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Abstract. In this paper, inspired from the notion of impossible differ-
entials, we present a model to use differentials that are less probable than
a random permutation. We introduce such a distinguisher for 2 rounds
of Crypton, and present an attack on 6 rounds of this predecessor AES
candidate. As a special case of this idea, we embed parts of the addi-
tional rounds around the impossible differential into the distinguisher to
make a probabilistic distinguisher with more rounds. We show that with
this change, the data complexity is increased but the time complexity
may be reduced or increased. Then we discuss that this change in the
impossible differential cryptanalysis is commodious and rational when
the data complexity is low and time complexity is marginal.

1 Introduction

New attacks on iterated block ciphers intend to distinguish some rounds of a
cipher from a random permutation. By adding some additional rounds to such a
distinguisher and guessing their subkeys, the attacker makes a key-recovery at-
tack. Differentials of high probability and differentials of zero probability are the
distinguishers of differential cryptanalysis [2] and impossible differential crypt-
analysis [1, 4], respectively. For a random permutation the probability of the dif-
ferential lies between the probability of these two distinguishers. Now suppose
the case where the probability of a differential lies between zero (the probability
for an impossible differential) and the trivial probability (i.e., the probability
for a random permutation). Such a differential is less probable than a random
permutation, so in the rest of this paper we call it the almost-impossible differen-
tial. Consequently the key-recovery attack that uses these differentials is called
almost-impossible differential cryptanalysis or AIDC. To the best of our knowl-
edge, the first trials for using low-probability differentials go back to [3] and [5]
for cryptanalysis of IDEA and DFC, respectively. Here we present a system-
atized model to construct and use low-probability differentials for cryptanalysis
of block ciphers.

To construct its distinguisher, impossible differential attack uses two differen-
tials with probability one in the reverse directions which contradict in the middle.
Inspired from this miss in the middle method, we present a similar model for
almost-impossible differentials, in which one differential has probability 1, and



the other differential, which is in the reverse direction, is probabilistic. Based on
this model we introduce an almost-impossible differential for 2 rounds of Cryp-
ton, and propose a key-recovery attack for 6 rounds of this block cipher. Then
we discuss the data and time complexity and success rate of the attack.

The rest of this paper is organized as follows. Section 2 provides a brief
description of Crypton. The model of AIDC is introduced in Section 3. As an
example of the application of this model, an attack on 6-round Crypton is pre-
sented in Section 4. Section 5 describes an analyses the complexity of a special
class of almost-impossible differential attack whose distinguisher is constructed
directly from an impossible differential. Finally, we conclude the paper in Section
6.

1.1 Notations

In this paper we use the following notations.

a|b : bit string concatenation of a and b,
⊕ : bit-wise exclusive OR operation,
∆x : Any difference except ∆x.

2 A Brief Description of Crypton

The 128-bit block cipher Crypton [6] has a 12-round SPN structure that supports
key sizes of 128, 192, and 256 bits. Let us represent a 128-bit data by a 4 × 4
matrix A of bytes A[i][j], i, j = 0, 1, 2, 3, where the row with index i = 0 is the
bottommost row and the column with index j = 0 is the leftmost column. Each
round of Crypton applies the following 4 transformations to this state matrix.

• γo and γe (or simply γ) are byte-wise S-box layers which are applied to the
128-bit datd in odd and even rounds, respectively.

• πo and πe (or simply π) are linear column-wise permutations with differential
branch number of 4 for odd and even rounds, respectively.

• τ is a linear transformation that transposes the state matrix.
• σ is a bitwise key XOR. When the given round key of round r is Kr, the

notation σKr is used.

The encryption consists of a whitening with the subkey K0, 12 consecutive
round functions ρr(x) = σKr (τ(π(γ(x)))), r = 1, ..., 12, and finally the final
transformation ϕe(x) = τ(πe(τ(x))). Note that the round function ρr(x) has an
equivalent form of ρeqr (x) = τ(π(σKeq

r
(γ(x)))), where the equivalent round key

is Keq
r = τ(π−1(Kr)).

To denote the intermediate values after the application of γ, π, τ and σ in
round r, we use the notations xγr , xπr , xτr and xσr , respectively. The row i and
column j of some intermediate value x in round r are denoted by xr,col(j) and
xr,row(i), respectively.



Here we remind two properties of the diffusion transformation of Crypton
from [7]. We will use these properties in the proposed attack of Section 4.

Property 1: Let ni,j be the number of 4-byte words with i non-zero bytes
that after the application of π are converted to 4-byte words of j non-zero bytes.
The values ni,j are represented in Table 1. Using ni,j values, the probability
that the transformation π transforms a 4-byte word with i non-zero bytes in
fixed positions into a word with j non-zero bytes in fixed positions is equal to

pi,j =
ni,j/(4

i)(4
j)

255i .

Table 1. ni,j values for calculating the transition probabilities of π transformation

i j
0 1 2 3 4

0 1 0 0 0 0
1 0 0 0 48 972
2 0 0 108 5760 384282
3 0 48 5760 1024800 65294892
4 0 972 384272 65294892 4162570479

Property 2: Let y = πe(πo(x)), then yrow(i) = xrow(i+2 mod 4). This prop-
erty implies that the transformation πe(πo(x)) is equivalent to a row-wise circular
shift. One can easily observe that when the equivalent round is used in the last
round of Crypton, the transformations π and τ in that round and the Final
transformation ϕe are easily simplified.

3 Almost-Impossible Differential Cryptanalysis

In this section we introduce the notion of almost-impossible differential crypt-
analysis. In our model, represented in Figure 1, the distinguisher is constructed
similar to the miss in the middle approach, but the key-recovery step is per-
formed similar to that of differential attack.

Let E = Ef ◦ E1 ◦ E0 be the target cipher. Suppose we have already found
an almost-impossible differential for E1 ◦ E0, thus Ef is the additional rounds
we want to recover some of their subkey bits (in a more general model we can
add some additional rounds in the beginning of the cipher). The parameters and
properties involved in the model are defined as below:

• E0 is a part of cipher that conducts the differential ∆xI to the differential
∆xM in the encryption direction with probability q.
• E1 is a part of cipher that conducts the differential ∆xO to the differential
∆xM in the decryption direction with probability 1.
• N is the number of plaintexts with the difference ∆P = ∆xI .



• p∆C is the probability that a plaintext pair with the difference ∆P results
in the difference ∆C for the ciphertext pair. Supposing that E is an ideal
cipher, p∆C is independent of ∆P and easily calculated from ∆C.

• pwk is the probability that a ciphertext pair with the difference ∆C after
partial decryption through E−1

f with a wrong subkey meets the difference
∆xO.

• pck is the probability that a ciphertext pair with the difference ∆C after
partial decryption through E−1

f with the correct subkey meets the difference
∆xO.

• q is the probability that a pair with the difference ∆xI after partial encryp-
tion through E0 meets the difference ∆xM .

• p is the probability that an intermediate pair with the difference ∆xM after
partial encryption through E1 meets the difference ∆xO.

• r is the probability that an intermediate pair with the difference ∆xO after
partial encryption through Ef meets the difference ∆C.

Corollary 1: for E1 ◦E0 the path from ∆xI to ∆xO inevitably passes from
the difference ∆xM in the middle.

Now we discuss on the conditions that make E1 ◦ E0 a distinguisher. The
condition for ∆xI

E1◦E0−−−−→ ∆xO to be a distinguisher is that pwk and pck must
not be equal to each other. When a wrong key is used through E−1

f the relation
between plaintexts and ciphertexts is intercepted, so pwk is easily calculated
just by considering the structure of E−1

f . For computing pck, we should compute
the fraction of proper pairs (i.e., pairs with the difference ∆P in the plaintext
pair and ∆C in the ciphertext pair) that pass from ∆xO to the total number
of proper pairs. Based on the parameters defined in the model, the number of
proper pairs is N × p∆C , and considering Corollary 1, the number of pairs that
pass from ∆xO in the output of E1 is N×q×p, among them about N×q×p×r
pairs meet ∆C. Thus pck is calculated as:

pck = N×q×p×r
N×p∆C = q×p×r

p∆C

Note that when pwk < pck, the distinguisher is the well-known differential
distinguisher, but we are interested in the case where pck < pwk. In this case we
have a distinguisher with the probability less than the probability for a random
permutation. In the following, we present such a distinguisher for the block
cipher Crypton, and exploit it to present an AIDC attack on 6 rounds of this
cipher.

4 Cryptanalysis of Reduced Crypton Using
Almost-Impossible Differentials

In this section, based on the model presented in the previous section, first a 2-
round differential with probability less that the probability of a random permu-
tation is presented. Then an attack procedure appropriate for this distinguisher
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Fig. 1. Model and parameters of almost-impossible differential cryptanalysis

is applied to 6-round Crypton. Finally the attack complexity and its success rate
are discussed.

4.1 An almost-impossible differential of Crypton

Figure 2 illustrates a 2-round almost-impossible differential of Crypton. The
distinguisher concurs the model presented in Figure 1 in which E0 is a 1-round
probabilistic differential that converts a differential with 16 non-zero bytes to a
differential with 4 non-zero bytes in a column, and E−1

1 is a 1-round deterministic
differential with one special active bytes in the input and 4 active bytes in its
output difference. From the properties of the transformation π (and π−1), we
know that when the input has only one active byte in a definite position, to ensure
the existence of exactly 4 active bytes in the output of this transformation, the
input active byte can take n1,4/4 = 243 out of 255 possible values.

As mentioned in Section 2, for the π transformation, the probability that a
column with i active bytes in fixed positions is converted to a column with j
active bytes in fixed positions is denoted by pi,j . Thus it is clear that for the
distinguisher of Figure 2, the probability q is equal to p4

4,1, and the probability
p is p4,1.
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Fig. 2. 2-round almost-impossible differential of Crypton

4.2 The attack procedure

To apply a 6-round attack on Crypton, two rounds are added in the beginning
and two other rounds (and the final transformation) are added at the end of
the distinguisher. Based on the construction of the additional rounds at the
ciphertext side it is easy to see that r = 1. In order to simply use Property 2
of the diffusion layer of Crypton, let us take these 6-round structure rounds 2
through 7 of Crypton. The attack is demonstrated in Figure 3.

Note that to reduce the target key space and the attack complexity, for the
last 2 rounds (i.e., rounds 6 and 7) the equivalent round structure is used. The
attack procedure, inspired from the traditional differential attack, is as follows:

1. Take 2n structures of plaintexts such that each structure contains 232 plain-
texts that have fixed values in the first 3 columns and take all the possible
values in the last column (column 3). It is obvious that from each structure
about 232 × 2554/2 ≈ 262.98 plaintext pairs can be obtained such that these
pairs have non-zero differences in the 4 bytes of column 3. Totally, we have
2n+32 plaintexts and we can collect about 2n+62.98 plaintext pairs (P, P ′)
with the desired difference ∆P = P ⊕ P ′ shown in Figure 3.

2. Obtain the ciphertexts of each structure, store them in a hash table indexed
by their values in the 12 bytes of (col(0, 2, 3)), thus each two texts that lie
in the same row ot this table form a proper pair (with the required ∆P and
∆C). Based on the form of ∆C, the probability of p∆C is the probability
that a pair have zero difference in specified 12 bytes and at least 3 non-zero
bytes in column 1. So this probability is:
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Fig. 3. AIDC of 6-round Crypton

p∆C=pr{4 active bytes in column 1} ×2−8×12+pr{3 active bytes in column
1} ×2−8×13 = 2554

2564−1 × 2−96+
(
4
1

)
× 2553

2553−1 × 2−104 = 2−96.0001

Thus the expected number of obtained such pairs from all structures is
2n+62.98 × p∆C = 2n−33.0201.

3. Guess 32-bit values of K1,col(3), and for each guess partially encrypt all
2n−33.0201 pairs through σ, γ and πe. Keep the pairs that result in 4 active
bytes in the output. The probability of this event is p4,4, thus the expected
number of remaining pairs is p4,4 × 2n−33.0201. p4,4 is computed based on
Property 1 in Section 2.

4. For each of the 32-bit guesses of step 3, guess 32-bit values of K2,row(3),
and for each guess partially encrypt all p4,4 × 2n−33.0201 pairs through σ,
γ and πo. Keep the pairs that result in 16 active bytes in the output. The
probability of this event is p4

1,4, thus the expected number of remaining pairs
is p4,4 × p4

1,4 × 2n−33.0201.
5. Initialize 232 counters with the initial value of 0 for the 32-bit possible values

of Keq
7,row(3).

6. In this step, we use a well-known property of invertible S-boxes: Given an
input and an output differences of the γ operation, there is on average one
pair of actual values that satisfies these differences. Using this property,
in the following way, will reduce the complexity of the attack. Based on
Property 2 of Crypton, we know if in the final round, the equivalent round
structure is used, then for any ciphertext pair with a difference ∆C, we



have ∆x
σeq
7,row(i) = ∆Ccol(i+2 mod 4), i = 0, 1, 2, 3. Thus for each pair, we

know the output difference of γ7. Also ∆xτ6,row(3) takes 4 × 255 possible
differences (note that these are the differences which are generated from
passing a column with 1 active byte through π in round 6). Thus for each of
these 4×255 input/output difference pairs of γ7 we obtain on average 1 pair
of (xγ7,row(3), x

′γ
7,row(3)), and since the corresponding (xσeq7,row(3), x

′σeq
7,row(3)) is

known from the ciphertext pair, we immediately obtain 4 × 255 values for
Keq

7,row(3). Increase the counter of each of these 1020 values by 1.
7. The counter with the minimum number determines the correct key with high

probability.

4.3 Analysis of the attack

Here, pwk is the probability that a ciphertext pair (C,C ′) with the difference
∆C = C ⊕C ′, after partial decryption with a wrong key guess Keq

7,row(3) reach a
difference which has only one active byte in the output of π−1 in round 6. This
probability which depends only on ∆C and the properties of π is computed as
below:

pwk = 2−96×2554/(2564−1)
p∆C

× p4,1 + 4×2−104×2553/(2563−1)
p∆C

× p3,1 = 2−24.0055

For each 64-bit value of the guessed subkeys of the first 2 rounds, N ′ , p4,4 ×
p4
1,4 × 2n−33.0201 ≈ 2n−33.32 pairs are tried in step 6. Hence, it is expected that

the counter of each wrong key has a value of N ′ × pwk = N ′ × 2−24.0055.
On the other hand, as discussed in Section 3, the probability that the correct
key meets the criterion is as below:

pck = q×p×r
p∆C

= p54,1
2−96.0001 = 2−24.2629

So the condition of AIDC that is pck < pwk holds, and the expected value for the
correct key counter is N ′ × pck = N ′ × 2−24.2629. The attack has a probabilistic
nature which urges us to compute its success probability. In the following, we
try to find a relation between the success probability and the value of N ′ which
is a multiple of required plaintext pairs.

The value of the correct key counter (nckc) follows a binomial distribution of
parameters (N ′, pck), while the value of each wrong key counter (nwkc) follows
a binomial distribution of parameters (N ′, pwk). Since N ′ is expected to be very
big, we can approximate the distribution of nckc as a Gaussian distribution
of parameters (pck, N ′pck(1 − pck)), and nwkc as a Gaussian distribution with
parameters (pwk, N ′pwk(1−pwk)). Based on this approximation, the probability
that nwkc be greater than nckc is computed as below:

r , pr { nckc < nwkc } = pr { nckc − nwkc < 0 } =∫ 0

−∞
1√

2π[N ′pck(1−pck)+N ′pwk(1−pwk)]
exp( −(x−(N ′pck−N ′pwk))2

2N ′[pck(1−pck)+pwk(1−pwk)] )dx

=
∫ T
−∞

1√
2π
exp(−x

2

2 )dx = ϕ(T )



where T = N ′(pwk−pck)√
N ′pck(1−pck)+N ′pwk(1−pwk)

and ϕ(·) is the cumulative function of a

Gaussian random variable. Since we have 296−1 wrong keys, the probability that
the correct key counter has the minimum value, which is the success probability,
is r2

96−1. With N ′ = 236.2 the success probability gets very close to 1. So n
is obtained equal to log2N

′ + 33.32 = 69.52, and consequently the number of
required plaintext will be 2n+32 = 2101.52.

The time complexity of step 2 is about 2n+32 = 2101.52 encryptions and the
same number of memory accesses for arranging the hash table. In step 3, about
1
4 ×

1
6 × 232 × 2n−33.02 = 263.915 encryptions are performed. Step 4 performs

about 1
4 ×

1
6 × 264× p4,4× 2n−33.02 = 295.89 encryptions. The time complexity of

step 5 is negligible. Step 6 requires 4× 255× 264×N ′ ≈ 2110.2 memory accesses,
which is the dominant part of the attack’s time complexity.

5 A Special Class of Almost-Impossible Differentials

In this section we discuss a special class of almost-impossible differentials in
which the distinguisher is constructed from an impossible differential. Then we
compare the data and time complexity of the two attacks when they are applied
to the same number of rounds of a block cipher. The general model of the
impossible differential attack and its corresponding almost-differential attack
are represented in Figure 4. We first introduce the parameters of the models.

Let E = Ef ◦E1◦E0◦Ei be the target cipher. Suppose we have already found

an impossible differential for E1 ◦ E0, i.e., ∆xI
E1◦E09 ∆xO. Ei and Ef are the

initial and final rounds added around the impossible differential, and we want
to recover some of their subkey bits. The parameters and properties involved in
the model are defined as below:

• E0 and E1 are the two deterministic differentials that contradict in the mid-
dle with probability 1.
• N is the number of plaintexts with the difference ∆P .
• p∆C is the probability that a plaintext pair with the difference ∆P results in

the difference∆C for the ciphertext pair. Supposing that E is an ideal cipher,
p∆C is independent of ∆P and easily calculated from ∆C. This parameter
is the same for the two attacks.
• pi is the probability that a plaintext pair (P, P ′) with the difference P⊕P ′ =
∆P after passing through Ei results in the difference ∆xI .
• pf is the probability that a ciphertext pair (C,C ′) with the difference C ⊕
C ′ = ∆C after passing through E−1

f results in the difference ∆xO.
• ki and kf are the target subkeys of the initial and final rounds in the impos-

sible differential attack, respectively; the size of these two subkey spaces is
denoted by |ki| nad |kf |, respectively.

The almost-impossible differential distinguisher is constructed by pushing
parts of the additional rounds into the impossible differential. Here, without loss
of generality, we embed the initial rounds into the distinguisher. This way, the



number of rounds is increased, and the size of target subkeys is reduced from
|ki|.|kf | to |kf |.

The parameters of the corresponding almost-impossible differential are listed
below:

• pwk is the probability that a ciphertext pair with the difference ∆C after
partial decryption through E−1

f with a wrong subkey meets the difference
∆xO. This probability is equal to pf

• pck is the probability that a ciphertext pair with the difference ∆C after
partial decryption through E−1

f with the correct subkey meets the difference
∆xO. This probability will be calculated later.

• p∆xO is the probability that an intermediate pair with the difference ∆xI
after partial encryption through E1 ◦E0 meets the difference ∆xO. To com-
pute this probability, we assume that E1◦E0 acts like a random permutation
when the input difference is not ∆xI .
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Fig. 4. Constructing almost-impossible differential cryptanalysis from impossible dif-
ferential cryptanalysis

The condition for ∆P E1◦E0◦Ei−−−−−−→ ∆xO to be a distinguisher is that pwk and
pck must not be equal to each other. When a wrong key is used through E−1

f



the relation between plaintexts and ciphertexts is intercepted, so pwk is easily
computed just by considering the structure of E−1

f . For computing pck, we should
compute the fraction of proper pairs that pass from ∆xO to the total number
of proper pairs. Based on the parameters defined in the model, the number of
proper pairs is N ×p∆C . The number of proper pairs that pass from ∆xO in the
output of E1 is computed as below:

pck = pr{∆C
E−1
f−−−→
kf,c

∆xO} = N×pr{∆P
E1◦E0◦Ei−−−−−−→∆xO

Ef−−→∆C}

N×pr{∆P
E−→∆C}

By conditioning whether the intermediate difference in the output of Ei is ∆xI
or not we have:

pr{∆P→∆xO→∆C|∆P→∆xI}×pr{∆P→∆xI}+pr{∆P→∆xO→∆C|∆P→∆xI}×pr{∆P→∆xI}
p∆C

From the model it is clear that pr{∆P → ∆xO → ∆C|∆P → ∆xI} = 0, and
thus the relation is simplified to:

= pr{∆xI→∆xO→∆C|∆P→∆xI}×(1−pi)
p∆C

= pr{∆xI→∆xO→∆C}×(1−pi)
p∆C

=
pr{∆xI→∆xO}·pr{∆xO→∆C}·(1−pi)

p∆C
=

p∆xO
·r·(1−pi)
p∆C

But pr{∆xI → ∆xO → ∆C} Can be obtained from another perspective as:

pr{∆xI
E1◦E0◦Ei−−−−−−→ ∆xO

Ef−−→ ∆C} = pr{∆xI
Ef◦E1◦E0◦Ei−−−−−−−−−→ ∆C

E−1
f−−−→ ∆xO} =

pr{∆xI
E−→ ∆C} · pr{∆C

E−1
f−−−→ ∆xO} = p∆C · pwk

By replacing r · p∆xO = p∆C · pwk into pck we get:

pck = r·p∆xO ·(1−pi)
p∆C

= (1− pi) · pwk = (1− pi) · pf

Thus pck < pwk and this special class is always a distinguisher. Note that for
pi = 1 we have pck = 0 and the almost impossible differential is transformed
into impossible differential.

In [8], based on the same idea, an attack which is called improbable differential
cryptanalysis has been applied to 13 rounds of CLEFIA-128.

5.1 On the strength and complexity of the special class of AIDC

In this section, we compare the complexity of the IDC and its corresponding
AIDC when they are applied to the same number of rounds of a block cipher
(see Figure 4). Then we discuss the conditions where AIDC can improve the
complexity of its IDC, or even it can break the more number of rounds than its
corresponding IDC.



Complexity of IDC. Based on the parameters of the IDC in Figure 4, the
probability that a wrong joint subkey ki|kf be eliminated with one of the NIDC
proper pairs is pi.pf . Thus the number of the wrong subkeys remaining at the
end of the impossible differential attack is ε = |ki| × |kf | × (1 − pi.pf )NIDC ≈
|ki| · |kf | × e−pipfNIDC . For the sake of simplicity let us take ε = 1, thus:

NIDC = Ln(|ki|.|kf |)
pipf

The time complexity depends on whether the attacker can split the target sub-
keys into smaller parts and check partial tests on them or not. However, since it
is also the case for the corresponding AIDC, let us do not consider it for both the
attacks. But, as we will see after obtaining the result of this section, for a more
efficient AIDC attack we should embed the parts of the additional rounds which
offer us a bigger probability. So we assume that pi > pf . The time complexity for
the filtration in the final rounds is 2×NIDC×|kf | partial decryptions, that offer
NIDC × pf pairs for further analysis in the plaintext side. The time complexity
for the initial rounds is 2× |kf | × |ki| × pf ×NIDC (Note that in some cases we
can reduce this complexity using some additional memory and precomputation).

Complexity of AIDC. Let us follow and use the results of the procedure
we took for the AIDC on Crypton. The data complexity, which is used based
on this method, will be very close to the data complexity obtained from the
well-known threshold-using method. We previously obtained that:

r , pr { nckc < nwkc } = ϕ(T ) = ϕ( NAIDC(pwk−pck)√
NAIDCpck(1−pck)+NAIDCpwk(1−pwk)

)

and a value about 8 for T will make the success probability close to 1. So the
number of required proper pairs is computed as below:

T =
√

(NAIDC).(pwk−pck)√
pck(1−pck)+pwk(1−pwk)

≈ 8

Replacing pwk = pf and pck = (1− pi)pf yields:

NAIDC = 82 · 2pf−2p2f−pi.pf+2pi.p
2
f−p

2
i .p

2
f

p2i .p
2
f

≈ 27

p2i .pf

The time complexity is about 2×NAIDC × |kf | partial decryptions.

Discussion: The number of proper pairs required for AIDC is about 1
pi

times larger than the required proper pairs for the corresponding IDC. Since the
two attacks use the same structures of plaintexts and have the same p∆C , this
relation holds for their data complexities (DC), i.e.:

NAIDC ≈ 1
pi
·NIDC =⇒ DCAIDC ≈ 1

pi
·DCIDC

Thus, in order for the AIDC to have advantage over its corresponding IDC, the
time complexity of the IDC (denoted by TCIDC) must be larger than its data
complexity (DCIDC), and furthermore AIDC must be able to reduce TCIDC .



TCIDC = 2NIDC |kf |+ 2NIDC |kf ||ki|pf > TCAIDC = 2NAIDC |kf |

By replacing NAIDC = 1
pi
·NIDC , we get:

1 + |ki| · pf > 1
pi

Hence, the AIDC can reduce the complexity of its corresponding IDC (and even
can be applied to more rounds of a block cipher) if:

1. The data complexity of the IDC is larger than its time complexity, and
2. The space of subkey space which is pushed into the distinguisher is large

enough to satisfy the relation 1 + |ki| · pf > 1
pi

.

Depending on the structure of a cipher, a lot of techniques, including the early
abort, key schedule considerations, precomputation and hash tables, and ... may
be used to decrease the time complexity of the impossible differential attack.
Therefore the second criterion is not strict. In practice we should compare the
time complexity of the two attacks after application of these techniques.

6 Conclusion

In this paper, first we introduced the notion of almost-impossible differential
cryptanalysis. This attack uses differentials which are less probable than a ran-
dom permutation. Constructing the distinguisher is very similar to the miss in
the middle approach used in impossible differential attack, and the key-recovery
step uses counters like in the well-known differential attack. As an example of
AIDC, an attack on six rounds of Crypton with a success rate very close to 1
was proposed. The data and time complexity of the attack are 2101.52 chosen
plaintexts and 2110.2 memory accesses, respectively. Finally we discussed a spe-
cial class of AIDC in which the distinguisher is constructed from pushing some
parts of the additional rounds around an impossible differential into the distin-
guisher. This way the data complexity is increased but the time complexity may
decreased.

In this work, the model presented for AIDC considers cases where one of the
two underlying differentials in the distinguisher are deterministic and the other
is probabilistic. As a future work, the case that both of this differentials are
probabilistic may be considered.
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