
Unconditionally Secure Rational Secret Sharing
in Standard Communication Networks

Zhifang Zhang1,2 and Mulan Liu1

Key Laboratory of Mathematics Mechanization, Academy of Mathematics and
Systems Science, CAS, Beijing, China

zfz@amss.ac.cn

Abstract. Rational secret sharing protocols in both the two-party and
multi-party settings are proposed. These protocols are built in standard
communication networks and with unconditional security. Namely, the
protocols run over standard point-to-point networks without requiring
physical assumptions or simultaneous channels, and even a computa-
tionally unbounded player cannot gain more than ε by deviating from
the protocol. More precisely, for the 2-out-of-2 protocol the ε is a negligi-
ble function in the size of the secret, which is caused by the information-
theoretic MACs used for authentication. The t-out-of-n protocol is (t−1)-
resilient and the ε is exponentially small in the number of participants.
Although secret recovery cannot be guaranteed in this setting, a partici-
pant can at least reduce the Shannon entropy of the secret to less than 1
after the protocol. When the secret-domain is large, every rational player
has great incentive to participate in the protocol.

Keywords rational secret sharing, ε-Nash equilibrium, unconditional security

1 Introduction

Secret sharing [2, 18] is an important tool in cryptography. The widely used t-
out-of-n scheme is that a dealer holding a secret distributes shares among n
players such that any group of t or more players can recover the secret from
their shares while any group of fewer than t players can not. In 2004 Halpern
and Teague [8] studied the problem in a game theoretic sense and proposed
rational secret sharing which is to fulfill the task among rational players who
only act in their own self-interest. As Halpern and Teague pointed out that no
rational player would broadcast his share in a deterministic recovering process,
since keeping silence can guarantee him a utility that is equal to and sometimes
even higher than the utilities of other players (because he might be the only
one who gets the secret). Therefore most previous secret sharing schemes fail
in the rational setting which requires to design a protocol such that all rational
players have the incentive for participation. Furthermore, it is more desirable
to design a protocol where no player has an incentive to deviate as long as the
other players follow the protocol. This requirement is captured by the notion of

equilibrium in game theory. Although many rational secret sharing schemes [1,
14, 12, 13, 15, 5, 7–11, 20] have been developed achieving kinds of equilibria, they
are less satisfactory in some of the following aspects:

Notions of equilibria. Halpern and Teague [8] first proposed achieving a
Nash equilibrium surviving iterated deletion of weakly dominated strategies. But
Kol and Naor [10] later pointed out that some “intuitively bad” strategies can-
not be deleted anyway, then they proposed the notion of strict Nash equilibrium
requiring that each player’s strategy is his unique best response to other players’
strategies. Although strict Nash equilibrium is a more appealing notion, it is too
restrictive to be achieved in many cases. Kol and Naor only achieved strict Nash
equilibrium in the two-party case assuming the existence of simultaneous broad-
cast channels 1. In non-simultaneous channels, only an approximate equilibrium
(i.e. ε-Nash equilibrium) was achieved. Recently, Fuchsbauer et al. [5] proposed
computational strict Nash equilibrium and computational Nash equilibrium that
is stable with respect to trembles. Efficient schemes achieving these equilibria
were built in standard communication networks, but only computational secu-
rity was guaranteed during the protocols. Moreover, equilibria concerning about
sequential rationality, such as everlasting Nash equilibrium [10] and sequential
equilibrium [20], were also achieved in the simultaneous channel.

Communication models. Halpern and Teague [8] first assumed private
channels, the simultaneous broadcast channel as well as an on-line dealer. Gor-
don and Katz [7] removed the on-line dealer by using a secure multi-party com-
putation protocol among players, but the simultaneous broadcast channel was
still necessary. Actually, many rational secret sharing protocols [1, 14, 15, 20] rely
on the assumption of simultaneous channels. Besides, some protocols [9, 12, 13]
use even stronger assumptions such as secure envelopes and ballot boxes.

Coalition-resilience. The main drawback of Kol and Naor’s construction
[10] is that it cannot resist the collusion attack of even two players. But coalition-
resilience is an important requirement for t-out-of-n secret sharing. Previous
protocols achieved good resilience in either simultaneous broadcast channels [1]
or in the computational setting [5, 11].

Unconditional/computational security. In the computational setting,
equilibria with good properties (e.g. coalition-resilience [11]) could be achieved
and more efficient protocols could run in standard communication networks [5],
but it works in the condition that all players are computationally bounded.
When higher security is required or players’ computing power is unclear, a ratio-
nal secret sharing protocol with unconditional security (i.e., in the information
theoretic setting, such as [10]) is more reliable.

It can see that there is a tradeoff between the above aspects. In this work
we focus on rational secret sharing that is coalition-resilient in the information
theoretic setting and standard communication networks, at the cost of achieving

1 When using simultaneous broadcast channels, players must decide on what value (if
any) to broadcast in a given round before observing the values broadcast by other
players.

ε-Nash equilibria only. But we will see that the “ε” is quite small and mostly
acceptable.

1.1 Our Results and Main Ideas

We first design a 2-out-of-2 rational secret sharing protocol with unconditional
security in standard communication networks. The main idea is distributing to
player P1 (resp. P2) a list of length l1 (resp. l2) where l2 ≤ l1 ≤ l2 + 1. Each
cell of the lists contains a value, and all the values jointly determine the secret.
The recovering phase consists of at most l1 + 1 iterations. In each iteration, say,
the j-th iteration, P1 first broadcasts the value in his j-th cell, then P2 does
similarly. Since the two cases l1 = l2 +1 and l1 = l2 both are possible, P1 and P2

cannot know which case really happens before the protocol ends. Therefore each
player still has an incentive to broadcast the value even if it comes to his last cell.
This protocol achieves an ε-Nash equilibrium, where ε is a negligible function
in the size of the secret and is caused by the information-theoretic MACs used
inside.

Then we build a t-out-of-n rational secret sharing protocol that is (t − 1)-
resilient. Since in the information theoretic setting with non-simultaneous chan-
nels, a coalition of t−1 players can easily get the secret earlier than other players
and leave the protocol early, we try to insure that the innocent players (i.e. play-
ers who follow the protocol) get as much information as possible. The main idea
is to divide each cell into two parts where two values are stored respectively, and
the two values are both possible to be the secret if the secret appears in this cell.
In each iteration, players first broadcast the first part of the current cell in some
order, then the second part. The index indicating whether the current value is
the secret or not is to be revealed only after the next value has been recovered.
More precisely, suppose the secret appears in the j-th cell which contains s0

j

and s1
j respectively in the two parts. Even the players in a (t − 1)-coalition at

most know that Prob[s = s0
j] = q and Prob[s = s1

j] = 1 − q for some constant
q before seeing the index I1

j (i.e. I1
j = 0 if s = s1

j , and I1
j = 1 if s = s0

j). But
I1
j is to be revealed only after recovering s1

j (by that time s0
j has already been

recovered). Therefore after the coalition determines the secret s and leaves the
protocol, the rest players at least know s = s0

j or s1
j , which is also a pleasant

result when the secret-domain is large. On the other hand, the extra gain of the
deviating coalition is at most ε, where ε is exponentially small in the number of
participants in the recovering process.

1.2 Related Work

Table 1 displays comparisons in some aspects between our protocols in this paper
and those in some previous work.

Kol and Naor [10] provided constructions in both simultaneous and non-
simultaneous channels in the information theoretic setting. Our constructions
are similar to theirs in that shares are both in the form of lists with different

equilibrium channel coalition resilience security

KN-[10] strict Nash simultaneous 1-resilient unconditional
ε-Nash non-simultaneous 1-resilient unconditional

ADGH-[1] ε-Nash simultaneous k-resilient computational/
unconditional

FKN-[5] strict Nash non-simultaneous (t− 1)-resilient computational

This paper ε-Nash non-simultaneous (t− 1)-resilient unconditional

Table 1.

length and the recovering is accomplished by revealing the lists cell by cell. But
our 2-out-of-2 protocol is more efficient because shorter lists are involved and
simpler cells are contained. Details will be found in the remarks after Theorem 1.
General k-resilience was discussed in [1] where it achieved unconditional security
for k < n

3 and computational security for k < n. But the protocols in [1] relied
on simultaneous channels. Efficient protocols with optimal coalition resilience
in standard communication networks were designed in [5]. Most importantly, it
achieved equilibria with appealing properties, such as strict Nash, and stability
with respect to trembles. But only computational security was guaranteed from
the beginning of the recovering process.

2 Preliminaries

In this section it introduces notions about rational secret sharing and information-
theoretic MACs, as well as concepts of the equilibrium to be achieved in this
work.

2.1 Secret Sharing and Players’ Utilities

In a t-out-of-n secret sharing scheme, a dealer (denoted as Dealer hereafter)
holding a secret distributes shares among n players such that the following two
conditions are satisfied:

1. Recoverability. Any group of t or more players puting their shares together
can uniquely determine the secret.

2. Secrecy. Any group of fewer than t players cannot recover the secret.

It usually assumes that Dealer is the trusted third party and each player is either
honest or malicious. In a game theoretic view, it is more realistic to view each
player as a rational party who acts only in his interest. To model rationality, we
define for each player Pi a real-valued utility function ui such that everyone’s
interest is to maximize his utility. The commonly used assumptions for defining
utilities in rational secret sharing are as follows [8]:

– Each player always prefers to learn the secret than to not learn it;

– Secondarily, each player prefers that the fewer of the other players who get
it, the better.

In particular, we define four utility values for each player Pi :

(1) ui = a if Pi gets the secret while Pj does not for any j 6= i;
(2) ui = b if Pi gets the secret and so does Pj for some j 6= i;
(3) ui = c if Pi does not get the secret and neither does Pj for any j 6= i;
(4) ui = d if Pi does not get the secret while Pj does for some j 6= i.

From the common assumptions on utilities, it obviously holds that a > b > c > d.
Let S denote the secret-domain and |S| be the cardinality of S. Then by guessing
the secret uniformly from S, a player at most gets the utility

Urandom =
1
|S|a + (1− 1

|S|)c .

To make every player has the incentive to participate in a protocol for secret
recovering, it requires b > Urandom.

Concerning about coalitions, for simplicity we additionally assume that

– Once a player joins a coalition, he will never leave the coalition before the
protocol ends;

– Players in the same coalition always share all information they jointly have.

Given an execution of a protocol, let C(i) denote the coalition that Pi joined
in. Thus all players in C(i) have the same utility as Pi. As an extension, we
similarly define the four utility values a, b, c, d for each player Pi as in (1)-(4)
just replacing “j 6= i” with “j 6∈ C(i)”.

When no coalition is formed, namely, C(i) = {i} for any i ∈ {1, ..., n}, the
problem is much easier [10]. In this work we deal with the most general coalitions
in t-out-of n secret sharing, i.e. 1 ≤ |C(i)| ≤ t− 1.

2.2 Notions of Equilibria

In the recovering process of a secret sharing scheme, view the interaction between
players as a game among the n players. Let σ = (σ1, ..., σn) denote a strategy
profile of players, where σi is Pi’s strategy for 1 ≤ i ≤ n. Usually, we let σ−i

denote the strategy profile of all players except Pi and σC denote the strategy
profile constricted to the coalition C ⊆ {1, ..., n}. Given a strategy profile σ, it
induces the utility ui(σ) for each player Pi. Referring to the definitions in [1, 5,
10, 11], we give some notions of equilibria as follows:

Definition 1. A strategy σ induces an ε-Nash equilibrium if for any player Pi

and any strategy σ′i of Pi, it holds that

ui(σ′i, σ−i) ≤ ui(σi, σ−i) + ε .

When ε = 0 it is the well-known Nash equilibrium [16]. In some cases, a Nash
equilibrium in the strict sense is hard to compute [3], while computing the ε-
approximate Nash equilibrium is much easier [4]. Therefore, the ε-Nash equilib-
rium is also an appealing notion for a small ε.

Definition 2. A strategy σ induces an k-resilient ε-Nash equilibrium if for any
coalition C of at most k players (i.e. |C| ≤ k) and for any strategy profile σ′C of
the coalition C, it holds that

ui(σ′C , σC) ≤ ui(σC , σC) + ε for any i ∈ C ,

where C denotes the complement of C.

When k = 1 it is the ε-Nash equilibrium just defined. In this work, we realize
the resilience for k = t− 1 in a t-out-of-n secret sharing scheme. Obviously, this
is the optimal coalition resilience in the t-out-of-n case.

2.3 Information-Theoretic MACs

We refer to [6] for the description of information theoretically secure message
authentication codes (MACs). A message authentication code consists of three
polynomial-time algorithms (Gen,Mac,Vrfy). The key-generation algorithm Gen
takes as input the security parameter 1m and outputs a key k. The message au-
thentication algorithm Mac takes as input a key k and a message M ∈ {0, 1}≤m,
and outputs a tag t; we write this as t = Mack(M). The verification algorithm
Vrfy takes as input a key k, a message M and a tag t, and outputs a bit b; i.e.,
b = Vrfyk(M, t). We regard b = 1 as acceptance and b = 0 as rejection, and
require that for all m, all k output by Gen(1m), all M ∈ {0, 1}≤m, it holds that
Vrfyk(M, Mack(M)) = 1.

Definition 3. (Gen,Mac,Vrfy) is an information-theoretic MAC if for any M ∈
{0, 1}≤m, k = Gen(1m), t = Mack(M), and for any (computationally unbounded)
adversary A, the following probability is negligible in m:

µ(m) = Prob [(M ′, t′) ← A(M, t) : Vrfyk(M ′, t′) = 1
∧

M ′ 6= M] .

For example, an information-theoretic MAC can be built as follows [17, 19]:
Let F be a finite field, the key is (α, β) ∈ F2. For a message M ∈ F, the tag is
generated as t = β − αM ∈ F.

3 Rational Secret Sharing: The 2-Out-of-2 Case

In this section we give a 2-out-of-2 rational secret sharing protocol in standard
communication networks (i.e. point-to-point and non-simultaneous channel) and
with unconditional security. Denote the protocol by Π, we describe Π in terms
of Dealer’s protocol and players’ protocol separately. Actually, Dealer’s protocol

corresponds to the distributing phase, and players’ protocol corresponds to the
recovering phase where only players are active.

Let S = {0, 1}m be the secret-domain and s ∈ S be the secret. For player
P1 and P2, let a, b, c, d be the utility values as defined in Section 2.1. Suppose
(Gen,Mac,Vrfy) is an information-theoretic MAC.

Dealer’s Protocol.
1. Choose an integer l ∈ N according to a geometric distribution with pa-

rameter p 2, where p is a constant to be determined later (in Theorem 1).
2. Determine the two integers l1 and l2 such that l1 + l2 = l + 1 and l2 ≤

l1 ≤ l2 + 1.
3. Randomly select a1, ..., al1 ∈ S and b1, ..., bl2 ∈ S such that

(⊕l1
i=1ai)⊕ (⊕l2

i=1bi) = s .

4. Generate secret keys α1, ..., αl2+1 and β1, ..., βl1 for the MAC by Gen(1m).
Construct two lists L1 and L2 of length l1 and l2 respectively, where for 1 ≤ i ≤ l1
(resp. 1 ≤ i ≤ l2) the i-th cell of L1 (resp. L2) contains ai, Macαi

(ai) and βi−1

(resp. contains bi, Macβi
(bi) and αi).

5. Send the list L1 and the secret key βl1 (resp. the list L2 and the secret key
αl2+1) to P1 (resp. P2).

Players’ Protocol.
It consists of l1 or l1 +1 iterations. For 1 ≤ j ≤ l1 +1, the j-th iteration goes

along the following two rounds:
1. Denote by (b′j−1, t

(b)
j−1) the message that P1 received from P2 in last round.

Player P1 first checks if it holds Macβj−1(b
′
j−1) = t

(b)
j−1 (Note for j = 1 this check

is not needed). If it holds, then P1 sends (aj ,Macαj (aj)) to P2; otherwise, P1

quits and outputs (⊕j−1
i=1ai)⊕ (⊕j−2

i=1 b′i) as the secret.
2. Denote by (a′j , t

(a)
j) the message that P2 received from P1 in last round.

Player P2 checks if it holds Macαj
(a′j) = t

(a)
j . If it holds, P2 sends (bj ,Macβj

(bj))
to P1; otherwise, P2 quits and outputs (⊕j−1

i=1a′i)⊕ (⊕j−1
i=1 bi) as the secret.

If a player’s list comes to the end, i.e., the j-th cell of his list is empty,
then after verifying the message just received from the opposite, he sends the
message “end” in the j-th iteration. After that both players stop running and
set the secret to be the XOR of all the values revealed so far.

In brief, the recovering process is accomplished by letting the two players
alternately reveal their lists cell by cell, while P1 goes first. Figure 1 describes
the recovering process when l1 = l2.

Then we give some intuition as to why the recovering process of Π (i.e.
players’ protocol) is an ε-Nash equilibrium for an appropriate choice of p, where
ε = ε(m) is a negligible function in length of the secret.

2 Suppose in each coin toss, the Head appears with probability p. Then l is the number
of independent tosses needed until the first Head turns up.

a1, Macα1(a1) a2, Macα2(a2), β1 · · · · · · al1 , Macαl1
(al1), βl1−1

L1 :

? ¡
¡

¡
¡¡µ

? ¡
¡

¡
¡¡µ

¡
¡

¡
¡¡µ

? ¡
¡

¡
¡¡µ

?

(a1, Mac(a1)) (b1, Mac(b1))
(a2, Mac(a2))

(b2, Mac(b2))

(al1 , Mac(al1))

(bl2 , Mac(bl2))

end

b1, Macβ1(b1), α1 b2, Macβ2(b2), α2 · · · · · · bl2 , Macβl2
(bl2), αl2L2 :

Fig. 1. The recovering process when l1 = l2.

(a) P1 has no incentive to deviate in the first iteration.
Since l1+l2 = l+1 > 1, it must have l2 ≥ 1. Namely, P2 at least holds a value
that contributes to determining s. P1 cannot get this value if his message
broadcast in the first iteration does not pass verification of the MAC. So by
deviating, P1 can get utility at most µ(m)a+(1−µ(m))Urandom, where µ(m)
is the probability of successfully forging an MAC as defined in Definition 3
and Urandom = 1

|S|a+(1− 1
|S|)c is an upperbound of the utility that a player

can get by guessing the secret uniformly from S. By requiring

µ(m)a + (1− µ(m))Urandom < b (1)

P1 has no incentive to deviate in this iteration.
(b) For 2 ≤ j ≤ l1, P1 has no incentive to deviate in the j-th iteration.

Similarly to the analysis in (a), P1 has no incentive to deviate through iter-
ation 2 to l1 − 1. Achieving the l1-th iteration, with probability p it holds
that l2 = l1− 1, i.e. P2’s list has run out. In this situation, P1 can get utility
at most a by deviation. But if l2 = l1 which happens with probability 1− p,
P1 get at most µ(m)a + (1 − µ(m))Urandom. Therefore P1 will not deviate
by requiring

pa + (1− p)(µ(m)a + (1− µ(m))Urandom) < b . (2)

Note that inequality (2) implies inequality (1).
(c) For 1 ≤ j ≤ l2, P2 has no incentive to deviate in the j-th iteration.

The analysis is similar to that of (b).
(d) P1 (resp. P2) cannot increase his utility more than ε by deviating in the

(l1 + 1)-th (resp. the (l2 + 1)-th) iteration.
In the (l1 + 1)-th iteration and after verifying the MAC, P1 already knows
that l2 = l1 and he can determine s = (⊕l1

i=1ai) ⊕ (⊕l2
i=1b

′
i). But P2 still

does not know whether P1’s list is longer than his or not. P1 can deceive P2

by continuing to send a fake value in the (l1 + 1)-th iteration which passes
verification of the MAC under the secret key αl1+1 = αl2+1, and the success
probability is at most µ(m) due to security of the MAC. Thus P1 can get
utility at most µ(m)a + (1− µ(m))b. Therefore,

ε(m) = µ(m)a + (1− µ(m))b− b = µ(m)(a− b) .

The analysis of P2’s (l2 + 1)-th iteration is similar.

From the analysis (a)-(d), it immediately has the following theorem.

Theorem 1. If the parameter p satisfies the inequality (2), then the protocol
Π for 2-out-of-2 rational secret sharing induces an ε-Nash equilibrium with ε =
µ(m)(a − b), where µ(m) is the negligible probability of successfully forging an
information-theoretic MAC.

Remark 1. The 2-out-of-2 protocol in [10] used lists of length l′ − 1 and l′ +
d′ − 1 respectively, where l′ and d′ both were chosen according to a geometric
distribution with parameter β. Our protocol Π uses lists of length l1 and l2
respectively where l1 + l2 − 1 is chosen according to a geometric distribution
with parameter p. Since both β and p are determined by the utility values under
the similar inequalities, we can simply regard β = p. Then the expected length
of lists in [10] are 1

p − 1 and 2
p − 1, while our lists are both of length about 1

2p .
That is, we only need the list that is almost half as long as the shorter list in
[10], which means the expected size of shares in our protocol is smaller.

Remark 2. Since in [10] the shorter list was just a prefix of the longer one and
every value alone could possibly be the secret, a player can certainly determine
the secret if he finds all his remain cells contain the same value. To fix this
problem, it masked each value by a random number for each cell. Thus the
cells in [10] contained both the masked value and share of the mask. But in our
protocol, the secret is jointly determined by all values contained in the two lists,
a player cannot determine the secret even if he sees all values in his list. Therefor
no mask is needed in our protocol and our lists consist of simpler cells.

4 Rational Secret Sharing: The t-Out-of-n Case

We now construct a t-out-of-n rational secret sharing protocol in the information
theoretic setting. Since it is in non-simultaneous channels and (t− 1)-resilience
is required, the protocol is not a simple extension of the protocol Π constructed
in Section 3. Denote the t-out-of-n protocol by Π ′. We still describe Π ′ in terms
of Dealer’s protocol and players’ protocol separately.

Dealer’s Protocol.
1. Choose integers l∗ and d according to a geometric distribution with pa-

rameter p′, where p′ is a constant to be determined later (in Theorem 2).
2. Randomly select σ ∈ {0, 1} such that Prob[σ = 0] = q, where q is a

constant to be determined later (in Theorem 2).
3. Construct a list of length l = l∗ + d. For 1 ≤ j ≤ l, the j-th cell contains:

– Main: (s0
j , s

1
j) ∈ S2, where S is the secret-domain. In particular, it requires

sσ
l∗ = s and the other values are randomly chosen.

– Index: (I0
j , I1

j) ∈ {0, 1}2 where

I0
j =

{
1, if j − 1 = l∗ and σ = 1
0, otherwise , I1

j =
{

1, if j = l∗ and σ = 0
0, otherwise .

For consistence, fix I0
1 = 0.

– Permutation: πj ∈ Πn where Πn denotes the set of all permutations on
{1, ..., n} 3.

4. Randomly select a permutation π0 ∈ Πn, and send π0 to all players.
5. Suppose i0 ∈ {1, ..., n} appears first in the permutation πl∗−1. Construct

n lists, denoted by L1, ..., Ln, where Li0 is of length l∗ and the other n− 1 lists
are of length l. For 1 ≤ i ≤ n and 1 ≤ j ≤ l, the j-th cell of Li contains: (Note
the list Li0 ends after the l∗-th cell)

– Share of main: s0
ji and s1

ji, where s0
ji (resp. s1

ji) is a (t, n)-share 4 of s0
j (resp.

s1
j).

– Share of index: I0
ji and I1

ji, where I0
ji (resp. I1

ji) is a (t, n)-share of I0
j (resp.

I1
j).

– Share of permutation: πji which is a (t, n)-share of πj .
– Authentication information: The tags

{Macαj,i,h
(s0

ji), Macα′j,i,h
(s1

ji), Macβj,i,h
(I0

ji), Macβ′j,i,h
(I1

ji), Macγj,i,h
(πji) | 1 ≤ h ≤ n,

h 6= i }

and the keys {αj,h,i, α
′
j,h,i, βj,h,i, β

′
j,h,i, γj,h,i | 1 ≤ h ≤ n, h 6= i}. We note

that the key αj,h,i is used to verify a tag of s0
jh and is stored in the j-th cell

of Li.

6. For 1 ≤ i ≤ n, send the list Li to player Pi.

Players’ Protocol.
Suppose k (k ≥ t) players are to jointly recover the secret. The recovering

process consists of at most l iterations. In the j-th iteration for 1 ≤ j ≤ l, if the
protocol does not end, the players do the following:

1. Recover s0
j . In the order determined by the permutation πj−1, each player

(say, Pi) sends to the other players (s0
ji,Mac(s0

ji)). Hereafter we usually omit
the key in the MAC because it is clearly determined by the message and the
receiver. Players verify the MACs after receiving messages. If all messages pass
the verification, then each player recovers s0

j .
2. Recover I0

j . Still in the order of πj−1 players send their shares along with
MACs, and then recover I0

j .
3. Recover s1

j . Same as above.
4. Recover I1

j . Same as above.

3 Precisely, the permutation πj denotes an order in which players send messages in
the (j + 1)-th iteration.

4 The share can be generated by Shamir’s (t, n)-threshold secret sharing scheme.

5. Recover πj . Same as above.
In any of the above five steps, a player quits from the protocol at encountering

any one of the following situations.

– His list has run out. Then he quits and sets the secret to be the last value
he recovered. For example, if his list is of length l′ and the protocol does not
end after the first l′ iterations, then he quits in the (l′ + 1)-th iteration and
sets s = s1

l′ .
– Find some index Iδ

j = 1. Then he quits and sets s = s1−δ
j−1+δ.

– Find someone cheats in recovering s0
j . Then he quits and sets s = s1

j−1.
– Find someone cheats in recovering I0

j . Then he quits and sets s = s1
j−1 with

probability 1− q and s = s0
j with probability q.

– Find someone cheats in recovering s1
j . Then he quits and sets s = s0

j .
– Find someone cheats in recovering I1

j . Then he quits and sets s = s0
j with

probability q and s = s1
j with probability 1− q.

– Find someone cheats in recovering πj . Then he quits and sets s = s1
j .

Now we give some analysis to explain why the recovering process of Π ′ in-
duces an ε-Nash equilibrium with (t−1)-resilience. For simplicity, we neglect the
negligible part of ε caused by successfully forging the MAC. As a warm-up, we
first show that any single player has no incentive to deviate from the protocol.
For a single player Pi, there are two cases:

(a) Pi holds a list of length l.
It is important to note that Pi cannot know he is holding the long list until
the protocol ends or it comes to his last cell (i.e. the l-th cell). Therefore,
for 1 ≤ j < l, Pi guesses l∗ = j and deviates in the j-th iteration, then he
can get utility at most p′a + (1− p′)Urandom. Pi has no incentive to deviate
if it holds

p′a + (1− p′)Urandom < b . (3)

When it comes to the last cell (i.e. the l-th cell) and Pi is not the first one to
send messages according to πl−1, then Pi knows that l∗ = l−1 and s = s1

l−1.
Actually, every other player can also conclude s = s1

l−1 no matter what Pi

does in the l-th iteration. Thus Pi has no incentive to deviate.
(b) Pi holds a list of length l∗.

Similarly, it can see that Pi has no incentive to deviate in the j-th iteration
for 1 ≤ j ≤ l∗ − 1, if the inequality (3) holds. When it comes to the l∗-
th iteration Pi knows he is holding the short list because he is the first to
send messages in that iteration. Since Pi is the first one to talk in the l∗-th
iteration, when Pi determines for sure what the secret is, so do the other
players. Thus Pi has no incentive to deviate.

Then we give some intuition as to why the recovering process of Π ′ is (t−1)-
resilient. For any coalition C with 1 < |C| ≤ t− 1, there are two cases:

(c) The short list holder is contained in C.
Since the lists are of different length, players in C can easily determine l∗

in advance. Thus ignoring the negligible probability of forging the MAC
successfully, the best option for players in C is to get as much information
about {s0

l∗ , s
1
l∗ , I

1
l∗} as possible and secondarily, to make players outside C

know as little as possible. It is easy to see that if the inequality (3) holds C
has no incentive to deviate before the l∗-th iteration. In the l∗-th iteration,
• If C deviates in recovering s0

l∗ , the best result for C is that they get s0
l∗

while no one else does. Thus C guesses s = s0
l∗ and the other players set

s = s1
l∗−1. Since Dealer set s = s0

l∗ with probability q, C guesses wrong
with probability 1− q. Therefore by deviating players in C get utility at
most qa + (1− q)c. Requiring

qa + (1− q)c < b , (4)

then C has no incentive to deviate.
• When recovering I0

l∗ , since I0
l∗ only indicates whether s1

l∗−1 is the secret
or not which C has already known. Besides, at this time players outside C
already get s0

l∗ which means they also have opportunity to get the right
secret even if C deviates. Based on the inequality (4), C has no incentive
to deviate.

• If C deviates in recovering s1
l∗ , then players in C set s = s0

l∗ with proba-
bility q and set s = s1

l∗ with probability 1− q. By the protocol Π ′, after
detecting someone cheats in recovering s1

l∗ , each of the players outside C
sets s = s0

l∗ and quits. If Dealer set σ = 0 (which happens with proba-
bility q), then with probability q all players get the right secret and with
probability 1 − q players in C guess wrong while others guess right. If
Dealer set σ = 1 (which happens with probability 1 − q), then players
outside C get the wrong secret, while C guesses right with probability
1− q.
Thus deviation in recovering s1

l∗ makes players in C get utility at most

q(qb+(1−q)d)+(1−q)(qc+(1−q)a) = (1−q)2a+q2b+q(1−q)(c+d) .

By requiring

(1− q)2a + q2b + q(1− q)(c + d) < b , (5)

C has no incentive to deviate.
• If C deviates in recovering I1

l∗ , we will show that players in C can increase
the utility by at most ε = O(λk) where k is the number of participants
in the recovering process and λ < 1 is a constant determined by q.
After deviation players in C can determine the secret, while each player
outside C sets s = s0

l∗ with probability q and s = s1
l∗ with probability

1− q. Suppose |C| = c, then there are k − c players outside C. If Dealer
set σ = 0, then the probability that none of the k−c players outputs the

right secret is (1 − q)k−c, while if σ = 1, this probability is qk−c. Thus
by deviation players in C get utility at most

UD = q((1− q)k−ca + (1− (1− q)k−c)b) + (1− q)(qk−ca + (1− qk−c)b)
= (q(1− q)k−c + (1− q)qk−c)a + (1− q(1− q)k−c − (1− q)qk−c)b .

Therefore ε = UD − b = (q(1 − q)k−c + (1 − q)qk−c)(a − b). Denote
λ = max{q, 1− q}, then ε ≤ λk−c(a− b) = O(λk).

• Neglecting the negligible probability of successfully forging a MAC, C
has no incentive to deviate after recovering I1

l∗ , because C has already
known the secret and players outside C can also output the right secret.

(d) The short list holder is not contained in C.
Then the coalition C can only know l∗ ≤ l − 1 in advance. By the analysis
similar to that of (a), C has no incentive to deviate in the j-th iteration for
1 ≤ j < l− 1. In the (l− 1)-th iteration, similar to the analysis of the fourth
situation in (c), C can only increase the utility by at most λk−c(a−b) if they
deviates from the protocol.

From the analysis (a)-(d) above, we can get the following theorem.

Theorem 2. Let the parameters p′, q and the utility values satisfy the in-
equalities (3)-(5), then the protocol Π ′ for t-out-of-n rational secret sharing
induces a (t − 1)-resilient ε-Nash equilibrium with ε < λk−t+1(a − b), where
λ = max{q, 1− q} and k is the number of participants in the recovering process.

Remark 3. Note that the inequality (4) and (5) may not simultaneously hold for
some values of a, b, c, d. This can be solved by making some additional assump-
tions on the utility values. For example, assume that a − b < b − c, then the
inequality (4) and (5) are satisfied for a−b

a−c < q < b−c
a−c . Actually, the assumption

a− b < b− c is implied from the natural requirement of Urandom < b for |S| = 2,
i.e. each player still has an incentive to participate in the protocol for recovering
even if the secret is just one bit.

Remark 4. It can see that the ε is exponentially small in the number of partici-
pants. When a large number of players participate in the recovering process or
the utility values a and b are very close, a coalition of (t − 1) players cannot
gain much by deviation form Π ′. Actually, as pointed out in [10] a gain by a
(t− 1)-coalition is inevitable in the information theoretic setting. We leave it as
an open problem to determine the lower bound of ε at achieving (t−1)-resilience
in standard communication networks.

On the other side, although some players quit from the protocol after they
get the secret, leaving the other players (who honestly follow the protocol so far,
thus we call them “innocent players”) cannot determine what the secret is, the
innocent player can at least be sure that the secret must be one of the two values
he has already recovered. Thus in innocent players’ view the Shannon entropy
of the secret reduces to less than 1. When |S| is very large, every rational player
has great incentive to participate in the protocol Π ′ even if he might encounter
a coalition of t− 1 players.

5 Conclusions

In the information theoretic setting of rational secret sharing, only approximate
Nash equilibrium can be achieved in standard communication networks. We
realize ε-Nash both for the 2-out-of-2 case and the t-out-of-n case. The 2-out-of-
2 protocol is more efficient than previous ones and the ε is a negligible function
in the size of the secret. This negligible function is due to the information-
theoretic MAC used inside. The t-out-of-n protocol is (t − 1)-resilient and the
ε is exponentially small in the number of participants. We leave it as an open
problem to determine the lower bound of ε in both cases.

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets
game theory: robust mechanisms for rational secret sharing and multiparty com-
putation. In: 25th ACM Symposium Annual on Principles of Distributed Com-
puting, pp. 53–62. ACM Press, New York (2006)

2. Blakley, G.R. : Safeguarding cryptographic keys. Proceedings of the National
Computer Conference, American Federation of Information Processing Societies
Proceedings 48: 313–317 (1979)

3. Daskalakis, C., Goldberg, P., Papadimitriou, C. : The complexity of computing a
Nash equilibrium. In Proc. STOC 2006, pp. 71–78, ACM Press, (2006)

4. Daskalakis, C., Mehta, A., Papadimitriou, C. : A note on approximate Nash equi-
libria. International Workshop on Internet and Network Economics, pp. 297–306,
(2006)

5. Fuchsbauer, G., Katz, J., Naccache, D. : Efficient Rational Secret Sharing in
Standard Communication Networks. TCC 2010, LNCS 5978, pp. 419–436 (2010)

6. Gordon, S.D.,Hazay, C., Katz, J., Lindell,Y. : Complete fairness in secure two-
party computation. In Proc. STOC 2008, pp. 413–422, ACM Press, (2008)

7. Gordon, S.D., Katz, J. : Rational secret sharing, revisited. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)

8. Halpern, J., Teague, V. : Rational secret sharing and multiparty computation. In:
Proc. of 36th STOC, pages 623–632. ACM Press (2004)

9. Izmalkov, S., Micali, S., Lepinski, M.: Rational secure computation and ideal
mechanism design. In: 46th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 585–595. IEEE, Los Alamitos (2005)

10. Kol, G., Naor, M. : Games for exchanging information. In: STOC 2008, pp. 423–
432. ACM, New York (2008)

11. Kol, G., Naor, M.: Cryptography and game theory: Designing protocols for ex-
changing information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–
339. Springer, Heidelberg (2008)

12. Lepinski, M., Micali, S., Peikert, C., Shelat, A.: Completely fair SFE and coalition-
safe cheap talk. In: 23rd ACM Symposium Annual on Principles of Distributed
Computing, pp. 1–10. ACM Press, New York (2004)

13. Lepinski, M., Micali, S., Shelat, A.: Collusion-free protocols. In: 37th Annual
ACM Symposium on Theory of Computing (STOC), pp. 543–552. ACM Press,
New York (2005)

14. Lysyanskaya, A., Triandopoulos, N.: Rationality and adversarial behavior in
multi-party computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 180–197. Springer, Heidelberg (2006)

15. Maleka, S., Shareef, A., Rangan, C.P.: The deterministic protocol for rational
secret sharing. In: IEEE International Symposium on Parallel and Distributed
Processing, IPDPS 2008, pp. 1–7 (2008)

16. Osborne, M., Rubinstein, A. : A Course in Game Theory, MIT Press, Cambridge
(2004)

17. Rabin, T., Ben-Or, M. : Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority. In Proceedings of the 21th Annual ACM Symposium on Theory
of Computing (STOC), pp. 73–85, (1989)

18. Shamir, A. : How to share a secret, Communications of the ACM, 22(11), pp.
612–613 (1979)

19. Wegman, M., Carter, L. : New hash functions and their use in authentication and
set equality. Journal of Computer and System Sciences, volume 22, pp. 265–279,
(1981)

20. Zhang, Z. : Rational secret sharing as extensive games, Avalable online:
http://eprint.iacr.org/2010/184.

