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Abstract

A challenge-response identification protocol is introduced, based on
the intractability of the word problem in some Coxeter groups. A Prover
builds his public key as the set of leaves of a tree in the Cayley graph of a
Coxeter group, and the tree itself is his private keys. Any challenge posed
by a Verifier consists of a subset of the public key, and the Prover shows his
knowledge of the private key by providing a subtree having as set of leaves
the challenge set. Any third party aiming to impersonate the Prover faces
a form of the word problem in the Coxeter group. Although this protocol
maintains the secrecy of the whole private key, it is disclosing some parts
of it. A second protocol is introduced which is indeed a transcription of the
already classical zero-knowledge protocol to recognize pairs of isomorphic
graphs.
Keywords. Authentication, Coxeter groups, identification protocols, ran-
dom spanning trees, word problem.
Classification. 94A62, 20F10, 20M05, 68P25

1 Introduction

In user identification and authentication several challenge-response protocols
have been proposed [5]. Any prover is able to generate instances and corre-
sponding solutions of computationally hard problems: the instances play the
role of public keys of him, while the solutions are corresponding private keys.
Any verifier chooses instances as challenges to the prover, and only the prover is
able to submit proof of his knowledge by providing the corresponding solutions.

In the current paper we introduce a challenge-response authentication pro-
tocol based on the difficulty to solve the word problem in Coxeter groups, or
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the shortest path problem in the corresponding Cayley graphs which is indeed
intractable due to the graph sizes.

In section 2 the proposed identification protocol is introduced within the
frame of a graph in which the shortest path problem is intractable.

The word problem is solvable for finite groups and its complexity may be
polynomial with respect to the order of the group. However, this problem
may be intractable in terms of the length of a presentation of the group. In
section 3 we describe the Coxeter groups whose Cayley graphs are adequate for
the introduced authentication protocol and we discuss its complexity and its
robustness. Since the prover is replying with partial words contained within its
private key this protocol is not zero-knowledge. In section 4 we introduce a zero-
knowledge protocol allowing the prover to prove its knowledge of the private key
without disclosing any part of it. Finally, some conclusions are drawn.

2 Identification protocol

Let K be a finite non-empty set, k = card(K), and let f : N → N be a map
of growth order Ω(n). Let us fix an integer n ∈ N. The set Kf(n) is properly
the collection of words with symbols in K of length f(n) and its cardinality is
Nkn = kf(n). Let G = (Kf(n), E) be a graph over Kf(n). Then the Handshaking
Lemma states 2 card(E) =

∑
x∈Kf(n) deg(x), hence if the valency of each node

has d ∈ Z+ as an upper bound, we have card(E) ≤ d
2Nkn and the height of

any tree in a spanning forest in G is of order ` = O(log Nkn) = O(f(n) log k).
The Shortest Path Problem may become computationally expensive in G. For
instance, Dijkstra’s Algorithm has average complexity

O(card(E) + Nkn log Nkn) = O
(
(d + f(n)) kf(n)

)
.

Let us consider an identification scenario: A Prover tries to convince a
Verifier that he has a piece of knowledge without revealing that piece during
the message exchange among them. The Verifier poses successive questions and
according to the obtained replies, he decides whether the Prover knows or not
the piece of knowledge. Indeed, we may realize that the piece of information is
properly the private key corresponding to a public key released by the Prover.

Then, in the graph Kf(n), we may select a subgraph G in which the Shortest
Path Problem is intractable, mainly due to a great number of nodes in G. For a
tree, i.e. a connected subgraph with no cycles, in G the Shortest Path Problem
whose instances are leaves in the tree is trivial for anyone knowing the tree.
Thus, the Prover builds a tree within G, publishes the set of leaves as his public
key and keeps the tree itself as the corresponding private key. Any agent aiming
to check whether the Prover knows the private key may challenge the Prover
with a subset of nodes in the Prover’s public key. Then only the Prover may
submit efficiently a tree having as leaves the challenge subset providing in this
way a proof of his knowledge of the private key.

Public-key protocol
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Precondition. The graph G shall be known by both the Prover and the Verifier.

Initialization. The Prover chooses a tree T as a subgraph of G. The tree itself
is a private key of him. The Prover publishes the collection of leaves of T
as his public key.

Identification protocol. Repeat

1. the Verifier chooses a proper subset N of nodes in the public key of
the Prover, and sends it to the Prover as a challenge,

2. the Prover calculates a subtree TN of T having N as set of leaves and
sends it back to the Verifier.

3. the Verifier receives TN and checks that it is a tree with N as set of
leaves, if not he rejects the procedure,

until the Verifier is fully satisfied.

Since the Prover knows the tree T , he is able to succeed in the challenge at any
stage of the protocol. However, due to robustness purposes, the protocol should
comply with the following requirements:

• the set N at step (1) should pose an intractable instance of the Spanning
Tree Problem at the graph G, and

• the set N at step (1) should be strictly lesser than the whole set of leaves
in order to prevent the disclosure of the whole private key owned by the
Prover.

Indeed, any subtree of G having as leaves the public key will allow any intruder
to impersonate successfully the Prover in the protocol. The problem to find
such a subtree can be solved in linear time with respect to the number NG of
vertexes in the graph G, but may become an expensive problem with respect to
`G = O(log NG) (which may be proportional to the diameter of G). Of course,
if the challenging set N coincides with the public key of the Prover then the
Prover shall disclose his private key at step (2), and the same situation occurs
if the iterative segment is repeated using the sets of a covering of the public key
as challenging sets. Nevertheless, at any stage in which the public key remains
uncovered, and the current instance of the Spanning Tree Problem remains
intractable, any third party, trying to impersonate the Prover, may be unable
to succeed in a new iteration of the protocol.

3 The word problem as warrant of the protocol
robustness

Let us recall that a presentation of a group G is a pair (C,R), where C is a
collection of generators and R ⊂ {α = β| α, β ∈ C∗} is a collection of relations
such that G ≈ F (C)/〈〈R〉〉 where F (C) is the free-nonabelian group generated
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by C and 〈〈R〉〉 is the normal subgroup in F (C) spanned by the words αβ−1, or
relators, with (α = β) ∈ R. The word problem consists in deciding for a given
word σ ∈ (C ∪ C−1)∗ whether it lies or not at the normal subgroup 〈〈R〉〉, or
equivalently in finding for a given g ∈ G the least word, according to a well
founded ordering, σ ∈ (C ∪ C−1)∗ such that g = σ in G.

It is well known the Novikov’s theorem, formulated in the 50’s, asserting that
there exist finitely presented groups in which the word problem is unsolvable.
An example of such a group [3] is the following:

Generators: C = {a, b, c, d, e}
Relations: R = {ac = ca, ad = da, bc = cb, bd = db, ce = eca, de = edb,

cdca = cdcae, caaa = aaa, daaa = aaa}.

Although the Cayley graph of this group may serve to realize our proposed
protocol, it is infinite.

However, let us remark that the word problem may be solvable but in-
tractable in practice, as is the case of the word problem on an Artin group [6].
Let us recall this concept in a succinct way. For two symbols x, y and an integer
` ∈ Z+, let (xy)[`] be the prefix of length ` of the word (xy)`, or in other words
(xy)[`] = (xy)b

`
2 cη where η = x if ` is odd and η is the empty word otherwise.

Let C be a finite set of generators and let M ∈ (Z+ ∪ {+∞})C×C be a matrix
indexed by C × C with entries which are either positive integers or an infinite
value. Let us introduce the collection RM of relations (xy)[mxy] = (yx)[myx],
with {x, y} ∈ C(2). A Coxeter group results by adding the relations x2 = 1 (i.e.
mxx = 2). The word problem in these groups has exponential complexity with
respect to the number of generators, n = card(C), and has served as basis of
several public-key cryptosystems (e.g. [6]).

Let us consider one of these Coxeter groups G(n, M). It possesses n gener-
ators and d = 1

2n(n − 1) = O(n2) relators. Let f(n) = dlogn(o(G(n, M)))e be
the logarithm in base n of the group’s order, then f(n) = Ω(n).

Let F (C) be the free non-abelian group over the set C. Then F (C) can be
realized as the collection of words over C ∪ C−1, where C−1 is the alphabet
consisting of formal inverses c−1 of symbols in C, reduced by the following
equivalence relation: σ ≈ τ if it is possible to transform σ into τ by adding or
suppressing adjacent pairs of the form cc−1 or c−1c for some c ∈ C. Clearly,
F (C) is an infinite group, its operation is word concatenation, its unit element
is the empty word, and for any σ ∈ F (C) its inverse σ−1 ∈ F (C) is the word
obtained from σ by reversing it and then by substituting each symbol by its
own inverse. Indeed, since G(n, M) = F (C)/〈〈RM 〉〉, the natural projection
ρ : F (C) → G(n, M), σ 7→ ρ(σ) = σ〈〈RM 〉〉, is an epimorphism.

The word problem on G(n, M) is equivalent to decide, for any given two
words σ, τ ∈ F (C), whether ρ(σ) = ρ(τ). In fact, for any element x = ρ(σ) ∈
G(n, M) its inverse is formally expressed as x−1 = ρ(σ−1) but this expression
does not represent the inverse x−1 as a word over C: the search of such an
expression poses also an instance of the word problem on G(n, M).
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A word representation of G(n, M) is an injective map π : G(n, M) → C∗

such that ∀x ∈ G(n, M), x = ρ(π(x)), namely, for each equivalence class x ∈
F (C)/〈〈RM 〉〉, π selects an unique representative π(x) ∈ C∗, and besides ∀x, y ∈
G(n, M), xy = ρ(π(x)π(y)). The image π(G(n, M)) ⊂ C∗ is endowed naturally
with the group structure of G(n, M). Hence, any two word representations
determine two subgroups within C∗ isomorphic to the Coxeter group G(n, M).

Let us consider the following
Problem BoundedConnect(C)

Instance. A threshold k ∈ Z+, and two non-empty words α, β ∈ C∗ − {nil}.

Solution. A path in the Cayley graph of G(n, M) with length at most k,
connecting ρ(α) with ρ(β), whenever there does exist such a path.

Evidently, given the two words α, β, the word α−1β ∈ (C∪C−1)∗ determines
a path in the Cayley graph of G(n, M) connecting ρ(α) with ρ(β), and this is
the path passing through the unit e = ρ(nil) in the group obtained by reversing
the path going from e to ρ(α), by the consecutive application of each symbol
in α, and concatenating it with the path connecting e with ρ(β). Hence, if
length(α) + length(β) ≤ k, then BoundedConnect(C) is trivial for the instance
(α, β, k).

A direct solving strategy consists in finding two words γ, δ ∈ C∗ such that
ρ(γ) = ρ(α), ρ(δ) = ρ(β) and length(γ) + length(δ)) ≤ k. The solution is thus
determined by the trajectory in the Cayley graph of the word γ−1δ ∈ (C∪C−1)∗,
but finding γ, δ ∈ C∗ poses two instances of the word problem in the Coxeter
group. The problem BoundedConnect(C) is thus reducible to the word problem
on the Coxeter group G(n, M).

A Prover may choose γ, δ ∈ C∗ such that length(γ) + length(δ)) ≤ k, and
then he may transform the words γ and δ according to the relators in the
Coxeter group in order to produce respective equivalent words α, β ∈ C∗ −
{nil} of greater length. The Prover produces thus an instance of the problem
BoundedConnect(C) whose solution is known to him. Any Forger may realize
that the word α−1β determines a path joining ρ(α) with ρ(β) but the length of
the path is greater than the threshold k.

Up to a word representation, the Cayley graph of the group G(n, M) can be
realized as a graph with vertexes in the set Kf(n), with K = C, as required in
the first section of the current paper.

However, let us consider the normal subgroup HM = 〈〈RM 〉〉 in the free
group generated by C. Let GM be the graph whose set of vertexes is HM

and the edges are pairs of the form (σατ, σβτ) with either (α = β) ∈ RM or
(β = α) ∈ RM . The word problem here remains of exponential complexity with
respect to n.

Any vertex in this graph can be expressed as a word of length at most
f(n) over the alphabet C, thus it can be represented by a bit string of length
O(f(n) log n).

In order to use the graph GM in the identification protocol introduced in sec-
tion 2, the prover shall construct a suitable subgraph Gm of GM and a spanning
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tree of Gm, where m ∈ N is a parameter in the protocol. The following random
selection of a spanning tree is based on the already classical approach due to
Broder [2] and Aldous [1].

Let us assume already built an undirected connected subgraph Gm = (Vr, E)
consisting of r = r(m) ∈ Z+ vertexes. For each node v ∈ Vr let dv be the valency
of node v. For any two vertexes u, v ∈ Vr, let puv be d−1

v if {v, u} ∈ E and let
it be 0 otherwise. Then the matrix P = (puv)u,v∈Vr

is the transition matrix of
a simple Markov chain within the graph G. A spanning tree may uniformly be
selected by the following procedure [2]:

SpanningTreeGeneration

1. Departing from an arbitrarily chosen vertex v0 ∈ Vr, let {xτ}te
τ=0 be a

random walk of shortest length covering the whole graph G, i.e. for each
v ∈ Vr there is a minimum time tv ≤ te such that xtv

= v.

2. Let T be the tree consisting of the edges {xtv−1, v}, with v ∈ V − {v0}.
T is a spanning tree because it consists of exactly r − 1 edges. Then, one can
see [2] that te = O(r3) in worst cases but in general one may expect te =
O(r log r). Also, under some symmetry conditions on the graph Gm, one may
expect [1] that the ratio among the leaves and the vertexes of Gm is bounded
by exp

(
− r−1

2r

)
and the diameter ∆(T ) of the generated graph is O(

√
r).

Consequently, given an integer m ∈ N, the Prover may generate a tree as
a subgraph of the graph GM , with m as the expected of leaves in the tree, by
selecting a connected graph with r(m) = d

√
e me vertexes and then by uniformly

selecting one of its spanning trees:

TreeGenerationWithExpectedNumberOfLeaves

1. Generate a subgraph Gm with r = d
√

e me vertexes.

2. Using SpanningTreeGeneration, generate a spanning tree T of Gm.

3. Output tree T .

At step (1) in the above procedure, it is possible to implement a node-generation
according to a breadth-first traversing in order to select a fixed number of neigh-
bors at each newly discovered node. This with the aim to fulfill, to the greatest
extent, the regularity conditions required for the graphs analyzed in [1]. In
this case, the expected number of leaves at the produced tree is m, and the
whole representation of the tree T and its set of leaves has length of order
O(m f(n) log n). This is the size of the messages exchanged by the Prover and
the Verifier during the identification protocol.

As an alternative to the above construction, let us consider at any node v of
the whole Cayley graph GM a probability distribution

(puv| {v, u} is an edge in GM ) .

Then, GM has a structure of a simple Markov chain. Given an integer m ∈ N,
the tree T is produced as in SpanningTreeGeneration with a random walk
halting until d

√
e me pairwise different nodes are visited in GM .
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4 Zero-knowledge protocol

Let C be a finite set of generators and let M ∈ (N ∪ {+∞})C×C . Let GM be
the Cayley graph of the Coxeter group determined by M . According to the
procedures sketched at section 3, a prover chooses a tree T in GM as a private
key and publishes the yield Y (T ) as his public key and the height h of T . In
order to authenticate the prover, any verifier selects a subset J ⊂ Y (T ) and
poses it as a challenge to the prover, who shall respond with a tree S of height
at most h having as yield the challenge set J . Since J is a proper set of Y (T ),
S is a proper subtree within T , thus the whole T is kept secret although a part
of it has been disclosed. Obviously either by round repetition of the protocol or
by the collusion of several verifiers the whole private key T may be disclosed.

Let us modify the protocol in order to obtain a zero-knowledge protocol
similar to the well known protocol to recognize pairs of isomorphic graphs [4]:

The prover possesses both the public key Y (T ) and the private key T . The
verifier knows Y (T ) and the threshold height k ∈ Z+.
ZeroKnowledgeIdentification
Repeat

1. the verifier choose two leaves v0, v1 ∈ Y (T ) and he sends them to the
prover,

2. the prover finds a path h of length at most 2k connecting v0 with v1

within T , and chooses randomly an intermediate point v2 on h. Let h0

be the segment of h connecting v0 with v2 and let h1 be the segment of
h connecting v2 with v1. Then the prover chooses a path g in the Cayley
graph starting at v2, and he sends the ending point u of g to the verifier,

3. the verifier chooses a bit b ∈ {0, 1} and he sends it to the prover (indeed
the verifier is requiring a path from u to vb),

4. the prover responds with f = g ? (hb) (here ? is path-juxtaposition),

5. the verifier checks that f connects indeed vb with u and its length is at
most 2k + length(g),

until either the prover fails or the verifier is satisfied.
With this protocol the verifier cannot identify any partial information con-

tained in the prover’s private key.

5 Conclusions

The first introduced identification protocol is robust due to the rapid growth
of the involved graphs rendering intractable the shortest path problem within
this graph, for any pair of vertexes, thus the public keys are not required to
be too long. If they consist of just two extreme vertexes, the proposed chal-
lenge is rather difficult for any intruder. However, the number of repetitions of
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the protocol is bounded by the number of leaves forming the public-key. The
protocol is robust as long as the private key is just partially known. If the
whole public key of the prover is posed as a challenge, then the private key is
the due response. In this extreme case, an impersonating party may succeed
in any further iteration of the identification protocol. The second protocol,
which is indeed of zero-knowledge, is mimicking the classic recognition of pairs
of isomorphic graphs.
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