
1

On Compression of Data Encrypted with Block

Ciphers
Demijan Klinc, Carmit Hazay, Ashish Jagmohan, Hugo Krawczyk, and Tal Rabin

Abstract

This paper investigates compression of data encrypted with block ciphers, such as the Advanced

Encryption Standard (AES). It is shown that such data can be feasibly compressed without knowledge

of the secret key. Block ciphers operating in various chaining modes are considered and it is shown

how compression can be achieved without compromising security of the encryption scheme. Further, it

is shown that there exists a fundamental limitation to the practical compressibility of block ciphers when

no chaining is used between blocks. Some performance results for practical code constructions used to

compress binary sources are presented.

Index Terms

Compression, encrypted data, block ciphers, CBC mode, ECB mode, Slepian-Wolf coding.

I. INTRODUCTION

We consider the problem of compressing encrypted data. Traditionally in communication systems, data

from a source is first compressed and then encrypted before transmission over a channel to the receiver.

While in many cases this approach is befitting, there exist scenarios where there is a need to reverse

the order in which data encryption and compression are performed. For example, consider a network

of low-cost sensor nodes that transmit sensitive information over the internet to a recipient. The sensor

nodes need to encrypt data to hide it from potential eavesdroppers, but they may not be able to perform

compression as that would require additional hardware and thus higher implementation cost. On the other

D. Klinc was with the Georgia Institute of Technology, Atlanta, GA. He is now with Apple Inc. Email: demi@gatech.edu

C. Hazay is with Aarhus University, Aarhus, Denmark. Email: carmit@cs.au.dk

A. Jagmohan, H. Krawczyk, and T. Rabin are with IBM T.J. Watson Research Labs, Yorktown Heights and Hawthorne, NY.

Email: {ashishja, talr}@us.ibm.com, hugo@ee.technion.ac.il

2

hand, the network operator that is responsible for transfer of data to the recipient wants to compress the

data to maximize the utilization of its resources. It is important to note that the network operator is not

trusted and hence does not have access to the key used for encryption and decryption. If it had the key,

it could simply decrypt data, compress and encrypt again.

We focus on compression of encrypted data where the encryption procedure utilizes block ciphers

such as the Advanced Encryption Standard (AES) [1] and Data Encryption Standard (DES) [2]. Loosely

speaking, block ciphers operate on inputs of fixed length and serve as important building blocks that can

be used to construct secure encryption schemes.

For a fixed key a block cipher is a bijection, therefore input and output have the same entropy. It follows

that it is theoretically possible to compress the source to the same level as before encryption. However,

in practice, encrypted data appears to be random and the conventional compression techniques do not

yield desirable results. It was long believed that encrypted data is practically incompressible. A surprising

paper [3], breaks that paradigm and shows that the problem of compressing one-time pad encrypted data

translates into the problem of compressing correlated sources, which was solved by Slepian and Wolf

in [4] and for which practical and efficient codes are known. Compression is practically achievable due to

a simple symbol-wise correlation between the key (one-time pad) and the encrypted message. However,

when the correlation is more complex, as in the case of block ciphers, the approach to Slepian-Wolf

coding utilized in [3] is not directly applicable.

In this paper we investigate if data encrypted with block ciphers can be compressed without access

to the key. We show that block ciphers in conjunction with the most commonly used chaining modes in

practice (e.g., [5], [6]) are practically compressible for some types of sources. To our knowledge this is

the first work to show that substantial compression gains can be achieved for cryptographic algorithms

like AES and DES when they are used in non-stream modes. In particular, this work offers a solution to

the open problem formulated in [7, Sec. 3.3].

Moreover, by using standard techniques in the cryptographic literature we prove that the proposed

compression schemes do not compromise the security of the original encryption scheme. We also show

that there exists a fundamental limitation to the compression capability when the input to the block cipher

is applied to a single-block message without chaining (see Section III-B).

The outline of this paper is as follows. Section II defines the problem that we seek to solve and

summarizes existing work on the subject. Section III focuses on block ciphers and explains how they can

be compressed without knowledge of the secret key in various modes of operation. Section IV discusses

security of the proposed compression scheme, while Section V touches on the subject of compressing data

3

encrypted with public-key encryption schemes. Section VI presents some simulation results for binary

memoryless sources and finally, Section VII concludes the paper.

II. PRELIMINARIES

We begin with a standard formal definition of an encryption scheme as stated in [8]. A private-key

encryption scheme is a triple of algorithms (Gen,Enc,Dec), where Gen is a probabilistic algorithm that

outputs a key K chosen according to some distribution that is determined by the scheme; the encryption

algorithm Enc takes as input a key K and a plaintext message X and outputs a ciphertext EncK(X);

the decryption algorithm Dec takes as input a key K and a ciphertext EncK(X) and outputs a plaintext

DecK(EncK(X)) = X . It is required that for every key K output by Gen and every plaintext X , we

have DecK(EncK(X)) = X .

In private-key encryption schemes of concern to us in this paper the same key is used for encryption

and decryption algorithms. Private-key encryption schemes are divided in two categories: stream ciphers

and block ciphers. Stream ciphers encrypt plaintext one symbol at a time, typically by summing it with

a key (XOR operation for binary alphabets). In contrast, block ciphers accomplish encryption by means

of nonlinear mappings on input blocks of fixed length; common examples are AES and DES. Block

ciphers are typically not used as a stand-alone encryption procedure; instead, they are combined to work

on variable-length data using composition mechanisms known as chaining modes or modes of operation,

as described in Section III.

We proceed with a formulation of the source coding problem with decoder side-information illustrated

in Figure 1. Consider random variables X (termed the source), and S (termed the side-information), both

over a finite-alphabet and with a joint probability distribution PXS . Let a sequence of independent n

realizations of (X,S) be denoted by {Xi, Si}ni=1 .

Source

Compress
X C(X)

S

Decompress
X

Fig. 1. Lossless source coding with decoder side-information.

The problem at hand is to losslessly encode {Xi}ni=1, with {Si}ni=1 known only to the decoder. In [4],

Slepian and Wolf showed that for sufficiently large block length n, this can be done at rates arbitrarily

4

Source

Compress Encrypt

Key (K)

X C(X) Y

Decompress Decrypt

Key (K)

X C(X)

Encoder

Decoder

(a)

Source

Encrypt Compress

Key (K)

X Y C(Y)

Joint Decryption

and
Decompression

Key (K)

X

Encoder

Decoder

(b)

Fig. 2. Systems combining compression and encryption. (a) Traditional system with compression preceding encryption. (b)

System with encryption subsequent to compression.

close to the conditional entropy H(X|S). Practical Slepian-Wolf coding schemes use constructions based

on good linear error-correcting codes [9]–[11].

We are interested in systems that perform both compression and encryption, wherein the compressor has

no access to the key. In such systems encryption is performed after compression as depicted in Figure

2(a). This is a consequence of the traditional view which considers encrypted data hard to compress

without knowledge of the key. In [3] a system similar to that of Figure 2(b) is considered instead, but

with the order of encryption and compression reversed, while only the encryptor has access to the key.

The authors consider encryption of a plaintext X using a one-time pad scheme, with a finite-alphabet

key (pad) K, to generate the ciphertext Y using

Yi , Xi ⊕Ki.

This is followed by compression, which is agnostic of K, to generate the compressed ciphertext C(Y).

The key insight underlying the approach in [3] is that the problem of compression in this case can be

formulated as a Slepian-Wolf coding problem. In this formulation the ciphertext Y is cast as a source,

and the shared key K is cast as the decoder-only side-information. The joint distribution of the source

and side-information can be determined from the statistics of the source. For example, in the binary case

with a uniformly distributed Ki and Xi with Pr[Xi = 1] = p, we have

Pr(Yi 6= k|Ki = k) = p. (1)

The decoder has knowledge of K and the source statistics. It uses this knowledge to reconstruct the

ciphertext Y from the compressed message C(Y), and to subsequently decrypt the plaintext X . This

5

formulation is leveraged in [3] to show that exactly the same lossless compression rate, H(X), can be

achieved asymptotically by the system shown in Figure 2(b), as by the one in Figure 2(a), and all the

while maintaining information-theoretic security.

The one-time pad and stream ciphers, while convenient for analysis, are not the only forms of encryption

in practice. In fact, the prevalent method of encryption uses block ciphers, thus an obviously desirable

extension of the technique in [3] would be to conventional encryption schemes such as AES. Attempting

to do so, however, proves to be problematic. The method in [3] leverages the fact that in a one-time pad

encryption scheme there exists a simple symbol-wise correlation between the key K and the ciphertext

Y , as seen in Eq. (1). For block ciphers such as AES no such correlation is known. Any change in the

plaintext is diffused in the ciphertext, and quantifying the correlation (or the joint probability distribution)

of the key and the ciphertext is believed to be computationally infeasible.

In the remainder of this paper, we show how to circumvent this problem by exploiting the chaining

modes popularly used with block ciphers and present methods for compressing data encrypted with

block ciphers without knowledge of the key. As in [3], the proposed methods are based on the use of

Slepian-Wolf coding.

To begin we define the notion of a post-encryption compression (PEC) scheme which is used throughout

this paper:

Definition 1 (Post-Encryption Compression (PEC) Scheme): Let E = (Gen,Enc,Dec) be an encryp-

tion scheme with plaintext domain X and ciphertext range Q, and let P be a probability distribution over

X . Let C be a compression function defined over Q, and D be a (possibly probabilistic) decoding function

with the property that, for any key K generated by Gen, DK(C(EncK(X)) = X with probability 1− δ.

Then the pair (C,D) is said to be (E ,P, δ)-PEC scheme.

Note that in this definition, D is given access to the encryption key while C operates independently

of the key. Both C and D may be built for a specific plaintext probability distribution P , for only in

such case may correct decoding be guaranteed with high probability. We often assume that the plaintext

distribution P is efficiently samplable, which means that there exists an efficient randomized algorithm

whose output distribution is P . The probability of error δ is taken over the choice of X and the choice

of random coins if D is randomized. To simplify notation, we shall omit the (E ,P, δ) designation if

evident from the context, and use the term PEC scheme.

PEC schemes may be tailored to a specific cipher, but most often, one is interested in schemes that can

simultaneously support different ciphers, such as AES and DES, or even an entire family of encryption

6

schemes. Since all PEC schemes presented in this paper work with any block cipher, we say that they

are generic. A generic PEC scheme cannot be tailored to the specific details of the particular cipher but

rather handles ciphers as a black boxes. That is, the decoder D does not need to know the specifics of the

encryption scheme nor its encryption/decryption key. It suffices that D has access to a pair of encryption

and decryption oracles, denoted by Enc and Dec, that provide D with encryptions and decryptions,

respectively, for any plaintext or ciphertext queried by D.

III. COMPRESSING BLOCK-CIPHER ENCRYPTION

As opposed to stream ciphers, such as the one-time pad, block ciphers are highly nonlinear and the

correlation between the key and the ciphertext is, by design, hard to characterize. If a block cipher

operates on each block of data individually, two identical inputs will produce two identical outputs.

While this weakness does not necessarily enable an unauthorized user to decipher an individual block,

it can reveal valuable information; for example, about frequently occurring data patterns. To address this

problem various chaining modes, also called modes of operation, are used in conjunction with block

ciphers. The idea is to randomize each plaintext block by using a randomization vector derived from

previous encryptor inputs or outputs. This randomization prevents identical plaintext blocks from being

encrypted into identical ciphertext blocks.

Consider a sequence of plaintext blocks Xn = {Xi}ni=1, where each block Xi is drawn from the set

Xm = {0, 1}m. Assume that the blocks Xi are generated by an i.i.d. source with a probability distribution

PX and encrypted with a block-cipher based private-key encryption scheme (Gen,Enc,Dec). In most

cases of interest, block-cipher based encryption schemes use an initialization vector (IV) that is drawn

uniformly at random from Xm by the encryption algorithm EncK . Let the encryption algorithm be

characterized by the mapping EncK : (Xm)n → Xm× (Xm)n. For the sequence of plaintext blocks Xn

at input, the encryption algorithm generates EncK(Xn) = {IV,Yn}, where Yn = {Yi}ni=1 denotes a

sequence of ciphertext blocks and each block Yi ∈ Xm. The problem at hand is to compress EncK(Xn)

without knowledge of K.

In the remainder of this section we focus on the cipher block chaining (CBC) mode and the electronic

code book (ECB) mode. The CBC mode is interesting because it is the most common mode of operation

used with block ciphers (e.g. in Internet protocols TLS and IPsec), while our treatment of the ECB mode

provides fundamental insight about the feasibility of performing compression on data compressed with

block ciphers without chaining. The solution to compressing the output feedback (OFB) mode and the

cipher feedback (CFB) mode is a relatively straightforward extension of the methods from [3], therefore

7

it is presented in Appendix A.

A. Cipher Block Chaining (CBC)

The most common mode of operation is CBC. Depicted in Figure 3, block ciphers in CBC mode are

employed as the default mechanism in widespread security standards such as IPSec [5] and TLS/SSL [6]

and hence it is a common method of encrypting internet traffic.

X1

Block cipher

X2 Xn

Y1

K K K

IV

Block cipher Block cipher

. . .

X1

~ X2

~

Y2 Yn

Xn

~

IV

Fig. 3. Cipher block chaining (CBC).

In the CBC mode each plaintext block Xi is randomized prior to encryption, by being XOR-ed with

the ciphertext block Yi−1 corresponding to the previous plaintext block Xi−1 to obtain X̃i. The ciphertext

block Yi is generated by applying the block cipher with key K to the randomized plaintext block X̃i

according to

Yi = BK

(
Xi ⊕ Yi−1

)
, (2)

where Y0 = IV and BK : Xm → Xm is the block cipher mapping using the key K. At the output of the

encryption algorithm we have EncK(Xn) = (IV,Yn).

Notice that, contrary to OFB and CFB modes, ciphertext blocks in Yi are not obtained by means of a

bitwise XOR operation, but rather as outputs of highly nonlinear block ciphers; therefore, the compression

methods from [3] cannot be applied directly in CBC mode.

The key insight underlying the proposed method for compression can now be described. While the

statistical relationship between the key K and the ciphertext block Yi is hard to characterize, the joint

probability distribution of the randomization vector Yi−1 and the block cipher input X̃i is easy to

characterize, as it is governed by the probability distribution PX of the plaintext block Xi. For example, in

8

the i.i.d source case considered here, Yi−1 and X̃i are related through a symbol-wise model governed by

PX . This correlation induced by the chaining mode can be exploited to allow compression of encrypted

data using Slepian-Wolf coding, as we will now show.

Let (CCBC, DCBC) be a Slepian-Wolf code with encoding rate R and block length m. Denote the

Slepian-Wolf encoding function as CCBC : Xm → {1, . . . , 2mR}, and the Slepian-Wolf decoding function

as DCBC : {1, . . . , 2mR}×Xm → Xm. The proposed compression method is illustrated in Figure 4. The

Compressor
IV, Y1, Y2, … Yn-1, Yn C(IV), C(Y1), C(Y2)

… C(Yn-1), Yn

Compressor

Fig. 4. Compressor.

input to the compressor is EncK(Xn) = (IV,Yn). Since Yi is in Xm, the length of the input sequence

in bits is (n + 1)m log |X |. The compressor applies the encoding function CCBC to IV and each of the

first n − 1 ciphertext blocks independently, while the n-th block is left unchanged. Thus, the output

of the compressor is the sequence (CCBC(IV), CCBC(Y1), . . . CCBC(Yn−1), Yn). The length of the output

sequence is nmR+m log |X | bits and the compression factor

(n+ 1) log |X |
nR+ log |X |

is achieved, which tends to log |X |/R for large n. Note that the compressor does not need to know the

key K and that this approach yields a compressed IV, which by itself (when there is no chaining) is

incompressible; therefore, no performance loss is inflicted by the uncompressed last block.

A diagram of the proposed joint decompression and decryption method is shown in Figure 5. The

received compressed sequence is decrypted and decompressed serially, from right to left. In the first

step Yn, which is received uncompressed, is decrypted using the key K to generate X̃n. Next, Slepian-

Wolf decoding is performed to reconstruct Yn−1 using X̃n as side-information, and the compressed bits

CCBC(Yn−1). The decoder computes Ŷ , DCBC(CCBC(Yn−1), X̃n), such that Ŷ = Yn−1 with high-

probability if the rate R is high enough. Once Yn−1 has been recovered by the Slepian-Wolf decoder, the

plaintext block can now be reconstructed as Xn = Yn−1⊕X̃n. The decoding process now proceeds serially,

with Yn−1 decrypted to generate X̃n−1, which then acts as the new side-information; this continues until

all plaintext blocks are reconstructed.

9

Xn

Decryption
K

Xn-1

Decryption
K

. . .

X1

Decryption

Slepian-Wolf
Decoder

K

IV

Yn C(Yn-1) C(Yn-2) C(IV)

Yn-1 Yn-2

Xn-1
~ Xn

~ X1
~

Slepian-Wolf
Decoder

Slepian-Wolf
Decoder

Fig. 5. Joint decryption and decoding at the receiver. It is performed serially from right to left.

For large m, it follows from the Slepian-Wolf theorem that the rate R required to ensure correct

reconstruction of the (i− 1)-th block with high probability is given by

R =
1

m
H
(
Yi−1|X̃i

)
=

1

m
H
(
Yi−1|Yi−1 ⊕Xi

)
=

1

m
H
(
Yi−1, Yi−1 ⊕Xi|Yi−1 ⊕Xi

)
=

1

m
H
(
Yi−1, Xi|Yi−1 ⊕Xi

)
=

1

m
H
(
Xi|Yi−1 ⊕Xi

)
≤ 1

m
H(Xi). (3)

As IV is drawn uniformly at random, Yi is uniformly distributed for all i. Consequently, the inequality

R ≤ 1
mH(Xi) in Eq. (3) becomes equality R = 1

mH(Xi).

In practice, as will be seen later, the block cipher input length m is typically small. In this case, the

rate R is a function of PX , the block cipher input length m, the acceptable decoding error probability,

and the non-ideal Slepian-Wolf codes used.

B. Electronic Code Book (ECB)

As we have seen, ciphertexts generated by a block cipher in OFB, CFB, and CBC modes can be

compressed without knowledge of the encryption key. The compression schemes that we presented rely

on the specifics of chaining operations and a natural question arises as to what extent can the output of

10

a block cipher be compressed without chaining, i.e. when a block cipher is applied to a single block of

plaintext. This mode of operation, depicted in Figure 6, is called the electronic code book (ECB) mode.

X1

Block cipher

X2 Xn

Y1

K K K

Block cipher Block cipher . . .

Y2 Yn

Fig. 6. Electronic Codebook (ECB).

Since a block cipher with fixed key is a permutation, the entropy of a ciphertext is the same as the

entropy of a plaintext. In effect, compression in ECB mode is theoretically possible, but the question is,

whether it is possible to design a generic and efficient post-encryption compression scheme such as for

other modes of operation.

We claim the answer to this question is negative, except for some low-entropy distributions or very low

compression rates (e.g., compressing a ciphertext by only a few bits). For a given compressed ciphertext

C(Yi) the decoder cannot do significantly better than to operate in one of the following two exhaustive

decoding strategies:

(1) enumerate all possible plaintexts in decreasing order of probability and compute a ciphertext for

each plaintext until the ciphertext Yi that compresses to C(Yi) is found;

(2) enumerate all ciphertexts that compress to C(Yi) and decrypt them to find the original plaintext

Xi.

We show that a generic compression scheme that compresses the output of a block cipher and departs

significantly from one of the two strategies can be converted into an algorithm that breaks the security

of the block cipher. In other words, a scheme that compresses the output of a secure block cipher either

requires an infeasible amount of computation, i.e. as much as needed to break the block cipher, or it

must follow one of the two exhaustive strategies.

Definition 2: If (C,D) is a PEC scheme that follows any of the above exhaustive strategies, we say

11

that (C,D) is an exhaustive PEC scheme.

The following result on the compressibility of block ciphers in ECB mode can now be stated.

Theorem 3: Let B be a secure block cipher1, let E = (Gen,Enc,Dec) be an encryption scheme,

where Gen chooses K uniformly from K and Enc = BK , Dec = B−1K , and let P be an efficiently-

samplable plaintext distribution. Let (C,D) be a (E ,P, δ)-PEC scheme. If (C,D) is generic for block

ciphers, then (C,D) is either exhaustive or computationally infeasible (or both).

The proof of Theorem 3 is given in Appendix C, which also includes more details on the computational

bounds that were omitted in Theorem’s statement for simplicity. The following remarks are worth noting:

(a) The exhaustive strategies are infeasible in most cases, but for very low-entropy plaintext distributions

or for very low compression rates these strategies can be efficient. For example, consider a plaintext

set X of 1,000 uniformly distributed 128-bit values. One can compress the output of a 128-bit block

cipher applied to this set by truncating the ciphertext to 40 bits. Using a birthday-type bound it can

be shown that the probability of two values in X being mapped to the same ciphertext is about 2−20.

Hence, the exhaustive strategy (1) would succeed in recovering the correct plaintext with probability

1−2−20. In general, the compression capabilities of this strategy will depend on the guessing entropy

[12], [13] of the underlying plaintext distribution. Another compression method is to drop some bits

of the ciphertext and let the decoder search for the original ciphertext until the correct plaintext is

recovered, as in the strategy (2). This assumes that the dropping some bits allows for almost-unique

decodability. The fact that these exhaustive compression strategies can be efficient for some plaintext

distributions shows that Theorem 3 cannot not exclude existence of efficient generic coding schemes

for some plaintext distributions.

(b) Ciphertext compression is theoretically possible. If efficiency is not of concern, one could consider a

brute-force compression algorithm that first breaks the block cipher by finding its key2, uses the key to

decrypt, and then compresses the plaintext. If several blocks of plaintext are compressed sequentially,

they can be re-encrypted by the compression algorithm resulting in an effective ciphertext compres-

sion. This method might be impractical, but it shows that the existence of generic compressors can

be ruled out only if the PEC scheme is subject to computational constraints. Moreover, the above

1For the definition of a secure block cipher see Appendix B.
2This can be done by exhaustive search based on a known plaintext-ciphertext pair or (for suitable plaintext distributions)

by decrypting a sequence of encrypted blocks and finding a key which decrypts all blocks into elements of the underlying

probability distribution.

12

method could work efficiently against an insecure block cipher (in which case the key can found

efficiently), and this confirms that both efficiency and security are essential to our result.

(c) Theorem 3 holds for generic compressors that do not use the internals of an encryption algorithm

or the actual key in the (de)compression process. It does not rule out the existence of good PEC

schemes for specific secure block ciphers, like for instance AES. To achieve compression, though,

the PEC scheme would have to be contingent on the internal structure of a block cipher.

IV. SECURITY OF THE CBC COMPRESSION SCHEME

In this section we formally prove that compression and decompression operations that we introduced

on top of the regular CBC mode do not compromise security of the original CBC encryption. The proof

follows standard techniques in the cryptographic literature and shows that any efficient attack against

secrecy of a PEC scheme can be transformed into an efficient attack against the original CBC encryption.

Please refer to Appendix B for background on cryptographic definitions that are used in this section.

We start by formalizing the notion of security of a PEC scheme as a simple extension of the standard

definition of chosen plaintext attack (CPA) security recalled in Appendix B. The essence of the extension

is that in the PEC setting the adversary is given access to a combined oracle (EncK +C)(·) which first

encrypts the plaintext and then compresses the resultant ciphertext.

Definition 4 (CPA-PEC Indistinguishability Experiment): Consider an encryption scheme (Gen,Enc,

Dec) and a PEC scheme (C,D). The CPA-PEC indistinguishability experiment Exptcpa−pecA is defined

as follows:

1) a key K is generated by running Gen;

2) the adversary A has oracle access to (EncK + C)(·), and queries it with a pair of test plaintexts

X0, X1 of the same length;

3) the oracle randomly chooses a bit b← {0, 1} and returns the compressed ciphertext c← (EncK +

C)(Xb), called the challenge, to A;

4) the adversary A continues to have oracle access to (EncK+C)(·) and is allowed to make arbitrary

queries. Ultimately it makes a guess about the value of b by outputting b′;

5) the output of the experiment, Exptcpa−pecA , is defined to be 1 if b′ = b, and 0 otherwise. If

Exptcpa−pecA = 1, we say that A succeeded.

Definition 5 (Post-Encryption Compression Security): A PEC scheme (C,D) is called (T, ε)-indistin-

guishable under chosen plaintext attacks (CPA-PEC-secure) if for every adversary A that runs in time

13

T ,

Pr
[
Exptcpa−pecA = 1

]
<

1

2
+ ε,

where the probability is taken over all random coins used by A, as well as all random coins used in the

experiment.

We now formulate the security of our CBC compression scheme by the following theorem.

Theorem 6: Let E = (Gen,Enc,Dec) be a CBC encryption scheme that is (T, ε)-indistinguishable

under chosen plaintext attacks, let P be an efficiently-samplable plaintext distribution, and let (C,D)

be a (E ,P, δ)-PEC scheme. Then (C,D) is (T/TC , ε)-indistinguishable under chosen plaintext attacks,

where TC is an upper bound on the running time of C.

Proof: Our proof employs a reduction to the security of E . We show that if there exists an adversary

AC that runs in time T/TC and is able to distinguish between two compressed encryptions, then there

exists an adversary AE that runs in time T and compromises the security of E . The latter implies a break

of security of the underlying block cipher using the well-known result by Bellare et al. [14].

For contradiction, assume the existence of such an adversary AC and construct an adversary AE as

follows. AE invokes AC and emulates its oracle (EncK + C)(·). For every query X made by AC , AE
uses its oracle EncK(·) to compute EncK(X). Subsequently, it applies the compression algorithm C

on EncK(X) and forwards C(EncK(X)) to AC . When AC outputs the test messages X0 and X1, AE
outputs X0 and X1 to its own oracle EncK(·). Let c∗ denote the challenge ciphertext that its oracle

returns. AE computes c = C(c∗) and forwards c to AC . When AC outputs a bit b′, AE outputs the same

value.

Given that AC makes at most T/TC queries and the running time of C is upper-bounded by TC , the

running time of AE is at most T . Let 1
2 + ε denote the probability that AC distinguishes successfully in

its game. It follows that AE distinguishes successfully in its game with the same probability, which is in

contradiction to the security of E .

V. PUBLIC-KEY ENCRYPTION SCHEMES

After a feasibility study of post-encryption compression in private-key encryption schemes, one may

wonder whether these results can be extended to public-key encryption schemes. Loosely speaking, the

key generation algorithm in public-key encryption schemes produces two different keys: a public key,

known to everyone, and a secret key. Any party who knows the public key can encrypt messages, but

only the owner of the secret key can decrypt.

14

Public-key encryption schemes are computationally expensive; therefore, one typically encrypts streams

of data in two stages. In the first stage, a public-key encryption scheme is used to encrypt a private key,

and in the second stage, a private-key encryption scheme (using the private key from the first stage) is

used to encrypt the data. The legitimate recipient is assumed to have the secret key, so it can decrypt

the private key and subsequently use the private key to decrypt the data. The results in this paper can

be applied to compress data encrypted in the second stage, while the question whether the private key

encrypted with a public-key encryption scheme in the first stage can be compressed deserves further

study and is beyond the scope of this paper. For completeness, we provide some observations toward the

resolution of this question.

In the El Gamal cryptosystem [15] one of the two components of the ciphertext can be compressed

if XOR is used to combine the ephemeral El-Gamal key with the message. For El Gamal over elliptic

curves there exists a well-known technique called “point compression” [16], which reduces the ciphertext

to half its length. Yet, in public-key encryption the ciphtertext is often longer than the plaintext, so one

could hope for better post-encryption compression. One result in this direction is Gentry’s technique for

compressing Rabin’s ciphertexts [17], but it can only be applied prior to encryption, not post-encryption.

Interestingly, the related result by Gentry regarding compression of Rabin’s signatures does allow for

compression after the signature generation and without the need for the signing key; however, there is

no known analogous result that applies to Rabin’s encryption function.

It is worth mentioning that the recent development of fully homomorphic encryption (FHE) [18]

provides a generic mechanism for compressing text encrypted under an FHE scheme, which can be

either symmetric-key or public-key. The characterizing property of FHE schemes is that for a given

ciphertext Enc(X), one can efficiently compute the value Enc(F (x)) for any efficiently computable

and fixed-length output function F without knowledge of the decryption key. It follows that if F is a

compression function with fixed-length output, a post-encryption compression for the FHE scheme is

obtained immediately. For example, consider a compression function C that achieves a compression rate

of at least 50% on any plaintext X from the plaintext domain X . In order to enforce the fixed-length

output requirement of FHE, one could define a function F that applies C but always produces outputs

of exactly half the size of the input. Then for any X ∈ X and ciphertext Enc(X), its compressed

and encrypted value Enc(F (X)) can be computed efficiently. The relationship between plaintext and

ciphertext lengths in an FHE scheme is typically linear; therefore, the length of Enc(F (X)) is half the

length of Enc(X). Since the receiver can decrypt Enc(X) it can also decrypt Enc(F (X)) to obtain

F (X) and subsequently apply decompression to recover X .

15

The drawback of FHE schemes is their high computational complexity and the length of cipher-

texts which tend to be considerably longer than plaintexts. The latter is particularly unfortunate for

post-encryption compression as the compressed ciphertext could end up being longer than the original

uncompressed plaintext. Hence, while in theory FHE provides a remarkable solution to post-encryption

compression, its practical applicability is very limited (at least with current FHE schemes).

VI. COMPRESSION PERFORMANCE

Codes used to compress stream ciphers can have arbitrary block lengths, since the cipher itself does

not directly impose any constraints on the block length. On the other hand, the compression methods

proposed for CFB and CBC mode must operate block-wise, since decompression occurs serially and

depends upon the preceding decompressed block. In effect, the block length of Slepian-Wolf codes must

be equal to the block cipher input length m.

Efficiency of the Slepian-Wolf compression depends on the performance of underlying Slepian-Wolf

codes and it was shown in [19], [20] that it approaches entropy with O(
√

logn
n), which is considerably

slower than O(1n) of arithmetic coding. It follows that for efficient Slepian-Wolf compression the block

length of Slepian-Wolf codes must be long.

Slepian-Wolf codes over finite block lengths have non-zero frame-error rates (FER), which implies

that the receiver will occasionally fail to recover EK(Xi−1) correctly. Such errors must be dealt with on

the system level, as they can result in catastrophic consequences due to error-propagation to subsequent

blocks. In the following it is assumed that as long as FER is low enough, the system can recover

efficiently, for instance by supplying the uncompressed version of the erroneous block to the receiver.

The compression performance will therefore depend on the target FER.

We consider a binary i.i.d. source with a probability distribution Pr(X = 1) = p and Pr(X = 0) =

1−p, which produces plaintext bits. A sequence of plaintext bits is divided into blocks of size m, which are

encrypted and compressed as described in Section III. The receiver’s task is to reconstruct EK(Xi−1) from

X̃i and side information C(EK(Xi−1)). For the considered source Slepian-Wolf decoding is equivalent

to error-correction over a binary symmetric channel (BSC) and thus the underlying codes should yield

a FER that is lower or at most equal to the target FER over the BSC. Compression efficiency can be

evaluated using two methods:

(a) fix probability p and determine the compression rate of a Slepian-Wolf code that satisfies the target

FER; or

16

(b) pick a well-performing Slepian-Wolf code and determine the maximum probability p for which

target FER is satisfied.

We use low-density parity-check (LDPC) codes [21], which are known to be very powerful and evaluate

compression performance according to method (b). In our simulations we use two LDPC codes3, of

which the first yields compression rate 0.5 and has degree distribution pair λ(x) = 0.3317x+0.2376x2+

0.4307x5, ρ(x) = 0.6535x5 + 0.3465x6 and the second yields compression rate 0.75 and has degree

distribution pair λ(x) = 0.4249x + 0.0311x2 + 0.5440x4, ρ(x) = 0.8187x3 + 0.1813x4. All codes are

constructed with the Progressive Edge Growth algorithm [22], which is known to yield good performance

at short block lengths. Belief propagation [21] is used for decoding and the maximum number of iterations

is set to 100.

TABLE I

COMPRESSION RATES AND HIGHEST ATTAINABLE PROBABILITY p FOR BLOCK LENGTH m = 128 BITS.

Compression Rate Target FER p Source Entropy

0.50 10−3 0.026 0.1739

0.50 10−4 0.018 0.1301

0.75 10−3 0.068 0.3584

0.75 10−4 0.054 0.3032

Simulation results for block lengths of 128 and 1024 bits are shown in Tables I and II, respectively.

First, consider the current specification of the AES standard [23], where m is 128 bits. At FER of 10−3

the binary source to be compressed to rate 0.5, can have the probability p of at most 0.026, where

its entropy equals 0.1739. The large gap between the achievable compression rate and the entropy is

a consequence of the very short block length. Note that for a fixed compression rate the maximum

probability p decreases with the decreasing target FER.

An increase in block length to 1024 bits results in a considerable improvement in performance (see

Table II). For instance, at FER = 10−3 and compression rate 0.5, the source can now have probability p

up to 0.058. In future block cipher designs one could consider longer block sizes, in order to allow for

better post-encryption compression.

3The degree distributions were obtained at http://lthcwww.epfl.ch/research/ldpcopt/

17

TABLE II

COMPRESSION RATES AND HIGHEST ATTAINABLE PROBABILITY p FOR BLOCK LENGTH m = 1024 BITS.

Compression Rate Target FER p Source Entropy

0.50 10−3 0.058 0.3195

0.50 10−4 0.048 0.2778

0.75 10−3 0.134 0.5710

0.75 10−4 0.126 0.5464

VII. CONCLUSION

We considered compression of data encrypted with block ciphers without knowledge of the key.

Contrary to the widespread belief that such data are practically incompressible, we show that compression

can be attained. Our method is based on the Slepian-Wolf coding and hinges on the fact that chaining

modes widely used with block ciphers introduce a simple symbol-wise correlation between successive

blocks of data. The proposed compression was shown to preserve the security of the encryption scheme.

Further, we showed the existence of a fundamental limitation to compressibility of data encrypted with

block ciphers when no chaining mode is employed.

Some simulation results are presented for binary memoryless sources. The results, while still far

from theoretical limits, indicate that considerable compression gains are practically attainable with block

ciphers, and improved performance can be expected with future increase of block sizes.

APPENDIX A

COMPRESSING OFB AND CFB MODE

The main part of the paper describes how compression can be performed on data encrypted with block

ciphers when they operate in the CBC mode. This section outlines how compression is achieved in other

two common modes associated with block ciphers, output feedback (OFB) and cipher feedback (CFB).

A. Output Feedback (OFB)

The mode depicted in Figure 7 is called output feedback (OFB). Plaintext blocks in Xn are not directly

encrypted with a block cipher. Rather, the block cipher is used to sequentially generate a sequence of

pseudorandom blocks K̃n = {K̃i}ni=1 which serve as a one-time pad to encrypt the plaintext blocks. At

the output of the encryption algorithm we have EncK(Xn) = (IV,Yn).

18

Block cipher

Y1

K

IV

. . .

X1

IV

Block cipher

Y2

K

X2

Block cipher

Yn

K

Xn

K1
~

K2
~

Kn
~

Fig. 7. Output feedback (OFB).

Notice that each block K̃i is independent of plaintext blocks, therefore the OFB mode is analogous to

the one-time pad encryption scheme and Yn can be compressed in the same manner as described in [3].

Most importantly, K̃n and Xn are independent, therefore the block length of Slepian-Wolf codes that are

used to compress Yn can be chosen arbitrarily. The IV is uniformly distributed and thus incompressible.

Formally, the compression and decompression algorithms can be described as follows. Let (COFB, DOFB)

denote a Slepian-Wolf code with encoding rate R and block length nm. The Slepian-Wolf encoding

function is defined as COFB : (Xm)n → {1, . . . , 2mnR}, and the Slepian-Wolf decoding function as

DOFB : {1, . . . , 2mnR}× (Xm)n → (Xm)n. Given an output sequence from the encryptor EncK(Xn) =

(IV,Yn), compression is achieved by applying the Slepian-Wolf encoder function COFB to Yn, so that

at the output we have (IV, COFB(Y
n)). Note that COFB does not require knowledge of K.

Decompression and decryption are performed jointly. The receiver has (IV, COFB(Y
n)) and knows the

secret key K, thus it can generate the sequence of pseudorandom blocks K̃n using the IV. Subsequently,

it applies the Slepian-Wolf decoder function DOFB to (COFB(Y
n), K̃n) to recover Yn. The original

sequence of plaintext blocks Xn then equals K̃n ⊕Yn.

Note that K̃n is not an i.i.d. sequence; therefore the original Slepian-Wolf theorem from [4] does

not apply directly. Nevertheless, the Slepian-Wolf theorem was also shown to hold for correlated general

sources [24], [25, Chapter 7] and so the compression rate approaches entropy of the source asymptotically

in nm. That is, even if m is finite, entropy can still be achieved if n→∞.

19

B. Cipher Feedback (CFB)

Next, we discuss the cipher feedback (CFB) mode, which is depicted in Figure 8. Similarly as in

OFB, the plaintext blocks are not subject to block cipher encryption and Yn is obtained by XOR-ing

plaintext blocks Xn with pseudorandom blocks K̃n. At the output of the encryption algorithm we have

EncK(Xn) = (IV,Yn).

Block cipher

Y1

K

IV

. . .

X1

IV

Block cipher

Y2

K

X2

Block cipher

Yn

K

Xn

K1
~

K2
~

Kn
~

Fig. 8. Cipher feedback (CFB).

However, in CFB mode, the pseudorandom blocks K̃n are not independent of Xn. Let the block cipher

using a secret key K be characterized by the bijective mapping BK : Xm → Xm. Each block K̃i depends

on the preceding plaintext block Xi−1 as follows:

K̃i = BK(Xi) = BK(Xi−1 ⊕ K̃i−1), (4)

where X0 is defined to be the IV.

Due to the dependence between K̃n and Xn, the proposed compression algorithm for the CFB mode

operates on individual ciphertext blocks Yi, rather then on Yn all at once like in the OFB mode. Without

this distinction, the joint decompression and decryption as proposed in [3] would not be possible. Let

(CCFB, DCFB) denote a Slepian-Wolf code with encoding rate R and block length m. The Slepian-Wolf

encoding function is defined as CCFB : Xm → {1, . . . , 2mR}, and the Slepian-Wolf decoding function

as DCFB : {1, . . . , 2mR} ×Xm → Xm. Compression is achieved by applying the Slepian-Wolf encoding

function CCFB to each of the ciphertext blocks in Yn individually. The compressed representation of

EncK(Xn) is then (IV, CCFB(Y1), . . . , CCFB(Yn)). Note again, that CCFB does not require knowledge of

K.

20

Joint decompression and decryption, depicted on Figure 9 is performed sequentially from left to

right, since decryption of the ith ciphertext block requires knowledge of the (i − 1)th plaintext block.

Initially, IV is mapped to K̃1 by the block cipher. The Slepian-Wolf decoder function DCFB is applied

X2

. . .

X1

Block Cipher

Slepian-Wolf
Decoder

K

CCFB(Y2) IV

K1
~

CCFB(Y1)

Y1

Block Cipher

Slepian-Wolf
Decoder

K

K2
~

Y2

Xn

CCFB(Yn)

Block Cipher

Slepian-Wolf
Decoder

K

Kn
~

Yn

Fig. 9. Joint decryption and decoding in the CFB mode at the receiver is performed serially from left to right.

to (CCFB(Y1), K̃1) to obtain Y1. The first plaintext can now be obtained: X1 = K̃1 ⊕ Y1. Subsequently,

Y1 is mapped to K̃2. The same process repeats to obtain X2, and later all remaining plaintext blocks

{Xi}ni=3.

Notice that in contrast to the OFB mode, this compression scheme is generally optimal only if m→∞.

For finite m, the compression is generally suboptimal, even if n→∞.

APPENDIX B

SOME DEFINITIONS FROM CRYPTOGRAPHY

For completeness, we recall some standard definitions from cryptography that are used in this paper.

See [8] for details. These definitions assume a fixed computational model over which time complexity

is defined.

Definition 7 (Block Cipher): A block cipher B with block size m is a keyed family {BK}K∈K where

for each K, BK is a permutation over m bits4 and K is the set of all possible keys.

4By a permutation over m bits we mean a deterministic bijective function over {0, 1}m.

21

The security of a block cipher is defined via the notion of indistinguishability. Ideally, we would

like the behavior of a block cipher to be indistinguishable by computational means from that of a purely

random permutation over m bits. However, since a block cipher is a much smaller family of permutations

than the family of all permutations, the above is not fully achievable. Yet, if we restrict our attention to

“computationally feasible distinguishers” then we can obtain a meaningful notion of security applicable

to actual block ciphers such as AES.

Hence, the main ingredient in such definition is that of a distinguisher. A distinguisher Dist is defined

as a randomized algorithm with oracle access to two m-bit permutations Enc and Dec where Dec =

Enc−1. Dist can make arbitrary queries to the oracles and eventually outputs a single bit 0 or 1. We

consider the runs of Dist in two cases: when the oracles are instantiated with a truly random permutation

and when instantiated with a block cipher (i.e., with the functions BK and B−1K where K is chosen with

uniform probability from the set K). Let PREAL be the probability that Dist outputs a 1 when the oracle

was instantiated with B, where PREAL is computed over all random coins of Dist and all choices of

the key for B. Further, let PRP be the probability that Dist outputs a 1 when the oracle was instantiated

with a random permutation, where PRP is computed over all random coins of Dist and all permutations

Enc. Intuitively, we can think of Dist as trying to decide if the oracles are instantiated with a random

permutation or with a block cipher; hence, a distinguisher is considered successful if the difference

|PREAL − PRP |, which is referred to as the advantage, is non-negligible. Formally, this leads to the

following definition.5

Definition 8 (Block Cipher Security): A block cipher B is called (T, ε)-secure if no distinguisher Dist

that runs in time T has advantage larger than ε.

This definition tries to capture the idea that, for secure block ciphers, even distinguishers that have the

ability to run for extremely large time T , say T = 280, gain only negligible distinguishing advantage,

say ε = 2−40. In other words, for any practical purpose the quality of the block cipher is as good as if

it was instantiated by a “perfect cipher” (purely random permutation).

A secure block cipher by itself does not constitute a secure private-key encryption scheme due to its

deterministic nature. Namely, two identical plaintexts are mapped into two identical ciphertexts, therefore

valuable information about data patterns can be leaked to eavesdroppers. Rather, secure block ciphers are

used as building blocks that can be used to construct private-key encryption schemes that eliminate this

vulnerability. Note that a secure private-key encryption scheme must be probabilistic or stateful.

5This definition corresponds to the notion of strong pseudorandom permutation [14].

22

Toward a formal definition of a secure encryption scheme, consider the following experiment:

Definition 9 (CPA Indistinguishability Experiment): Consider an adversaryA and an encryption scheme

(Gen,Enc,Dec). The chosen plaintext attack (CPA) indistinguishability experiment ExptcpaA is defined

as follows:

1) a key k is generated by running Gen;

2) the adversary A has oracle access to EncK(·), and queries it with a pair of plaintexts X0, X1 of

the same length;

3) the oracle randomly chooses a bit b ← {0, 1} and returns the ciphertext q ← EncK(Xb), called

the challenge, to A;

4) the adversary A continues to have oracle access to EncK(·) and is allowed to make arbitrary

queries. Ultimately it makes a guess about the value of b by outputting b′;

5) the output of the experiment, ExptcpaA , is defined to be 1 if b′ = b, and 0 otherwise. If ExptcpaA = 1,

we say that A succeeded.

Definition 10 (Private-Key Encryption Security): A private-key encryption scheme (Gen,Enc,Dec)

is called (T, ε)-indistinguishable under chosen plaintext attacks (or CPA-secure) if for every adversary

A that runs in time T ,

Pr
[
ExptcpaA = 1

]
<

1

2
+ ε,

where the probability is taken over all random coins used by A, as well as all random coins used in the

experiment.

APPENDIX C

PROOF OF THEOREM 3

The proof of Theorem 3 is by contradiction. We assume a generic PEC scheme (C,D) that departs

in some noticeable way (later made more precise by means of the parameter ε) from the exhaustive

strategies when it is applied to a block cipher B. Subsequently, we show how to use such a PEC scheme

to build a distinguisher Dist that distinguishes with advantage strictly larger than ε between the block

cipher B and a random permutation, in contradiction to the security of B.

For simplicity, and without loss of generality, we assume that D does not make redundant queries to

Enc or Dec. Namely, no query X to Enc or query Y to Dec is repeated in a run. If X was output by

Dec (resp., Y output by Enc) it is not entered into Enc (resp., into Dec). In addition, if the decoded

output from D is X , we assume that X was either input to Enc or output by Dec. If D does not follow

these rules, it can be modified to do so.

23

For X ∈R P 6 and Y = Enc(X), assume that C(Y) is passed as input to D. We say that D decodes

correctly if it queries either X from Enc or Y from Dec during its run. In other words, D is not required

to have the ability to identify the correct plaintext, which simplifies our presentation without weakening

our results. On the contrary, it shows that even if such a relaxed decoding requirement is acceptable, the

lower bound we prove still holds.

Finally, note that the formulation of the theorem assumes that the plaintext distribution P is efficiently

samplable. This assumption is used in an essential way in our proof, though the efficiency requirement

from the P sampler is very weak. In addition, we assume that, for a given compressed ciphertext C(Y),

one can sample uniformly from the set YC(Y) = C−1(C(Y)), which is the set of all ciphertexts mapped

by C to C(Y). Additional discussion related to this assumption is given after the proof.

The proof of Theorem 3 uses the following lemma.

Lemma 11: Let T be a time-bound parameter, let B be a (T, ε)-secure block cipher and let E =

(Gen,Enc,Dec) be an encryption scheme, where Gen chooses K ∈R K and Enc = BK , Dec = B−1K .

Let P be a plaintext distribution samplable in time T/4 and let (C,D) be a generic (E ,P, δ)-PEC scheme.

Then either (C,D) runs in time that exceeds T/4 (and hence is infeasible7) or the following holds:

(i) Let X ∈R P and Y = Enc(X). Consider a run of D on input C(Y) in which D queries Enc(X),

and let X ′ be a random element drawn from P independently of X . Then, the probability that D queries

Enc(X ′) before Enc(X) is at least 1/2− ε/(1− δ).

(ii) Let X ∈R P and Y = Enc(X). Consider a run of D on input C(Y) in which D queries Dec(Y),

and let Y ′ be an element drawn uniformly from YC(Y) = C−1(C(Y)). Then, the probability that D

queries Dec(Y ′) before Dec(Y) is at least 1/2− ε/(1− δ).

We first show how the Lemma 11 suffices to prove Theorem 3.

Proof of Theorem 3: For case (i), the probability that X is queried first is within ε/(1− δ) of the

probability that X ′ is queried first, where the latter is the probability of querying a plaintext that bears

no information (the run of D is independent of X ′). Assuming that δ < 1/2, we get ε/(1− δ) < 2ε and

since ε is negligible (say 2−40) so is 2ε. This implies a plaintext-exhaustive strategy by D. Similarly, for

case (ii), the probability that the value Y is computed first is within ε/(1− δ) of the probability that an

independent Y ′ ∈R YC(Y) is computed first. This implies a ciphertext-exhaustive strategy by D.

6We use X ∈R P to denote that X is chosen at random according to the probability distribution P .
7For secure block ciphers, a distinguisher should not be able to attain more then a negligible advantage even if it runs for

extremely large time T , say T = 280 (see Appendix B). Thus, a PEC scheme that runs in time T/4 would be considered

infeasible.

24

Proof of Lemma 11: First, consider the error-free case, i.e. δ = 0. We show that if (C,D) runs in

time less than T/4 and conditions (i), (ii) do not hold, we can build a distinguisher (see Appendix B)

that runs in time at most T and distinguishes between B and a random permutation with an advantage

larger than ε, in contradiction to the security of B. A distinguisher interacts with oracles Enc and Dec

and its goal is to identify whether the oracles are instantiated with the real block cipher B or with a

random permutation. For clarity, we represent the output 0 from Dist by the symbol RP (Dist decided

that the oracles are instantiated with a random permutation) and the output 1 by REAL (Dist decided

that the oracles are instantiated by the block cipher B).

We build a distinguisher Dist that uses the scheme (C,D) and responds to the encryption and

decryption queries made by D with its Enc/Dec oracles. When Enc is a random permutation, (C,D)

may run much longer than when Enc is B. Thus, to bound the time complexity of Dist, we set a time

limit T ′ = T/4, such that if the total time of (C,D) exceeds T ′, Dist stops as well. As we show below,

the parameter T ′ is chosen as T/4 to ensure that the total running time of Dist is no more than T .

Initially, Dist chooses X ∈R P and receives the value Y = Enc(X) from its Enc oracle. It computes

C(Y) and passes it as input to D. In addition, Dist chooses an independent X ′ ∈R P and independent

Y ′ ∈R YC(Y). It is assumed that Y ′ can be sampled within time T/4. Subsequently, Dist monitors the

queries to Enc/Dec as requested by D and reacts to the following events:

1) if X is queried from Enc, stop and output REAL;

2) if X ′ is queried from Enc, stop and output RP;

3) if Y is queried from Dec, stop and output REAL;

4) if Y ′ is queried from Dec, stop and output RP.

5) if the run of (C,D) exceeds T ′, stop and output RP

It is possible that multiple such events take place in one run of D, for instance both X and X ′ may

be queried from Enc. In such case Dist stops as soon as it identifies first such event.

Let PREAL and PRP be defined as in Appendix B. We evaluate the advantage of Dist, namely, the

difference |PREAL − PRP |. First, consider a run of Dist when Enc/Dec are instantiated by a random

permutation. The behavior of (C,D) depends on Y which is chosen at random and independently of X

and X ′, therefore the run is independent of both X and X ′. In effect, the probability that X is queried

before X ′ is exactly 1/2. Similarly, if Y is queried from Dec, the behavior of D depends on C(Y),

while both Y and Y ′ have the same probability to be the chosen as the preimage of C(Y). Therefore,

the probability that Y precedes Y ′ is exactly 1/2. It follows that Dist outputs REAL with probability

at most 1/2 (exactly 1/2 for the X and Y cases and with probability 0 if Dist exceeds time T ′), i.e.,

25

PRP ≤ 1/2.

Now, consider a run of Dist when Enc/Dec are instantiated by a block cipher B and its inverse,

respectively. Assume, for contradiction, that (C,D) stops before time T ′ and either (i) the probability

that X ′ is queried before X is strictly less than 1/2− ε or (ii) the probability that Y ′ is queried before

Y is strictly less than 1/2− ε. It follows that the probability that Dist outputs RP is strictly smaller than

1/2− ε, therefore PREAL > 1/2 + ε.

Thus, Dist distinguishes with advantage |PREAL−PRP |, which is strictly larger than ε. The running

time of Dist is upper-bounded by T : it includes three samplings (of X,X ′ and Y ′), each assumed to

take at most T/4 time, and the work of (C,D) which Dist runs for total time T/4 at most. In all, we

have built a distinguisher against B that runs time T and has advantage larger than ε in contradiction to

the security of the block cipher B.

Assume now that δ > 0. When a positive probability of error for D is allowed, it can occur that D

stops before time T ′ and before Dist sees X,X ′, Y or Y ′. To deal with this situation, we add a clause to

the specification of Dist saying that if (C,D) stops before time T ′ and before seeing any of the values

X,X ′, Y, Y ′, then Dist chooses a random bit b and outputs REAL if b = 1 and RP if b = 0. We slightly

increased the probability that X ′ is queried before X (or Y ′ before Y) in the block cipher case, however

it is still negligibly far from 1/2. The proof is now a straightforward extension of the case when δ = 0.

Remark. The proof of Lemma 11 assumes that the set YC(Y) is samplable in time T/4. While this

assumption is likely to hold, we note that it is enough to know the size of YC(Y). In such case, rather

than sampling YC(Y), the events 3) and 4) in the proof are replaced with the following one: if the number

of queries to Dec performed by D exceeds |YC(Y)|/2 before Y is queried, stop and output RP.

We now sketch the proof of the theorem when none of the above conditions holds, namely when YC(Y)

is of unknown size and not samplable in time T/4. Assume that (C,D) performs noticeably better than

the exhaustive strategies when the Enc/Dec oracles are instantiated with the block cipher B. Then it

must hold that (C,D) runs noticeably faster when the Enc and Dec oracles are instantiated with the

block cipher B than with a random permutation, for the exhaustive strategies are optimal for a random

permutation (as shown above). Using this (assumed) discrepancy between the runs of (C,D) over B and

the runs of (C,D) over a random permutation, we can build a distinguisher against B in contradiction

to the security of B. In the following, we formalize this discrepancy and outline the construction of the

distinguisher, where some straightforward details are omitted.

26

For any plaintext X let TB(X) denote the runtime of (C,D) on input X when Enc/Dec oracles

are instantiated with the block cipher B. Further, let TR(X) denote the runtime of (C,D) on input X

when Enc/Dec oracles are instantiated with a random permutation. We assume that there is a known

time bound T0 such that TB(X) < T0 for all X (we relax this assumption below) and there exists a

non-negligible ε such that Pr[TB(X) < TR(X)] ≥ 1/2 + ε. The probability is over all choices of X

and all random coins of (C,D). Further, it is over all key choices for B for TB and over all random

permutations for TR. We build a distinguisher Dist as follows:

1) Choose X ∈R P and run (C,D) using the input oracles. If time T0 is exceeded, stop and output

RP, otherwise proceed to Step 2.

2) Let T1 denote the running time of (C,D) in step (1). Run (C,D) again on X (same X as in step

1)) but this time ignore the given Enc/Dec oracles. Instead, answer queries from (C,D) with a

random permutation. If time T1 is exceeded then output REAL, otherwise output RP.

We have the following:

• If the Enc/Dec oracles are instantiated with B, step (1) always completes and in step (2) REAL is

output with the probability that equals Pr[TR(X) > TB(X)], which is at least 1/2 + ε.

• If the Enc/Dec oracles are instantiated with a random permutation, REAL is output only if TR(X) ≤

T0 and the runtime on X in step (2) exceeds the runtime on X in step (1). The probability of the

latter is at most 1/2 since both runs are over a random permutation.

Thus, Dist will output REAL with probability at least 1/2+ ε when the oracles are instantiated with B,

while it will output REAL with probability at most 1/2 when the oracles are instantiated with a random

permutation. It follows that Dist is a (T, ε)-distinguisher for B where T = 2T0 since in each of the

steps (1) and (2) Dist runs time at most T0.

Note that the requirement that TB(X) < T0 for all X can be relaxed such that the joint probability of

TB(X) < T0 and TB(X) < TR(X) is at least 1/2 + ε.

REFERENCES

[1] U. D. of Commerce/National Institute of Standards and Technology, “Advanced encryption standard (AES),” in FIPS PUB

197, Nov. 2001.

[2] N. B. of Standards, Data Encryption Standard (DES). U.S. Department of Commerce, Washington D.C, 1977.

[3] M. Johnson, P. Ishwar, V. Prabhakaran, D. Schonberg, and K. Ramchandran, “On compressing encrypted data,” IEEE

Trans. Signal Processing, vol. 52, pp. 2992–3006, Oct. 2004.

[4] D. Slepian and J. Wolf, “Noiseless coding of correlated information sources,” IEEE Trans. Info. Theory, vol. 19, pp.

471–480, July 1973.

27

[5] S. Kent and K. Seo, “Security achitecture for the internet protocol,” in RFC 4301, Dec. 2005.

[6] T. Dierks and E. Rescorla, “The TLS protocol – version 1.2,” in RFC 5246, Aug. 2008.

[7] M. Johnson, D. Wagner, and K. Ramchandran, “On compressing encrypted data without the encryption key,” in Proc. of

the Theory of Crypto. Conf., Cambridge, MA, Feb. 2004.

[8] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman & Hall/CRC, 2007.

[9] A. Aaron and B. Girod, “Compression with side information using turbo codes,” in IEEE Data Compression Conf., 2002,

pp. 252–261.

[10] J. Garcia-Frias, “Compression of correlated binary sources using turbo codes,” IEEE Communications Letters, vol. 5, pp.

417–419, Oct. 2001.

[11] A. Liveris, Z. Xiong, and C. Georghiades, “Compression of binary sources with side information at the decoder using

LDPC codes,” IEEE Communications Letters, vol. 6, pp. 440–442, Oct 2002.

[12] J. L. Massey, “Guessing and entropy,” in IEEE Inter. Symp. on Info. Theory, Seattle, WA, June 1994.

[13] C. Cachin, “Entropy measures and unconditional security,” Ph.D. dissertation, ETH Zürich, 1997.

[14] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security treatment of symmetric encryption: Analysis of the

DES modes of operation,” in IEEE Proc. of 38th Annual Symp. on Foundations of Computer Science, 1997.

[15] T. ElGamal, “A public-key cryptosystem and a signature scheme based on discrete logarithms,” in CRYPTO ’84. Springer-

Verlag (LNCS 196), 1984, pp. 10–18.

[16] I. F. Blake, G. Seroussi, and N. P. Smart, Eliptic Curves in Cryptography. Cambridge University Press, 2000.

[17] C. Gentry, “How to compress Rabin ciphertexts and signatures (and more),” in CRYPTO ’04. Springer-Verlag (LNCS

3152), 2004, pp. 179–200.

[18] ——, “Fully homomorphic encryption using ideal lattices,” in Proc. 41st Annu. ACM Symp. Theory of Computing, 2009,

pp. 169–178.

[19] D. He, L. Lastras-Montaño, and E. Yang, “A lower bound for variable rate Slepian-Wolf coding,” in IEEE Inter. Symp. on

Info. Theory, Seattle, WA, July 2006.

[20] ——, “On the relationship between redundancy and decoding error in Slepian-Wolf coding,” in IEEE Information Theory

Workshop, Chengdu, China, Oct. 2006.

[21] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge University Press, 2008.

[22] X. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular progressive edge-growth Tanner graphs,” IEEE Transactions

on Information Theory, vol. 51, no. 1, pp. 386–398, Jan 2005.

[23] W. Mao, Modern Cryptography: Theory and Practice. Prentice Hall, 2003.

[24] S. Miyake and F. Kanaya, “Coding theorems on correlated general sources,” IEICE Transactions on Fundamentals, vol.

E78-A, no. 9, pp. 1063–1070, 1995.

[25] T. Han, Information Spectrum Methods in Information Theory. Springer, 2002.

