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Abstract

This paper presents efficient protocols for securely computing the following two problems:

1. The fundamental problem of pattern matching. This problem is defined in the two-party setting,
where party P1 holds a pattern and party P2 holds a text. The goal of P1 is to learn where the
pattern appears in the text, without revealing it to P2 or learning anything else about P2’s text.
This problem has been widely studied for decades due to its broad applicability.
We present several protocols for several notions of security. We further generalize one of our
solutions to solve additional pattern matching related problems of interest.

2. Our construction from above, in the malicious case, is based on a novel protocol for secure obliv-
ious automata evaluation which is of independent interest. In this problem, party P1 holds an
automaton and party P2 holds an input string, and they need to decide if the automaton accepts the
input, without learning anything else.
Our protocol obtains full security in the face of malicious adversaries.

1 Introduction

Secure two-party computation is defined as joint computation of some function over private inputs. This
joint computation must satisfy at least privacy (no other information is revealed beyond the output of the
function) and correctness (the correct output is computed). In order to achieve this, the parties engage
in a communication protocol. Today’s standard definition (cf. [Can98] following [GL90, Bea91, MR91])
formalizes security by comparing the execution of such protocol to an “ideal execution” where a trusted
third party helps the parties compute the function. Specifically, in the ideal world the parties just send
their inputs over perfectly secure communication lines to a trusted party, who then computes the function
honestly and sends the output to the designated party. Informally, the real protocol is defined to be secure
if all adversarial attacks on a real protocol can also be carried out in the ideal world; of course, in the ideal
world the adversary can do almost nothing and this guarantees that the same is also true in the real world.
This definition of security is often called simulation-based because security is demonstrated by showing that
a real protocol execution can be “simulated” in the ideal world.

Secure two-party computation has been extensively studied, and it is known that any efficient two-party
functionality can be securely computed [Yao86, GMW87, Gol04]. However these are just feasibility results
that demonstrate secure computation is possible, in principle, though not necessarily in practice. One reason
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is that the results mentioned above are generic, i.e. they do not exploit any structural properties of the specific
function being computed. A long series of research efforts has been focused on finding efficient protocols
for specific functions; and constructing such protocols is crucial if secure computation is ever to be used in
practice.

1.1 Text Search

In this work we consider the classic problem of pattern matching. In this problem, one party holds a text T
of length ` whereas the other party holds a pattern p of length m, where these lengths are mutually known.
The aim is for the party holding the pattern to learn all the locations of the pattern in the text (and there may
be many), while the other party learns nothing about the pattern. Pattern matching has been widely studied
for decades due to its broad applicability, but rarely in a secure context.

Earlier text search algorithms were sequential, where the text is searched by scanning for all occurrences
of a particular pattern. Efficient variants of this approach analyze the pattern string to enable O(`) scanning
to skip regions of text whenever possible matches are provably not possible. Included in this category
are the widely studied Knuth-Morris-Pratt [KMP77] that uses automata evaluation, which we implement
here securely (but less efficiently), Boyer-Moore [BM77] and more recently, Factor Oracle [ACR99] based
algorithms. Algorithms based instead upon the analysis of the text to be searched are categorized as index-
based, including suffix tree based algorithms which build a data structure in O(`) time and storage [NM07].
Nevertheless, these algorithms do not appear to be amendable to secure computation with reasonable com-
putational properties. Finally, for completeness, algorithms used frequently for natural languages use partial
inverted indexes such as n-grams, and were suggested in [Goh03] in a similar security context. However,
the probabilistic properties of these techniques cannot be easily bounded in running time or in security
properties for general texts.

1.2 Our Contribution

1.2.1 Secure Text Search

1. Secure text search with honest-but-curious and one-sided simulatability. Our starting point is
an efficient protocol (cf. Section 3.1) that computes the pattern matching function in the “honest-
but-curious” setting over a binary alphabet.1 This solution offers linear communication in the input
lengths and computation complexity of O(m+ `) modular exponentiations and O(m`) modular mul-
tiplications. Informally, our protocol instructs the party that inputs the pattern to prepare two lists
of ciphertexts so that one list is associated with zero and the other is associated with one. For each
pattern location i, an encryption of zero is placed in the ith position of the list for which the current
pattern bit pi matches the value that is associated with that list. The other party then uses these lists in
order to generate for each text location, an encryption of the Hamming distance between the pattern
and the text starting from this location. These are used to determine the matched text positions.

We then demonstrate how the security of this solution can be extended to the case of one-sided sim-
ulation (with similar costs), where full simulation is provided for one of the malicious corruption
cases, while only privacy (via computational indistinguishability) is guaranteed for the other corrup-
tion case.2 Namely, the secrecy of the inputs is always guaranteed, but in one of the corruption cases
the adversary can behave inappropriately causing the honest party to output an incorrect value. The

1In this setting, an adversary follows the protocol specification but may try to examine the messages it receives to learn more
than it should about the honest party’s input.

2In the malicious setting, an adversary follows an arbitrary polynomial-time attack strategy.
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workload of P1 in our protocols is O(m + `) modular exponentiations, whereas the workload of P2

is O(m+ `) exponentiations and O(m`) modular multiplications.

2. In Section 3.2 we consider solutions (using our protocol from Item 1), for three generalizations of the
pattern matching problem:

(i) Approximate text search. Recent applications e.g., Computational Biology, text editing, Meteo-
rology and more, have shown that a more generalized theoretical notion of string matching is required.
In approximate matching, one defines a distance metric between the strings and finds all the text lo-
cations where the pattern matches the text by a pre-specified distance. Namely, an additional public
parameter ρ which determines the number of differences that can be tolerated, is introduced (where a
difference is defined by the specified metric). The most natural metric is the Hamming distance that
counts the number of mismatches between two strings. The best algorithm for solving text search with
mismatches in an insecure setting is the solution by Amir et al. [ALP00] which introduces a solution
in O(`

√
ρ log ρ) time. We show how to adapt our one-sided simulation solution for this problem,

obtaining O(m+ `) exponentiations, O(m`) modular multiplications and O(ρ`) communication.

(ii) Text search with wildcards. This variant was developed with the aim to introduce improved
algorithms for approximate text search. Here, a wildcard symbol is introduced in the pattern, so
that it matches against any character when comparing against the text. In an insecure setting, this
problem can be solved in time that is linear in the lengths of the text and pattern and the number of
occurrences [RI07]. Our solution obtains similar costs to the overhead introduced by our one-sided
simulation protocol since essentially the protocols are almost identical.

(iii) Text search with larger alphabet. We further extend our basic protocol to deal with a larger
alphabet Σ as in the DNA example from below. In an insecure setting, this problem can be solved in
O(|Σ|`) time by extending the binary solutions. Our solution inflates the costs of our protocols from
the binary case by a multiplicative factor |Σ|.

3. Secure text search against malicious adversaries. Trying to adapt our solution for the malicious
setting introduces quite a few subtleties and requires the use of a different technique. The main
difficulty is with respect to the party that inputs the text. Since it must be ensured that a well defined
text is used during the protocol execution. Although, this can always be achieved using generic zero-
knowledge proofs to demonstrate correct behavior, it is not immediately clear how to do so efficiently.

To achieve full simulation we introduce a second independent protocol (cf. Section 5), which em-
ploys several other novel sub-protocols, including a protocol to prove that a correct pattern-specific
automaton was constructed. Specifically, our protocol securely implements the [KMP77] protocol
that reduces the pattern matching problem to the composition of a pattern-specific automaton with the
text T . The communication complexity of our protocol is O(m`) and the round complexity is O(`),
where the round complexity is derived from the fact that the automaton must be evaluated sequen-
tially.3 In addition, the number of exponentiations induced by our protocol is O(m`). This result is
based on our contribution in the following section regarding oblivious automata evaluation.

1.2.2 Oblivious Automata Evaluation

We develop a protocol for two parties (one holding an automaton Γ and another holding an input text T )
to securely compute the evaluation of Γ on T with full simulation in the presence of malicious behavior.
This protocol can be of independent interest beyond the pattern matching application and can be considered

3We use standard techniques to reduce this round complexity into O(m) by partitioning the text into substrings of length 2m.
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an extension of the work by Ishai and Paskin [IP07], which considered the model of obliviously evaluating
branching programs (a deterministic automaton is a special case of a branching program). In the model
of [IP07], the communication is proportional to the input for the branching program and independent of
the description of the program. Still, only privacy is guaranteed, and not correctness nor independence of
inputs. In contrast, our protocol achieves full security but the amount of communication is proportional to
the size of the automaton’s description times the length of the input to the automaton. Similarly, the number
of exponentiations is a factor of these two parameters. We provide a detailed analysis below in Section 1.5.

1.3 Motivation

Secure pattern matching has many potential applications. Consider, for example, the hypothetical case of
a hospital holding a DNA database of all the participants in a research study, and a researcher wanting to
determine the frequency of the occurrence of a specific gene. This is a classical pattern matching application,
which is however complicated by privacy considerations. The hospital may be forbidden from releasing the
DNA records to a third party. Likewise, the researcher may not want to reveal what specific gene she is
working on, nor trust the hospital to perform the search correctly.

It would seem that existing honest-but-curious solutions would work here. However, the parties may be
motivated to produce invalid results, so a proof of accurate output might be as important as the output itself.
Moreover, there is also a need to make sure that the data on which the protocol is run is valid. For example,
a rogue hospital could sell “fake” DNA databases for research purposes. Perhaps some trusted certification
authorities might one day pre-certify a database as being valid for certain applications. Then, the security
properties of our protocol could guarantee that only valid data is used in the pattern matching protocol. (The
first step of our protocol is for the hospital to publish an encryption of the data, this could be replaced by
publication of encrypted data that was certified as correct.)

1.4 Related Work

The idea to use oblivious automata evaluation, and also the study of secure pattern matching, originated
in [TPKC07]. In this paper, the authors present secure protocols in the honest-but-curious setting and require
linear communication complexity, and multiplicative computation complexity (in the number of states and
the input length for the automaton). We note that adapting these constructions to the malicious setting is
much more challenging. First, due to the requirement that the automaton must be valid (according to some
specifications described in Section 5). Furthermore, the parties’ inputs to the oblivious transfers must be
consistent. We thus take a different approach and show how to tolerate malicious behavior.

The problem of secure pattern matching was also studied by Hazay and Lindell in [HL08], who used
oblivious pseudorandom function (PRF) to evaluate every block of size m bits from the text. Their protocol
achieves the weaker notion of one-sided simulation and requires O(`) exponentiations and O(m`) multipli-
cations for both parties. It is not immediately clear how to efficiently extend their solution so that it achieves
fully simulatable security, since the inputs to the PRF must be consistent in the sense that every two con-
secutive blocks overlap in m − 1 bits. We further note that this approach is not useful in solving the first
two generalizations specified in Item 1.2.1, since the PRF evaluations of any two strings that their Hamming
distance is small (say the two strings differ in only one bit), yield two strings that look independent.

In [KM10], Katz and Malka considered a generalization of the basic pattern matching problem, denoted
text processing. Namely, the party who holds the pattern has some additional information y with the aim
to learn a function of the text and y, for the text locations where the pattern matches. They showed how to
modify Yao’s garbled circuit approach to obtain a protocol where the size of the garbled circuit is linear in
the number of occurrences of p in T (rather than linear in the length of T ). The costs of their constructions
are dominated by the size of the circuit times the number of occurrences u. Moreover, they assume a
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common input of some threshold on the number of occurrences. Their solutions are applied in the one-sided
simulation setting.

In a followup work [HT10], Hazay and Toft presented an improved protocol that solves the basic pattern
matching problem in the malicious setting with O(m`) multiplications. This analysis holds also for the
honest-but-curious setting, as well as with one-sided simulation. Their solution takes a different approach
by converting the binary representation of the pattern and the text into field elements. Hazay and Toft further
presented solutions for approximate text search and text search with wildcards that incur O(m`) modular
exponentiations (in both honest-but-curious and malicious settings).

The works by Jarrous and Pinkas [JP09] and by Vergnaud [Ver11] solve variants of the basic problem.
In the former work, the authors solve the hamming distance problem for two equal length strings against
malicious adversaries. Their protocol requires a committed oblivious transfer for each bit. Moreover, the
costs of their protocol are inflated by a statistical parameter s for running a subprotocol for the oblivious
polynomial evaluation functionality [HL09] (namely, the protocol requires O(sd) exponentiations, where d
is the degree of the polynomial, i.e., the input length). In the context of approximate pattern matching, their
protocol requires O(sm`) exponentiations. The latter work solves the problem of pattern matching with
wildcards in the presence of malicious adversaries by taking a different approach of Fast Fourier Transform
and implementing this technique securely. This paper presents protocols that exhibit linear communication
and O(` logm) modular exponentiations.

Finally, a more recent paper Baron by et al. [BDM+12] studies the problem of text search with wildcards
in a more general sense of non-binary alphabet, implementing a different algorithm based on linear alge-
bra formulation and additive homomorphic encryption. This protocol requires O(m + `) communication
complexity and O(m`) modular multiplications in the malicious setting.

1.5 Efficiency Comparison

The state of the art generic construction for secure two-party computation is a recent work by Lindell and
Pinkas [LP11]. They propose a protocol that follows the methodology Yao’s protocol and is secure in the
presence of malicious adversaries under the DDH assumption. In order to cope with malicious behavior this
protocol carries out a basic cut-and-choose test on the garbled Boolean circuit construction of Yao. This
means that a party P1 has to construct s copies of a garbled circuit, sending them to P2, who then asks P1

to open half of them in order to verify their correctness. Namely, the computation/communication costs are
inflated by this security parameter s. Recent developments [Lin13] reduce the cut-and-choose parameter into
40 (with some additional overhead). We thus compare our protocols that compute the oblivious automaton
evaluation and pattern matching functionalities with the [Lin13] generic two-party constant round protocol.

Oblivious automata evaluation. We note that a circuit that computes the oblivious automaton evaluation
functionality would require O(`Q logQ) gates for a Q-states automaton evaluated over a binary input of
length `.4 Notably, it is possible to generate a circuit of size O(`Q) that computes this functionality but this
circuit depends on the automaton’s description (and leaks information about its structure). Now, since we
need to preserve the secrecy of the automaton we need to consider a circuit that operates as a universal circuit,
in the sense that it takes these inputs and evaluates the automaton on the input string. This accounts for an
extra logQ factor and implies that the number of multiplications in [Lin13] is dominated by O(s`Q logQ).
Moreover, the number of exponentiations used in this protocol is dominated by 24.5s`+ 18`+ 5520s.

4Intuitively, this can be shown using the following construction. A circuit C takes a description of an automaton Γ and `-bits
input x and outputs a bit. For each iteration i of the automaton evaluation we construct a “sub-circuit” Ci that gets Γ, q and b
as input, for (q, b) the current configuration, and outputs the next state q′. It is easy to verify that the description of ci requires
O(Q logQ) gates. This leads to a total of O(`Q logQ) gates for C.
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On the other hand, our protocol for oblivious automata evaluation does not apply a cut-and-choose
strategy. Having P1, P2 hold inputs of lengths `,Q, our protocol incurs communication and computation
costs of O(`Q), where this constant mostly depends on the overhead of randomly permuting the automaton.
By the analysis of [GL07] we get that this overhead of the ZK proof for shuffling is dominated by 30Q
exponentiations (for permuting a pair of vectors each time). Thus, overall cost is dominated by 120`Q
exponentiations and O(`Q) multiplications. Nevertheless, the round complexity of our protocol is O(`)
since the automaton must be evaluated sequentially, while the round complexity of [LP11] is constant.

Text search. We conclude with a discussion of our solutions for the basic pattern matching problem and its
variants. The best known circuit that computes the classic pattern matching functionality requires O(nm)
gates since the circuit compares the pattern against every text location. In the honest-but-curious setting,
Yao’s technique induces a protocol that uses O(nm) symmetric key operations and O(m) exponentiations
that can be made independent of the input length (where the later is obtained by employing the ideas of ex-
tended oblivious transfer [IKNP03], but also requires an additional assumption on the hash function). In the
malicious setting, this overhead grows by a factor of a statistical parameter s (see the analysis in the previous
section). Our constructions for the honest-but-curious and one-sided simulation settings require O(m + `)
modular exponentiations for party P1 and O(m`) modular multiplications and O(`) exponentiations for
party P2. Our protocols achieve better overhead than the protocols of [TPKC07] and [HL08], where the
former requires O(m`) exponentiations and the later requires O(m+ `) exponentiations and O(m`) multi-
plications for both parties. Our protocol for the malicious setting requires O(m`) exponentiations and takes
a different approach than the protocol in [HT10] that requires O(m`) modular multiplications and constant
round complexity, and outperforms our protocol.

Generic protocols achieve the same overhead for the pattern matching variants considered in this paper,
as in the case of computing the standard pattern matching problem since circuit size is about O(m`) gates.
Moreover, the protocols by Vergnaud [Ver11] for computing approximate pattern matching and pattern
matching with wildcards with one-sided simulation require O(` logm) exponentiations (in comparison to
O(m+ `) exponentiations in our protocol). The one-sided simulation variant of [HT10] protocols for these
problems require O(m`) exponentiations. Finally, the work of [BDM+12] studies pattern matching with
wildcards in the malicious setting that requires O(m+ `) exponentiations for non-binary alphabets.

1.6 A Road Map

In Section 2 we present basic definitions and useful tools that we use in our constructions. In section 3 we
present a honest-but-curious secure protocol for the pattern matching problem (cf. Section 3.1). We further
extend this solution and show how to obtain one-sided simulation security. In Section 3.2 we consider gen-
eralizations of the basic problem. In Section 4 we present a protocol for the oblivious automata evaluation
problem with full security against malicious adversaries. In Section 5, we show how to use our protocol
from Section 4 within a larger protocol for the pattern matching problem in the malicious setting.

2 Definitions and Tools

Throughout the paper, we denote the security parameter by n. Although not explicitly specified, input
lengths are always assumed to be bounded by some polynomial in n. A probabilistic machine is said to run
in polynomial-time (PPT) if it runs in time that is polynomial in the security parameter n alone. We denote
by a← A the random choice of a from a set A.

A function µ(·) is negligible in n if for every polynomial p(·) there exists a value N such that µ(n) <
1

p(n) for all n > N ; i.e., µ(n) = n−ω(1). Let X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N
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be distribution ensembles. We say that X and Y are computationally indistinguishable, denoted X
c≡ Y ,

if for every polynomial non-uniform distinguisher D there exists a negligible µ(·) such that∣∣∣Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]
∣∣∣ < µ(n)

for every n ∈ N and a ∈ {0, 1}∗.

2.1 Secure Two-Party Computation with Malicious Adversaries

In this section we briefly present the standard definition for secure multiparty computation and refer to [Gol04,
Chapter 7] for more details and a motivating discussion.

Two-party computation. A two-party protocol can be systematically analyzed by characterizing the pro-
tocol as a random process that maps pairs of inputs to pairs of outputs (one for each party). We refer to such
a process as a functionality and denote it as f : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗ ×{0, 1}∗, where f = (f1, f2).
That is, for every pair of inputs (x, y), the output is a random variable (f1(x, y), f2(x, y)) ranging over pairs
of strings where P1 receives f1(x, y) and P2 receives f2(x, y). We sometimes denote such a functionality
by (x, y) 7→ (f1(x, y), f2(x, y)).

Security of protocols (informal). The security of a protocol is analyzed by comparing what an adversary
can do in a real protocol execution to what it can do in an ideal scenario that is secure by definition. This is
formalized by considering an ideal computation involving an incorruptible trusted third party to whom the
parties send their inputs. The trusted party computes the functionality on the inputs and returns to each party
its respective output. A protocol is secure if any adversary interacting in the real protocol (where no trusted
third party exists) can do no more harm than if it was involved in the above-described ideal computation.

Execution in the ideal model. In an ideal execution, the parties send their inputs to the trusted party
who computes the output. An honest party just sends the input that it received whereas a corrupted party
can replace its input with any other value of the same length. Let f be a two-party functionality where
f = (f1, f2), let A be a non-uniform probabilistic polynomial-time machine, and let I ⊆ [2] be the set of
corrupted parties (either P1 is corrupted, or P2 is corrupted, or neither). Then, the ideal execution of f on
inputs (x, y), auxiliary input z to A and security parameter n, denoted IDEALf,A(z),I(x, y, n), is defined
as the output pair of the honest party and the adversary A from the above ideal execution.

Execution in the real model. In the real model there is no trusted third party and the parties interact
directly. The adversaryA sends all messages in place of the the corrupted party, and may follow an arbitrary
polynomial-time strategy. In contrast, the honest parties follow the instructions of the specified protocol π.

Let f be as above and let π be a two-party protocol for computing f . Furthermore, let A be a non-
uniform probabilistic polynomial-time machine and let I be the set of corrupted parties. Then, the real exe-
cution of π on inputs (x, y), auxiliary input z toA and security parameter n, denoted REALπ,A(z),I(x, y, n),
is defined as the output vector of the honest party and the adversary A from the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the ideal and real models,
we can now define the security of protocols. Loosely speaking, the definition asserts that a secure multi-party
protocol (in the real model) emulates the ideal model (in which a trusted party exists). This is formulated by
saying that adversaries in the ideal model are able to simulate executions of the real-model protocol.
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Definition 2.1 Let f and π be as above. Protocol π is said to securely compute f with abort in the
presence of malicious adversaries if for every non-uniform probabilistic polynomial-time adversary A
for the real model, there exists a non-uniform probabilistic polynomial-time adversary SIM for the ideal
model, such that for every I ⊆ [2],{

IDEALf,SIM(z),I(x, y, n)
}
x,y,z∈{0,1}∗,n∈IN

c≡
{
REALπ,A(z),I(x, y, n)

}
x,y,z∈{0,1}∗,n∈IN

where |x| = |y|.

2.2 Sequential Composition

Sequential composition theorems are useful tools that help in writing proofs of security. The basic idea
behind these composition theorems is that it is possible to design a protocol that uses an ideal functionality as
a subroutine, and then analyze the security of the protocol when a trusted party computes this functionality.
For example, assume that a protocol is constructed that uses the secure computation of some functionality as
a subroutine. Then, first we construct a protocol for the functionality in question and then prove its security.
Next, we prove the security of the larger protocol that uses the functionality as a subroutine in a model
where the parties have access to a trusted party computing the functionality. The composition theorem then
states that when the “ideal calls” to the trusted party for the functionality are replaced by real executions of
a secure protocol computing this functionality, the protocol remains secure.

The hybrid model. The aforementioned composition theorems are formalized by considering a hybrid
model where parties both interact with each other (as in the real model) and use trusted help (as in the ideal
model). Specifically, the parties run a protocol π that contains “ideal calls” to a trusted party computing
some functionalities f1, . . . , fm. These ideal calls are just instructions to send an input to the trusted party.
Upon receiving the output back from the trusted party, the protocol π continues. We stress that honest parties
do not send messages in π between the time that they send input to the trusted party and the time that they
receive back output (this is because we consider sequential composition here). Of course, the trusted party
may be used a number of times throughout the π-execution. However, each time is independent (i.e., the
trusted party does not maintain any state between these calls). We call the regular messages of π that are
sent amongst the parties standard messages and the messages that are sent between parties and the trusted
party ideal messages.

Let f1, . . . , fm be probabilistic polynomial-time functionalities and let π be a two-party protocol that
uses ideal calls to a trusted party computing f1, . . . , fm. Furthermore, let A be a non-uniform probabilistic
polynomial-time machine and let I be the set of corrupted parties. Then, the f1, . . . , fm-hybrid execution
of π on inputs (x, y), auxiliary input z to A and security parameter n, denoted HYBRIDf1,...,fm

π,A(z),I(x, y, n),
is defined as the output vector of the honest party and the adversary A from the hybrid execution of π with
a trusted party computing f1, . . . , fm.

Sequential modular composition. Let f1, . . . , fm and π be as above, and let ρ1, . . . , ρm be protocols.
Consider the real protocol πρ1,...,ρm that is defined as follows: All standard messages of π are unchanged.
When a party Pi is instructed to send an ideal message αi to the trusted party to compute functionality fj ,
it begins a real execution of ρj with input αi instead. When this execution of ρj concludes with output βi,
party Pi continues with π as if βi was the output received by the trusted party (i.e. as if it were running in the
f1, . . . , fm-hybrid model). Then, the composition theorem of [Can98] states that if ρj securely computes fj
for every j ∈ {1, . . . ,m}, then the output distribution of a protocol π in a hybrid execution with f1, . . . , fm
is computationally indistinguishable from the output distribution of the real protocol πρ1,...,ρm . This holds
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for security in the presence of malicious adversaries [Can98] and one-sided simulation when considering
the corruption case that has a simulator (an easy corollary from [Can98]).

2.3 One-Sided Simulation for Two-Party Protocols

Two of our protocols achieve a level of security that we call one-sided simulation. In these protocols, P2

receives output while P1 should learn nothing. In one-sided simulation, full simulation is possible when P2

is corrupted. However, when P1 is corrupted we only guarantee privacy, meaning that P1 learns nothing
whatsoever about P2’s input (this is straightforward to formalize because P1 receives no output). This is
a relaxed level of security and does not achieve everything we want; for example, independence of inputs
and correctness are not guaranteed. Nevertheless, for this level of security we are able to construct highly
efficient protocols that are secure in the presence of malicious adversaries.

Formally, let REALπ,A(z),i(x, y, n) denote the output of the honest party and the adversary A (con-
trolling party Pi) after a real execution of protocol π, where P1 has input x, P2 has input y, A has auxiliary
input z, and the security parameter is n. Let IDEALf,SIM(z),i(x, y, n) be the analogous distribution in
an ideal execution with a trusted party who computes f for the parties. Finally, let VIEWA

π,A(z),i(x, y, n)
denote the view of the adversary after a real execution of π as above. Then, we have the following definition:

Definition 2.2 Let f be a functionality where only P2 receives output. We say that a protocol π securely
computes f with one-sided simulation if the following holds:

1. For every non-uniform PPT adversary A controlling P2 in the real model, there exists a non-uniform
PPT adversary SIM for the ideal model, such that{

REALπ,A(z),2(x, y, n)
}
x,y,z∈{0,1}∗,n∈N

c≡
{
IDEALf,SIM(z),2(x, y, n)

}
x,y,z∈{0,1}∗,n∈N

where |x| = |y|.

2. For every non-uniform PPT adversary A controlling P1, and every polynomial p(·){
VIEWA

π,A(z),1(x, y, n)
}
x,y,y′,z∈{0,1}∗,n∈N

c≡
{
VIEWA

π,A(z),1(x, y′, n)
}
x,y,y′,z∈{0,1}∗,n∈N

(1)

where |x| = |y| = |y′|.

Note that the ensembles in Eq. (1) are indexed by two different inputs y and y′ for P2. The requirement
is thatA cannot distinguish between the case that P2 used the first input y or the second input y′ for any pair
y, y′ such that |y| = |y′|.

2.4 Finite Automata

A deterministic finite automaton is described by a tuple Γ = (Q,Σ,∆, q0, F ), where Q is the set of states,
Σ is an alphabet of inputs, ∆ : Q × Σ → Q denotes a state-transition table, q0 ∈ Q is the initial state,
and F ⊆ Q is the set of final (or accepting) states. Without loss of generality, in this work we consider
only automata with complete transition tables, where there exists a transition at each state for every input
σ ∈ Σ. We also consider the notation of ∆(q0, (σ1, . . . , σ`)) to denote the result of the automaton evaluation
on σ1, . . . , σ`, for σi ∈ Σ. Every automaton specifies a language, which is the (potentially infinite) set of
strings accepted by the automaton.
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2.5 Hardness Assumptions

Our constructions rely on the DDH assumption formalized below.

Definition 2.3 (DDH) We say that the decisional Diffie-Hellman (DDH) problem is hard relative to
G = {Gn} if for all polynomial-sized circuits A = {An} there exists a negligible function negl such that∣∣∣Pr [A(G, q, g, gx, gy, gz) = 1]− Pr [A(G, q, g, gx, gy, gxy) = 1]

∣∣∣ ≤ negl(n),

where q is the order of G and the probabilities are taken over the choices of g and x, y, z ← Zq.

2.6 Public-Key Encryption Schemes

We begin by specifying the definitions of public-key encryption (PKE) and IND-CPA security. We then
describe the El Gamal PKE and conclude this section with definitions for homomorphic PKE and threshold
PKE, demonstrating that El Gamal meets these definitions.

Definition 2.4 (PKE) We say that Π = (G,E,D) is a public-key encryption scheme if G,E,D are
polynomial-time algorithms specified as follows:

• G, given a security parameter n (in unary), outputs keys (pk, sk), where pk is a public-key and sk is
a secret key. We denote this by (pk, sk)← G(1n).

• E, given the public-key pk and a plaintext messagem, outputs a ciphertext c encryptingm. We denote
this by c← Epk(m); and when emphasizing the randomness r used for encryption, we denote this by
c← Epk(m; r).

• D, given the public-key pk, secret key sk and a ciphertext c, outputs a plaintext message m s.t. there
exists randomness r for which c = Epk(m; r) (or ⊥ if no such message exists). We denote this by
m← Dpk,sk(c).

For a public-key encryption scheme Π = (G,E,D) and a non-uniform adversary A = (A1,A2), we
consider the following IND-CPA game:

(pk, sk)← G(1n).

(m0,m1, history)← A1(pk), s.t. |m0| = |m1|.
c← Epk(mb), where b← {0, 1}.
b′ ← A2(c, history).

A wins if b′ = b.

Denote by AdvCPAΠ,A(n) the probability that A wins the IND-CPA game.

Definition 2.5 (IND-CPA security) A public-key encryption scheme Π = (G,E,D) is IND-CPA se-
cure, if for every non-uniform adversary A = (A1,A2) there exists a negligible function negl such that
AdvCPAΠ,A(n) ≤ 1

2 + negl(n).
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2.6.1 The El Gamal Encryption Scheme

We consider the following modification of the El Gamal encryption scheme [Gam84]. The public-key is the
tuple pk = 〈G, q, g, h〉 and the corresponding private key is sk = 〈G, q, g, x〉, where G is a cyclic group
of prime order q with a generator g (we assume multiplication and group membership can be performed
efficiently in G). In addition, it holds that h = gx.

Encryption of a message m ∈ {1, . . . , q′} (with q′ << q) is performed by choosing r ← Zq and
computing Epk(m; r) = 〈gr, hr · gm〉. Decryption of a ciphertext c = 〈c1, c2〉 is performed by computing
gm = c2 · c−x1 and then finding m by exhaustive search. Thus, this scheme works only for small integer
domains (i.e. q′ must be small) which is the case for our protocol. We point out that the reason we modify
El Gamal in this way (by encrypting gm rather than m) is to make it additively homomorphic. Finally, we
note that a zero encryption corresponds to a Diffie-Hellman tuple, i.e., Epk(0; r) = 〈gr, hr · g0〉 = 〈gr, hr〉.
The security of this scheme relies on the hardness of solving the DDH problem specified in Definition 2.3.

We define the following two properties and show how they are easily met by the El Gamal scheme.

Homomorphic PKE. We abuse notation and use Epk(m) to denote the distribution Epk(m; r) where r is
chosen uniformly at random. Define homomorphic encryption as follows.

Definition 2.6 A public-key encryption scheme (G,E,D) is homomorphic if, for all n and all (pk, sk)
output by G(1n), it is possible to define groups M,C such that:

• The plaintext space is M, and all ciphertexts output by Epk(·) are elements of C.

• For any m1,m2 ∈M and c1, c2 ∈ C with m1 = Dps,sk(c1) and m2 = Dpk,sk(c2), it holds that

{pk, c1, c1 · c2} ≡ {pk,Epk(m1), Epk(m1 +m2)}

where the group operations are carried out in C and M, respectively.

Our modification of El Gamal is homomorphic with respect to component-wise multiplication (in G) of
ciphertexts. We denote by c1 ·G c2 the respective multiplications of c1

1 · c1
2 and c2

1 · c2
2 where ci = 〈c1

i , c
2
i 〉 =

Epk(mi), such that the multiplication result yields the encryption of m1 +m2.

Threshold PKE. We consider two functionalities: One for securely generating a secret key while keeping
it a secret from both parties whereas the second functionality, jointly decrypts a given ciphertext. We denote
the key generation functionality by FKEY, which is defined as follows:

(1n, 1n) 7→
(

(pk, sk1), (pk, sk2)
)
, (2)

where (pk, sk) ← G(1n), and sk1 and sk2 are random shares of sk. The decryption functionality FDEC is
defined by

(c, pk) 7→
(

(m : c = Epk(m)),−
)
, (3)

It is well known how to design an efficient threshold El Gamal scheme in the malicious setting based on
the protocol of Diffie and Hellman [DH76]. Informally, generating the shares for the key can be done
by sequentially having each party Pi (starting with P1), pick a random element xi ← Zq and publish
gxi together with a zero-knowledge proof of knowledge of xi, so that the public-key equals gx1+x2 (see
Section 2.7 for more details of the zero-knowledge proof). To ensure a simulation, P1 must commit to its
share first and decommit this commitment after P2 sends its share. Decryption of a ciphertext c = 〈c1, c2〉
follows by computing c2 · (cx1

1 · c
x2
1 )−1, where each party sends ci to the power of its share. We denote these

protocols by πKEY and πDEC, respectively and assume that they can be computed with simulation-based
security in the presence of malicious attacks.
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2.7 Zero-knowledge Proofs and Proofs of Knowledge

Our protocols employ zero-knowledge proofs (of knowledge) for assuring correct behavior. Before getting
into more details, we formally define zero-knowledge and knowledge extraction as stated in [Gol01]. We
then conclude with a definition of a Σ-protocol which constitutes a zero-knowledge proof of a special type.

Definition 2.7 (Interactive proof system) A pair of PPT interactive machines (P, V ) is called an interac-
tive proof system for a language L if there exists a negligible function negl such that the following two
conditions hold:

1. COMPLETENESS: For every x ∈ L,

Pr[〈P, V 〉(x) = 1] ≥ 1− negl(|x|)

2. SOUNDNESS: For every x /∈ L and every interactive PPT machine B,

Pr[〈B, V 〉(x) = 1] ≤ negl(|x|)

Definition 2.8 (Zero-knowledge) Let (P, V ) be an interactive proof system for some language L. We say
that (P, V ) is computational zero-knowledge if for every PPT interactive machine V ∗ there exists a PPT

algorithm M∗ such that
{〈P, V ∗〉(x)}x∈L

c≡ {〈M∗〉(x)}x∈L
where the left term denotes the output of V ∗ after it interacts with P on common input x, whereas the right
term denotes the output of M∗ on x.

Definition 2.9 (Knowledge extraction) LetR be a binary relation and κ→ [0, 1]. We say that an interac-
tive function V is a knowledge verifier for the relation R with knowledge error κ if the following two
conditions holds:

NON-TRIVIALITY: There exists an interactive machine P such that for every (x, y) ∈ R, (implying that
x ∈ LR), all possible interactions of V with P on common input x and auxiliary input y are accepting.

VALIDITY (WITH ERROR κ): There exists a polynomial q(·) and a probabilistic oracle machine K such
that for every interactive function P , every x ∈ LR, and every machine K satisfies the following condition:

Denote by p(x, y, r) the probability that the interactive machine V accepts, on input x, when
interacting with the prover specified by Px,y,r. If p(x, y, r) > κ(|x|), then, on input x and with
access to oracle Px,y,r, machine K outputs a solution s ∈ R(x) within an expected number of
steps bounded by

q(|x|)
p(x, y, r)− κ(|x|)

The oracle machine K is called a universal knowledge extractor.

Let R be an NP relation associated with the language LR = {x| ∃w s.t. (x,w) ∈ R}. Then, we define
the zero-knowledge proof knowledge functionality for R by FRZKPoK ((x,w), x) 7→ (−, (x, b)) where b = 1
ifR(x,w) = 1 and b = 0 ifR(x,w) = 0.

Definition 2.10 (Σ-protocol) A protocol π is a Σ-protocol for relation R if it is a 3-round public-coin
protocol and the following requirements hold:
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• COMPLETENESS: If P and V follow the protocol on input x and private input w to P where (x,w) ∈
R, then V always accepts.

• SPECIAL SOUNDNESS: There exists a polynomial-time algorithm A that given any x and any pair of
accepting transcripts (a, e, z), (a, e′, z′) on input x, where e 6= e′, outputs w such that (x,w) ∈ R.

• SPECIAL HONEST-VERIFIER ZERO KNOWLEDGE: There exists a PPT algorithm M such that{
〈P (x,w), V (x, e)〉

}
x∈LR

≡
{
M(x, e)

}
x∈LR

where M(x, e) denotes the output of M upon input x and e, and 〈P (x,w), V (x, e)〉 denotes the
output transcript of an execution between P and V , where P has input (x,w), V has input x, and
V ’s random tape (determining its query) equals e.

A generic, efficient technique that enables the transformation of any Σ-protocol into a zero-knowledge proof
(of knowledge) can be found in [HL10]. This transformation requires an additional 5 (or 6 for a proof of
knowledge) exponentiations.

Next, we describe the following standard Σ-protocols used in our constructions:

Protocol Relation/Language Reference
πDL RDL = {((G, q, g1, g2), x) | g2 = gx1} [Sch89]
πDH RDH = {((G, q, g1, g2, g3, g4), x) | g2 = gx1 ∧ g4 = gx3}} [CP92]
πNZ LNZ = {(G, q, g, h, 〈α, β〉) | ∃ (m 6= 0, r) s.t. α = gr, β = hrgm} [HN12]

All these proofs require constant round complexity and a constant number of exponentiations.

We further employ the following zero-knowledge proofs in our constructions:

1. A zero-knowledge proof πENC for the following language that is associated with a homomorphic
encryption Π = (G,E,D) relative to a ciphertext group C and group operation ·. Specifically, let
Ci = [ci,1, ..., ci,Q] for i ∈ {0, 1} and C ′ = [c′1, ..., c

′
Q] be three vectors of Q ciphertexts each. We

want to prove that C ′ is the “re-encryption” of the same messages encrypted in either C0 or C1, or in
other words, there exists an index i ∈ {0, 1} such that for all j, c′j was obtained by multiplying ci,j by
a random encryption of 0. More formally,

LENC =
{

(pk,C0, C1, C
′)|∃ (i, {rj}j) s.t. for all j : c′j = ci,j · Epk(0; rj)

}
.

In the proof the joint statement is a collection of three vectors, and the prover produces proofs that the
third vector is a randomized version of either the first or the second vector. When using the El Gamal
encryption, the proof boils down to proving that either C ′/C0 or C ′/C1 is a Diffie-Hellman tuple,
(when division is computed component-wise). This enables us to extract the bit i, but not the entire
witness for LENC. We note that this is sufficient for our purposes. We continue with our protocol,

Protocol 1 (πENC – A Zero-Knowledge Proof for LENC):

• Joint statement: The set (G, q, g, h, C0, C1, C
′) for pk = 〈G, q, g, h〉 a public-key for El Gamal .

• Auxiliary input for the prover: An index i and a set {rj}j as in LENC.

• The protocol:
(a) Let Q denote the number of elements in each vector. Then the verifier picks random strings

r0,1, . . . , r0,Q, r1,1, . . . , r1,Q ← Zq and sends these values to the prover.
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(b) Let Ci = [ci,1, ..., ci,Q] for i ∈ {0, 1} and C ′ = [c′1, ..., c
′
Q]. The parties compute the sets c0 =∏Q

j=1(c0,j ·G (1/c′j))
r0,j and c1 =

∏Q
j=1(c1,j ·G (1/c′j))

r1,j .
(c) The prover performs a zero-knowledge proof of knowledge proving that either 〈pk, c0〉 or 〈pk, c1〉 is

a Diffie-Hellman tuple.

Note that the first message sent by the verifier is not part of the challenge but used to reduce the size
of the proven statement.

Proposition 2.1 Assume that the DDH assumption holds relative to G. Then Protocol 1 is a statistical
zero-knowledge proof for LENC with perfect completeness and negligible soundness error. It is further
a proof of knowledge of the index i within the prover’s witness.

It is easy to verify that the verifier is always convinced by an honest prover. The combined argument
for zero-knowledge can be derived from [CDS94].5 The fact that index i can be extracted is due to
the proof of knowledge property of the Diffie-Hellman proof from Step 1c.

2. Let Π = (G,E,D) be a homomorphic encryption relative to a ciphertext group C and group operation
·, and let C = {ci,j}j,i and C ′ = {c′i,j}j,i be two sets of encryptions, where j ∈ {1, . . . , Q} and
i ∈ {0, 1}. Then we consider a zero-knowledge proof of knowledge πPERM for proving that C and C ′

correspond to the same decryption vector up to some permutation. Meaning that,

RPERM =
{(
pk,C,C ′

)
,
(
π, {rj,i}j,i

)
|∀ i, j, {cj,i = c′π(j),i · Epk(0; rj,i)}j

}
where π is a one-to-one mapping over the elements {1, . . . , Q}. Specifically, we prove that C ′ is
obtained from C by randomizing all the ciphertexts and permuting their indices. We require that the
same permutation is applied for both vectors.

The problem in which a single a vector of ciphertexts is randomized and permuted is defined by

R1
PERM =

{(
pk, (c1, . . . , cQ), (c̃1, . . . , c̃Q)

)
,(

π, (r1, . . . , rQ)
)
|∀ i, j, c̃j = cπ(j) · Epk(0; rj)

}
.

and has been widely studied in the literature. The state-of-the-art protocol is in [BG12]. In this work,
we will use a simpler and slightly less efficient (but still good for our purposes) protocol by Groth
and Lu [GL07]. They presented an efficient zero-knowledge proof of knowledge π1

PERM for R1
PERM

with linear computation and communication complexity, and constant number of rounds. The reason
we use a slightly less efficient protocol is due to the fact that it is easy to show that this proof is
applicable to the case where the same permutation is applied to more than one vector of ciphertexts
(as we require), and because it can be applied to the El Gamal encryption scheme.

5This proof is a simple extension of the standard proof for RDH using a general technique. In particular, the prover separates
the challenge c it is given by the verifier into two values; c1 and c2 such that c = c1 ⊕ c2. Assume w.l.o.g. that it does not have
a witness for the first statement, then it always chooses c1 in which it knows how to complete the proof (similarly to what the
simulator for πDH does), and uses its witness for the other statement to complete the second proof on a given challenge c2. Note
that the verifier cannot distinguish whether the prover knows the first or the second witness. See [CDS94] for more details.
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3 Secure Text Search with One-Sided Simulatability

The pattern matching problem is defined as follows: given a binary text T of length ` and a binary pattern p
of length m, find all the locations in the text where pattern p appears in the text. Stated differently, for every
i = 1, . . . , `−m+ 1, let Ti be the substring of length m that begins at the ith position in T . Then, the basic
problem of pattern matching is to return the set {i | Ti = p}. Formally, we consider the functionality FPM

defined by

((p, `), (T,m)) 7→
{

({i | Ti = p1 . . . pm},−) if |p| = m and |T | = `
(|T |, |p|) otherwise

where Ti is defined as above.
Note that P2, which holds the text, learns nothing about the pattern held by P1, whereas the only informa-

tion that P1 learns about the text is the locations where its pattern matches. As discussed in the introduction,
this problem has been intensively studied and can be solved optimally in an insecure environment in time
that is linear in length of the text and the number of occurrences.

3.1 Secure Text Search against Honest-But-Curious Adversaries

In this section we present an algorithm for secure text search that is secure in the presence of honest-but-
curious adversaries. Our protocol employs the properties of homomorphic encryption to compute the sum
of the differences between the pattern and the text. Informally, party P1 computes a matrix Φ of size 2×m
that includes an encryption of zero in the position (i, j) if pj = i, and an encryption of one otherwise. Given
Φ, party P2 creates a new encryption ek for every text location k that corresponds to the inner product of
the encryptions at locations (tk+j−1, j) for all j ∈ {1, . . . ,m}. By definition, ek encrypts the Hamming
distance between p and Tk. Therefore, if pmatches Tk, ek is a random encryption of zero. Figure 1 illustrates
the approach schematically and Protocol πSIMPLE introduces it formally.

P1(p, `) P2(T,m)

(pk, sk)← G(1n)

For all i ∈ {0, 1},
j ∈ {1, . . . ,m} :
Φ(i, j) = Epk(0) for i = pj
Φ(1− i, j) = Epk(1)

Φ -
For all k ∈ {1, . . . , `−m+ 1} :
e′k =

∏m
j=1 [Φ (tk+j−1, j)]

rk · Epk(0; r′k)

�
e′k

output {k | Dpk,sk(e′k) = 0}

Figure 1: Text search in the honest-but-curious setting

Protocol 2 (πSIMPLE – Honest-But-Curious Secure Text Search)

• Inputs: The input of P1 is a binary search string p = p1, . . . , pm and `, whereas P2’s input is a binary text
string T = t1, . . . , t` and m.

• Conventions: The parties jointly agree on a group G of prime order q and a generator g for the El Gamal en-
cryption. Party P1 generates a key pair (pk, sk)← G(1n) and publishes pk. Finally, unless written differently,
j ∈ {1, . . . ,m} and i ∈ {0, 1}.
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• The protocol:

1. Encryption of pattern. Party P1 builds a 2×m matrix of ciphertexts Φ defined by,

Φ(i, j) =

{
Epk(0) pj = i
Epk(1) otherwise

The matrix Φ is sent to party P2.

2. Scanning of text. For each offset k ∈ {1, . . . , `−m+ 1}, P2 computes

ek =

m∏
j=1

Φ (tk+j−1, j)

Note that for each offset k, it holds that Tk matches pattern p if and only if ek = Epk(0).

3. Masking of terms. Due to the fact that the decryption of ek reveals the number of matched elements at
text location k, party P2 masks this result through scalar multiplication. In particular, P2 sends the set
{e′k = (ek)rk · Epk(0; r′k)}k where rk, r′k are random strings chosen independently from Zq for each k.

4. Obtaining result. P1 uses sk to decrypt the values of e′k and outputs

{k | Dpk,sk(e′k) = 0}.

Clearly, if both parties are honest then P1 outputs a correct set of indexes with overwhelming probability
(an error may occur with negligible probability if (ek)

r is an encryption of zero even though ek is not). We
now state the following theorem,

Theorem 3.1 Assume that the DDH assumption holds relative to G. Then Protocol πSIMPLE securely com-
putes FPM in the presence of honest-but-curious adversaries.

In case P1 is corrupted, statistical security is obtained by sending an encryption of zero for the matched
text locations, and an encryption of a random element in Zq for all other locations. In case P2 is corrupted,
security is obtained via a reduction to the IND-CPA security of (G,E,D) by simply defining a simulator
that sends encryptions of zero. The formal proof is straightforward and is therefore omitted.

One-sided simulation security. We point out that if party P1 proves that it computed matrix Φ correctly,
then we can also guarantee full simulation with respect to a corrupted P1. This can be achieved by having
P1 prove, using the zero-knowledge proof of knowledge πPERM (cf. Section 2.7), that for every j the pair
Φ(0, j),Φ(1, j) is a permuted pair of the ciphertexts Epk(0), Epk(1). In addition, we add two checks in the
protocol where the parties verify whether the vectors sizes received from the other party are consistent with
the lengths ` and m, P1 and P2 are given respectively.

Constructing a simulator for the case of a corrupted P2 is more challenging since the protocol does not
guarantee that P2 computes {e′k}k relative to a well defined binary string T . In particular, P2 may compute
every ciphertext e′k using a different m bits string. We are not aware any alternative for proving consistency
relative to P2’s behaviour, rather than using generic zero-knowledge proofs of knowledge which do not
provide an efficient approach. Therefore, we only consider privacy for this case. Let π′SIMPLE denote the
modified version of πSIMPLE with the additional zero-knowledge proof of knowledge πPERM used by P1. We
conclude with the following claim,

Theorem 3.2 Assume that the DDH assumption holds relative to G. Then Protocol π′SIMPLE securely com-
putes FPM with one-sided simulation.
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Proof Sketch: Assume P1 is malicious. Then we define a simulator S that plays the role of P2 and builds
a view for P1 that is (computationally) indistinguishable from the view of the real protocol without knowing
the real input text held by P2. The crucial point is that at the end of Step 1 (which in π′SIMPLE includes also
the zero-knowledge proof of knowledge πPERM), the simulator can learn the input of P1 by extracting it from
πPERM. At this point the simulator is also given the output of the protocol by the trusted party, i.e. S knows
in which locations of the input text of P2 the pattern appears. S then chooses a text T ′ which contains the
pattern in the exact same locations but is otherwise an arbitrary string p′ 6= p. It then runs the rest of the
protocol using T ′. It is easy to verify that the view of P1 produced by S is statistically close to the real view.

In case P2 is corrupted, the privacy of P1 follows from the IND-CPA security of El Gamal and the
zero-knowledge property of πPERM. Specifically, the simulator sends encryptions of zero and invokes the
simulator for πPERM for proving the correctness of Φ.

We remark that protocol π′SIMPLE takes a different approach than the one-sided simulatable protocol
of [HL08], that computes the pattern matching functionality using oblivious PRF evaluation. One advantage
of our protocol is that it can be easily extended for handling generalizations of the basic pattern matching
problem (as shown in Section 3.2). This does not seem to be the case for the [HL08] protocol since the
PRF evaluations of two strings that their Hamming distance is small yield two strings that look independent.
Furthermore, in order to evaluate the PRF the [HL08] protocol requires ` OT evaluations. This overhead
implies that both parties must compute O(`) exponentiations.

Efficiency. We first note that the protocol π′SIMPLE is constant round. The overall communication cost is
O(m + `) group elements, whereas the computation cost is O(m + `) modular exponentiations and (m`)
multiplications, as P2 computes the multiplication ofm ciphertexts (component-wise) for each text location.
The additional cost of πPERM is linear in the length of the pattern.

3.2 Generalizations of the Pattern Matching Problem

In this section we study three generalizations of the classic pattern matching problem, to other problems of
practical interest. We show how to modify our solution from the prior section to solve these problems.

Approximate text search. In approximate matching, one defines a distance metric between the strings
and finds all the text locations where the pattern matches the text by a pre-specified distance. Namely, an
additional public parameter ρwhich determines the number of differences that can be tolerated, is introduced
(where a difference is defined by the specified metric). The most natural metric is the Hamming distance
that counts the number of mismatches between two strings. Specifically, P1 learns all the text locations in
which the Hamming distance between the pattern and the substring at these text locations is smaller equal
to ρ. More formally, we consider the functionality for approximate text search FAPM that is defined by

((p, `, ρ), (T,m, ρ′)) 7→
{

({i | d(Ti, (p1, . . . , pm)) ≤ ρ},−) if |p| = m, |T | = ` and ρ = ρ′

(|T |, |p|) otherwise

where d(x, y) denotes the Hamming distance of two binary strings x and y of the same length, and Ti
is the substring of length m. The best algorithm for solving text search with mismatches in an insecure
environment is the solution by Amir et al. [ALP00] who introduced a solution whose time complexity is
O(`
√
ρ log ρ). We show that a simple modification to our protocol yields a protocol that computes this

functionality as well. Upon completing its computations and before masking the terms as in Step 3 of
π′SIMPLE and condition that ρ = ρ′, party P2 produces ρ+1 ciphertexts from each ciphertext ek by subtracting
from its plaintext all values between [0, ..., ρ]. Finally, it masks and rerandomizes these ciphertexts and
randomly shuffles the result. Denote this modified protocol by πAPM.
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Then simulation for a corrupted P1 is not changed as now, the simulator receives from the trusted party
all the text locations where the pattern matches with at most ρ mismatches. The proof for the case that P2 is
corrupted follows from above. Then it holds that

Theorem 3.3 Assume that the DDH assumption holds relative to G. Then Protocol πAPM securely computes
FAPM with one-sided simulation.

Note that both the computation and communication complexity are O(m`). Specifically, the overhead
of P2 is dominated by O(m`) multiplications and O(m+ `) exponentiations.

Text search with wildcards. This variant was developed with the aim to introduce improved algorithms
for approximate text search. Here, a wildcard symbol is introduced in the pattern, so that it matches against
any character when compering against the text. In an insecure setting, this problem can be solved in time
that is linear in the lengths of the text and pattern, and the number of occurrences [RI07]. We note that in
protocol π′SIMPLE, a wildcard can be introduced by having P1 send two encryptions of zero instead of a pair
of encryptions of zero and one. By doing so, we ensure that regardless of the text bit, P2 will not count it as
a mismatch. Denote this modified protocol by πWC, then it holds that

Theorem 3.4 Assume that the DDH assumption holds relative to G. Then Protocol πWC securely computes
the pattern matching problem with wildcards with one-sided simulation.

The security proof is as above except that P1 uses a slightly different proof of knowledge. In particular, it
proves the statement that for every j, the pair {Φ(0, j),Φ(1, j)} is either a permuted pair of the encryptions
{Epk(0), Epk(1)} or it corresponds to a pair of zero encryptions. The number of exponentiations required
from P2 is O(m`) and the communication is O(m+ `) group elements.

Larger alphabets. Recalling that protocol π′SIMPLE compares binary strings and computes the pattern
matching functionality for the binary alphabet. However, in some scenarios the pattern and the text are
defined over a larger alphabet Σ, (e.g., when searching in a DNA database the alphabet is of size four.)

When T and p are drawn from a |Σ|-ary alphabet, protocol πSIMPLE can be extended to this case, where
Φ is a q × m matrix. In this case, P1 must prove that each row of Φ is a permutation of a vector of q
elements of the form {Epk(0), Epk(1), . . . , Epk(1)}, using πPERM. With a single encryption of zero and
q − 1 encryptions of one. The size of the alphabet appears as a multiplicative cost for both the computation
and communication measures. The security proof is not appreciably different from the binary case.

4 Secure Oblivious Automata Evaluation

In this section we present a secure protocol for oblivious automata evaluation in the presence of malicious
adversaries. In this functionality P1 inputs a description of an automaton Γ = (Q,Σ,∆, q0, F ), and P2

inputs a string t. The result of the protocol is that P1 receives Γ(t), while P2 learns nothing. Formally, we
define this problem via the functionality

FAUTO : (Γ = (Q,Σ,∆, q0, F ), (t, |Q|, |F |)) 7→
{

((accept, |t|),−) if Γ(t) ∈ F
((no-accept, |t|),−) otherwise

where Γ(t) denotes the final state in the evaluation of Γ on t. The reason we require from the party who
holds Γ to learn the outcome and not the other way around, is due to employing this protocol in our main
construction for computing text search. There, the party with the pattern designs an automaton for its specific
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Fail Γ(qi, j)
State Prefix Υ(qi) State j = 0 j = 1

q1 q1 q1 q2
q2 1 q1 Γ(q1, 0) q3
q3 11 1 q2 q4 Γ(q2, 1)
q4 110 q1 q5 Γ(q1, 1)
q5 1100 q1 q6 Γ(q1, 1)
q6 11000 q1 Γ(q1, 0) q7
q7 110001 1 q2 Γ(q2, 0) q8
q8 1100011 11 q3 q9 Γ(q3, 1)
q9 11000110 110 q4 q10 Γ(q4, 1)
q10 110001100 1100 q5 Γ(q5, 0) q11
q11 1100011001 1 q2 Γ(q2, 0) Γ(q2, 1)
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Figure 2: Construction of determinized KMP automata for pattern 1100011001

input and should learn outcome of the its automaton evaluation on the text. In order to enable P2 to learn
the outcome a simple modification is required in the last step of our protocol.

W.l.o.g., we consider the following simplifying assumptions. First, we assume that Σ = {0, 1} (our
construction can be proven for any fixed alphabet), and that the transition table is complete, where there
exists a transition at each state for every input σ ∈ Σ. To simplify the description, we assume that each row
is described using three columns: the current state denoted by column ε, the next state in case of reading a
zero denoted by column 0, and the next state in case of reading a one denoted by column 1. So that each
bit has its own column and the overall number of rows is now |Q|. We furthermore assume that the names
of the states {q0, q1, . . . , q|Q|−1} are the integers taken from {1, . . . , |Q|} respectively (i.e., the initial state
is labeled 1). Finally, we assume that |Q| and |F | are public (for |F | the number of states in F ). For the
sake of generality we note that keeping |F | private can be easily dealt by having P1 send a vector of |Q|
encryptions for which the ith encryption is a zero encryption only if qi /∈ F . Otherwise, it is an encryption
of qi (this can be verified using a simple zero-knowledge proof).

Recall that our starting point is the protocol from [TPKC07]. Their idea is to have the parties share
the current machine state, such that by the end of the kth iteration the party with the automaton knows a
random string rk, whereas the party with the input for the automaton learns qk + rk. The parties complete
each iteration by running an oblivious transfer in which the next state is now shared between them. The fact
that the parties are honest-but-curious significantly simplifies their construction. Unfortunately, we cannot
see any natural way to extend their technique to the malicious adversary case (even when using oblivious
transfer that is resilient to malicious attacks). Coping with such behavior is much more challenging. First
due to the requirement that the automaton must be valid (according to some specifications described in
Section 5). Furthermore, the parties’ inputs to the oblivious transfers must be consistent. In this paper we
take a different approach to obtain security against malicious adversaries.

19



A high level description. We begin by briefly motivating our construction; see Figure 3 as well. At the
beginning of the protocol P1 and P2 jointly generate a public-key (G,E,D) for the threshold El Gamal
encryption scheme (denoted by the sub-protocol πKEY). Next, party P1 encrypts its transition table ∆ and
the set of accepting states F , and sends it to P2. Note that this immediately allows P2 to find the encryption
of the next state c∆(1,t1) = ∆(1, t1), by selecting it from the encrypted matrix (since it can identify the
encrypted next state associated with the specific state and bit). P2 re-randomizes this encryption and shows
it to P1. The protocol continues in this fashion for ` iterations (the length of the text).6

Assume that at the outset of each iteration i the parties know an encryption of the current state and
their goal is to find an encryption of the next state. P2 selects from the matrix the encrypted column that
corresponds to the next state according to its input ti (as it only knows an encryption of the current state).
Then, using the homomorphic properties of El Gamal the parties obliviously select the correct next state;
this stage involves the following computations. Let c∆(1,tξ−1) denote an encryption of the current state after
the partial automaton evaluation ∆(1, t1, . . . , tξ−1). Then the parties compute first the setC = {c∆(1,ξ−1) ·G
Epk(g

qj
−1

; 0)}j where only one ciphertext in this set will be an encryption of 0, indicating the position of
the current state. In order to learn the encryption of the next state, the parties have to randomly permute the
transition table and mask column C, so that when being decrypted it will not reveal any useful information
about the secret inputs of the parties. The protocol concludes by the parties jointly checking if the encrypted
state that is produced within the final iteration is in the encrypted list of accepting states.

More specifically, there are several technical challenges in constructing such a secure protocol. In par-
ticular the identification of the next encrypted state without leaking additional information requires a couple
of rounds of interaction between the parties in which they mask and permute the ciphertext vector containing
all possible states, in order to “destroy any link” between their input and the next encrypted state. Moreover,
in order to protect against malicious behavior, zero-knowledge proofs are included at each step to make sure
the parties behave according to the protocol specifications.

We are now ready to present a formal description of our protocol.

Protocol 3 (πAUTO – Secure Oblivious Automata Evaluation)

• Inputs: The input of P1 is a description of an automaton Γ = (Q, {0, 1},∆, q0, F ), and the input of P2 is a
binary string t = t1, . . . , t`.

• Auxiliary Inputs: |Q| and |F | for P2 and the security parameter 1n for both.

• Conventions: We assume that the parties jointly agree on a group G of prime order q and a generator g for
the threshold El Gamal encryption scheme. Both parties check every received ciphertext for validity, and abort
if an invalid ciphertext is received.
We further assume that the description of the automaton does not include unreachable states.
Finally, unless written differently, j ∈ {1, . . . , |Q|} and i ∈ {0, 1}.

• The protocol:

1. El Gamal key setup: The parties engage in an execution of protocol πKEY and generate a public key pk
and two shares x1 for P1 and x2 for P2.

2. Encrypting P1’s transition table and accepting states:
(a) P1 encrypts each entry in its transition table ∆ under pk component-wise. Denote this set of ci-

phertexts by E∆ = (Cε, C0, C1), denoting columns ε, 0 and 1, respectively. P1 also sends the list
of encrypted accepting states denoted by EF = {Epk(f)}f∈F . For simplicity, we assume that the
randomness of the ciphertexts encrypting column Cε is known (note that this column “encrypts” the
publicly known states {1, . . . , |Q|} in some fixed order).

6Unfortunately, these iterations are not independent and thus cannot be employed in parallel. This is due to the fact that the
parties must start every iteration with an encryption of the current state. Looking ahead, in Section 5.2 we show how to minimize
the number of rounds into O(m) when performing a secure text search, which is typically quite small.
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P1(Q, {0, 1},∆, q0, F ) P2(t1 . . . , t`, |Q|, |F |)

1n −→
(pk, sk1 = x1)←− πKEY

←− 1n

−→ (pk, sk2 = x2)

for all j ∈ {1, . . . , |Q|}
and i ∈ {0, 1}

E∆, EF -

→ ZKPOK of E∆, EF →

For every iteration ξ :
let c∆(1,ξ−1) = Epk(∆(1, (t1, . . . , tξ−1)))
∧ C = {c∆(1,ξ−1)/cj,ε}j
∧ s.t. cj,ε is from column ε

�
Cπ, Cπ,tξ chooses a permutation π

where Ctξ is column tξ

chooses a permutation π′
Cπ′ , Cπ′,tξ -

↔ masking Cπ′ ↔

↔ threshold decryption
of Cπ′

↔
-

finds encryption cξ of next state

If ξ = `, verify if c`
is an accepting state

Figure 3: A high-level diagram of πAUTO

(b) For every encryption 〈c1, c2〉 ∈ E∆ ∪ EF , P1 proves the knowledge of logg c1 using πDL.
(c) Proving the validity of the encrypted transition matrix. P1 proves that E∆ is a set of en-

cryptions for values from the set {1, . . . , |Q|}. It first sorts the ciphertexts within columns C0

and C1 according to their plaintexts (i.e., in a non-decreasing order), denote the sorted vector by
c1, . . . , c2·|Q|. P1 multiplies every encryption in this set with a random encryption of 0, sends it to
P2 and proves: (1) firstly that this vector is a permutation of C0 and C1 using πPERM. (2) That
c̃τ = cτ/cτ−1 ∈ {Epk(0), Epk(1)} for τ ∈ {2, . . . , 2|Q|} using πDH. Namely, by proving that ei-
ther (pk, c̃τ ) or (pk, c̃τ/Epk(1)) is a Diffie-Hellman tuple and finally, (3) that c1 and c2·|Q| encrypt
plaintexts from {1, . . . , |Q|} (to ensure that P1 does not use states taken from a different range) by
running a combined argument for πDH (see Footnote 5 for more details about such an argument).

3. First iteration:
(a) P2 chooses the encryption of the next state c∆(1,t1) = Epk(∆(1, t1)). It then defines c1 = c∆(1,t1) ·G

Epk(0; r) for a fresh uniform r, i.e. a random encryption of the next state and sends it to P1.
(b) P2 proves that Dpk,sk(c1) ∈ {Dpk,sk(c∆(1,0)), Dpk,sk(c∆(1,1))} using the zero-knowledge proof of

knowledge πENC.

4. Iterations {2, . . . , `}: for every ξ ∈ {2, . . . , `}, let c∆(1,tξ−1) denote the encryption of the current state

21



after the partial automaton evaluation ∆(1, (t1, . . . , tξ−1)). Then, the parties continue as follows:
(a) Subtracting column Cε from the current state: The parties compute the vector of encryptions

C = {c∆(1,ξ−1)/cj,ε}j for every ciphertext cj,ε ∈ Cε. Note that only one ciphertext will denote an
encryption of zero, and that indicates the position corresponding to the current state.

(b) Picking column Ctξ : P2 sends P1 a randomized version of column Ctξ , denoted Btξ , and proves
correctness using the zero-knowledge proof of knowledge πENC.

(c) P2 permutes columns C and Btξ : P2 chooses a random permutation π over {1, . . . , |Q|} and
sends P1 a randomized version of the permuted columns (Cπ, Cπ,tξ) = (π(C), π(Btξ)). P2 proves
its computations using a zero-knowledge proof of knowledge πPERM.

(d) P1 permutes columns Cπ and Cπ,tξ : If P1 accepts the proof πPERM, it continues similarly by
randomizing and permuting (Cπ′ , Cπ′,tξ) = (π′(Cπ), π′(Cπ,tξ)) using a new random permutation
π′. P1 proves its computations using a zero-knowledge proof of knowledge πPERM.

(e) Masking column Cε: The parties take turns in masking Cπ′ (a permutation over column Cε).
i. More specifically, for every cπ′ ∈ Cπ′ , P2 chooses x, r ← Z∗q and computes c′π′ = cxπ′ ·
Epk(0; r) (component-wise). It then proves that (cπ′ , c

′
π′) forms a Diffie-Hellman tuple using

πDH. Notice that the ciphertext that denotes an encryption of zero will not be influenced by the
masking, while the others are mapped to a random value.

ii. P1 repeats this step and masks the result yielding a new vector C̄.
(f) Decrypting column C̄: The parties decrypt vector C̄ by running πDEC on each element c̄ ∈ C̄,

where P2 decrypts using its share first.
The parties choose the jth ciphertext to be c∆(1,tξ) ∈ Cπ′,tξ for which Dpk,sk(c̄j) = 0 (with high
probability there will be only one such ciphertext).

5. Verifying output: Upon completing the `th iteration the parties hold a ciphertext c∆(1,t`) that denotes
the encryption of ∆(1, t). To check if this is an accepting state the parties do the following:
(a) They compute the ciphertext vector CF =

{
c∆(1,t`)/c

}
c∈EF

. Notice that ∆(1, t) is accepting if and
only if one of these ciphertexts is an encryption of zero.

(b) P2 masks CF as in Step 4e and proves correctness using πDL. Let C ′F be the result vector.
(c) P2 permutes C ′F and proves correctness using π1

PERM. Let CF,π be the resulting vector.
(d) The parties run πDEC to decrypt all the ciphertexts in CF,π, where P2 decrypts using its share first

and the result going only to P1 that outputs accept if and only if one of the plaintexts equals zero.

We continue with the following claim,

Theorem 4.1 Assume that the DDH assumption holds relative to G. Then πAUTO securely computes FAUTO

in the presence of malicious adversaries.

Intuitively it should be clear from the IND-CPA security of the encryption scheme that the automaton
and the text remain secret. Consider first the case in which P1 is corrupted and we need to simulate the
role of P2. The simulator is going to choose an arbitrary input and run P2’s code on it (while forcing a
correct outcome for P1). Then, to prove that this view is indistinguishable from a real view we need to show
a reduction to the encryption scheme. In particular, our reduction should enable the simulator to decrypt
without actually knowing the secret key, since the parties must run a decryption in each iteration in order to
locate the encryption of the next state. Moreover, decryptions must be computed for the ciphertexts received
from the challenger during the reduction, for which the simulator has no control.

We approach this technicality via a sequence of hybrid games in which indistinguishable changes are
introduced to the way the simulator works, but still allowing it to complete the simulated execution. More
specifically, we first instruct the simulator to decrypt without using its share (but still introducing the same
view), and then show how to create a view that is independent of the honest party’s input. This enables us to
replace the simulated input with a real one. As for the case that P2 is corrupted, the proof follows the same
outline mainly because, even though P2 does not receive an output, it still sees intermediate decryptions of
column C̄. Our goal is to prove that these decryptions do not contribute any information about P1’s input.
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4.1 Proof of Theorem 4.1

We separately prove security in the case that P1 is corrupted and the case that P2 is corrupted. Our proof is
in a hybrid model where a trusted party implements the relations RDL, RDH, RPERM and R1

PERM (namely,
the zero-knowledge proof of knowledge functionality that corresponds to these relations).

Party P1 is corrupted. Let A denote an adversary controlling P1. We construct a simulator SIM as
follows,

1. SIM is given a description of an automaton Γ = (Q, {0, 1},∆, q0, F ) and A’s auxiliary input and
invokes A on these values.

2. SIM invokes the simulator for πKEY and extracts the adversary’s share x1. SIM records this value,
picks x2 ← Zq and completes the execution of πKEY with this share. Let pk = gx1+x2 denote the
public-key generated in this execution.

3. SIM receives from A ciphertexts E∆A and EFA and verifies the proofs for a valid automaton. If
the verification fails SIM sends ⊥ to the trusted party for FAUTO and halts. SIM decrypts E∆A

and records the transition matrix ∆A. If the recorded set ∆A does not constitute a valid transition
matrix SIM outputs fail. SIM similarly computes the set of accepting states FA (as A may send
encryptions of invalid accepting states, SIM records only the valid states that correspond to values
within {1, . . . , Q}).

4. SIM sends ΓA = (Q, {0, 1},∆A, q0, FA) to its trusted party. If it receives back the message “ac-
cept” and `, it chooses an arbitrary string t′ = t′1 . . . t

′
` for which ΓA(t′) ∈ FA. Else, it chooses a

string t′ = t′1 . . . t
′
` such that ΓA(t′) is not an accepting state. This is done by mapping the automaton

into a graph and then searching for a path from the initial state to each one of the accepting/non-
accepting states of length `.

5. SIM completes the execution as the honest P2 would on this input. Specifically, in the first iteration,
SIM chooses c∆A(1,t′1) and sendsA ciphertext c1 = c∆A(1,t′1) ·Epk(0). It then invokes the simulator
for πENC while playing the role of the prover, for proving that it computed c∆A(1,t′1) correctly.

6. In every iteration ξ, SIM plays the role of the honest P2 on its input determined above, emulating
the ideal computations of RPERM and RDH. It further invokes the simulator for the zero-knowledge
proof πENC when required in the protocol.

7. SIM outputs whatever A does.

We first note that SIM outputs fail with negligible probability due to the fact that in the real execution P2

accepts an invalid automaton description only with a negligible probability due to the negligible soundness
error of πPERM and πDL. In particular, if A sends an encryption of a value not in {1, . . . , Q} then the proof
fails since either there exists an index τ in which c̃i is not an encryption of zero or one, or c1 and c2·|Q| are not
encryptions of an element from {1, . . . , 2|Q|}. Next, we show that the output distribution ofA in the hybrid
and the simulated executions are computationally indistinguishable. Recall that SIM plays against A with
input t′ so that ΓA(t) ∈ FA if and only if ΓA(t′) ∈ FA where t is the input of the real P2. The intuition
of the proof follows from the security of El Gamal, where the adversary should not be able to distinguish
between an encrypted path of the automaton that was computed relative to t or t′. Formally, we define a
sequence of hybrid games and denote by the random variable H

A(z)
` (Γ = (Q, {0, 1},∆, q0, F ), t, n) (for a

fixed n) the output of A in hybrid game H`.
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Formally, we consider the following sequence of games.

Game H0: The simulated execution as described above.

Game H1: In this game we define a simulator SIM1 similarly to simulator SIM with the following
modifications.

1. In Step 3a (i.e., in the first iteration), SIM1 sends an encryption to a random plaintext instead of
c∆A(1,t′1), for t′ = t′1, . . . , t

′
` the arbitrary input picked by the simulator. SIM1 then invokes the

simulator for the proof πENC.

2. Next, for each iteration 2 ≤ ξ ≤ `, SIM1 does not send a random permutation of columns C,Ct′ξ in
Step 4c. Instead, SIM1 sends two vectors of |Q| ciphertexts encrypting random plaintexts. Moreover
in Step 4f, SIM1 decrypts column C̄ as follows. It picks a random index k ∈ {1, . . . , |Q|} and forces
the decryption of c̄k = 〈c̄k1 , c̄k2〉 ∈ C̄ into zero by sending

e2 =
c̄k2

(c̄x1
k1
· gm)

=
c̄k2

(c̄x1
k1
· g0)

=
c̄k2

c̄x1
k1

,

for m = 0 and x1 the adversary’s secret key share. Note that if the adversary decrypts correctly then
the outcome is g0 since it computes c̄k2/(c̄

x1
k1
· e2) = g0.

3. Similarly, in Step 5c, SIM1 sends a random vector of ciphertexts rather than the permuted outcome
CF,π and forces the decryption of one of these ciphertexts into zero as done in the previous step.

We claim that the adversary’s views in the games H0 and H1 are computationally indistinguishable
due to the IND-CPA security of the El Gamal scheme. Namely, a distinguisher DE can be constructed as
follows. Upon receiving public-key pk from its oracle, DE invokes the simulator for πKEY and forces the
shared public-key to be pk. It further records the adversary secret key share x1 and the transition table it
extracts in Step 2b. Next, in the first iteration DE outputs messages ∆A(1, t′1) and s for s← Zq, receiving
back from its oracle ciphertext e.7 DE forwards A in Step 3a ciphertext e and invokes the simulator for
πENC. Then, in each iteration 2 ≤ ξ ≤ `, DE sends to its oracle two vectors of size 2|Q|: (i) the first vector
corresponds to a random permutation π of columns Cε, Ct′ξ . (ii) The second vector corresponds to a set of
random plaintexts. DE forwardsA the oracle’s response and emulates the ideal calls for the zero-knowledge
proofs. Finally, in the decryption of Step 4f, DE decrypts ciphertext c̄k as in game H1 except that it picks
index k ∈ {1, . . . , |Q|} to be the index that would have been decrypted by simulator SIM when running
on input t′ (i.e., the index that corresponds to plaintext ∆A(1, t′ξ) if the oracle indeed encrypts the second set
of messages. Clearly, DE does not know that, but pretends that this is the case). We recall that DE extracts
the permutations applied by the adversary in Step 4d so it is able to compute this index efficiently. Similarly
in Step 5d, DE decrypts the ciphertext that corresponds to the final state ∆A(1, t′) (again, assuming that the
oracle encrypts the second set of messages.)

We now prove that A’s view distributes either according to game H0 with SIM or according to game
H1 with SIM1. Note first that the differences between the two executions are with respect to the permuted
ciphertexts and the way decryption follows. Namely, ifDE receives from its oracle encryptions of ∆A(1, t′1)
and the permuted columns Cε, Ct′ξ , then the result is a view as in the simulation with SIM. To see this,
note that the ciphertexts received fromDE’s oracle distribute as in game H0 since they correspond to the en-
cryptions of the evaluation of the automaton on t′. In addition, DE decrypts the ciphertexts that correspond

7We extend the standard IND-CPA game where the adversary outputs two messages and consider a game where the adversary
outputs two vector of messages where one of these vectors is encrypted. For simplicity we split the challenge phase into two phases.
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to {∆A(1, t′ξ)}ξ by sending c̄k2/(c̄
x1
k1
· g0) in each iteration. Now, since DE decrypts as if the oracle sends

these sets of encryptions, it holds that DE decrypts correctly (without knowing). Namely, it sends

c̄k2

c̄x1
k1
· g0

=
c̄xk1
· g0

c̄x1
k1
· g0

= c̄x2
k1

for x = x1 + x2, which distributes identically to SIM’s decryption message in the execution of πDEC.
On the other hand, the result is a view with ciphertexts that encrypt random plaintexts as required in

game H1. Here we need to ensure that the view distributes as in game H1. Note that the only difference with
respect to the views generated by DE and SIM1 is regarding the way index k is picked, since DE does
not pick it uniformly. Nevertheless, since the index of ∆A(1, t′ξ) is randomly permuted within column Ct′ξ
using a fresh permutation π it amounts to picking this index at random.

Game H2: In this game there is no trusted party and no honest P2. Instead, we define a simulator SIM2

that uses the real input t instead of the simulated input t′. Namely, this game is identical to game H0 with
SIM except that SIM2 does not interact with a trusted party and plays the role of SIMwith input t rather
than with t′. The proof for which the views generated within games H1 and H2 are computationally indis-
tinguishable follows the same argument from the proof that demonstrates computational indistinguishability
with respect to the simulated view with SIM and the view generated in game H1.

Game H3: In this game we define a simulator SIM3 that uses its share of the secret key to decrypt
correctly. We claim that the adversary’s views generated in games H2 and H3 are identical. This is due to
the fact that the simulator decrypts correctly in both games. Specifically, in game H2 the simulator decrypts
the ciphertexts it picks in Steps 4f and 5d correctly, since it knows the plaintexts.

Game H4: In this game we define a simulator that invokes the real prover for πENC instead of the simulator.
Computational indistinguishability follows straightforwardly due to the zero-knowledge property of πENC.

Finally, note that the distribution induced by game H4 is identical to the distribution generated in the
hybrid execution. This concludes the proof for the case when P1 is corrupted.

Party P2 is corrupted. Let A denote an adversary controlling P2, we construct a simulator SIM for P1

as follows.

1. SIM is given a string t1, . . . , t` and A’s auxiliary input (|Q|, |F |), and invokes A on these values.

2. SIM picks x1 ← Zq and invokes the simulator for πKEY. SIM extracts the adversary’s share x2 and
records this value. It then completes the execution of πKEY with its share. Let pk = gx1+x2 denote
the public-key generated in this execution.

3. SIM encrypts an arbitrary automaton Γ′ = (Q′, {0, 1},∆′, q0, F
′) with |Q′| = |Q| and |F ′| = |F |

and sends its encryption. It emulates the ideal calls forRPERM andRDH approving the validity of the
description of the automaton.

4. In every iteration ξ, SIM records tξA by extracting it from the proof πENC thatA runs in Step 4b (for
the first iteration SIM extracts t1A in Step 3b). SIM sends t1A , . . . , t`A to the trusted party.

5. SIM completes the execution as the honest P1 would on this input Γ′ while emulating the ideal calls
forRPERM,R1

PERM,RDL andRDH.

6. SIM outputs whatever A does.
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Note that the difference between this simulated and the hybrid executions is within the fact that the
simulation runs on an arbitrary encrypted automaton. Therefore the reduction is follows from the security
of the El Gamal encryption scheme. More formally, recall that P2 does not receive any output, thus it only
learns the decryption results in Step 4f. Therefore our goal is to prove that privacy is preserved in spite of
these decryptions. The proof follows similarly to the proof of the prior corruption case. We denote by the
random variable H

A(z)
` (Γ = (Q, {0, 1},∆, q0, F ), t, n) (for a fixed n) the view of A in the hybrid game H`.

Game H0: The simulated execution.

Game H1: In this game we define a simulator SIM1 similarly to simulator SIM with the following
modifications.

1. In Step 2, SIM1 sends ciphertexts that encrypt random plaintexts rather than using the fake automa-
ton Γ′ = (Q′, {0, 1},∆′, q0, F

′) the fake input that SIM inputs in game H0. SIM1 emulates the
ideal calls in Step 2c, approving the validity of the description of the automaton.

2. For each iteration 2 ≤ ξ ≤ `, SIM1 continues as simulator SIM does. Namely, follows the
protocol instructions until Step 4f, where SIM1 decrypts column C̄ as follows. It picks a random
index k ∈ {1, . . . , |Q|} and forces the decryption of c̄k = 〈c̄k1 , c̄k2〉 ∈ C̄ into zero by sending

c̄k2

(c̄x1
k1
· gm)

=
c̄k2

(c̄x1
k1
· g0)

=
c̄k2

c̄x1
k1

,

for m = 0 and x1 is the adversary’s secret key share. Note that if the adversary decrypts correctly
then the outcome is g0 since it computes c̄k2/(c̄

x1
k1
· e2) = g0.

3. The rest of the simulation is as in game H0.

We claim that the adversary’s views in games H0 and H1 are computationally indistinguishable due to
the IND-CPA security of the El Gamal scheme. Namely, a distinguisher DE can be constructed as fol-
lows. Upon receiving public-key pk from its oracle, DE invokes the simulator for πKEY and forces the
shared public-key to be pk. It further records the adversary secret key share x2. DE sends to its or-
acle two vectors of size 2|Q| + |F |: (i) The first vector corresponds to the fake automaton description
Γ′ = (Q′, {0, 1},∆′, q0, F

′). (ii) The second vector corresponds to a random set of plaintexts. DE forwards
the adversary the oracle’s response and emulates the ideal calls for RPERM and RDH approving the validity
of the description of the automaton. Next, in each iteration 1 ≤ ξ ≤ `, DE extracts tξA and verifies the
proofs πENC, and aborts if verification fails. It then permutes columns Cπ and Cπ,tξ correctly.

Finally, in the decryption of Step 4f, DE decrypts ciphertext c̄k as in game H1 except that it picks index
k ∈ {1, . . . , |Q|} to be the index that would have been decrypted by simulator SIM when running on
input ∆′ (i.e., the index that corresponds to plaintext ∆′(1, tξA) if the oracle indeed encrypts the first set of
messages. Clearly, DE does not know that, but pretends that this is the case). We recall that DE extracts the
permutations applied by the adversary in Step 4c so it is able to compute this index efficiently. The rest of
the proof follows similarly as in the former corruption case.

Game H2: In this game there is no trusted party and no honest P1. Instead, we define a simulator SIM2

that uses the real input Γ = (Q, {0, 1},∆, q0, F ) instead of the simulated input Γ′ = (Q′, {0, 1},∆′, q0, F
′).

Namely, this game is identical to game H0 with SIM except that SIM2 does not interact with a trusted
party and plays the role of SIM with input Γ = (Q, {0, 1},∆, q0, F ) rather than with a fake input
Γ′ = (Q′, {0, 1},∆′, q0, F

′). The proof for which the views generated within games H1 and H2 are com-
putationally indistinguishable follows the same argument from the proof that demonstrates computational
indistinguishability with respect to the simulated view with SIM and the view generated in game H1.
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Game H3: In this game we define a simulator SIM3 that uses its share of the secret key to decrypt
correctly. We claim that the adversary’s views generated in games H2 and H3 are identical. This is due to
the fact that the simulator decrypts correctly in both games. Specifically, in game H2 the simulator decrypts
the ciphertexts it picks in Steps 4f and 5d correctly, since it knows the plaintexts.

Finally, note that the distribution induced by game H3 is identical to the distribution generated in the
hybrid execution. This concludes the proof for the case when P2 is corrupted.

4.2 Efficiency

We present a brief analysis of our protocol; a comprehensive analysis can be found in the introduction. Our
protocol runs O(`) rounds where ` is the length of the text. This round complexity is inherent from the fact
that the parties cannot initiate a new iteration before visiting the previous one. Looking ahead, when using
this protocol for text search the round complexity can be reduced into O(m) (i.e., the length of the pattern)
using standard techniques of splitting the text into blocks of size 2m; see Section 5.2 for more details. We
note that the length of the pattern is typically very small, usually a constant. Moreover, the overall number
of exponentiations in protocol πVALIDAUTO is O(m`).

4.3 Dealing with an Arbitrary Size Alphabet

Protocol πAUTO can be naturally extended to dealing with arbitrary size alphabet by simply have P1 send
a larger table with a column for each symbol. The rest of the protocol is adapted similarly. Note that this
will introduce a multiplicative factor |Σ| within the overhead of the communication and computation costs,
where Σ is the alphabet.

5 Secure Text Search against Malicious Adversaries

In this section we present a secure version of the KMP algorithm [KMP77] for computing the text search
functionality in the presence of malicious adversaries. Loosely speaking, the KMP algorithm searches for
occurrences of a pattern p of length m within a text T of length `, by employing the observation that when
a mismatch occurs, the pattern itself embodies sufficient information to determine where the next match
could begin, thus bypassing re-examination of previously matched characters. More formally, P1, whose
input is a pattern p, first constructs an automaton Γp for p as follows. Let p〈j〉 denote the length j prefix
p1, . . . , pj of p. P1 constructs a table Υ with m entries where its jth entry contains a pointer to the last bit of
the largest prefix of p that matches a suffix of p〈j−1〉. Namely, the jth entry points to the largest prefix p〈j′〉
that matches a proper suffix of p〈j−1〉. The intuition behind this construction captures the following idea.
Assume that one has already successfully compared the first j − 1 bits of p against the text, yet encountered
a mismatch when compared the jth bit of p. Then the automaton encodes the appropriate transition to the
next potential match instead of compering p naively against the next text location. We remark that Υ can be
easily constructed in time O(m2) by comparing p against itself at every alignment.

Next, P1 constructs its automaton Γp = (Q,Σ,∆, q0, F ) based on Υ. It first sets |Q| = m + 1 and
constructs the transition table ∆ as follows: for all j ∈ {1, . . . ,m}, ∆(qj−1 × pj) → qj (i.e., moving
forwards) and ∆(qj−1 × (1− pj)) → Υ(j) (i.e., moving backwards), where Υ(j) denotes the jth entry in
Υ. In case we found a match and the automaton reaches the last state qm it can only go backwards. Since
the algorithm finds the largest prefix that matches a proper suffix of the pattern.

We denote the labels of the states q0, . . . , qm ∈ Q by the sequential integers starting from 0 to m.
This way, if there is no matching prefix for p1, . . . , pj , the automaton goes back to the initial state q0 and
Υ(j) = 0. P1 concludes the construction by setting F = qm. If state qm is ever reached then there is a
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match. In order to ensure that P1 and P2 jointly evaluate the automaton on P2’s text such that no information
is revealed about either the text or the automaton (besides knowing if the final state is accepting or not), we
use protocol πAUTO from Section 4. This, however, is insufficient since P1 must prove first that it constructed
the automaton correctly according to the KMP specifications. In Section 5.1 we present a zero-knowledge
proof of knowledge for proving that the automaton P1 constructs is a correct KMP automaton. In Section 5.2
we give our complete construction for text search in the presence of malicious adversaries.

5.1 A Zero-Knowledge Proof of Knowledge for a Valid KMP Automaton

In this section we present an efficient zero-knowledge proof of knowledge for the relation RVALIDAUTO

defined by:

((
{Qi,j , ri,j}i,j

)
,
(
{ci,j}i,j , pk

))
7→


(−, 1)

∀i, j ci,j = Epk(Qi,j ; ri,j) and
{Qi,j}i,j is a valid KMP automaton

(−, 0) otherwise

where i ∈ {0, 1}, j ∈ {1, . . . , |Q|}, |Q| is the number of states in Q, and a valid KMP automaton is as
specified above. This proof is needed in protocol πPM from Section 5.2 to ensure the validity of the encrypted
automaton that P1 sends. We remark that it is unnecessary for this proof to be a proof of knowledge, as the
knowledge extraction of the automaton can be performed within protocol πAUTO. Nevertheless, for the
sake of modularity we consider this property here as well. Our proof uses a zero-knowledge proof for the
following language,

LNZ = {(G, g, q, h, h1, h2) | ∃ (m 6= 0, r) s.t. α = gr, β = hrgm} .

An efficient constant round proof πNZ with constant number of exponentiations, can be found in [HN12].
Our proof shows that an automaton Γ corresponds to a well defined string p = p1, . . . , p|Q|−1 and is

computed correctly according to table Υ defined above. Recall that we assume w.l.o.g., that the transition
table ∆ is complete and that it contains two columns corresponding to zero or one (i.e., whether the next bit
from the input string is zero or one). Then, for every j ∈ {0, 1, . . . ,m} there exists an entry in ∆ with two
ciphertexts c0,j , c1,j . So that there exists an index i in which ci,j denotes the encryption of state qj and ci,j
denotes an encryption of qΥ(j). In order to ensure that the proof does not leak any information about p, these
checks must be performed obliviously, independent of the prefix. We therefore conduct a brute force search
on the matched prefix against every suffix in which ultimately, the verifier accepts only if the conditions for
RVALIDAUTO are met. For simplicity, our proof is not optimized; we give more details below how to improve
it. We now continue with the formal description of our proof πVALIDAUTO and its proof of security.

Protocol 4 (πVALIDAUTO – A Zero-Knowledge Proof of Knowledge for RVALIDAUTO):

• Joint statement: A public-key pk and a collection {ci,j}i,j of |Q| sets, each set is of size 2 which corresponds
to a row in the transition matrix ∆.

• Auxiliary input for the prover: A collection {Qi,j , ri,j}i,j of |Q| sets, each set is of size 2, such that ci,j =
Epk(Qi,j ; ri,j) for all i ∈ {0, 1} and j ∈ {1, . . . , |Q|}.

• Convention: We assume that the parties jointly agree on a group G of prime order q and a generator g for the
threshold El Gamal encryption scheme. Both parties check every received ciphertext for validity, and abort if
an invalid ciphertext is received.

Finally, unless written differently, i ∈ {0, 1} and j ∈ {1, . . . , |Q|}.
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• The protocol:

1. For every ci,j = 〈αi,j , βi,j〉, the prover P proves the knowledge of logg αi,j using πDL.

2. For every row ∆j = {c0,j , c1,j}|Q|j=4 in the transition matrix P proves the following:8

(a) P randomly permutes each entry in ∆: It first randomly permutes c0,j and c1,j and employs
πPERM to prove its computations.

(b) P proves a forwards path: It proves that there exists b ∈ {0, 1} in which cb,j = Epk(j + 1) by
proving that (pk, cb,j/Epk(j + 1)) is a Diffie-Hellman tuple.

(c) P proves a backwards path: P proves the correctness of c1−b,j in two steps: (1) It first proves that
c1−b,j is a valid entry in Υ. (2) It then proves the maximality of this prefix.
In order to prove this, we define a string p = p1, . . . , p|Q|−1, induced by the description of the
automaton, as follows. Define (the encryption) pj by the (encrypted) column in which cb,j belongs
to. Namely, we let the prover permute the encryptions of the columns names zero/one, using the
same permutation, and then take the column’s name associated with cb,j to be the encryption of pj .
Then to complete the check, P proves that c1−b,j encrypts r, so that p〈r〉 corresponds to a suffix of
p〈j−1〉. (Recall that p〈r〉 denotes the rth length prefix p1, . . . , pr of p1, . . . , pj−1).

(d) V sends a challenge: The verifier V chooses j random elements u1, . . . , uj−1 ← Z∗q and sends
{uα}j−1

α=1 to P .

(e) Public computation: Next, the parties compute ciphertexts vα′ = Epk

(∑α′

k=1 uk · pk
)

for all

α′ ∈ {1, . . . , j − 1}.
(f) Proving a valid entry in Υ: P proves that there exists 1 ≤ k ≤ j − 2 for which v′k is a ciphertext

that encrypts zero and is defined as follows:

v′k = (vj−k−1,j−1

/
v1,k) · (cj,1−b/gk).

The parties essentially compute the linear combination of all potential prefixes of p1, . . . , pj−1 and
compare them against a suffix of this string. The multiplication with (cj,1−b/g

k) is to ensure that
such a prefix is consistent with whatever is encrypted in the transition table.
For k = 0, the parties set v′0 = cj,1−b, Since if there is no matching prefix for any suffix of p〈j−1〉,
this means that cj,1−b denotes an encryption of the initial state q0 which equals zero.

(g) Proving Dpk,sk(c1−b,j) is maximal:
Next P proves that there does not exist an index Dpk,sk(cj,1−b) < γ ≤ j − 2 in which

vj−γ−1,j−1

/
v1,γ = 0

yet cj,1−b/gγ 6= 0, as this would imply that there exists a larger prefix p〈γ〉 that matches a suffix of
p〈j−1〉 yet, Dpk,sk(cj,1−b) 6= γ.
For every 1 ≤ k ≤ j−3 and 2 ≤ k′ ≤ j−2 the parties compute the ciphertext v′k·(vj−k′−1,j−1

/
v1,k′)

for which P then proves that ek,k′ is not an encryption of zero using πNZ.

3. Output: If all the proofs are successfully completed, V outputs 1. Otherwise it outputs 0.

Theorem 5.1 Assume that the DDH assumption holds relative to G. Then πVALIDAUTO is a computational
zero-knowledge proof of knowledge forRVALIDAUTO with perfect completeness.

Proof: We first show perfect completeness. This is derived from the fact that we conduct a brute force
search for the matched prefix of every suffix.

8We remind the reader that in iteration j the algorithm checks the prefixes with respect to substring p1, . . . , pj−1.
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Zero knowledge. Let V ∗ be an arbitrary probabilistic polynomial-time strategy for V . Then a simulator
SIMVALIDAUTO for this proof can be constructed using the simulators SIMDL, SIMPERM, SIMDH and
SIMNZ from the corresponding proofs of πDL, πPERM, πDH and πNZ. That is, SIMVALIDAUTO invokes
V ∗ and plays the role of the honest prover, except that in every zero-knowledge invocation it invokes the
appropriate simulator. The executions are computationally indistinguishable via standard reductions to the
security of the zero-knowledge proofs.

Knowledge extraction. We show the existence of a knowledge extractor K. Let P ∗x,ζ,ρ be an arbitrary
prover machine where x = ({ci,j}i,j , pk), ζ is an auxiliary input and ρ is P ∗’s random tape. Basically,
the extractor K extracts P∗’s input from the zero-knowledge proof πDL at the beginning of the protocol.
In particular for all i, j, P ∗ proves the knowledge of the randomness ri,j used for the computation of the
ciphertext ci,j . This, in turn, enables K to recover the plaintext Qi,j as well. It then continues playing the
role of the honest verifier and aborts the execution if the honest verifier does. The fact that we perform a
brute force search, combined with the fact that the randomness {uα}α incorporated by the verifier precludes
the event in which equality does not hold yet the sum of the encryptions amount to zero.

Efficiency. Note first that the round complexity of πVALIDAUTO is constant, as the zero-knowledge proofs
can be implemented in constant rounds and run in parallel for all j. As for the number of asymmetric
computations, we note that an optimized construction achieves computation cost of O(m2) operations. This
is due to the fact that there are m distinct prefixes of p for which their encryptions can be computed once
for the entire execution. Moreover for every j, there are j − 2 prefixes to to check against p1, . . . , pj−1.
Therefore, the overall number of exponentiations is O(m2).

5.2 Text Search Protocol with Simulation Based Security

In this section we present our complete construction for securely evaluating the pattern matching func-
tionality. Recall that our construction is presented in the malicious setting with full simulatability and is
modular in the sub-protocols πAUTO (cf. Section 4) and πVALIDAUTO (cf. Section 5.1). Having described the
sub-protocols incorporated in the our scheme we are now ready to describe it formally. Our protocol is com-
prised out of two main phases: (i) the parties first engage in an execution of πVALIDAUTO for which P1 proves
that it sent a valid KMP automaton. (ii) The parties run protocol πAUTO which evaluates automaton Γ on P2’s
private input. In order to reduce the round complexity of our protocol (which depends on the input length to
the automaton), long texts are partitioned into 2m pieces and are handled separately so that the KMP algo-
rithm is employed on each block independently (thus all these executions can be executed in parallel). That
is, let T = t1, . . . , t` then the text is partitioned into blocks (t1, . . . , t2m), (tm+1, . . . , t3m), (t2m, . . . , t4m)
and so on, such that every two consecutive blocks overlap in m bits. This ensures that all the matches will
be found. Therefore, the total number of blocks is d`/me. Details follow,

Protocol 5 πPM – Secure Text Search

• Inputs: The input of P1 is a binary pattern p = p1, . . . , pm, and the input of P2 is a binary string T =
t1, . . . , t`.

• Auxiliary Inputs: The security parameter 1n and the input sizes ` and m.

• The protocol:

1. Preparing a KMP automaton: P1 constructs an automaton Γ = (Q,Σ,∆, q0, F ) according to the
KMP specifications based on its input p and sends P2 encryptions of the transition matrix ∆ and the
accepting states, denoted byE∆ andEF , respectively (recall that by our conventions q0 = 0, Σ = {0, 1},
Q = [0, . . . ,m], and F = {qm}).
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2. Validating correctness of the automaton: The parties engage in an execution of the zero-knowledge
proof πVALIDAUTO for which P1 proves that Γ was constructed correctly. That is, P1 proves that the set
E∆ corresponds to a valid KMP automaton for a well defined input string of length m. If P2’s output
from this execution is 1 the parties continue to the next step. Otherwise P2 aborts.

3. Partitioning the text: P2 sends encryptions of the bits of T to P1 and the parties partition the encrypted
bits into `/m blocks of length 2m in which every two consecutive blocks overlap in m bits.

4. Evaluating the automaton on the text: The parties engage in `/m parallel executions of πAUTO on
these blocks.9 For every 1 ≤ i ≤ d`/me, let {outputij}

m+1
j=1 denotes the set of outputs returned by P1

upon completing the ith execution of πAUTO. Then P1 returns {j | outputij = ‘‘accept′′}d`/me,m+1
i=1, j=1 .

Theorem 5.2 Assume that the DDH assumption holds relative to G. Then πPM securely computes FPM in
the presence of malicious adversaries.

The security proof for πPM follows immediately from the proofs described for for πAUTO (cf. Section 4.1)
and πVALIDAUTO (cf. Section 5.1).

Efficiency. we refer the reader to the analysis presented in the introduction and in Section 4 since the costs
of protocol πPM are dominated by the costs of πVALIDAUTO. The overall costs are amount to O(m · `+m2)
which typically amounts to O(m · `) since in most cases m << `.
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