protocols. Balfe et al. [3] proposed anonymous authentication in peer-to-peer networks by
embedding DAA with TLS and IPsec. Leung and Mitchell [32] introduced an anonymous authenti-
cation protocol based on DAA. Recently, Cesena et al. [20] proposed an anonymous authentication
protocol based on TLS and DAA including a reference implementation.

1.1 Our Contribution

It is easy to design simple Diffie-Hellman (DH) based key exchange protocols, but it is easier to
get them wrong. For example, many DH-based key exchange protocols are vulnerable to man-in-
the-middle attacks or identity misbinding attacks [28]. Although there have been several proposals
to use DAA in Diffie-Hellman key exchange protocols [3, 32, 20] in the literature, to the best of
our knowledge, there is no formal security model provided and none of these protocols has formal
security proof to prove the security of these protocols. This is the motivation of this paper. There
are two contributions of this paper. We describe each contribution briefly as follows.

A security model for key exchange with anonymous authentication.We give a rigorous
treatment to anonymous authentication and introduce a new security model for key exchange with
anonymous authentication. Our security model derives from the Canetti-Krawczyk key exchange
security model [18, 19]. In the Canetti-Krawczyk security model, identity plays an important role
in the proof of security. However in anonymous authentication, the identity of the entity who wants
to be anonymous cannot be revealed in the key exchange. This creates a significant challenge in
the definition of secure model and in the design of the key exchange protocol.

A secure key exchange protocol with anonymous authentication. We develop a new
key exchange protocol with anonymous authentication based on DAA and the SIGMA family of
key exchange protocols from IPsec [31] and the Internet Key Exchange (IKE) standards [30]. We
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call our protocol the daa-sigma protocol. We present a formal security analysis of our daa-sigma
protocol based on our security model.

1.2 Related Work

Besides using DAA for anonymous authentication in key exchange protocols [3, 32, 20], other mech-
anisms of anonymous authentication have been proposed recently. Cui and Cao proposed an anony-
mous authentication and key exchange protocol based on ring signatures [26]. Viet et al. proposed
a password-based anonymous authentication key exchange protocol [36]. Yang and Zhang improved
Viet et al.’s scheme with another anonymous password-based key exchange protocol [37]. Chai et
al. proposed an efficient password-based authentication scheme that preserves user privacy [21].

Besides the Canetti-Krawczyk key exchange model [18] for security analysis of key exchange
protocols, other models and tools have been proposed in the literature. For example, Meadows used
an automated protocol analyzer to study the security of key exchange protocols [33]. Datta et al.
developed a symbolic logic analyzer for proving security properties of key exchange protocols [27].
Bellare and Rogaway formalized the security of key exchange protocols in the realistic setting of
concurrent sessions [4]. In this paper, we choose to use the Canetti-Krawczyk key exchange model
as the basis because this model is well established and has been used to analyze the security of the
SIGMA key exchange protocol.

1.3 Organization of the Paper

Rest of this paper is organized as follows. We first introduce our notation and briefly review the DAA
schemes and the SIGMA key exchange protocol in Section 2. We then propose the security model
of key exchange protocol with anonymous authentication in Section 3. We present our daa-sigma
protocol in Section 4 and give the security proof in Section 5. We discuss some extensions of our
daa-sigma protocol in Section 6. We conclude our paper in Section 7.

2 Background and Building Blocks

In this section, we first review our notations and terminologies then briefly review the basic concepts
of DAA. Next we review the SIGMA key exchange protocol.

2.1 Notations

We use the following notations in this paper. Let P and Q to be two entities of the key exchange
protocol.

– mack(m): a message authentication code of m computed using the key k.

– sigP (m): a signature of m created by the entity P .

– idP : an identity of the entity P .

– certP : a public key certificate of the entity P .

– prf: a pseudo-random function.
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2.2 Review of DAA

In this section, we review the specification and security model of DAA proposed in [9]. The security
model in [9] is simpler than the original DAA definition [7] and easier to understand the security
properties of DAA. There are four types of players in a DAA scheme: an issuer I, a TPM Mi, a
host Hi and a verifier Vj .Mi and Hi form a platform in the trusted computing environment and
share the role of a DAA signer Si. To simplify our notation, we treat the DAA signer as a single
entity in the rest of this paper. A DAA scheme has following polynomial-algorithms or interactive
protocols (Setup, Join,Sign,Verify, Link):

Setup : On input of a security parameter 1k, I uses this randomized algorithm to produce a pair
(gpk, isk), where isk is the issuer’s secret key, and gpk is the public key including the global
public parameters.

Join : A signer Si and the issuer I run an interactive join protocol. In the end of the protocol, Si
outputs a secret key ski and a membership credential crei issued by I. We denote the ski and
crei pair as the signing key of Si. Note that the value of ski is unknown to I.

Sign : On input of gpk, ski, crei, a basename bsnj , and a message m, Si uses this algorithm to
produce a signature σ on m. The basename bsnj can be either the name string of the verifier
Vj or a special symbol ⊥ and it is used for controlling the linkability.

Verify : On input of gpk, bsnj, m, a candidate signature σ on m, and a revocation list RL, Vj uses
this deterministic algorithm to determine whether σ is valid. The revocation is out of the scope
of this paper.

Link : On input of two signatures σ0 and σ1, Vj uses this deterministic algorithm to return linked,
unlinked, or invalid signatures.

The formal security definition of DAA can be found in [7, 9]. For completeness of this paper,
we review the formal security model of DAA in [9] in Appendix A. Informally, a DAA scheme is
secure if the following properties hold:

– Correctness. A signature created using a valid signing key can be verified by any verifiers
correctly.

– Anonymity. An adversary who are not in possession of a secret key sk cannot learn the identity
of the signer of signatures created using sk.

– Unforgeability. An adversary cannot forge a valid signature if he does not have a signing key or
his signing keys have been all revoked.

– User-controlled linkability. Signatures created by the same set of sk, cre, bsn can be linked,
if bsn 6= ⊥. However, signatures cannot be linked if they are created using different bsn or if
bsn = ⊥.

If a signature σ was created using bsn = ⊥, then we call σ a random based signature; otherwise,
we call σ a name based signature. For the daa-sigma protocol, we first focus on random based
signatures. We shall discuss how to adopt name based signatures in Section 6.

Let I be a DAA issuer. Let P be a DAA signer who has a valid signing key issued by I. We use
the following notations in the rest of the paper:

– idI : the identity of the issuer I. For simplicity, we assume I creates only one group public key
gpk. One can figure out the corresponding gpk from idI . If the issuer creates multiple group
public keys, we can use idG to denote the identity of the DAA group.
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– certI : a public key certificate of I issued by a certificate authority to certify the group public
key gpk.

– daa-sigP (m): a DAA signature on messagem created by the entity P . Let skP be P ’s secret key
and creP be P ’s membership credential, then daa-sigP (m) denotes Sign(gpk, skP , creP , bsn,m)
where bsn = ⊥ if bsn is not provided as input.

2.3 Review of SIGMA Key Exchange Protocol

We now review the SIGMA key exchange protocol. This key exchange protocol is one of the Internet
Key-Exchange (IKE) protocols [30] used to establish secret shared keys for use in the Internet
Protocol Security (IPsec) standards [31]. The SIGMA key exchange protocol uses Diffie-Hellman
key exchange with “sign-and-mac” mechanism. It is presented as follows: Let P and Q be two
entities of the key exchange protocol, where P is the protocol initiator who activates the session
and Q is the intended peer of the session. Let G be a cyclic group of prime order q where the
Decisional Diffie-Hellman (DDH) problem is hard and g be a generator of G. Let s be a unique
session identifier chosen by P , Q, or both. The SIGMA protocol has the following messages.

Message 1 (P → Q) : s, gx

Message 2 (P ← Q) : s, gy, idQ,mack1(s, idQ), sigQ(s, g
x, gy)

Message 3 (P → Q) : s, idP ,mack1(s, idP ), sigP (s, g
y, gx)

In the above protocol, P chooses a random integer x and computes the ephemeral DH public key
gx. Analogously, Q chooses a random integer y and compute its ephemeral DH public key gy. By
exchanging gx and gy, both entities can compute gxy, but “man-in-the-middle” attackers cannot.
Both entities then derive a session key k0 and a mac key k0 from gxy. In message 2, Q computes a
mac of its identity using k1 and signs the ephemeral DH public keys (gx, gy) using its signing key.
P can verify the signature to ensure that the message 2 indeed comes from entity Q and verify the
mac to ensure that Q knows k1, thus knows the session key k0 as well. Similarly, P computes a
mac of its identity and a signature of the DH public keys in message 3. After Q verifies the message
3, both entities have established a session key k0 and can use k0 for further communications.

3 Security Model

In this section, we first review the Canetti-Krawczyk key exchange model [18, 19], and then describe
how to extend this key exchange model to support anonymous authentication.

3.1 Review of Canetti-Krawczyk Key Exchange Model

This section reviews the Canetti-Krawczyk model [18] for authenticated key establishment proto-
cols. A session key adversary, or SK-adversary, A is a probabilistic polynomial time algorithm that
controls all communication between any parties using the set of queries specified in Table 1 below.
An SK-adversary accomplishes this control by issuing queries to a set of oracles Os,P . An oracle
Os,P represents the protocol instance identified by s initiated by principal P . This communications
instance is called a session. Each oracle responds to the queries, and the outputs of all the oracles
Os,P collectively represent the history of the protocol. The SK-adversary receives all output, and
the uses this output to decide which oracles to activate next.
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Table 1. Adversarial Queries

Query Description

Send(P,Q, s,m) Oracle Os,P responds to message m to Q according to the protocol specification
and decides whether to accept, reject, or continue. Accept means the oracle has
completed the protocol with partner Q, a session id s, session key K, and Os,P

signals its acceptance by including (P, s,Q) with its public output. Reject means
the protocol failed. Continue means the oracle is waiting for its next protocol step.
Os,P returns its decision to the adversary A.

Session-Key-Reveal(P,Q, s) If an oracle Os,P has accepted and holds a session key K, the oracle returns K

to SK-adversary A. Otherwise Os,P ignores this query. This query models a key
leaking via break-ins, cryptanalysis, careless disposal of keys, and the like.

State-Reveal(P ) If the oracle Os,P has accepted or holds a session key, it ignores this query. Oth-
erwise the oracle returns its internal ephemeral session state, but no long-lived
secrets. This query models the compromise of a single session.

Corrupt(P ) P responds to this query by yeielding its entire internal state, including all of
the state held by all its oracles Os,P , and any long-lived keys. Subsequently the
SK-adversary controls all of P ’s actions.

Expire-Session(P,Q, s) This query causes oracle Os,P to delete its session state, and oracle Os,P will
henceforth ignore any subsequent Session-Key-Reveal query, because it no longer
has the targeted session key.

Test(P,Q, s) An SK-adversary A may use the test query only once. This query is used to mea-
sure that adversary’s efficacy at distinguishing a real session key from a randomly
generated one. If Os,P has accepted with a session key K, then it selects a bit
value b randomly; if b = 0, then it returns K and otherwise generates a random
value K, which it returns instead. If the oracle has not accepted or does not have
the session key, it does not respond to the test query.

A session is called exposed if an SK-adversary issues a session-key-reveal query against its oracle
or an state-reveal or corrupt query against one of the session’s principals.

As noted, the model uses the test query to formalize the efficacy of an attack. The adversary may
apply the test query to any session that is not exposed. The test session returns a real or randomly
generated key each with probability half and the adversary must guess whether the returned key is
real. The adversary is called successful if it can distinguish the real key with probability significantly
larger than 1/2.

An instance of protocol execution results in a partnership or agreement between two oracle
instances of principals’ communication. Partnership is a tricky notion, because the identity of the
parties can be unknown before the protocol instance completes. In [18] Canetti and Krawcyzk
accommodate this by allowing the communicating oracles to learn the identity of the other party
from the protocol instance.

Definition 1. Suppose oracle Os,P has accepted with output (P, s,Q). The oracle Os,R is called the
matching session of Os,P if either

1. Os,R has accepted with output (R, s, S), where R = Q and S = P , or,

2. Os,R has not completed.

With this background, it is possible to define security in the model.

Definition 2. A protocol π is called SK-secure if for all SK-adversaries A the following holds:
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1. If two uncorrupted parties P and Q complete matching sessions Os,P and Os,Q of π with public
outputs (P, s,Q) and (Q, s, P ), respectively, then the session key K output in these sessions is
the same except with a negligible probability.

2. A succeeds in distinguishing the output from its test query with probability not more than 1/2
plus a negligible fraction.

3.2 Security Model for Key Exchange with Anonymous Authentication

In this paper, we first consider unilateral anonymous authentication and use DAA as the funda-
mental building block for anonymous authentication. The case of mutual anonymous authentication
and use of group signatures shall be discussed in Section 6. In our model, we always assume that the
protocol initiator P has a DAA private key and the protocol responder Q has a regular signature
key. In the example in Section 1 where a trusted platform mutual authenticates with an Internet
server, it is natural to have the anonymous entity as the protocol initiator. If the adversary starts
a session with the protocol initiator who does not have a DAA private key or with the protocol
responder who does not have a regular signature key, the session would fail.

Note that anonymous authentication in our model is different from anonymity without authen-
tication, where P does not show any identity or signatures to Q. Anonymous authentication in our
context means that P authenticates to Q as a member of a DAA group created by an issuer I, but
Q does not learn the actual identity of P .

Canetti and Krawcyzk prove that the SIGMA protocol in Section 2.3 is secure in the key ex-
change model described above. However, this security model assumes concrete identity of each party
revealed during the protocol, so we will need to extend their model to accommodate anonymous
authentication where the actual identity of the protocol initiator cannot be disclosed. The technical
need is to have a specific identity to use to establish the matching sessions property. In particular,
each party P must verify that the peer Q is the same entity throughout an instance of the protocol.
To this end we make the following

Definition 3. Suppose P is a member of a group identified by idI , and let f(x) denote a one-way
function. A pseudo identity of P is a pair (idI , f(n)), where n is a randomly selected nonce.

We substitute anonymous identity instances in place of concrete identities in the SIGMA pro-
tocol. A principal P outputs (P̂ , s,Q) where P̂ = (idI , f(n)), and argue that this is an appropriate
identity for the Canetti-Krawcyzk key exchange model. Indeed, P ’s DAA signature proves its mem-
bership in a specific DAA group, but this by itself does not prove that the messages of the protocol
instance are exchanged with one single group member. To accomplish this, the definition of pseudo
identity requires P to send a commitment f(n) of the random value n to its peer Q, and then
P proves it knows n as part of authentication. The allows the matching sessions property to be
established, because an adversary cannot arrange for a second group member R to interject itself
into the protocol, because R does not know the value of n. We now define security of key exchange
with anonymous authentication in below.

Definition 4. A key exchange protocol with anonymous authentication π is secure if it is SK-secure
and anonymous.

The property of SK-security follows the Canetti-Krawcyzk key exchange model and is defined
as follows.
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Definition 5. A key exchange protocol with anonymous authentication π is SK-secure if for all
polynomial-time SK-adversaries A the following holds:

1. If two uncorrupted parties P and Q complete matching sessions Os,P and Os,Q of π with public

outputs (P̂ , s,Q) and (Q, s, P̂ ), respectively, where P̂ is the pseudo identity of P , then the session
key K for these two sessions is the same except with negligible probability.

2. A succeeds in distinguishing the output from its test query with probability no more than 1/2
plus a negligible fraction.

We now define the anonymous property of a key exchange protocol with anonymous authen-
tication. Roughly speaking, a key exchange protocol π is anonymous if the protocol initiator P
remains anonymous to its peer in the key exchange session. The definition of anonymity follows
the definition of the underlying anonymous digital signature schemes used in the protocol. For
example using DAA, we define the anonymity of a key exchange protocol π by following the user-
controlled-anonymity property of DAA in Appendix A. General speaking, a key exchange protocol
with anonymous authentication π is anonymous if there is no probabilistic polynomial-time adver-
sary can win the following game between a challenger C and an adversary A as follows:

– Initial: C assigns each entity a unique DAA private key. C also assigns a unique identity and a
regular signature key to A.

– Phase 1: C is probed by A who makes the following queries:

• Key exchange. A submits an entity’s identity P of his choice to C, who runs a key exchange
protocol π using P as the protocol initiator with A as the protocol responder.

• Corrupt. A submits an entity’s identity P of his choice to C, who responds with the DAA
private key of P .

– Challenge: At the end of Phase 1, A chooses two entities P0 and P1 of his choice. A must not
have made any corrupt query on either P0 or P1. To make the challenge, C chooses a bit b
uniformly at random, then runs a key exchange protocol π using Pb as the protocol initiator
with A as the protocol responder.

– Phase 2: A continues to probe C with the same type of queries that it made in Phase 1. However,
he is not allowed to corrupt either P0 or P1.

– Response: A returns a bit b′. We say that the adversary wins the game if b = b′.

Definition 6. Let A denote an adversary that plays the game above. A key exchange protocol π is
anonymous if for any polynomial-time adversary A, the probability of A in breaking the anonymity
game is no more than 1/2 plus a negligible fraction.

Note that the above definition of anonymity is generic to any group-based anonymous digital
signature schemes. We can modify the above definition to be DAA specific such that the identity of
the protocol initiator is unrevealed in the protocol but could be linkable under the entity’s control.
Similarly, we can modify the above definition for group signatures such that the identity of the
protocol initiator is anonymous but openable by a trusted group manager.

4 Proposed DAA-SIGMA Protocol

We now describe our daa-sigma key exchange protocol as follows. Our key exchange protocol
builds on top of the SIGMA protocol with the following changes: (1) P uses its DAA private key to
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signs the ephemeral DH public keys and (2) P uses (idI , g
x) as its pseudo identity in the protocol

where the one-way function is defined as f(x) = gx.
We assume the following initial information. Let P and Q be the two parties of the daa-sigma

key exchange protocol, where P is the protocol initiator who activates the session and Q is the
intended peer of the session.

– P has a DAA signing key issued by an issuer I whose identity is idI . P can use the DAA signing
algorithm daa-sig to create DAA signatures.

– Q has an identity idQ and a public-private key pair. Q can use his private key and a signature
algorithm sig to create a signature.

– Both entities agree on G, a cyclic group of prime order q in which the DDH problem is hard,
and g, a generator of G. For example, one can choose primes p and q such that q|p − 1, and
then choose a number g whose multiplicative order modulo p is q.

– The protocol uses a message authentication code family mac and a pseudorandom function
family prf.

The daa-sigma protocol has the following messages and steps.

Message 1 (P → Q) : s, gx

Message 2 (P ← Q) : s, gy , idQ,mack1(s, idQ), sigQ(s, g
x, gy)

Message 3 (P → Q) : s, idI , g
x,mack1(s, idI , g

x),daa-sigP (s, g
y, gx)

Sending Message 1

1. P chooses a session id s. Alternatively, session id s can be pre-negotiated by P and Q.
2. P picks a random x← Zq and computes its ephemeral DH public key gx.
3. P sends {s, gx} to Q.

Sending Message 2

1. Q picks a random y ← Zq and computes its ephemeral DH public key gy.
2. Q computes gxy = (gx)y.
3. Q derives two keys k0 = prfgxy(0), and k1 = prfgxy(1).
4. Q securely erases y and gxy from its memory.
5. Q computes mack1(s, idQ).
6. Q computes sigQ(s, g

x, gy) using its private key.
7. Q sends {s, gy, idQ,mack1(s, idQ), sigQ(s, g

x, gy)} to P .

Receiving Message 2

1. P computes gxy = (gy)x.
2. P derives two keys k0 = prfgxy(0), and k1 = prfgxy(1).
3. P securely erases x and gxy from its memory.
4. P verifies mack1(s, idQ) using derived key k1.
5. P retrieves the public key of Q from idQ.
6. P verifies sigQ(s, g

x, gy) using Q’s public key.
7. If one of the above verification steps fails, the session is aborted and outputs “failure”.

Sending Message 3
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1. P computes mack1(s, idI , g
x).

2. P uses its DAA signing key to compute daa-sigP (s, g
y, gx).

3. P sends {s, idI , g
x,mack1(s, idI , g

x),daa-sigP (s, g
y, gx)} to Q.

4. P completes the session with public output ((idI , g
x), s, idQ) and secret session key k0.

Receiving Message 3

1. Q verifies mack1(s, idI , g
x) using derived key k1.

2. Q retrieves the DAA group public key of the issuer I from idI .
3. Q verifies daa-sigP (s, g

y, gx) using the DAA group public key.
4. If one of the above verification steps fails, the session is aborted and outputs of “failure”.
5. Q completes the session with public output (idQ, s, (idI , g

x)) and secret session key k0.

5 Security Proof of the DAA-SIGMA Protocol

In Theorem 6 of [19] Canetti and Krawczyk prove that the SIGMA protocol is secure in their
model. Our security proof of the daa-sigma protocol follows their security proof. We replace the
signing algorithm of the protocol initiator P with the DAA signing algorithm and P ’s identity
with the pseudo identity (idI , g

x), where idI is the identity of the issuer and gx is an ephemeral
Diffie-Hellman value P generates. To prove the security of our daa-sigma protocol, we begin with a
review of the definition of the Decisional Diffie-Hellman (DDH) assumption, which is the assumption
underlying the security of all Diffie-Hellman based key exchange protocols.

Assumption 1 Let G, generated by g, be a cyclic group of prime order q. The DDH assump-
tion in G holds if the probability distributions of Q0 = {〈g, gx, gy, gxy〉 : x, y ← Zq} and Q1 =
{〈g, gx, gy , gr〉 : x, y, r ← Zq} are computationally indistinguishable.

In addition to the DDH assumption, the security of the key exchange protocol in Section 4 also
depends on the security of the underlying cryptographic primitives, namely, digital signatures,
message authentication codes, pseudo-random functions, and DAA. We have the following theorem.

Theorem 1. Under the DDH assumption in G and assuming the security of the underlying cryp-
tographic functions sig, mac, prf, daa-sig, the daa-sigma protocol in Section 4 is secure in the
model defined in Section 3.

To prove the above theorem, we prove the following two lemmas.

Lemma 1. If the underlying DAA scheme is secure, the daa-sigma protocol is anonymous in the
model defined in Section 3.2.

Proof. In the daa-sigma protocol, the protocol initiator P reveals s and gx to its peer in the first
message, and reveals s, idI , g

x, mack1(s, idI , g
x), and daa-sigP (s, g

y, gx) in the final message. Since
s and gx are randomly chosen at each session, if the DAA signature is anonymous, P only reveals
its pseudo identity (idI , g

x) to its peer, but not the real identity. To prove the daa-sigma protocol
is anonymous, we use the following reduction. Suppose there exists a polynomial-time adversary A
that breaks the anonymity game in Section 3.2, we can construct an algorithm B that breaks the
user-controlled-anonymity of DAA defined in Appendix A by interacting with A as follows:

– B received isk and gpk from the challenger.
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– B creates n entities, but does not assign any DAA private key to each entity.
– B chooses an identity idI for the DAA group and sends idI and gpk to A.
– B picks a unique identity and a regular signature key for A.
– B is probed by A with following two types of queries:
• A makes a key exchange query on an entity P . If P has not been queried before, B first runs

a join query with the challenger to create a DAA private key for P . Note that B does not
know the DAA private key of P . B simulates the daa-sigma protocol with A as follows:

1. B randomly chooses a session id s and x. B computes gx and sends s and gx to A.
2. B receives the daa-sigma message 2 from A and validates the message.
3. B computes gxy and derives k0 and k1 by following the daa-sigma protocol.
4. B computes mack1(s, idI , g

x). B then makes a sign query on P to the challenger with
the message m = (s, gy, gx) and obtains daa-sigP (s, g

y, gx).
5. B sends s, idI , g

x, mack1(s, idI , g
x), and daa-sigP (s, g

y , gx) to A.

• A makes a corrupt query on an entity P . If P has not been queried before, B first runs a
join query with the challenger to create a DAA private key for P . B then makes a corrupt
query to the challenger to obtain P ’s DAA private key. B forwards the private key to A.

– B receives the challenge from A with entities P0 and P1. B makes sure both entities have not
been corrupted. B simulates the daa-sigma protocol with A as in the key exchange query above,
except in step 4, B makes a challenge query to the challenger with P0, P1, and m = (s, gy , gx)
as input and obtains a DAA signature σ on (s, gy, gx) using Pb’s DAA private key, where b is
unknown to B. In the end, B sends s, idI , g

x, mack1(s, idI , g
x), and σ to A to simulate the

message 3 of the daa-sigma protocol.
– A can continue make key exchange and corrupt queries to B as far as A does not make corrupt

queries on either P0 or P1.
– A outputs b′ by guessing b. B outputs the same b′.

Let ǫ be the probability that A succeeds in breaking the anonymity game of the key exchange
protocol. B has the same probability ǫ in breaking the user-controlled-anonymity game of DAA.

Lemma 2. Under the DDH assumption in G and assuming the security of the underlying cryp-
tographic functions sig, mac, prf, daa-sig, the daa-sigma protocol in Section 4 is SK-secure in
the model defined in Section 3.2.

The proof of this lemma follows the security proof of the SIGMA protocol in [19]. Let us use the
term Σ-attacker to denote an SK-adversary attacking against the daa-sigma protocol. We need
to prove the two properties of secure key exchange protocol defined in Definition 5.

P1. If two uncorrupted parties P and Q complete matching sessions ((idI , g
x), s, idQ) and (idQ, s,

(idI , g
x)) respectively under the daa-sigma protocol then, except for a negligible probability,

the session key output in these sessions is the same.
P2. No efficient Σ-attacker can distinguish a real response from a random response with non-

negligible probability. More precisely, if a given Σ-attacker we define

1. Preal(A) = Pr [A outputs 1 when given the real test session key]
2. Prandom(A) = Pr [A ouptus 1 when given a random test session key]

then we need to prove that for any Σ-attacker A that |Preal(A)− Prandom(A)| is negligible.

For the proof we assume that the Σ-attacker A never exposes the test session, which would
represent an attack that does not undermine the protocol directly.
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5.1 Proof of Property P1

The proof for the first property in [19] goes over unchanged if we substitute our notion of a pseudo
identity for the identity of the initiator and if we replace the initiator’s signature scheme with
DAA. Let A be a Σ-attacker and let P and Q be two uncorrupted entities that complete matching
sessions ((idI , g

x), s, idQ) and (idQ, s, (idI , g
x)). We want to prove that both sessions output the

same session key k0 regardless of A’s operations. It is enough to show that both entities compute
the same DH value gxy from which k0 is derived.

Let us use uP to denote the DH public key send in the message 1 by P where uP = gx with x
chosen by P , and vP to denote the DH public key received in the message 2 of session s. Similarly,
let uQ be the DH public key received by Q in the message 1 and vQ be the DH public key send by
Q in the message 2 where vQ = gy with y chosen by Q. The signature produced by Q during the
session s is sigQ(s, uQ, vQ), while the signature that P verifies the message 2 is sigQ(s, uP , vP ). As
s is unique per session, the first signature is the only one that Q ever produces with the value s as
session id, then it must be that either all arguments of the first and second signatures are the same,
or A creates a forgery on the second signature. As we assume sig is a secure signature scheme, it
follows that except for a negligible probably, uP = uQ and vP = vQ. Now the DH value computed
by P is vxP = vxQ = (gy)x = gxy, while the DH value computed by Q is uyQ = uyP = (gx)y = gxy.
Thus both compute the same session key. This concludes our proof of property P1.

5.2 Proof of Property P2

The strategy in [19] to prove the second property is to show that any attacker who can distinguish
the real key from a random key with non-negligible probability can be used to construct a second
attacker against the DDH assumption or one of the underlying primitives – the signature scheme
sig, the MAC scheme mac, or the pseudo-random function prf. In our setting, we must replace
the initiator’s signature with a DAA signature, and its identity with a pseudo identity.

We now sketch the proof as follows. We show that any Σ-attacker A that succeeds in distin-
guishing between a real and a random response to the test session query, we can build a DDH
distinguisher D that distinguishes triple (gx, gy , gxy) from random triples (gx, gy , gr) with the same
success advantage as A, or there is an algorithm that we can construct explicitly that breaks one
of the underlying cryptographic primitives (i.e., sig, mac, prf, or daa-sig). The distinguisher D
gets input (gx, gy , z) where z is either gxy or gr for r ← Zq. D starts by simulating a run of A on
a virtual instantiation of the daa-sigma protocol Σ and use the values gx and gy from the input
triple as the DH public keys in the messages 1 and 2 of a randomly chosen session denoted s0,
initiated by A in this execution of the daa-sigma protocol. If A happens to choose this session s0
as its test session, then D can provide A with z as the response to the test query. In this case, if A
outputs that the response was real then D will decide that z = gxy, otherwise, D will decide that
z is random.

One difficulty with the above strategy is that D actually changes the regular behavior of the
parties in session s0, e.g., it uses the value z to derive the key k1 used in the mac function, we have
to show that the original ability of A to distinguish between “real” and “random”is not significantly
reduced by the simulation changes. Canetti and Krawczyk [19] addressed the difficulty by defining
a sequence of several simulators as follows which differ from each other by the way they choose k0
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and k1 used in the simulation of the s0 session.

Ŝ-real : k0 ← prfgxy(0), k1 ← prfgxy(1)

Ŝ-rprf : k0 ← prfk(0), k1 ← prfk(1), k ← random()

Ŝ-allr : k0 ← random(), k1 ← random()

Ŝ-hybr : k0 ← random(), k1 ← prfk(1), k ← random()

Ŝ-rand : k0 ← random(), k1 ← prfgxy(1)

Ŝ-real is the simulator that corresponds to a “real” run of A while Ŝ-rand corresponds to a
“random” experiment where the session key in session s0 provided to A is chosen as a random and
independent value k0. The rest of the simulators are “hybrid” simulators. It was shown in [19] that
either all the distributions generated by these simulators are computationally indistinguishable, or
that a successful distinguisher against DDH or against prf family exists. From this we get a proof
that Ŝ-real and Ŝ-rand are actually indistinguishable, and we conclude that the values Prandom

and Preal differ by at most a negligible quantity.
In the security proof of the second property by [19], several properties of the protocol are shown

that related to the authentication elements such as signatures (Lemma 7 in [19]) and mac (Lemma
11 in [19]). In the daa-sigma protocol, we replace the protocol initiator’s signature with a DAA
signature. We can show that

– If A does not have access to any legitimate DAA private keys, then Lemma 7.4 in [19] can be
used to break the unforgeability property of DAA.

– If A does control some valid DAA private keys, then the commitment in the pseudo identity
guarantees that the adversary cannot break the session key of two uncorrupted parties unless
he can break DDH assumption.

The above arguments easily follow the proof in [19]. The details will be given in the full paper.

6 Discussions and Extensions

In this section, we discuss several variants and possible extensions of the our daa-sigma protocol.
We begin with how to use group signature in the SIGMA key exchange protocol.

6.1 Using Group Signatures Instead of DAA

Although this paper primarily focuses on DAA, our daa-sigma protocol can be easily extended to
support group signatures [2, 5, 6, 29]. Both DAA and group signatures are group-based anonymous
signature schemes. That is, there is an issuer in both schemes who creates a group of members and
a group public key. Each group member has an individual private key. A DAA signature or a group
signature can be verified using the corresponding group public key. Group signatures are different
from DAA in that group signatures can be opened by a trusted authority and the identity of the
actual signer can be extracted, whereas DAA signature cannot be opened.

To use a group signature scheme in the key exchange protocol for anonymous authentication,
we can replace the DAA signature in the daa-sigma protocol with a group signature. We called
the modification as gs-sigma protocol. More specifically, we assume party P has a group private
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key issued by an issuer I. We use idI to denote the identity of the issuer and gs-sigP (m) to denote
a group signature on m created by P . The gs-sigma protocol has the following messages

Message 1 (P → Q) : s, gx

Message 2 (P ← Q) : s, gy, idQ,mack1(s, idQ), sigQ(s, g
x, gy)

Message 3 (P → Q) : s, idI , g
x,mack1(s, idI , g

x),gs-sigP (s, g
y, gx)

This gs-sigma protocol is secure in the key exchange model for anonymous authentication defined
in Section 3, if the DDH assumption holds and if the underlying sig, mac, prf, and gs-sig functions
are secure. The security proof is straight-forward from Section 5.

6.2 Use Certificates Instead of Identities

In the daa-sigma protocol presented in Section 4, idI and idQ represent the real identities of the
issuer and the party Q, respectively. We assume that P can obtain Q’s public key using idQ, and
similarly Q can obtain P ’s DAA public key from the identity of the issuer idI . In practice, we can
replace the identities with full certificates signed by a trusted Certificate Authority (CA). More
specifically, assume all the parties share the public key of the trusted CA. If an entity has a regular
public and private key pair, we assume it has a public-key certificate issued by the trusted CA. If
an entity has a DAA private key, we assume it has a certificate issued by the trusted CA to certify
the issuer and the DAA public key, denoted as certI . The certificate-based daa-sigma protocol
is presented as follows.

Message 1 (P → Q) : s, gx

Message 2 (P ← Q) : s, gy,certQ,mack1(s,certQ), sigQ(s, g
x, gy)

Message 3 (P → Q) : s,certI , g
x,mack1(s,certI , g

x),daa-sigP (s, g
y , gx)

Note that, in the above protocol, the protocol participants P and Q do not need to retrieve public
keys from the identities. Instead, they can use the public keys embedded in the certificate to verify
the signatures in messages 2 and 3. Canetti and Krawczyk proved the certificate-based SIGMA
protocol is secure in [19]. The security proofs for our certificate-based daa-sigma protocol should
work as well.

6.3 Supporting User-Controlled-Traceability and Revocation of DAA

As we mentioned earlier, the DAA signing algorithm takes the verifier’s basename bsn as an optional
input. If the basename is not given in the signing algorithm, we treat bsn = ⊥. DAA signatures
are unlinkable if bsn = ⊥ and linkable otherwise. This feature is called user-controlled-traceability
in [9], as the signer and verifier can negotiate whether to use basename. The daa-sigma protocol
in Section 4 only supports unlinkable DAA signatures, but it can be easily extended to support
user-controlled-traceability by passing the basename value in the protocol messages.

Another important feature of DAA is revocation. A revocation method in DAA proposed in [10,
12] is called signature-based revocation, where the issuer can revoke a DAA signer without knowing
the signer’s private key. In this revocation method, the issuer puts DAA signatures that are sus-
picious or were involved in malicious transactions to a revocation list denoted as sRL. The verifier
can request the signer to prove that his DAA signing key did not generate those signatures in the
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revocation list. To support this type of revocation, the verifier needs to sends the revocation list to
the signer so that signer can prove innocent. To support this revocation method in the daa-sigma
protocol, the revocation list sRL needs to be passed in the protocol messages.

We now extend the daa-sigma protocol to support the above two functionalities of DAA as
follows. In the following protocol, variables in brackets are optional fields.

Message 1 (P → Q) : s, gx, [idI ]

Message 2 (P ← Q) : s, gy, idQ, [bsnQ, sRL],mack1(s, idQ, [bsnQ, sRL]), sigQ(s, g
x, gy)

Message 3 (P → Q) : s, idI , g
x,mack1(s, idI , g

x),daa-sigP (s, g
y , gx)

Note that without the optional fields (i.e., idI in the message 1 and bsnQ and sRL in the message 2),
the above protocol is exact the same daa-sigma protocol as in Section 4. To support user-control-
traceability feature of DAA, Q can send its basename bsnQ in the message 2 so that P can create
the DAA signature with bsnQ as input. To support signature-based revocation, P first reveals
its DAA group (in this case, the identity of the issuer idI) to Q who can find the corresponding
revocation list sRL of the DAA group. Q then sends sRL to P in the message 2 so that P can prove
he has not been revoked in the message 3 as part of the DAA signature.

6.4 Mutual Anonymous Authentication using DAA

The daa-sigma protocol presented in Section 4 is a key exchange protocol with unilateral anony-
mous authentication. Take the example in Section 1, it is natural to have the protocol initiator
as the anonymous entity. It may not make sense for mutual anonymous authentication over the
Internet, as the protocol initiator needs to know who is the protocol responder in order to know
where to send the first message. Mutual anonymous authentication may be useful for ubiquitous
computing environments or for vehicle communication where two entities (e.g., mobile devices or
cars) are already physically close to each other and want to authenticate to each other anonymously.

We can extend the daa-sigma protocol to support mutual anonymous authentication as follows.
Assume each protocol party have a DAA private key for computing anonymous signatures, i.e., P
has a DAA key issued by an issuer I and Q has a DAA key issued by an issue I ′, where I and
I ′ could be the same entity or two separate entities. The messages 1 and 3 are the same as in
the Section 4. In message 2, Q uses (idI′ , g

y) as its pseudo identity instead of revealing its actual
identity idQ in order to be anonymous in the key exchange.

Message 1 (P → Q) : s, gx

Message 2 (P ← Q) : s, gy, idI′ ,mack1(s, idI′ , g
y),daa-sigQ(s, g

x, gy)

Message 3 (P → Q) : s, idI , g
x,mack1(s, idI , g

x),daa-sigP (s, g
y , gx)

7 Conclusions and Future Work

We presented in this paper a new security model for key exchange with anonymous authentication
derived from the Canetti-Krawczyk key exchange model. We proposed a modification to the SIGMA
key exchange protocol with DAA incorporated and with the notion of pseudo identity to achieve
anonymous authentication. We proved our daa-sigma key exchange protocol is secure under the
new security model. Future related research topics include
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1. Provide a formal security model for mutual anonymous authentication and prove our mutual
anonymous authentication protocol in Section 6 is secure.

2. Study how to incorporate DAA into SSL/TLS protocol with provable security under our new
security model.
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A Review Security Model of DAA

In this section, we review the specification and security model of DAA proposed in [9]. There are
four types of players in a DAA scheme: an issuer I, a TPMMi, a host Hi and a verifier Vj. Mi

and Hi form a platform in the trusted computing environment and share the role of a DAA signer.
A DAA scheme has three polynomial-algorithms (Setup,Verify, Link) and two interactive protocols
(Join,Sign):

Setup : On input of a security parameter 1k, I uses this randomized algorithm to produce a pair
(gpk, isk), where isk is the issuer’s secret key, and gpk is the public key including the global
public parameters.

Join : This randomized algorithm consists of two sub-algorithms Joint and Joini. Mi uses Joint to
produce a pair (ski, commi), where ski is the TPM’s secret key and commi is a commitment of ski.
On input of commi and isk, I uses Joini to produce crei, which is a DAA credential associated
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with ski. Note that the value crei is given to bothMi and Hi, but the value ski is known to
Mi only.

Sign : On input of ski, crei, a basename bsnj (the name string of Vj or a special symbol ⊥), and a
message m that includes the data to be signed and the verifier’s nonce nV for freshness,Mi and
Hi use this randomized algorithm to produce a signature σ on m under (ski, crei) associated
with bsnj . The basename bsnj is used for controlling the linkability.

Verify : On input of m, bsnj , a candidate signature σ for m, and a set of revoked secret keys RL,
Vj uses this deterministic algorithm to return either 1 (accept) or 0 (reject). How to build the
revocation list is out the scope of the DAA scheme.

Link : On input of two signatures σ0 and σ1, Vj uses this deterministic algorithm to return 1
(linked), 0 (unlinked) or ⊥ (invalid signatures). Link will output ⊥ if, by using an empty RL,
either Verify(σ0) = 0 or Verify(σ1) = 0 holds. Otherwise, Link will output 1 if signatures can be
linked or 0 if the signatures cannot be linked.

A DAA scheme is secure if it is correct, user-controlled-anonymous, and user-controlled-traceable.

Correctness If both the signer and verifier are honest, that implies ski 6∈ RL, the signatures and
their links generated by the signer will be accepted by the verifier with overwhelming probability.
This means that the DAA scheme must meet the following consistency requirement.

(gpk, isk)← Setup(1k), (ski, crei)← Join(isk, gpk),

(mb, σb)← Sign(mb, bsnj , ski, crei, gpk)|b={0,1},

=⇒ 1← Verify(mb, bsnj , σb, gpk, RL)|b={0,1} ∧ 1← Link(σ0, σ1, gpk)|bsnj 6=⊥.

User-Controlled-Anonymity A DAA scheme is user-controlled-anonymous if there is no probabilistic
polynomial-time adversary can win the following game between a challenger C and an adversary A
as follows:

– Initial: C runs Setup(1k) and gives the resulting isk and gpk to A.

– Phase 1: C is probed by A who makes the following queries:

• Sign. A submits a signer’s identity S, a basename bsn (either ⊥ or a data string) and a
message m of his choice to C, who runs Sign to get a signature σ and responds with σ.

• Join. A submits a signer’s identity S of his choice to C, who runs Joint with A to create sk

and to obtain cre from A. C verifies the validation of cre and keeps sk secret.

• Corrupt. A submits a signer’s identity S of his choice to C, who responds with the value sk
of the signer.

– Challenge: At the end of Phase 1, A chooses two signers’ identities S0 and S1, a message m and
a basename bsn of his choice to C. A must not have made any Corrupt query on either S0 or
S1, and not have made the Sign query with the same bsn if bsn 6= ⊥ with either S0 or S1. To
make the challenge, C chooses a bit b uniformly at random, signs m associated with bsn under
(skb, creb) to get a signature σ and returns σ to A.

– Phase 2: A continues to probe C with the same type of queries that it made in Phase 1. Again,
it is not allowed to corrupt any signer with the identity either S0 or S1, and not allowed to
make any Sign query with bsn if bsn 6= ⊥ with either S0 or S1.

– Response: A returns a bit b′. We say that the adversary wins the game if b = b′.
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Definition 7. Let A denote an adversary that plays the game above. We denote by Adv[Aanon
DAA] =

|Pr[b′ = b]− 1/2| the advantage of A in breaking the user-controlled-anonymity game. We say that
a DAA scheme is user-controlled-anonymous if for any probabilistic polynomial-time adversary A,
Adv[Aanon

DAA] is negligible.

User-Controlled-Traceability A DAA scheme is user-controlled-traceable if there is no probabilistic
polynomial-time adversary can win the following game between a challenger C and an adversary A
as follows:

– Initial: C executes Setup(1k) and gives the resulting gpk to A. It keeps isk secret.
– Probing: C is probed by A who makes the following queries:

• Sign. The same as in the game of user-controlled-anonymity.
• Semi-sign. A submits a signer’s identity S along with the data transmitted from Hi toMi

in Sign of his choice to C, who acts asMi in Sign and responds with the data transmitted
fromMi to Hi in the Sign protocol.

• Join. There are two cases of this query. Case 1: A submits a signer’s identity S of his choice
to C, who runs Join to create sk and cre for the signer. Case 2: A submits a signer’s identity
S with a sk value of his choice to C, who runs Joini to create cre for the signer and puts
the given sk into RL. C responds the query with cre. Suppose that A does not use a single
S for both of the cases.

• Corrupt. This is the same as in the game of user-controlled-anonymity, except that at the
end C puts the revealed sk into the list of RL.

– Forge: A returns a signer’s identity S, a signature σ, its signed message m and the associated
basename bsn. We say that the adversary wins the game if

1. Verify(m, bsn, σ, gpk, RL) = 1 (accepted), but σ is neither a response of the existing Sign
queries nor a response of the existing Semi-sign queries (partially); and/or

2. In the case of bsn 6= ⊥, there exists another signature σ′ associated with the same identity
and bsn, and the output of Link(σ, σ′) is 0 (unlinked).

Definition 8. Let A be an adversary that plays the game above. Let Adv[Atrace
DAA] = Pr[A wins]

denote the advantage that A breaks the user-controlled-traceability game. We say that a DAA scheme
is user-controlled-traceable if for any probabilistic polynomial-time adversary A, Adv[Atrace

DAA] is
negligible.
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