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Abstract. The computational soundness of formal encryption is studied
extensively following the work of Abadi and Rogaway[1]. Recent work
considers the scenario in which secret sharing is needed, and separately,
the scenario when key cycles are present. The novel technique is the use
of a co-induction definition of the adversarial knowledge. In this paper,
we prove a computational soundness theorem of formal encryption in the
presence of both key cycles and secret shares at the same time, which is
a non-trivial extension of former approaches.

1 Introduction

There are two main approaches to security analysis. One is based on formal
models and the other is based on computational models. In the approach of
formal models [2][3][4][5],

– messages are considered as formal expressions;
– the encryption operation is only an abstract function;
– security is modeled by formal formulas;
– and analysis of security is done by formal reasoning.

In the approach of computational models[6][7][8],

– messages are considered as bit-strings;
– the encryption operation of message is a concrete arithmetic;
– security is defined in terms of that a computationally bounded adversary

can only attack successfully with negligible probability;
– and analysis of security is done by reduction.

★ This work is partially supported by NSFC grants (No. 60873260 and No. 60903210),
the 863 Program (No. 2009AA01Z414), the 973 Program (No. 2007CB311202), and
the Natural Science Foundation of Jiangsu province of China (No.BK2008090).
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Each of the approaches has its advantages and disadvantages. In general, the
former is simpler but cannot guarantee computational soundness. The latter
does exactly the opposite. From 1980’s, these two approaches developed along
with their own directions independently. Till the beginning of this century, in
their seminal work[1], Abadi and Rogaway developed a method to bridge the gap
between these two approaches, and established computational soundness of for-
mal security analysis. Intuitively, in security analysis, computational soundness
means that if two formal expressions are equivalent in formal model, their com-
putational interpretations are indistinguishable in computational model. During
the last decade, computational soundness has gained a lot of attention[1][9–15]
[16, 17]and works in this area are still in full swing.

Our analysis is aimed at ensuring the computational soundness about formal
encryption with the presence of secret shares and key cycles.

Secret Share. In a secret sharing scheme, a key may be separated into several
secret shares, and only those who can get the specific shares can get this key. Oth-
erwise, nothing can be learned about this key. The concept of secret sharing was
proposed in[18], and since then, it is used extensively in cryptography. Moreover,
it can be used in other security applications. In [19], Miklau and Suciu implement
access control policies in data publishing by using of cryptography(specifically,
symmetric encryption and secret sharing). Using of secret sharing makes it more
flexible to deploy the access control policy. What we care about is whether a
formal treatment of secret sharing can keep its computational soundness.

Key cycle. The concept of Key cycles is first hinted in [6], and then be noted since
the work by Abadi and Rogway [1]. Non-strictly speaking, key cycle means that
a key encrypts itself directly or indirectly. At the first glance, it seems that key
cycle does not deserve so much attention due to few occurrences of them in a well-
defined protocol. However, key cycles often happen in real world applications.
For example, a backup system may store the key on disk and then encrypt
the entire disk with the same key. Another example comes from the situation
where a key cycle is needed ‘by design’[20] in a system for non-transferable
anonymous credentials. Moreover, key cycles paly an important role in solving
the problem of computational soundness. In general, in a formal model, key cycles
are allowed according to the definition of expressions[1] if there is no further
restriction. While in a computational model, the occurrence of key cycles is
often eliminated according to the standard notion of security for encryption [6].
This is the reason why key cycles gain so much attention in the research of
computational soundness.

Related Work. In [1], Abadi and Rogaway give the definition of key cycles and
then prove the computational soundness of security under formal setting in ab-
sence of key cycles. A natural problem is whether a formal encryption with key
cycles is computationally sound. In recent years, this problem has been studied
in many works[1, 21, 13, 22, 17]. In [21], Laud addresses the problem of reconciling
symbolic and computational analysis in presence of key cycles by strengthening
the symbolic adversary[21], i.e., weakening the symbolic encryption. Specifically,



Computational Soundness about Formal Encryption 3

Laud uses an approach similar to that in [1] except giving adversaries the power
to break the encryption with key cycles by adding some additional rules. In [13,
22], instead of using restricted or revised formal models, Adão et al. deal with
key cycles by strengthening the computational notion. Specifically, Adão et al.
adopt another security notion, i.e., Key-Dependent Message(KDM) security [23]
in which the messages are chosen depending on the keys of the encryption scheme
itself. Intuitively, different from the standard security notions(CPA or CCA),
KDM security implies the security of key cycles and thus is closer to the concept
of security in formal models. More and more works are focusing on constructing
the KDM secure scheme[23–25], but most of them are given in the random-oracle
model[23], or by a relaxed notion of KDM security[24], or under restricted ad-
versaries[25]. Therefore, constructing such schemes is not an easy work. [26]
shows that it is impossible to prove KDM security if the reductions in the proof
of security treat both the adversary and the query function as black boxes. In
this paper, we do not consider KDM security. Rather, our work is under CPA
security.

In all the approaches mentioned above, when modeling the power of ad-
versaries to obtain keys, an inductive method is used. Very recently, different
from the inductive method, Micciancio [17] gives a general approach to dealing
with the key cycles in which the power of the adversary to get keys is mod-
eled by co-induction. The generalization of this approach makes it possible to
deal with a larger class of cryptographic expressions, e.g., the expressions with
pseudo-random keys [27]. Alternatively, in this paper, we will extend this ap-
proach to cryptographic expressions that use secret sharing schemes. Abadi and
Warinschi [16] have given an approach to bridging the gap between formal and
computational views in the presence of secret shares, but their approach does
not consider key cycles.

Our contribution. The primary contribution of this paper is to show a stronger
result over that in [16] and [17]. In particular, we define the equivalence between
formal messages in the presence of both key cycles and secret shares, and then
prove the computational soundness about formal encryption in this setting.

Organization The rest of the paper is organized as follows. Section 2 presents
the syntax of formal messages, patterns, and the notion of equivalence between
messages. In section 3, the computational model is defined, and computational
semantics of formal messages is given. Then, in section 4, the main result of this
paper, theorem of computational soundness is proved. Finally, we conclude in
Section 5 and discuss further work.

2 Formal model

In this section we provide the basic notions for our work in a formal setting. We
do this by summarizing the main definitions and results in previous papers[1, 21,
16, 22, 17] with some changes. Such changes are necessary because we take both
key shares and key cycles into consideration.
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2.1 Messages

In formal messages, anything is modeled by symbols. We use Data and Keys to
denote the symbol sets of data, and keys respectively. Often, d, d1, d2, ⋅ ⋅ ⋅ range
over Data, and k, k1, k2, ⋅ ⋅ ⋅ range over Keys. Assume a key can be divided in
to several different secret shares, denoted by distinct symbols, we then define a
set Shares as follows:

Definition 1 (Shares). Assume a key can be divided into n secret shares, and
kj denotes the jth secret share of key k. Given k ∈ Keys and K ⊆ Keys, we
can define3,

1. s(k) = {kj ∣ j ∈ [1, n]};
2. s(K) =

∪
k∈K s(k);

3. Shares = s(Keys).

For example, if Keys = {k1, k2, k3} and n = 2, by dividing each key into two
secret shares, we have Shares = {k11, k21, k12, k22, k13, k23}.

The number of shares for every key n is the same. When a key is divided into
n shares, we assume that, only when obtaining all the n shares will one be able
to recover the key. One can learn nothing about the key with p shares where
p < n.

Based on Data,Keys and Shares, we can define the set of messages.

Definition 2 (Messages). The set of messages is denoted by Msg and can be
defined in Backus Naur form as follows:

Msg ::= Data ∣ Keys ∣ Shares ∣ (Msg,Msg) ∣ {∣Msg∣}Keys

Informally, (m1,m2) represents the concatenation of m1 and m2, and {∣m∣}k
represents the encryption of m under k.

Obviously, in a message, some parts may occur in the form of cleartext, and
the other parts may occur in the form of ciphertext. Without the decryption key,
the parts in form of ciphertext show nothing but its structure at most. To reflect
this fact, we need to extend the set of messages Msg to the set of extended
messages MSG by introducing some specific symbols.

Definition 3 (Extended messages). The set of extended messages, written
as MSG, is defined under Data ∪ {□},Keys ∪ {♢}, and Shares ∪ {♢j} with
a similar syntax to that of Msg:

MSG ::=Data ∪ {□} ∣ Keys ∪ {♢} ∣ Shares ∪ {♢j}
∣(MSG,MSG) ∣ {∣MSG∣}Keys∪{♢}

3 By using j ∈ [1, n], we mean 1 ≤ j ≤ n.
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Intuitively, □,♢ and ♢j denote the unknown data, keys and secret shares
respectively.

From definitions of Msg and MSG, we can see that Msg is in fact included
in MSG, and thus, in most time, when we refer to message, we means a member
of MSG, and use m,m′,m′′, ⋅ ⋅ ⋅ ,m1,m2, ⋅ ⋅ ⋅ to range over MSG.

Similar to [17], we accept the following conventions of notations:

– (m1,m2, ⋅ ⋅ ⋅ ,mn) ≜ (m1, (m2, ⋅ ⋅ ⋅ ,mn));
– {∣(m1,m2)∣}k ≜ {∣m1,m2∣}k;
– {∣m∣}♢ ≜ {∣m∣}.

Moreover, to simplify our presentation, we will use the symbols of the first
order logic in the following definition. For example, we use ∧ for and, ∨ for or,
¬ for negation, ∃ for exists, and ∀ for for all.

Definition 4 (Sub-message). Let m,m′ ∈ MSG. We say message m′ is a
sub-message of m, written as m′ ≼ m, if one of the following holds:

1. m′ = m;
2. m = (m1,m2) ∧ (m′ ≼ m1 ∨m′ ≼ m2);
3. m = {∣m′′∣}k ∧m′ ≼ m′′.

Definition 5 (Occurrence). Let x ∈ Keys∪Shares and m ∈MSG. x occurs
in m, written as x⋖m, if one of the following holds:

1. x = m;
2. m = (m1,m2) ∧ (x⋖m1 ∨ x⋖m2);
3. m = {∣m′∣}k ∧ (x = k ∨ x⋖m′).

With Definition 5, we can define a function keys : MSG → Keys. Intu-
itively, keys(m) returns the set of keys that occur in a message or whose shares
occur in this message. More formally, given m ∈MSG, we have

keys(m) = {k∣(k ∈ Keys) ∧ ((k ⋖m) ∨ ∃j ∈ [1, n].(kj ⋖m))}.

Definition 6 (Encryption relation). Let m ∈ MSG, k1, k2 ∈ keys(m). We
say k1 encrypts k2 in m, written as k1 ⊏m k2, if there exists a message m′ such
that ({∣m′∣}k1 ≼ m) ∧ (k2 ∈ keys(m′)).

Example 1. Let m = {∣k1, k12∣}k3 . We have

– {∣k1, k12∣}k3 ≼ m, (k1, k12) ≼ m, k1 ≼ m, k12 ≼ m;
– k1 ⋖m, k12 ⋖m, k3 ⋖m;
– k3 ⊏m k1, k3 ⊏m k2.

Definition 7 (Key cycle). 4

4 There are many different definitions of key cycles in the literatures, in which [1] is
the most general one. The definition here is similar to the definition in [1] except
that secret share is considered. Such a general definition is used to emphasize that
any form of key cycle is allowed.
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1. The key graph of a message m is a directed graph G = (V,E), in which
V = {k∣k ∈ keys(m)} is the set of the vertexes, and E = {(k1k2)∣k1 ∈
V ∧ k2 ∈ V ∧ k1 ⊏m k2} is the set of the edges.

2. We say there exists a key cycle in the message m, if and only if there exists
a cycle in the key graph of m.

From the definitions above, we can see that secret shares are considered in
messages. Moreover, the rest of our work does not eliminate key cycles from
messages. Both of them make our work different from previous ones.

2.2 Patterns

Since a message may contain some sub-messages in the form of ciphertext, a
message will show different views given different keys. When given no further in-
formation other than the message itself, the view of the message can be uniquely
determined. Informally speaking, this view is just the pattern of the message.

Owing to the presence of secret shares, the keys related to a message become
more complicated. So, before formally defining the pattern, we need to give
several functions5.

– sbk(m) : MSG → Keys, the set of keys which are the sub-messages of m,
or whose shares are the sub-messages of m:

sbk(m) = {k∣(k ∈ Keys) ∧ ((k ≼ m) ∨ ∃j ∈ [1, n].(kj ≼ m))}

– rck(m) : MSG → Keys, the set of keys which can possibly be recovered
from m. Specifically, it returns the keys which are the sub-messages of m, or
all of whose shares are sub-messages of m:

rck(m) = {k∣(k ∈ Keys) ∧ ((k ≼ m) ∨ ∀j ∈ [1, n].(kj ≼ m))}

– psk(m) : MSG→ Keys, the set of keys which do not occur directly as the
sub-message of m, but whose secret shares partially occur in m. It can be
simply defined by sbk(m) and rck(m):

psk(m) = sbk(m) ∖ rck(m)

– eok(m) : MSG → Keys, the set of keys which only occur in m as the
encryption keys:

eok(m) = keys(m) ∖ sbk(m)

By the definition above, we have more intuitive properties as follows:

sbk(m) ∪ eok(m) = keys(m); (1)

sbk(m) ∩ eok(m) = ∅; (2)

rck(m) ∪ psk(m) = sbk(m); (3)

rck(m) ∩ psk(m) = ∅. (4)

5 Intuitively, “sbk” is an abbreviation for “sub-message keys”, “rck” for “recoverable
keys”, “psk” for “partially shared keys” and “eok” for “encryption-only keys”
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Example 2. This example is given to illustrate various functions about keys6. Let
m = ({∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k15, k16, {∣k14∣}k7), we have

keys(m) = {k1, k2, k3, k4, k5, k6, k7} sbk(m) = {k1, k2, k3, k4, k5, k6}
rck(m) = {k1, k2, k3, k4} psk(m) = {k5, k6}
eok(m) = {k7}

To define the pattern of a message, we need the functions of p and an auxiliary
function struct, which are defined in Fig. 1.

struct(d) = □;
struct(k) = ♢;
struct(kj) = ♢j ;

struct((m1,m2)) =
(struct(m1), struct(m2));

struct({∣m∣}k) = {∣struct(m)∣}.

p(d,K) = d;
p(k,K) = k;
p(kj ,K) = kj , (for j ∈ {1..n});

p((m1,m2),K) = (p(m1,K),p(m2,K));

p({∣m∣}k,K) =

{
{∣p(m)∣}k ( if k ∈ K);
{∣struct(m)∣}k (otherwise.).

Fig. 1. Rules defining the function p, and auxiliary function struct

The function p and rck satisfy the following fundamental properties:

p(m,keys(m)) = m (5)

p(p(m,K),K′) = p(m,K ∩K′) (6)

rck(p(m,K)) ⊆ rck(m) (7)

These three properties are similar to the properties of p and r in [17]. More-
over, about p, we have the following proposition:

Proposition 1. If K′ ∩ keys(m) = ∅, then p(m,K ∪K′) = p(m,K).

Proof. Given k ∈ keys(m), since K′ ∩ keys(m) = ∅, we have k /∈ K′. So, if
k ∈ K ∪K′, then k ∈ K. On the other hand, if k /∈ K ∪K′, then k /∈ K. From
the definition of p, what we can get from m with the help of K is just what we
can get from m with the help of K ∪K′.

Intuitively, this proposition means that, given a message m and a key set K,
additional keys which are unrelated to m cannot provide additional information
about m.

Definition 8 (Function ℱm). Given a message m, a function ℱm : ℘(Keys)→
℘(Keys) can be defined7. Precisely, given a set K ⊆ Keys, we have

ℱm(K) = rck(p(m,K)) (8)

6 To keep continuity, the message m used in this example will also be used in the
followed examples.

7 By using ℘(Keys), we mean the power set of Keys.
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Intuitively, given message m and a key set K, ℱm(K) computes the set of
keys which occur as the sub-message of p(m,K), or whose secret shares fully
occur in p(m,K).

Proposition 2. The function ℱm : ℘(Keys)→ ℘(Keys) is monotone.

Proof. Assume K1 ∈ ℘(Keys),K2 ∈ ℘(Keys), and K1 ⊆ K2, we will show that
ℱm(K1) ⊆ ℱm(K2).

By equation (8), we have ℱm(K1) = rck(p(m,K1)), and ℱm(K2) = rck(p(m,K2)).
So, to show ℱm(K1) ⊆ ℱm(K2), we only need to prove that rck(p(m,K1)) ⊆
rck(p(m,K2)):

rck(p(m,K1))

= rck(p(m,K2 ∩K1)) by assumption K1 ⊆ K2

= rck(p(p(m,K2),K1)) by (6)

⊆ rck(p(m,K2)) by (7)

The monotonicity of the function ℱm makes it possible to define the greatest
fix-point of ℱm.

Definition 9 (The greatest fix point of ℱm). The greatest fix-point of ℱm,
written FIX(ℱm), is defined as follows:

FIX(ℱm) =
∩ℓ

i=0
ℱ im(keys(m)) (9)

where ℓ = ∣keys(m)∣.

Obviously, by the definition of greatest fix-point and the monotonicity of ℱm,
we have

FIX(ℱm) = ℱℓm(keys(m)) (10)

Definition 10 (Patterns of messages). The pattern of the message m, writ-
ten as pattern(m), is define as(See Example3 in appendix):

pattern(m) = p(m,FIX(ℱm)) (11)

Example 3. Let m be the same as in Example 2, and assume the number of a
key’s shares to be 2. Starting from the set K0 = keys(m), the greatest fix point
of ℱm can be computed recursively as follows:

K0 = {k1, k2, k3, k4, k5, k6, k7}
p(m,K0) = ({∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k15, k16, {∣k14∣}k7)

K1 = ℱm(K0) = rck(p(m,K0)) = {k1, k2, k3, k4}
p(m,K1) = ({∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k15, k16, {∣♢1∣}k7)

K2 = ℱm(K1) = rck(p(m,K1)) = {k1, k2, k3}
p(m,K2) = ({∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k15, k16, {∣♢1∣}k7)
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K3 = ℱm(K2) = rck(p(m,K2)) = {k1, k2, k3}

Then, we have FIX(ℱm) = {k1, k2, k3}, and thus,

pattern(m) = p(m,FIX(ℱm))

= ({∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k15, k16, {∣♢1∣}k7)

2.3 Equivalence

As usual, the keys in a formal message are considered as bound names(like in spi
calculus[5]). Thus, they can be renamed without effecting the essential meaning
of the formal message. However, since the secret shares of keys are considered in
the formal model, we must redefine the renaming.

Definition 11 (Renaming). There are three types of renaming: K-renaming(Keys
renaming), KS-renaming(Keys and shares renaming) and S-renaming(Shares
only renaming). KS-renaming and S-renaming are all defined based on K-renaming.

1. Let K ⊆ Keys. A K-renaming on K is a bijection on K, often written as
�[K] or �[K].

2. KS-renaming is defined by extending K-renaming. Let K,K′ ⊆ Keys, K ⊆
K′, and �[K′] be a K-renaming. A KS-renaming on K ∪ s(K), written as
�̄[K ∪ s(K)], is defined as follows:

�̄(k) = �(k) (k ∈ K)

�̄(kj) = �(k)j (kj ∈ s(K))

3. S-renaming is also defined based on K-renaming. Let K,K′ ⊆ Keys, K ⊆
K′, and �[K′] be a K-renaming. An S-renaming on s(K), written as �̂[s(K)],
is defined as follows:

�̂(kj) = �(k)j (kj ∈ s(K))

Recall that the secret shares of a key are different from each other. From
definition 11, KS-renaming and S-renaming are also bijections.

Here, KS-renaming is similar to the consistent renaming defined in [16]. In-
formally speaking, consistent renaming means that, when ki occurring in m is
renamed to ki′ , the share of ki, say kji , is renamed to kji′ accordingly. Obviously,
S-renaming is not a consistent renaming, because the links between a key and
its secret shares may be broken after applying S-renaming. For example, in m�̄,
�̄(kj) is a share of �̄(k) if kj is a share of k in m, while in m�̂, such relation may
be broken.

As a conventional notation, we have

�(K) ≜ {k′∣k ∈ K ∧ �(k) = k′}.



10 X. Lei, R. Xue, T. Yu

Similar notations can be used on �̄ and �̂. When there is no confusion according
to the context, we often write �[K], �̄[K ∪ s(K)] and �̂[s(K)] as �, �̄ and �̂
respectively for short.

Let m ∈MSG, �̄[K∪ s(K)] be a KS-renaming. We use m�̄ as applying �̄ to
message m. That is, rename all the key ki ∈ K and its secret shares kji occurring

in m with �̄(ki) and �̄(kji ) respectively.
Similarly, let m ∈MSG, �̂[s(K)] be an S-renaming on s(K). We use m�̂ as

applying �̂ to message m. That is, rename all secret shares kj ∈ s(K) with �̂(kj)
without renaming of k itself.

Now, it suffices to define the equivalence of messages.

Definition 12 (Equivalence of messages). Given m,m′ ∈ MSG, Message
m′ is said to be equivalent to m, written as m′ ∼= m, if and only if, there exists
a KS-renaming �̄ based on K-renaming �[keys(pattern(m))], or, additionally

an S-renaming �̂ based on K-renaming �[psk(pattern(m)�̄)], such that one of
the following holds:

1. pattern(m′) = pattern(m)�̄

2. pattern(m′) = (pattern(m)�̄)�̂

This definition of equivalence differs from the equivalence in [16] in that
the S-renaming is considered. So, for example, ({∣k2∣}k1 , k11) and ({∣k2∣}k1 , k13) are
equivalent according to Definition 12, but not equivalent in [16]. A more com-
plicated example can be found in Example4.

Example 4. This example is used to illustrate the three types of renaming and
messages equivalence. Continuing Example 3, let K = keys(pattern(m)), K′ =
psk(pattern(m)�̄). We then define a KS-renaming �̄ based on a K-renaming

�[K], and an S-renaming �̂ based on a K-renaming �[K′](Refer to Fig. 2).
From Definition 12 and Fig. 2, if one of the following two conditions holds,

pattern(m′) = ({∣k7, k16∣}k7 , {∣k5, {∣{∣♢∣}∣}k4 ∣}k6 , {∣k26∣}k5 , {∣♢2∣}k2 , k13, k12, {∣♢1∣}k1)

pattern(m′) = ({∣k7, k16∣}k7 , {∣k5, {∣{∣♢∣}∣}k4 ∣}k6 , {∣k26∣}k5 , {∣♢2∣}k2 , k13′ , k12′ , {∣♢1∣}k1)

we have m′ ∼= m.

3 Computational model

In computational model, a message is just a bit-string which belongs to {0, 1}∗.

Definition 13 (Indistinguishability). Let D = {D�}�∈ℕ be an ensemble, i.e.,
a collection of distributions over strings. We say two ensembles D and D′ are
indistinguishable, written as D ≈ D′, if for every probabilistic polynomial-time
adversary A, there exists a negligible function negl, such that

Pr[x← D� : A(1�, x) = 1]−Pr[x← D′� : A(1�, x) = 1] = negl(�)

where x← D� means that x is sampled from the distribution D�.
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pattern(m) ({∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k
1
5, k

1
6, {∣♢1∣}k7)

K k1 k2 k3 k4 k5 k6 k7
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

�(K) k7 k6 k5 k4 k3 k2 k1

K ∪ s(K) k1 k2 k3 k4 k5 k6 k7 k
1
1 k

2
1 ⋅ ⋅ ⋅ k15 k25 k16 k26 k17 k

2
7

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ⋅ ⋅ ⋅ ↓ ↓ ↓ ↓ ↓ ↓
�̄(K ∪ s(K)) k7 k6 k5 k4 k3 k2 k1 k

1
7 k

2
7 ⋅ ⋅ ⋅ k13 k23 k12 k22 k11 k

2
1

pattern(m)�̄ ({∣k7, k16∣}k7 , {∣k5, {∣{∣♢∣}∣}k4 ∣}k6 , {∣k26∣}k5 , {∣♢2∣}k2 , k
1
3, k

1
2, {∣♢1∣}k1)

K′ k3 k2
↓ ↓ ↓

�(K′) k3′ k2′

s(K′) k13 k23 k12 k22
↓ ↓ ↓ ↓ ↓

�̂(s(K′)) k13′ k
2
3′ k

1
2′ k

2
2′

(pattern(m)�̄)�̂ ({∣k7, k16∣}k7 , {∣k5, {∣{∣♢∣}∣}k4 ∣}k6 , {∣k26∣}k5 , {∣♢2∣}k2 , k
1
3′ , k

1
2′ , {∣♢1∣}k1)

Fig. 2. An example for KS-renaming and an S-renaming

A typical property of indistinguishability is that it is transitive [21], i.e.,

if D ≈ D′ and D′ ≈ D′′, then D ≈ D′′ (12)

Definition 14 (Private-key encryption scheme). A private-key encryption
scheme is a tuple of algorithms Π = (Gen,Enc,Dec) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1�

and outputs a key k. This process can be written as k ← Gen(1�).
2. The encryption algorithm Enc takes as input a key k and a message m ∈
{0, 1}∗, and outputs a ciphertext c. This process can be written as c ←
Enck(m).

3. The decryption algorithm Dec takes as input a key k and a ciphertext c, and
outputs a message m. This process is often written as m := Deck(c).

It is required that Deck(Enck(m)) = m.

We will use a standard notion of security for encryption: indistinguishability
against chosen plaintext attacks(CPA).

Definition 15 (CPA security). For any probabilistic polynomial time adver-
saries A and polynomial poly, let Π = (Gen,Enc,Dec) be an encryption
scheme, n = poly(�), k1, ⋅ ⋅ ⋅ , kn be the keys generated by Gen, Ob(i,m) be
an encryption oracle that outputs Encki(m) if b = 1, or Encki(0

∣m∣) if b = 0.
The encryption scheme Π is indistinguishable under chosen plaintext attack(or
is CPA-secure) if there exists a negligible function negl such that

Pr[AO1(1�) = 1]−Pr[AO0(1�) = 1] = negl(�)
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This definition is equivalent to the definition of IND-CPA in which only
one encryption oracle is given[17].

Definition 16 (Secret sharing scheme). An n-out-of-n secret sharing scheme
for sharing keys of an encryption scheme Π is a tuple of algorithms Λ =
(Crt,Com) such that:

1. The share creation algorithm Crt takes as input a key k and the security
parameter 1� and outputs n shares of k : k1, k2, ⋅ ⋅ ⋅ , kn. This process can be
written as {k1, k2, ⋅ ⋅ ⋅ , kn} ← Crt(k, 1�).

2. The share combination algorithm Com takes as input n shares k1, k2, ⋅ ⋅ ⋅ , kn
and outputs a key k. This process can be written as k := Com(k1, k2, ⋅ ⋅ ⋅ , kn).

It is required that Com(Crt(k, 1�)) = k.

Definition 17 (Security of secret sharing). For any probabilistic polyno-
mial time adversaries A and polynomial poly, let Π = (Gen,Enc,Dec) be an
encryption scheme, Λ = (Crt,Com) be a secret sharing scheme, n = poly(�),
sh(k) be the set of n secret shares of key k generated by Crt, and sh(k)∣S be the
restriction of sh(k) to the secret shares whose indexes are in S ⊆ {1, ⋅ ⋅ ⋅ , n}.
The secret sharing scheme Λ is secure if for any S ⊂ {1, ⋅ ⋅ ⋅ , n}(this implies
that S ∕= {1, ⋅ ⋅ ⋅ , n}), there exists a negligible function negl such that

Pr [k0, k1 ← Gen(1�), sh(k0)← Crt(k0, 1
�) : A(k0, k1, sh(k0)∣S) = 1]−

Pr [k0, k1 ← Gen(1�), sh(k1)← Crt(k1, 1
�) : A(k0, k1, sh(k1)∣S) = 1]

= negl(�)

Definition 18 (Computational model). A computational model is a 4-tuple
M = (Π,Λ, !, 
), in which

– Π is an encryption scheme.
– Λ is a secret sharing scheme.
– ! : Data→ {0, 1}∗ is an interpretation function to evaluate each symbol in

Data to a bit-string.
– 
 : {0, 1}∗×{0, 1}∗ → {0, 1}∗ is a function to connect two bit-strings to a sin-

gle bit-string. It can be viewed as the computational counterpart of message
concatenation in formal model.

Definition 19 (Computational interpretation of messages). Given a com-
putational model M = (Π,Λ, !, 
) and a formal message m, we can get the
computational interpretation of m, that is, associate a collection of distributions
(i.e., ensemble) over a bit-string JmKM = {JmKM(�)}�∈ℕ to the formal message
m. Assume ℓ = ∣keys(m)∣ and the number of shares for each key is n, we can
get JmKM by the following steps:

1. Initialization. Construct an ℓ vector � to save the interpretation of keys,
and an ℓ × n array & to save the interpretation of shares. Then, evaluate
�[i](1 ≤ i ≤ ℓ) and &[i, j](1 ≤ i ≤ ℓ, 1 ≤ j ≤ n) by the following procedure:

for i = 1 to ℓ do
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�[i]← Gen(1�);
{&[i, 1], &[i, 2], ⋅ ⋅ ⋅ , &[i, n]} ← Crt(�[i], 1�).

}
2. Interpretation. Interpretation of the message m can be done recursively as

follows:

– JdKM = !(d), for d ∈ Data.

– JkiKM = �[i], for ki ∈ Keys and 1 ≤ i ≤ ℓ.
– Jkji KM = &[i, j], for kji ∈ Shares and 1 ≤ j ≤ n.

– J(m1,m2)KM = 
 (Jm1KM, Jm2KM).

– J{∣m∣}kiKM = EncJkiKMJmKM.

– Jstruct(m)KM = 0∣JmKM∣, where ∣JmKM∣ denotes the length of JmKM8.

4 Computational soundness

Intuitively, Computational soundness means that, if two messages are equiva-
lent in the formal model, their interpretation in computational model will be
indistinguishable.

To clarify the proof, we use Fig.3 to list the invoking structure of these
lemmas and the propositions in proving the computational soundness theorem,
where a→ b means that a is invoked in proving b.

Proposition 1 Proposition 2
↓ ↓

Lemma 1 Lemma 2 → Lemma 3 → Lemma 4 → Lemma 5
↓ ↓ ↓

↓
Computational soundness theorem

Fig. 3. The invoking structure in proving the computational soundness theorem

Lemma 1. Let m ∈MSG, �̄ be a KS-renaming based on K-renaming �[keys(m)].
Given a computational model M, it holds that

JmKM ≈ Jm�̄KM

Proof. According to the definition of KS-renaming in Definition 11, m�̄ is got
from m by consistently renaming its keys and key shares according to �̄. But
the distribution associated with a message is decided only by their meaning, not
by the symbols used in the message. Thus, this lemma holds.

8 Here, as mentioned in [17], we assume that all functions operating on messages
are length-regular. So, ∣JmKM∣ depends only on Jstruct(m)KM, which makes this
definition well-defined.
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In fact, Lemma 1 is the same as Lemma 8 in [16]. Here, KS-renaming is the
consistent renaming in [16].

The following lemma is similar to Lemma 1 except that S-renaming is used.
However, Lemma 1 cannot be naturally applied on S-renaming, simply because
S-renaming is actually not a consistent renaming.

Lemma 2. Let m ∈MSG, �̂ be an S-renaming based on K-renaming �[psk(m)].
Given a computational model M = (Π,Λ, !, 
), if Π is a CPA secure encryp-
tion scheme and Λ is a secure secret sharing scheme, then, it holds that

JmKM ≈ Jm�̂KM

Proof. Assume ∣psk(m)∣ = � is polynomially bounded in the length of message

m, and thus psk(m) = {ka1 , ka2 , ⋅ ⋅ ⋅ , ka�}. Let m0 = m, and mi = mi−1�̂[{kai}]
where 1 ≤ i ≤ �. We have m� = m�̂[psk(m)], i.e.,m� = m�̂. By the hybrid

argument, to show JmKM ≈ Jm�̂KM, we only need to show Jmi−1KM ≈ JmiKM,
where 1 ≤ i ≤ �.

Assume �(kai) = ka′i . Let us evaluate messages mi−1 and mi according to
Definition 19. Intuitively, the only difference between mi−1 and mi is that, in
mi, the secret shares of kai is replaced by the secret shares of ka′i . So, we can use
Definition 19 to get computational interpretations of each symbol in mi−1, and
complete evaluating message mi−1. To evaluate message mi, we use the same
computational interpretation to mi−1 except the secret shares of ka′i . To give the
computational interpretation of shares of ka′i , we firstly generate a new key by
Gen of Π; then create n secret shares of this key by Crt of Λ, and save them
in &[i, 1] to &[i, n] respectively. By doing such, we get Jmi−1KM and JmiKM.

Let D1 be a probabilistic polynomial-time distinguisher, and set

"1(�) ≜Pr
[
v1 ← Jmi−1KM(�) : D1(v1, 1

�) = 1
]
−

Pr
[
v1 ← JmiKM(�) : D1(v1, 1

�) = 1
]
.

Now, assume for contradiction that D1 distinguishes Jmi−1KM from JmiKM
with non-negligible probability, i.e., "1(�) is non-negligible. Then we construct
an adversary A1 to break the security of sharing scheme Λ with the help of
distinguisher D1.

Let n be the number of shares created by Λ, Si = {j∣kjai ⋖m} be the set of
indexes j such that kjai occurs in m. Since kai ∈ psk(m), the shares of kai only
partially occur in m, that is ∣Si∣ < n. From the definition of mi−1, we know that
the shares of kai occurring in m are exactly the shares of kai occurring in mi−1.
So, the share numbers of kai occurring in mi−1 is also ∣Si∣.

Adversary 1 (A1) The adversary is given two keys k̂0, k̂1 ← Gen(1�) and a

set of shares9 {ŝ1, ŝ2, ⋅ ⋅ ⋅ , ŝp} either sampled from Crt(k̂0, 1
�)∣Si , or sampled

from Crt(k̂1, 1
�)∣Si , where p = ∣Si∣ < n.

9 Here, we use k̂ or ŝ instead of k or s to distinguish the bit-string keys or shares from
the formal symbols of keys or shares.
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1. A1 evaluates mi−1 to get a value v1:
(a) Let ∣keys(mi−1)∣ = ℓ. Construct an ℓ vector � and an (ℓ× n) array &;
(b) �[j](j ∕= i) is initialized by sampling from Gen(1�);
(c) &[j, 1], &[j, 2], ⋅ ⋅ ⋅ , &[j, n](j ∕= i) are initialized by sampling from Crt(�[j], 1�);
(d) mi−1 is evaluated to value v1 according to Definition 19 except kai and

the shares of kai . More precisely, kai is interpreted by k̂0, and the shares
of kai is interpreted by {ŝ1, ŝ2, ⋅ ⋅ ⋅ , ŝp}.

2. A1 runs D1(v1, 1
�), and outputs whatever D1(v1, 1

�) outputs.

Note that both k̂0 and k̂1 are generated by Gen. So, if {ŝ1, ŝ2, ⋅ ⋅ ⋅ , ŝp}
are sampled from Crt(k̂0, 1

�)∣Si , then v1 is just sampled from Jmi−1KM. If

{ŝ1, ŝ2, ⋅ ⋅ ⋅ , ŝp} are sampled from Crt(k̂1, 1
�)∣Si , then kai is interpreted by k̂0,

while the shares of kai are interpreted by the shares of k̂1. By the definition
of mi, in this situation, v1 is just sampled from JmiKM. Considering that A1

outputs whatever D1(v1, 1
�) outputs, we have

Pr
[
k̂0, k̂1 ← Gen(1�), sh(k̂0)← Crt(k̂0, 1

�) : A1(k̂0, k̂1, sh(k̂0)∣Si) = 1
]
−

Pr
[
k̂0, k̂1 ← Gen(1�), sh(k̂1)← Crt(k̂1, 1

�) : A1(k̂0, k̂1, sh(k̂1)∣Si) = 1
]

= Pr
[
v1 ← Jmi−1KM(�) : D1(v1, 1

�) = 1
]
−Pr

[
v1 ← JmiKM(�) : D1(v1, 1

�) = 1
]

= "1(�)

This shows that A1 can break Λ with non-negligible probability, which is in
contradiction with the security of Λ, and thus Lemma 2 holds.

Example 5. Recall message m in Example 2, we have psk(m) = {k5, k6}, Fig. 4
shows an S-renaming and the messages m0,m1, and m2 constructed according
to the approach in proof of Lemma 2. Given a computational model M, from
Lemma 2, we know that JmKM ≈ Jm�̂KM.

s(psk(m)) k15 k25 k16 k26
↓ ↓ ↓ ↓ ↓

�̂(s(psk(m))) k15′ k
2
5′ k

1
6′ k

2
6′

m0 = m
(
{∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k

1
5, k

1
6, {∣k14∣}k7

)
m1 = m0�̂[s(k5)]

(
{∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k

1
5′ , k

1
6, {∣k14∣}k7

)
m2 = m1�̂[s(k6)] = m�̂

(
{∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k

1
5′ , k

1
6′ , {∣k14∣}k7

)
Fig. 4. An example for applying S-renaming in proof of Lemma 2.

Lemma 3. Let m ∈ MSG. Given a K-renaming �[psk(m)], and thus an S-

renaming �̂[s(psk(m))], if �(psk(m)) ∩ keys(m) = ∅, then

Jp(m�̂, sbk(m�̂))KM ≈ Jp(m, rck(m))KM
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Proof. If we can show

p(m�̂, sbk(m�̂)) = p(m, rck(m))�̂ (13)

then, by Lemma 2, we can directly show that Lemma 3 holds. We then show
(13) by the following two steps:

p(m�̂, sbk(m�̂)) = p(m�̂, rck(m)) (14)

p(m�̂, rck(m)) = p(m, rck(m))�̂ (15)

Proof of (14). From the definition of sbk and S-renaming, we have sbk(m�̂) =
rck(m)∪�(psk(m)). Considering that �(psk(m))∩keys(m) = ∅, and rck(m) ⊆
keys(m) by (3) and (1), we have �(psk(m))∩rck(m) = ∅. Together with Propo-
sition 1 showed in section 2.2, we get that

p(m�̂, sbk(m�̂)) = p(m�̂, rck(m) ∪ �(psk(m)))

= p(m�̂, rck(m))

Proof of (15). From (4), we know that psk(m)∩rck(m) = ∅. So, p(m�̂, rck(m))
is only different from p(m, rck(m)) in that the shares of keys in psk(m) is re-

named according to �̂. Therefore, by using the same �̂ on p(m, rck(m)), we can

get p(m�̂, rck(m)).

Example 6. Continue the Example 5, we have

m =
(
{∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k15, k16, {∣k14∣}k7

)
rck(m) = {k1, k2, k3, k4}

p(m, rck(m)) = ({∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k15, k16, {∣♢1∣}k7)

p(m, rck(m))�̂ =
(
{∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k15′ , k16′ , {∣♢1∣}k7

)
m�̂ =

(
{∣k1, k12∣}k1 , {∣k3, {∣{∣k4∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣k24∣}k6 , k15′ , k16′ , {∣k14∣}k7

)
sbk(m�̂) = {k1, k2, k3, k4, k5′ , k6′}

p(m�̂, sbk(m�̂)) =
(
{∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k15′ , k16′ , {∣♢1∣}k7

)
p(m�̂, rck(m)) =

(
{∣k1, k12∣}k1 , {∣k3, {∣{∣♢∣}k5 ∣}k4 ∣}k2 , {∣k22∣}k3 , {∣♢2∣}k6 , k15′ , k16′ , {∣♢1∣}k7

)
Obviously, p(m, rck(m))�̂ = p(m�̂, rck(m)). Then, from Lemma 2, we get

Jp(m�̂, sbk(m�̂))KM ≈ Jp(m, rck(m))KM

as expected.

Lemma 4. Given a formal message m, and a computational model M =
(Π,Λ, !, 
), if Π is a CPA secure encryption scheme and Λ is a secure secret
sharing scheme, it holds that JmKM ≈ Jp(m, rck(m))KM.
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Proof. Given a message m, we can easily construct an S-renaming �̂ based on
K-renaming �[psk(m)] such that �(psk(m)) ∩ keys(m) = ∅. Then, we have

JmKM ≈ Jm�̂KM by Lemma 2

Jp(m, rck(m))KM ≈ Jp(m�̂, sbk(m�̂))KM by Lemma 3

Therefore, to prove JmKM ≈ Jp(m, rck(m))KM, we only need to show

Jm�̂KM ≈ Jp(m�̂, sbk(m�̂))KM

Let us evaluate message m�̂ and p(m�̂, sbk(m�̂)) according to Definition 19.

Intuitively, the difference between m�̂ and m is that, in m�̂, the secret shares
of k in psk(m) are replaced by the secret shares of a new key. Thus, we can

evaluate m�̂ by generating ∣psk(m)∣ more keys and their secret shares.

The difference between p(m�̂, sbk(m�̂)) and m�̂ is that, all the sub-messages

of m�̂ in form of {∣m′∣}ki , where ki ∈ eok(m�̂) = keys(m�̂) ∖ sbk(m�̂), are
replaced by {∣struct(m′)∣}ki . So, according to Definition 19, we can evaluate

p(m�̂, sbk(m�̂)) by using the same computational interpretation of m�̂ except

the sub-message in form of {∣m′∣}ki where ki ∈ eok(m�̂). The computational
interpretation of {∣m′∣}ki is simply interpreted by 0∣Jm

′KM∣.

By doing such, we get Jm�̂KM and Jp(m�̂, sbk(m�̂))KM.
Let D2 be a probabilistic polynomial-time distinguisher, and set

"2(�) ≜Pr
[
v2 ← Jm�̂KM(�) : D2(v2, 1

�) = 1
]
−

Pr
[
v2 ← Jp(m�̂, sbk(m�̂))KM(�) : D2(v2, 1

�) = 1
]
.

Assume for contradiction that there is a distinguisher D2 which can distin-
guish Jm�̂KM from Jp(m�̂, sbk(m�̂))KM with non-negligible probability. We then
construct an adversary A2 to break the encryption scheme Π.

Adversary 2 (A2) The adversary is given the security parameter 1� and an

encryption oracle Ob(⋅, ⋅) about eok(m�̂). Given a query (i,m′) where ki ∈
eok(m�̂), Ob(⋅, ⋅) outputs Encki(m

′) if b = 1, or Encki(0
∣m′∣) if b = 0.

1. A2 evaluates m�̂ to get a value v2:
(a) Let ∣sbk(m�̂)∣ = ℓ. Construct an ℓ vector � and an (ℓ× n) array &;

(b) �[j](kj ∈ sbk(m�̂)) is initialized by sampling from Gen(1�);

(c) &[j, 1], &[j, 2], ⋅ ⋅ ⋅ , &[j, n](kj ∈ sbk(m�̂)) are initialized by sampling from
Crt(�[j], 1�);

(d) m�̂ is evaluated to value v2 according to Definition 19 except keys in

eok(m�̂) = keys(m�̂) ∖ sbk(m�̂)10. More precisely, a message in form

of {∣m′∣}ki , where ki ∈ eok(m�̂), is evaluated by submitting (i,m′) to
Ob(⋅, ⋅).

10 Since eok(m�̂) ∩ sbk(m�̂) = ∅, the shares of keys in eok(m�̂) never occur in m�̂.
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2. A2 runs D2(v2, 1
�), and outputs whatever D2(v2, 1

�) outputs.

Since we deal with messages in the presence of key cycles and secret shares,
one may wonder that if it is always feasible for the adversary A2 to construct
a query submitted to oracle. After all, for any m ∈MSG, it seems that such a
query may contain some keys or secret shares that A2 does not know. In fact, by
using m�̂ instead of m itself, considering that A2 knows all the keys in sbk(m�̂)
and their shares, it is definitely feasible for A2 to construct such query without
knowing psk(m). This is the reason why we need to construct an S-renaming �̂
where �(psk(m)) ∩ keys(m) = ∅..

Moreover, if b = 1, we can see that v2 is just sampled from Jm�̂KM, and if

b = 0, v2 is just sampled from Jp(m�̂, sbk(m�̂))KM. Considering that A2 outputs
whatever D2(v2, 1

�) outputs, we have

Pr[A2
O1(1�) = 1]−Pr[A2

O0(1�) = 1]

= Pr
[
v2 ← Jm�̂KM(�) : D2(v2, 1

�) = 1
]
−

Pr
[
v2 ← Jp(m�̂, sbk(m�̂))KM(�) : D2(v2, 1

�) = 1
]

= "2(�)

This shows that A2 can break Π with non-negligible probability, which is in
contradiction with the CPA security of Π. Therefore, "2(�) is negligible, and
this completes the lemma.

Lemma 5. Given a formal message m, and a computational model M =
(Π,Λ, !, 
), if Π is a CPA secure encryption scheme and Λ is a secure secret
sharing scheme, then it holds that JmKM ≈ Jpattern(m)KM.

Proof. Let ℓ = ∣Keys∣ be polynomially bounded in the security parameter �,
from (5) and Definition 10, we have

JmKM Jpattern(m)KM
=Jp(m,keys(m))KM =Jp(m,FIX(ℱm))KM
=Jp(m,ℱ0

m(keys(m)))KM =Jp(m,ℱℓm(keys(m)))KM.

If we can show Jp(m,ℱ im(Keys))KM ≈ Jp(m,ℱ i+1
m (Keys))KM, where 0 ≤ i ≤

ℓ − 1, then, by the transitivity of indistinguishability(see (12)), we can show
Jp(m,ℱ0

m(Keys))KM is distinguishable from Jp(m,ℱℓm(keys(m)))KM, i.e., JmKM ≈
Jpattern(m)KM. Let K = ℱ im(keys(m)), m′ = p(m,K). We have

p(m,ℱ im(keys(m))) = p(m,K) = m′ (16)

p(m,ℱ i+1
m (keys(m))) = p(m,ℱm(K)) (17)

Moreover, because keys(m) is the set of all keys occurring in m, we can get
that ℱm(keys(m)) ⊆ keys(m). According to Proposition 2 showed in section
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2.2, ℱm is monotone. So, we have ℱ i+1
m (keys(m)) ⊆ ℱ im(keys(m)), particularly,

ℱm(K) ⊆ K, and thus
ℱm(K) ∩K = ℱm(K) (18)

Then, we have

p(m′, rck(m′)) = p(p(m,K),ℱm(K)) by (8)

= p(m,K ∩ ℱm(K)) by (6)

= p(m,ℱm(K)) by (18)

From lemma 4, we know that Jp(m′, rck(m′))KM ≈ Jm′KM, and thus Jm′KM ≈
Jp(m,ℱm(M))KM. Then, with (16) and (17), we get

Jp(m,ℱ im(keys(m)))KM ≈ Jp(m,ℱ i+1
m (keys(m)))KM

and thus Lemma 5 holds.

Now, it is time for us to prove our main result, i.e., the computational sound-
ness theorem.

Theorem 1. Given two formal messages m,m′, from which key cycles are not
eliminated, and a computational model M = (Π,Λ, !, 
), in which Π is an CPA
secure encryption scheme and Λ is a secure secret sharing scheme, if m ∼= m′,
then, JmKM ≈ Jm′KM.

Proof. Since m ∼= m′, from Definition 12, we know that there exists a KS-
renaming �̄ based on K-renaming �[keys(m)], or, additionally an S-renaming

�̂ based on K-renaming �[psk(m�̄)], such that one of the following holds:

pattern(m) = pattern(m′)�̄ (19)

pattern(m) = (pattern(m′)�̄)�̂ (20)

From (19) and Lemma 1, we can get Jpattern(m)KM ≈ Jpattern(m′)KM.
From (20), Lemma 2, and Lemma 1, we can also get Jpattern(m)KM ≈ Jpattern(m′)KM.
So, we can conclude that, if m ∼= m′, then

Jpattern(m)KM ≈ Jpattern(m′)KM. (21)

Moreover, from Lemma 5, we have

JmKM ≈ Jpattern(m)KM
Jm′KM ≈ Jpattern(m′)KM

Together with (12) and (21), we get

JmKM ≈ Jm′KM

This completes our proof.
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5 Conclusion

We proved the computational soundness of formal encryption in the presence of
both secret shares and key cycles. Our work is an extension to that in [16] and
[17], but the result is non-trivial. For example, when both keys and shares occur
in a key cycle, we must reconsider what keys can be recovered from it and what
cannot. Moreover, by using CPA secure encryption scheme in a computational
model, we must deal with the conflict between the definition of CPA and key
cycles, especially when secret shares are involved.

These problems also bring significant challenges when proving computational
soundness. Specifically, in proving computational soundness, we often need an
adversary to evaluate a message with the help of encryption oracles(like A2 in
proof of Lemma 4). When considering key cycles and secret shares, it is infeasible
for the adversary to evaluate a message by querying encryption oracle like in [16],
because the adversary cannot invent a key and submit it to oracle for encryption
under itself. Still, the approach in [17] can only solve part of the problem. That
is, the adversary is given the power to get the cycled keys and then completes the
encryption without querying the encryption oracle. Both of them say nothing
about how to evaluate secret shares in the presence of key cycle. In our setting,
the encryption under a key to itself and the encryption under a key to parts of its
secret shares are both defined as key cycles. The former is considered insecure,
while the latter is considered secure, which means that the adversary cannot
get the encryption key. Then, to evaluate the message in the latter case, the
adversary can neither query the encryption oracle, nor complete such encryption
by himself. This problem is solved in this paper with the help of S-renaming. All
these make our work significant and different from the previous work.

For future research, one can extend this work to the setting of asymmetric
cryptography. Another direction is to prove the computational soundness in the
presence of active adversaries.
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