
Loiss: A Byte-Oriented Stream Cipher ⋆

Dengguo Feng, Xiutao Feng, Wentao Zhang, Xiubin Fan and Chuankun Wu

State Key Laboratory of Information Security, Institute of Software,
Chinese Academy of Sciences, Beijing, 100190, China.

{feng, fengxt, zhangwt, fxb, ckwu}@is.iscas.ac.cn

Abstract. This paper presents a byte-oriented stream cipher – Loiss,
which takes a 128-bit initial key and a 128-bit initial vector as inputs, and
outputs a key stream of bytes. The algorithm is based on a linear feedback
shift register, and uses a structure called BOMM in the filter generator,
which has good property on resisting against algebraic attacks, linear
distinguishing attacks and fast correlation attacks. In order for BOMM
to be balanced, the S-boxes in BOMM must be orthomorphic permuta-
tions. To further improve the capability in resisting against those attacks,
the S-boxes in BOMM must also possess some good cryptographic prop-
erties, for example, high algebraic immunity, high nonlinearity, and so
on. However current researches on orthomorphic permutations pay little
attention on their cryptographic properties, and we believe that Loiss
not only enriches applications of orthomorphic permutations in cryp-
tography, but also motivates the research on a variety of cryptographic
properties of orthomorphic permutations.

Keywords: stream ciphers, Loiss, BOMM, orthomorphic permutations

1 Introduction

Stream ciphers are widely used in secure network communications to protect
communication data. A stream cipher algorithm is usually composed of a pseu-
dorandom sequence generator and a plaintext mask function. The pseudorandom
sequence generator first generates key streams under the control of an initial seed
key, and then the plaintext mask function masks plaintexts with the above gen-
erated key streams and obtains the corresponding ciphertexts. Usually the mask
function is the exclusive-OR operation.

Traditional stream cipher algorithms are mostly bit-oriented. With the rapid
development of communication techniques, communication bands become wider,
and requirements on data throughput become higher. The traditional bit-oriented
stream ciphers can hardly be designed to meet the requirements of communi-
cation applications in nowadays, specially in software implementations. For a
more efficient use of modern computer hardware, some word-oriented (8/32-bit

⋆ This work was supported by the Natural Science Foundation of China (Grant No.
60833008 and 60902024)



word) stream ciphers have been proposed, for example, 3GPP the third gener-
ation communication encryption standard SNOW 3G [1], and many algorithms
recommended by Europe eSTREAM project [2].

A common design model of stream ciphers is to use a linear feedback shift
register (LFSR) together with a nonlinear filter generator. The outputs of the
LFSR go to the nonlinear filter generator for further process before the final key
stream is produced. In this work we present a novel byte-oriented stream cipher
– Loiss, which uses the above described model, and takes a 128-bit initial key
and a 128-bit initial vector as inputs, and outputs a key stream of bytes. The
Loiss algorithm has an LFSR, and uses a structure called byte-oriented mixer
with memories (BOMM) as a part of the nonlinear filter generator. BOMM itself
contains some memory units and uses S-boxes as building blocks. The design of
the BOMM component adopts the idea of the stream cipher RC4 [3], and adds
the properties of confusion and accumulation. BOMM has good capability in
resisting against a number of common attacks on stream ciphers, including al-
gebraic attack, linear distinguishing attack, and fast correlation attack. In order
for BOMM to be balanced in the statistical sense, the S-boxes in BOMM must
be orthomorphic permutations. What’s more, to further improve the capability
in resisting against those attacks, the S-boxes in BOMM must also possess some
good cryptographic properties, for example, high algebraic immunity, high non-
linearity, and so on. Unfortunately, little research results about these properties
can be found from public literatures, and researches on orthomorphic permu-
tations have been mainly about their construction and counting [5, 6]. In the
design of Loiss, extensive computing assistance together with some fundamental
theoretical analysis are used. We believe that the Loiss algorithm will not only
enriches applications of orthomorphic permutations in cryptography [7, 8], but
also motivate the research on cryptographic properties of orthomorphic permu-
tations.

The rest of the paper is organized as follows: In section 2, the Loiss algo-
rithm is described in detail, and in section 3, some basic properties of Loiss are
introduced, and in-depth security analysis is given in section 4, and finally basic
analysis on software and hardware implementation cost is given in section 5.

2 Description of Loiss

As stated above, the Loiss algorithm is a byte-oriented stream cipher, which
generates a sequence of bytes (the key stream), one byte at a time. The execution
of the Loiss is under the control of a 128-bit initial key and a 128-bit initial vector.

Loiss is logically composed of three parts: LFSR, the nonlinear function F
and BOMM, see Figure 1.

2.1 The LFSR

Underlying finite field Let F2 be the binary field with elements 0 and 1 and
F2[x] be the polynomial ring over F2. The field F28 with 28 elements is defined



Fig. 1. The structure of Loiss

by a primitive polynomial π(x) = x8 + x7 + x5 + x3 + 1 over F2 as the quotient
F2[x]/(π(x)). Let α be a root of the polynomial π(x) in F28 , i.e., π(α) = 0. Then
1, α, α2, · · · , α7 form a basis of F28 and any element x in F28 can be uniquely
written as

x = x0 + x1α+ · · ·+ x7α
7,

where xi ∈ F2, 0 ≤ i ≤ 7. Further the element x is represented by an 8-bit string
or an 8-bit integer according to the following bijection mappings from F28 to the
set { 0, 1 }8 or { 0, 1, 2, · · · , 28 − 1 }:

x =
7∑

i=0

xiα
i 7→ x7 ∥ x6 ∥ · · · ∥ x0

or

x =

7∑
i=0

xiα
i 7→

7∑
i=0

xi2
i,

where ∥ denotes the concatenation of two bit strings. In this sense any element
in F28 can be represented by an 8-bit string or an integer between 0 and 255.

Definition of the LFSR The LFSR in the Loiss algorithm is defined over the
field F28 and and contains 32 byte registers, denote them as si, where 0 ≤ i ≤ 31.
The characteristic polynomial f(x) of LFSR is defined as below:

f(x) = x32 + x29 + αx24 + α−1x17 + x15 + x11 + αx5 + x2 + α−1. (1)

Let (s
(t)
0 , s

(t)
1 , s

(t)
2 , · · · , s(t)31 ) be the state of LFSR at time t (t ≥ 0). Then the

state (s
(t+1)
0 , s

(t+1)
1 , s

(t+1)
2 , · · · , s(t+1)

31 ) at time t+ 1 satisfies

s
(t+1)
31 = s

(t)
29 ⊕ αs

(t)
24 ⊕ α−1s

(t)
17 ⊕ s

(t)
15 ⊕ s

(t)
11 ⊕ αs

(t)
5 ⊕ s

(t)
2 ⊕ α−1s

(t)
0 ,

s
(t+1)
i = s

(t)
i+1, i = 0, 1, 2, · · · , 30.



2.2 The nonlinear function F

The nonlinear function F (the dotted rectangle in figure 1) is a compressing
function from 32 bits to 8 bits, which contains a 32-bit memory unit R. The
function F takes the values of the registers s31, s26, s20, s7 of LFSR as inputs,
and outputs a byte w, see Figure 2.

Fig. 2. The nonlinear function F

Let s
(t)
31 , s

(t)
26 , s

(t)
20 and s

(t)
7 be the values of the registers s31, s26, s20 and s7

respectively at time t, and w be the output of F . Denote by R(t) and R(t+1) the
values of the memory unit R at time t and t+ 1 respectively. Then we have

w = T (R(t)),

X = s
(t)
31 ∥ s

(t)
26 ∥ s

(t)
20 ∥ s

(t)
7 ,

R(t+1) = θ(γ(X ⊕R(t))),

where T (·) is a truncation function which truncates the leftmost 8 bits from R(t)

as output; γ is obtained by paralleling 4 S-boxes S1 of size 8× 8, that is,

γ(x1 ∥ x2 ∥ x3 ∥ x4) = S1(x1) ∥ S1(x2) ∥ S1(x3) ∥ S1(x4),

where xi is a byte, 0 ≤ i ≤ 3 and S1 is defined in Table 4 (see appendix A); θ is
a linear transformation on 32-bit strings, and is the same as the one used in the
block cipher SMS4 [8], which is defined as

θ(x) = x⊕ (x ≪ 2)⊕ (x ≪ 10)⊕ (x ≪ 18)⊕ (x ≪ 24), (2)

where ≪ denotes the left cyclic shift on 32-bit strings.

2.3 The BOMM structure

BOMM is a transformation from 8 bits to 8 bits, and contains 16 byte memory
units, denote them as yi, 0 ≤ i ≤ 15, see Figure 3.

Let w and v be the input and the output of BOMM respectively. Denote

by y
(t)
i and y

(t+1)
i be the values of the memory units yi at time t and t + 1



Fig. 3. The structure of BOMM

respectively, where i = 0, 1, · · · , 15. Then BOMM works as follows:

h = w ≫ 4,

l = w mod 16,

v = y
(t)
h ⊕ w,

y
(t+1)
l = y

(t)
l ⊕ S2(w),

y
(t+1)
h =

{
y
(t)
h ⊕ S2(y

(t+1)
l ), if h ̸= l,

y
(t+1)
l ⊕ S2(y

(t+1)
l ), if h = l,

y
(t+1)
i = y

(t)
i , for i = 0, 1, · · · , 15 and i ̸= h, l,

where ≫ denotes the right shift operator, and S2 is an S-box of size 8 × 8, see
Table 5 in appendix A.

2.4 Initialization of Loiss

The initialization process of Loiss can be divided into two stages:
In the first stage, it loads a 128-bit initial key and a 128-bit initial vector into

the memory units of LFSR and BOMM as well, and then set the initial value of
the 32-bit memory unit R of F to be zero, i.e., R(0) = 0.

Set

IK = IK0 ∥ IK1 ∥ · · · ∥ IK15,

IV = IV0 ∥ IV1 ∥ · · · ∥ IV15,

where both IKi and IVi are bytes, 0 ≤ i ≤ 15.



Let the initial states of LFSR and BOMM be (s
(0)
0 , s

(0)
1 , · · · , s(0)31 ) and

(y
(0)
0 , y

(0)
1 , · · · , y(0)15 ) respectively. Then for 0 ≤ i ≤ 15, we have

s
(0)
i = IKi,

s
(0)
i+16 = IKi ⊕ IVi,

y
(0)
i = IVi.

In the second stage, Loiss runs 64 times and the output of BOMM takes part
in the feedback calculation of LFSR, see Figure 4.

Fig. 4. The initialization of Loiss

2.5 Key stream generation

After the initialization, Loiss starts to produce key stream. Loiss produces one
byte of key stream when it runs one time. Let zt be the output of Loiss at time
t. Then

z(t) = s
(t)
0 ⊕ v(t), (3)

where s
(t)
0 and v(t) are the value of the register s0 of LFSR and the output of

BOMM respectively at time t.

3 Some basic properties of the components in Loiss

3.1 Properties of LFSR

The LFSR of the Loiss algorithm is defined over the finite field F28 , and its
characteristic polynomial f(x) (see equation (1) for definition) is a primitive
polynomial over F28 of degree 32. Thus non-zero sequences over F28 generated
by f(x) are m-sequences, and their periods are 2256 − 1.

Let a = (a0, a1, · · · , at, · · · ) be a non-zero sequence over F28 generated by
f(x). Note that at ∈ F28 can be expressed as follows:

at = at,7α
7 + at,6α

6 + · · ·+ st,1α+ at,0



for t ≥ 0, where 1, α, · · · , α7 is a basis of the finite field F28 . We call the sequence
ai = (a0,i, a1,i, · · · , at,i, · · · ) (0 ≤ i ≤ 7) derived from a as the i-th coordinate
sequence. Then it is known [9] that each coordinate sequence of sequences gen-
erated by f(x) is an m-sequence over the binary field F2, and its characteristic
polynomial is a primitive polynomial over F2 of degree 256. And it is easy to
verify that the characteristic polynomial of each coordinate sequence of non-zero
sequences generated by f(x) has a weight (the number of non-zero coefficients)
of 131.

In addition, when choosing the polynomial f(x), for a better resistance
against linear distinguishing attack and fast correlation attack [10, 11], we avoid
as much as possible that f(x) has a multiple with low degree and low weight
whose all non-zero coefficients are one.

3.2 Properties of F

The nonlinear function F contains a 32-bit memory unit R and uses S-boxes
as building blocks. F itself has good resistance against linear distinguishing
attack and fast correlation attack. Simple computation reveals that the following
properties about F hold.

Property 1. The algebraic degree, nonlinearity, differential uniformity and al-
gebraic immunity of the S-box S1 are 7, 112, 4 and 2 respectively.

Property 2. When we view θ as a transformation over the vector space (F28)
4,

its linear branch number is equal to 5.

The bias of a linear approximation true with probability p is defined as
ε = p− 1/2. Then the following two properties are also easy to prove.

Property 3. The bias of arbitrary linear approximations of 2-round F is zero.

Property 4. The number of active S-boxes of arbitrary linear approximations
of 3-round F is at least 5.

3.3 Properties of BOMM

The S-box S2.

Property 5. The algebraic degree, nonlinearity, differential uniformity and al-
gebraic immunity of the S-box S2 are 5, 112, 16 and 2 respectively.

Definition 1. Let p(x) be a mapping over the finite field F2n with 2n elements,
where n is a positive integer. Then p(x) is called an orthomorphic permutation
if both p(x) and p(x)⊕ x are permutations over F2n .

Property 6. The S-box S2 is an orthomorphic permutation over F28 .



The balance of BOMM. Let two random variables X and Y be independent
and uniformly distributed, then for simplicity of description, X and Y are called
IUD random variables.

Definition 2. Suppose that the variables y
(t)
0 , y

(t)
1 , · · · , y(t)15 and the input w of

BOMM are pairwise IUD random variables over F28 at time t. Denote by v the
output of BOMM at time t. Then BOMM is called to be balanced if for arbitrary
element a ∈ F28 and 0 ≤ i ≤ 15, we have

Pr (v = a) = Pr
(
y
(t+1)
i = a

)
=

1

256
.

Property 7. BOMM is balanced if and only if the S-box S2 is an orthomorphic
permutation over F28 .

Proof. We first prove the sufficiency. Let h = w ≫ 4 and l = w mod 16. Then
both h and l are IUD variables over the set Z24 = { 0, 1, 2, · · · , 15 }. Since v =

y
(t)
h ⊕w, and y

(t)
h and w are IUD variables, it is easy to see that Pr (v = a) = 1

256
for arbitrary given a ∈ F28 . Now we consider the updates of the memory units
yk. Note that only two units yl and yh are updated at time t, thus we only need
to prove that

Pr
(
y
(t+1)
l = a

)
= Pr

(
y
(t+1)
h = a

)
=

1

256
for arbitrary given a ∈ F28 . Below we consider two cases.

1. h ̸= l.

Since y
(t+1)
l = y

(t)
l ⊕ S2(w), note that y

(t)
l and w are independent and S2 is

a permutation, thus we have

Pr
(
y
(t+1)
l = a | h ̸= l

)
= Pr

(
y
(t)
l ⊕ S2(w) = a

)
=

∑
b∈F28

Pr
(
y
(t)
l = b

)
Pr (S2(w) = a⊕ b)

= 256 · 1

256
· 1

256
=

1

256
.

Similarly, since y
(t+1)
h = y

(t)
h ⊕ S2(y

(t+1)
l ), note that y

(t)
h and y

(t+1)
l are also

independent, we can obtain Pr
(
y
(t+1)
h = a

)
= 1

256 in the same way.

2. h = l.
Only one unit yh = yl is updated in this case. Note that

y
(t+1)
h = y

(t)
h ⊕ S2(w)⊕ S2(y

(t)
h ⊕ S2(w))

and S2 is an orthomorphic permutation, thus we have

Pr
(
y
(t+1)
h = a | h = l

)
= Pr

(
y
(t)
h ⊕ S2(w)⊕ S2(y

(t)
h ⊕ S2(w)) = a

)
=

∑
b∈F28

Pr
(
y
(t)
h ⊕ S2(w) = b

)
Pr (S2(b)⊕ b = a)

= 256 · 1

256
· 1

256
=

1

256
.



Second we prove the necessity. At above we have proven that

Pr
(
y
(t+1)
h = a | h ̸= l

)
=

1

256
.

By the balance property of BOMM, we have Pr
(
y
(t+1)
h = a | h = l

)
= 1

256 . Since

Pr
(
y
(t+1)
h = a | h = l

)
= Pr

(
y
(t)
h ⊕ S2(w)⊕ S2(y

(t)
h ⊕ S2(w)) = a

)
=

∑
b∈F28

Pr
(
y
(t)
h ⊕ S2(w) = b

)
Pr (S2(b)⊕ b = a)

=
1

256

∑
b∈F28

Pr (S2(b)⊕ b = a) ,

thus we have
∑

b∈F28
Pr (S2(b)⊕ b = a) = 1 for any a ∈ F28 . It follows that the

equation S2(x)⊕x = a has exactly one solution for any a ∈ F28 , that is, S2(x)⊕x
is a permutation. So S2 is an orthomorphic permutation. �

4 Security analysis

4.1 Guess and determine attack

The guess and determine attack is a known plaintext attack for state recovery [12,
13]. Its main idea is that: an attacker first guesses the value of a portion of inner
states of the target algorithm, then it takes a little cost to deduce all the rest of
the inner states making use of the guessed portion of the inner states and a few
known key stream bits.

As for Loiss, below we construct a guess and determine attack.

Definition 3. Let w(t+i) be the outputs of the nonlinear function F at the seven
successive times starting from time t, 0 ≤ i ≤ 6. Then when the following con-
ditions are met, we call it an event A:

1. h(t) = l(t), where h(t) = w(t) ≫ 4 and l(t) = w(t) mod 16;
2. w(t) = w(t+1) = · · · = w(t+6).

When the event A occurs at time t, the attacker guesses the values of h(t),

s
(t)
0 , s

(t)
12 , s

(t)
14 , s

(t)
15 , s

(t)
25 and the values of the rightmost three bytes of each R(t+i),

0 ≤ i ≤ 5, then recovers the values of all the rest inner states of LFSR and F .
After all inner states of LFSR and F are recovered, the attacker runs Loiss for
about another 128 (= 27) times and then can recover the values of all memory
units of BOMM. Since the probability that the event A occurs is 2−52 and the
attacker has to guess 188-bit inner states in the guessing stage, so the time
complexity of the above attack method is O(2247) and its data complexity is
O(252).



4.2 Linear distinguishing attack

The linear distinguishing attack is a common attack on stream ciphers [14, 15].
Its basic idea is that: an attacker first constructs a linear distinguisher by means
of linear approximations of the nonlinear part of an algorithm, and the linear
distinguisher only depends on the key stream. When the bias of constructed
linear distinguisher is significant, the attacker can distinguish key streams gen-
erated by the algorithm from a true random bit stream by means of the above
distinguisher.

Now we consider the linear distinguishing attack on Loiss. The nonlinear
part of Loiss includes F and BOMM. First we consider linear approximations
of F . Assume that the inputs of F and the value of the memory unit R are
IDU random variables within a short successive time interval. Since the linear
branch number of the transformation θ is 5, thus the bias of arbitrary linear
approximations of 2-round F is zero. Below we construct a linear approximation
of 3-round F :

a · (w(t) ⊕ s
(t)
31 )⊕ c ·X(t+1) ⊕ b · w(t+2) = 0, (4)

where a and b are 8-bit strings, c is a 32-bit string, and “·” denotes the inner
product of bit strings. The rationale of the linear approximation (4) is demon-
strated in Figure 5.

Fig. 5. Linear approximations of 3-round F

Going through all possible values of a, b and c, we can obtain that the max-
imum bias of the linear approximation (4) is 2−16.4.

Second we consider linear approximations of BOMM. Below we only consider
the inputs w(t), w(t+2) and the outputs v(t), v(t+2) of BOMM at times t and t+2.

Definition 4. For the inputs w(t), w(t+2) of BOMM at times t and t + 2, if
the equalities h(t) = l(t) = h(t+2) = h hold, where h(t) = w(t) ≫ 4, l(t) =
w(t) mod 16, h(t+2) = w(t+2) ≫ 4, and the memory unit yh is not updated at
time t+ 1, then we call it an event B.

By definition, the probability that the event B occurs is Pr (B) = 2−8
(
15
16

)2
.

When the event B occurs, we have

v(t) ⊕ v(t+2) ⊕ w(t) ⊕ w(t+2) = S2(w
(t))⊕ S2(v

(t) ⊕ w(t) ⊕ S2(w
(t))). (5)



And we can construct the following linear approximation of equation (5):

a · w(t) ⊕ b · w(t+2) = d · v(t) ⊕ e · v(t+2), (6)

where a, b, d and e are 8-bit strings.
Going through all possible values of a, b, d and e, we have that the maximum

bias of the linear approximation (6) is 2−15.2.
Combining the linear approximations (4) and (6), and going through all

possible values of a, b, c, d and e, by the Piling-up Lemma [16] we obtain that the
maximum bias of linear approximations of the nonlinear part of Loiss is 2−30.6,
at the same time the bias of linear approximations of both F and BOMM reach
the maximum possible value, that is, 2−16.4 and 2−15.2 respectively.

Suppose that an attacker has got a trinomial multiple of the characteristic
polynomial f(x) of LFSR with low degree whose all non-zero coefficients are one.
Then by means of the above linear approximations, the attacker can construct a
only key stream linear distinguisher with the maximum bias, whose bias is about
23−1(2−30.6)3 = 2−89.8. By means of this linear distinguisher the attacker needs
about 2180-bit key stream to distinguish key streams generated by Loiss from
a true random bit stream [16]. In fact, it is yet an open problem whether the
attacker can obtain such a trinomial multiple with low degree whose all non-zero
coefficients are one, which might not exist. Thus the above data complexity is
in an optimistic case. This shows that Loiss has a good resistance against linear
distinguishing attacks.

4.3 Algebraic attacks

The algebraic attack is a powerful attack to cryptosystems [17–19]. Its main idea
is that: a cryptographic system can be viewed as an algebraic equation system,
and then the problem about breaking the cryptographic system can be converted
into the problem of solving the corresponding algebraic equation system.

As for Loiss, we will consider how to establish such an algebraic equation
system and give a simple estimation on the time complexity of solving it.

First we consider F whose nonlinear part is only the S-box S1. When F
runs one time, the S-box S1 will be called for four times. Since the algebraic
immunity of S1 is 2, and at most 39 linearly independent quadratic equations
on the inputs and outputs of S1 can be established, thus at most 39 × 4 = 156
linearly independent quadratic equations can be established when F runs for
one time.

Second we consider BOMM. Here we introduce choosing functions hi(w) and
li(w), where hi(w) and li(w) are boolean functions from F28 to F2 and defined
as follows:

hi(w) =

{
1, if w ≫ 4 = i,
0, otherwise,

li(w) =

{
1, if w mod 16 = i,
0, otherwise,



where 0 ≤ i ≤ 15, and the intermediate variables yl(t), yh(t), Sl(t) and Sh(t)

satifying

yl(t) = y
(t)
0 · l0(w(t))⊕ y

(t)
1 · l1(w(t))⊕ · · · ⊕ y

(t)
15 · l15(w(t)), (7)

yh(t) = y
(t)
0 · h0(w

(t))⊕ y
(t)
1 · h1(w

(t))⊕ · · · ⊕ y
(t)
15 · h15(w

(t)), (8)

Sl(t) = S2(w
(t)), (9)

Sh(t) = S2(yl
(t) ⊕ Sl(t)). (10)

Then we can establish the update function of BOMM as follows:

y
(t+1)
i = y

(t)
i ⊕ Sl(t)li(w

(t))⊕ Sh(t)hi(w
(t)), 0 ≤ i ≤ 15. (11)

Note that the boolean functions hi(w) and li(w) have an algebraic degree of 4,
thus the algebraic degree of equations (7), (8) and (11) are 5. Therefore when
BOMM updates for one time, we can obtain 144 equations of degree 5. In addi-
tion, Note that each time when BOMM is updated, the S-box S2 is invoked for
two times, see equations (9) and (10), since the algebraic immunity of S2 is 2, and
at most 36 linearly independent quadratic equations can be established, thus we
can obtain 72 linearly independent quadratic equations. Finally by the output
equation v(t) = yh(t)⊕w(t) of BOMM, we can obtain 8 linear equations. Totally
during one time update of BOMM we obtain 72 linearly independent quadratic
equations and 144 equations of degree 5, and introduce 152 (= 3 × 8 + 16 × 8)
independent intermediate bit variables.

Assume that the inner states of Loiss at time t are IDU random variables.
Since Loiss has 416 bits of inner states (LFSR:256+F:32+BOMM:128), an at-
tacker needs at least 52 (=416/8) byte of key stream to possibly establish an
over-defined algebraic equation system. Similarly to the above process, we can
establish an entire algebraic equation system for Loiss with 52 key stream bytes,
which contains 9800 variables (including introduced intermediate variables) and
18980 equations. The highest degree of the entire algebraic equation system is
5.

When applying the normal linearization to solve the above algebraic equation
system, the number of linear equations is much less than that of variables because
the linearization process introduces many more intermediate variables. Therefore
the normal linearization method cannot be directly used to solve it. Here we
use the XL method [20] to estimate the time complexity of solving the above
algebraic equation system, and obtain that its time complexity is about 22420.88,
which is much higher than the time complexity of a brute force attack. Therefore
Loiss has good resistance against algebraic attacks.

4.4 Time-memory-and-data attack

The time-memory-and-data attack is a basic method in computer science [21].
Its main idea is that: reduce the cost of space by sacrifice the cost in time, or
vice versa. In analyzing stream ciphers, the data is also taken into consideration.



More precisely, denote by D, T and M respectively the number of data
(plaintext-ciphertext pairs) an attacker can get, the time complexity of the at-
tack, and the size of memory required to perform an attack. Then D, T and M
satisfy TM2D2 = N2 and N > T ≥ D2, where N denote the size of the space of
unknowns that the attack targets to recover. Normally we assume the number
of data got by an attacker reaches the upper bound, that is, T = D2, then we
have TM = N .

With respect to the time-memory-and-data attack, since Loiss contains a
total of 416 bits of unknowns, thus N = 2416. It follows that TM = 2416. This
shows that at least one of T and M is no less than 2208. So Loiss have good
resistance against the time-memory-and-data attack.

5 Evaluations on software and hardware implementations

5.1 On software implementation

Since Loiss’s basic operators are byte-oriented, thus a software implementation
can make it very fast, and the software implementation only needs small memory
and small size of code, and hence the algorithm can be used in resource limited
environments, e.g., in smart cards. Compared to the well-known byte-oriented
block cipher AES [4], the encryption speed of Loiss is almost the same as that of
128-AES (whose keys has a length of 128) in the counter mode. Below we give a
simple performance evaluation on software implementations on a 32-bit common
PC according to the Intel 486 32-bit instruction set, and compare it with that
of SNOW 3G, see Table 1.

Table 1. Performance of software implementation of parts of Loiss (Unit: Cycles)

Algorithm Name LFSR F BOMM Initialization Generate single key

Loiss 13 21 14 3223 48

SNOW 3G 14 31 1508 46

Note: From the above table it’s seen that the speed of generating single key
by Loiss is almost the same as that of SNOW 3G. But since SNOW 3G generates
a 32-bit word one time, thus totally the speed of generating keystream by SNOW
3G is three times faster than the one by Loiss in common length.

5.2 On hardware implementation

There are different approaches in hardware implementation. As an approach of
hardware implementation of Loiss, we give a rough estimation on the size of
electric circuits needed in implementing each part of Loiss, where the number of



gates can further be optimized, see Table 2. In addition, we also give a simple
comparison of the sizes of electric circuits in hardware implementations of both
Loiss and SNOW 3G, see Table 3.

Table 2. Size of electric circuits in hardware implementation of Loiss

Units Num. of units Num. of Gates

8-bit register 48 80× 48 = 3850

32-bit register 1 320× 1 = 320

multiplication by α and α−1 4 10× 4 = 40

S-boxes 6 500× 6 = 3000

8-bit XOR 12 22× 12 = 264

32-bit XOR 5 86× 5 = 430

two-choose-one logic 5 8× 5 = 40

total 7934

Table 3. Comparison of sizes of electric circuits in hardware implementation of Loiss

and SNOW 3G

Loiss SNOW 3G

Size 7934 10908

6 Conclusions

In this paper we present a byte-oriented stream cipher Loiss. The Loiss algorithm
has good performance of software and hardware implementations, and is suitable
for a variety of software and hardware implementation requirements. Loiss has
good properties in resisting against many known attacks, including guess and de-
termine attack, linear distinguishing attack, algebraic attack, time-memory-and-
data attack, and fast correlation attack, and can offer the 128-bit-level security.
In the design of Loiss, an orthomorphic permutation is used which is a necessity
to ensure the balance of the BOMM component, which is expected to motivate
the research on the cryptographic properties of orthomorphic permutations.



Acknowledgement

During the design of Loiss, a large number of graduate students from the State
Key Laboratory of Information Security, Chinese Academy of Sciences, have
made significant contributions. Those students are highly appreciated.

References

1. ETSI/SAGE, SNOW 3G Specification, Specification of the 3GPP Confidential-
ity and Integrity Algorithms UEA2 & UIA2, Document 2, September 2006.

2. eSTREAM, ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org
/stream.

3. R.L. Rivest, The RC4 encryption algorithm, RSA Data Security, Inc., March
1992.

4. FIPS PUB 197, the official AES standard, http://csrc.nist.gov/publications
/fips/fips197/fips-197.pdf.

5. L. Mittenthal, Block substitutions using orthomorphic mappings, Advances in
Applied Mathematics, 16(1), pp.59-71, 1995.

6. S.W Lv, X.B Fan, Z.S Wang, J.L Xu and J. Zhang, Completing mappings and
their appliactions, University of Sciences and Technology of China Press, 2008.

7. S. Vaudenay, On the Lai-Massey scheme, ASIACRYPT’99, LNCS1716, pp.8-19,
1999.

8. Chinese State Bureau of Cryptography Administration, Cryp-
tographic algorithms SMS4 used in wireless LAN products,
http://www.oscca.gov.cn/Doc/6/News 1106.htm.

9. S.W. Golomb and G. Gong, Signal design for good correlation for wireless
communication, cryptography and radar, Cambridge University Press, 2004.

10. K. Zeng and H. Huang, On the linear syndrome method in cryptanalysis, EU-
ROCRYPT’88, pp.469-478, 1990.

11. T. Siegenthaler, Correlation-immunity of nonlinear combining functions for
cryptographic applications, IEEE Transaction on Information Theory, IT-30,
pp.776-780, 1984.

12. C. Canniere, Guess and Determine Attack on SNOW, NESSIE Public Docu-
ment, NES/DOC/KUL/WP5/011/a, 2001.

13. P. Hawkes and G.G. Rose, Guess and Determine Attacks on SNOW, Qualcomm
Australia, SAC 2002, LNCS 2595, pp.37-46, 2002.

14. D. Watanabe, A. Biryukov, C. Canniere, A distinguishing attack of SNOW 2.0
with linear masking method, In M.Matsui and R.Zuccherato eds. Selected Areas
in Cryptography 2003, Lecture Notes in Computer Science 3006, pp.222-233,
Springer-Verlag Berlin Heidelberg 2004.

15. D. Coppersmith, S. Halevi, C. Jutla, Cryptanalysis of stream ciphers with linear
masking, In M.Yung ed. CRYPTO 2002, LNCS 2442, pp.515-532, Springer-
Verlag Berlin Heidelberg 2002.

16. M. Matsui, Linear cryptanalysis of the fast data encipherment algorithm, In:
Advances in Cryptology, EUROCRYPT’93 proceeding, pp.386-397, 1994.

17. N.T. Courtois and W. Meier, Algebraic Attacks on Stream Ciphers with Linear
Feedback, In Advances in Cryptology-EUROCRYPT 2003, LNCS 2656, pp.346-
359, 2003.



18. S. Ronjom, T. Helleseth, Attacking the Filter Generator over GF(2m), in Work-
shop Record of SASC 2007: The State of the Art of Stream Ciphers, eSTREAM
report 2007/011 (2007).

19. W. Meier, E. Pasalic, and C. Carlet, Algebraic attacks and decomposition of
Boolean functions, In Advances in Cryptology-EUROCRYPT2004, LNCS 3027,
pp.474 - 491, 2004.

20. C. Diem, The XL-Algorithm and a Conjecture from Commutative Algebra, In
Pil Joong Lee, editor, Advances in Cryptology-ASIACRYPT2004, LNCS 3329,
pp.323-337, 2004.

21. M.E. Hellman, A cryptanalytic time-memory tradeoff, IEEE Transactions on
Information Theory, vol.26, pp.401-406, 1980.

Appendix A: The S-boxes S1 and S2

For an S-box S of size 8× 8 which can be S1 or S2, let x ∈ F28 and h = x ≫ 4
and l = x mod 16. Then S(x) is the element at the intersection of the h-th row
and the l-th column in Tables 4 or 5. For example, S1(0x3A) = 0xBF.

Note: Data in Table 4 and 5 are expressed in the hexadecimal format.

Table 4. The S-box S1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 55 C2 63 71 3B C8 47 86 9F 3C DA 5B 29 AA FD 77

1 8C C5 94 0C A6 1A 13 00 E3 A8 16 72 40 F9 F8 42

2 44 26 68 96 81 D9 45 3E 10 76 C6 A7 8B 39 43 E1

3 3A B5 56 2A C0 6D B3 05 22 66 BF DC 0B FA 62 48

4 DD 20 11 06 36 C9 C1 CF F6 27 52 BB 69 F5 D4 87

5 7F 84 4C D2 9C 57 A4 BC 4F 9A DF FE D6 8D 7A EB

6 2B 53 D8 5C A1 14 17 FB 23 D5 7D 30 67 73 08 09

7 EE B7 70 3F 61 B2 19 8E 4E E5 4B 93 8F 5D DB A9

8 AD F1 AE 2E CB 0D FC F4 2D 46 6E 1D 97 E8 D1 E9

9 4D 37 A5 75 5E 83 9E AB 82 9D B9 1C E0 CD 49 89

A 01 B6 BD 58 24 A2 5F 38 78 99 15 90 50 B8 95 E4

B D0 91 C7 CE ED 0F B4 6F A0 CC F0 02 4A 79 C3 DE

C A3 EF EA 51 E6 6B 18 EC 1B 2C 80 F7 74 E7 FF 21

D 5A 6A 54 1E 41 31 92 35 C4 33 07 0A BA 7E 0E 34

E 88 B1 98 7C F3 3D 60 6C 7B CA D3 1F 32 65 04 28

F 64 BE 85 9B 2F 59 8A D7 B0 25 AC AF 12 03 E2 F2



Table 5. The S-box S2

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 61 97 FF E9 66 56 F1 F3 54 72 CC 4D 85 52 7A 70

1 D0 2E 4C 58 BE 88 7F 5A 2F 1B 47 AF 9B D5 BF 81

2 C3 4E 86 2D 6A 9C CE 20 2B 53 6D FD 3C BC 33 22

3 F7 59 C9 63 6E 8D DD F2 E3 1A 75 DA 13 1D 68 42

4 A4 3F B7 46 90 12 73 EB FA F6 09 40 A5 E0 B4 B1

5 51 8E 06 34 7D DF 99 6F AA 0B 80 95 25 EA 87 CD

6 DC 0C 43 FB A7 BD 9E FC EE 9F 74 B6 CF EF 16 0F

7 78 D1 92 64 D6 84 48 41 08 60 5D 2A B8 4F E2 69

8 01 C1 31 5F 62 49 B2 93 00 CB 04 18 07 71 17 E4

9 AC 8B B0 7E F8 44 5B AD 98 A0 27 4B 3A B5 F0 83

A F9 14 E7 23 77 D2 10 AE B3 36 30 3B 1C 03 82 38

B 0E 7B 50 A6 1F 7C CA C2 02 2C A9 8A 39 15 F4 D9

C A3 55 32 96 C8 8C C0 05 67 1E EC 19 29 89 F5 21

D 37 BB E1 57 A2 C7 E6 8F AB 91 35 28 D3 D7 79 BA

E A1 6C B9 DE A8 5E FE 6B C5 ED 65 9A 45 C6 C4 9D

F 94 24 0D 0A E5 76 3D E8 26 5C D4 4A D8 11 DB 3E


