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Abstract

Predicate encryption is an important cryptographic primitive that has found wide applica-
tions as it allows for fine-grained key management. In a predicate encryption scheme for a class
P of predicates, the owner of the master secret key can derive a secret key SkP for any predicate
P ∈ P. Similarly, when encrypting plaintext M , the sender can specify an attribute vector ~x for
the ciphertext Ct. Then, key SkP can decrypt all ciphertexts Ct with attribute vector ~x such
that P (~x) = 1.

In this paper, we give fully secure implementations Conjunctions, Disjunctions and k-CNF/DNF
predicates that guarantee the security of the plaintext and of the attribute. Our constructions
for Disjunctions and Conjunctions are linear in the number of variables. Previous fully secure
constructions for Disjunction required time exponential in the number of variables while for
Conjunctions the best previous construction was quadratic in the number of variables.
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1 Introduction and related work

Predicate encryption is an important cryptographic primitive that has been recently studied [2, 4,
5, 7] and that has found wide applications as it allows for fine-grained key management. Roughly
speaking, in a predicate encryption scheme for predicate Q the owner of the master secret key Msk
can derive secret key SkQ, for any predicate Q for a specified class of predicates. In encrypting
plaintext M , the sender can specify an attribute vector ~x and the resulting ciphertext Ct can be
decrypted only by using keys SkQ such that Q(~x) = 1. A predicate encryption scheme thus gives
the owner of the master secret key control on which ciphertexts can be decrypted and this allows
her to delegate the decryption of different types of messages (as specified by the attribute vector)
to different entities. Several constructions for specific predicates have been given, starting from the
equality predicate of [2], to the hidden vector predicate of [4] and to the inner product predicate of
[7]. A construction for the larger class of monotone formulae have been by [5] and then extended to
formulae by [12] (see also [8, 11]). These constructions did not guarantee the security of the attribute
vector ~x. This extra security property is very important for the applications and was guaranteed,
in the selective model, by the constructions for specific predicates of [4, 7]. Following the recent
breakthrough of [15, 9] that gave fully secure implementation of Identity Based Encryption (and
of its hierarchical version), Lewko et al. [8] gave fully secure implementation for the inner product
predicate.

Our results. We concentrate on fully secure implementations of encryption schemes for binary
conjunctions and disjunctions and their applications. For conjunctions we adhere to the standard
terminology of hidden vector encryption (or HVE in short) as introduced by [4]. In a HVE scheme,
the ciphertext attributes are vectors ~x = 〈x1, . . . , x`〉 over alphabet {0, 1}, the keys are vectors
~y = 〈y1, . . . , y`〉 over alphabet {0, 1, ?} and we consider the Match(~x, ~y) predicate defined to be true
if and only if, for all i, yi 6= ? implies xi = yi. We distinguish two security notions, that we call
0-security and 1-security (see Section 2) differing in the type of keys that the adversary can ask
for. Roughly speaking, ξ-security considers adversaries that can ask keys for vectors ~y such that
Match(~x0, ~y) = Match(~x1, ~y) = ξ where ~x0 and ~x1 are the challenge vectors chosen by the adversary.
The notion of 0-security is known in the literature as match revealing security and all previous fully
secure constructions are 0-secure. We give a full secure implementation of HVE for both notions
of security. Our secure implementations of HVE are proved fully secure under non-interactive
constant sized (that is, independent of ` and of the running time of the adversary) assumptions
on bilinear groups of composite order. We stress that our 0-secure construction is more efficient
than previous ones and that our 1-secure construction is the first to be proved 1-secure. We prove
1-security by means of a tight security reduction; that is, the security proof does not depend on
the running time of the adversary. We then show polynomial deterministic reductions to HVE for
any predicate represented by a formula in k-CNF, or by a formula in k-DNF, or by a disjunction.
We prove that our reduction for k-CNF preserves full ξ-security and thus it results in a scheme in
which the key for a formula of m clauses contains exactly m group elements. In addition we prove
that our reductions for k-DNF and disjunctions complements security in the sense that if we apply
our reductions to a ξ-secure scheme for HVE we obtain a (1− ξ)-secure scheme for k-DNF (or for
disjunctions). Furthermore, our reduction for disjunction is linear. Finally, we give a construction
of Hierarchical HVE in which the holder of Sk~y (the key for vector ~y) can create (and give to a
third party) the key for any vector ~w that is obtained by instantiating some of the ? entries of ~y to
0 or 1.
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Proof Strategy. We achieve full security by means of a proof strategy that elaborates on the dual
encryption methodology [15] pointing out, once again, its great applicability to prove full security.
Let us now briefly review the strategy. The first step, to achieve ξ-security, consists in projecting
the public key to a different subspace in such a way to make it independent from the challenge
ciphertext. Then the proof proceeds to show that the secret keys do not help the adversary and,
for this, our strategy forks depending on the value of ξ. For ξ = 0, we do so by proving that, in
the view of the adversary, the valid secret keys are indistinguishable from keys that are random
in the subgroup in which the plaintext is embedded. More precisely, keys continue to be valid in
the subgroup where the public key was projected, and are random in the other subgroups. On the
other hand, for ξ = 1 we show that the secret keys do not help the adversary by proving that, in
the view of the adversary, the valid secret keys are indistinguishable from keys which do not have
a component in the subgroup in which the plaintext is embedded.

Related Work. An implementation of fully secure HVE can be derived from the fully secure con-
struction of inner product of Lewko et al. [8] using the reduction of Katz et al. [7]. We point out
though that the Inner Product construction of [8] has a master key of quadratic size and the key
generation and the encryption algorithm suffer of an extra quadratic slowdown in the time com-
plexity when compared to ours. Also, we notice that [8] only considered 0-security and [7] is in the
selective model. Similar considerations can be made for the recent construction of Inner Product
of [11]. We mention that Katz et al. [7] have presented a reduction of CNF to inner product
that is polynomial (actually, cubic) when applied to 3-CNF formulae. By composing this reduction
with the one from inner product to HVE gives a reduction that can be applied to our HVE im-
plementation. The resulting scheme for 3-CNF still has a quadratic slowdown when compared to
ours. Finally, for disjunctions, we mention that [7] have a construction that is exponential in the
number of variables. In contrast, our 0-secure and 1-secure constructions are linear in the number
of variables.

2 Hidden Vector Encryption and Boolean Satisfaction Encryption

In this section we give formal definitions for Hidden Vector Encryption (HVE) and for Boolean
Satisfaction Problem and their security properties. Following [13], for sake of simplicity we present
predicate-only definitions instead of full-fledged ones (see [7]). Also, for (H)HVE we present our
construction for the binary alphabet, but as outlined in [6], it is possible to modify the construction
for larger alphabets without a penalty in the length of the key or the ciphertext.

Hidden Vector Encryption. Let ~x ∈ {0, 1}` and ~y ∈ {0, 1, ?}` for a given length `. Define the
predicate Match(~x, ~y) = TRUE if and only if for any i ∈ [`], it holds that xi = yi or yi = ?. This
predicate is called Hidden Vector Encryption (HVE) and was introduced in [4]. This predicate has
like very special case Anonymous IBE but it has many other applications. For a full account of the
applications, see [4].

A Hidden Vector Encryption scheme is a tuple of four efficient probabilistic algorithms (Setup,
Encrypt, KeyGen, Test) with the following semantics.

Setup(1λ, 1`): takes as input a security parameter λ and a length parameter `, and outputs the
public parameters Pk and the master secret key Msk.

KeyGen(Msk, ~y): takes as input the master secret key Msk and a vector ~y ∈ {0, 1, ?}`, and
outputs a secret key Sk~y.
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Encrypt(Pk, ~x) takes as input the public parameters Pk and a vector ~x ∈ {0, 1}` and outputs a
ciphertext Ct.

Test(Pk,Ct, Sk~y) takes as input the public parameters Pk, a ciphertext Ct encrypting ~x and a
secret key Sk~y and outputs Match(~x, ~y).

Correctness of HVE. We require that for all pairs (Pk,Msk) ← Setup(1λ, 1`), it holds that for
~x ∈ {0, 1}` and ~y ∈ {0, 1, ?}`, we have that Test(Pk,Encrypt(Pk, ~x), KeyGen(Msk, ~y)) = Match(~x, ~y)
except with probability negligible in λ.

Boolean Satisfaction Encryption. Let B = {Bn}n>0 be a class of Boolean predicates indexed
by the number n of variables. We define the Satisfy predicate as Satisfy(Φ, ~z) = Φ(~z) for ~z ∈ {0, 1}n.

An Encryption scheme for class B is a tuple of four efficient probabilistic algorithms (Setup,
Encrypt, KeyGen, Test) with the following semantics.

Setup(1λ, 1n): takes as input a security parameter λ and the number n of variables, and outputs
the public parameters Pk and the master secret key Msk.

KeyGen(Msk,Φ): takes as input the master secret key Msk and a formula Φ ∈ Bn and outputs
a secret key SkΦ.

Encrypt(Pk, ~z): takes as input the public parameters Pk and a truth assignment ~z for n variables
and outputs a ciphertext Ct.

Test(Pk,Ct, SkΦ): takes as input the public parameters Pk, a ciphertext Ct and a secret key
SkΦ and outputs TRUE iff and only if the ciphertext is an encryption of a truth assignment ~z that
satisfies Φ.

Correctness of Boolean Satisfaction Encryption. We require that for all pairs (Pk,Msk)← Setup(1λ, 1n),
it holds that for any truth assignment ~z for n variables, for any formula Φ ∈ Bn over n variables we
have that the probability that Test(Pk,Encrypt(Pk, ~z),KeyGen(Msk,Φ)) 6= Satisfy(Φ, ~z) is negligible
in λ.

Security definitions for HVE. We give two security notions depending on the type of queries
the adversary A is allowed to ask. The notions are formalized through security games GameReal(ξ),
with ξ ∈ {0, 1}, between A and a challenger C. GameReal(ξ) consists of a Setup phase and of a Query
Answering phase. In the Query Answering phase, A can issue any number of Key Queries and one
Challenge Construction query and at the end of this phase A outputs a guess. We stress that key
queries can be issued by A even after he has received the challenge from C. More precisely, for
ξ ∈ {0, 1}, we define game GameReal(ξ) in the following way.

Setup. C runs the Setup algorithm, (Pk,Msk)← Setup(1λ, 1`). Then C starts the interaction with
A on input Pk.

Key Query Answering. For vector ~y, C returns KeyGen(Msk, ~y).

Challenge Construction. Upon receiving the pair (~x0, ~x1), C picks random η ∈ {0, 1} and returns
Encrypt(Pk, ~xη).

Winning Condition. Let η′ be A’s output. We say that A wins the game if η = η′ and for all ~y
for which A has issued a Key Query, it holds Match(~x0, ~y) = Match(~x1, ~y) = ξ.

We call such an A a ξ-adversary and define its advantage AdvA,ξHVE(λ) in GameReal(ξ) to be the
probability of winning minus 1/2.
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Definition 2.1 An Hidden Vector Encryption scheme is ξ-secure if for all PPT ξ-adversaries A,
we have that AdvA,ξHVE(λ) is a negligible function of λ.

In our security definitions we have the extra constraint that each adversary either requests keys
which match both challenges (this is the case ξ = 1) or keys which match neither challenges (this is
the case ξ = 0). We share this limitation on the security model with [8] (which considered only the
case of non-matching queries; that is, ξ = 0). To the best of our knowledge, it is an open problem
to design a scheme that is secure without this extra constraint.

Security Definitions for Boolean Satisfaction Encryption. For Boolean Satisfaction en-
cryption, we have similar games GameReal(ξ) that can be described in the following way.

Setup. C runs the Setup algorithm, (Pk,Msk)← Setup(1λ, 1n). Then C starts the interaction with
A on input Pk.

Key Query Answering. For Φ ∈ Bn, C returns KeyGen(Msk,Φ).

Challenge Construction. Upon receiving the pair (~z0, ~z1) of truth assignments over n variables,
C picks random η ∈ {0, 1} and returns Encrypt(Pk, ~zη).

Winning Condition. Let η′ be A’s output. We say that A wins the game if η = η′ and, for all
Φ for which A has issued a Key Query, it holds that Satisfy(Φ, z0) = Satisfy(Φ, z1) = ξ.

We call such an adversary A a ξ-adversary and define its advantage AdvA,ξB (λ) to be the prob-
ability of winning minus 1/2.

Definition 2.2 An Encryption scheme for class B is ξ-secure if for all PPT ξ-adversaries A, we
have that AdvA,ξB (λ) is a negligible function of λ.

3 Complexity Assumptions

Composite order bilinear groups were first used in Cryptography by [3] (see also [1]). We suppose
the existence of an efficient group generator algorithm G which takes as input the security parameter
λ and outputs a description I of a bilinear setting. The description I of the bilinear setting consists
of I = (N,G,GT , e) where G and GT are cyclic groups of order N , and e : G2 → GT is a map with
the following properties:

1. (Bilinearity) ∀ g, h ∈ G and a, b ∈ ZN it holds that e(ga, hb) = e(g, h)ab.

2. (Non-degeneracy) ∃ g ∈ G such that e(g, g) has order N in GT .

We assume that the group descriptions of G and GT include generators of the respective cyclic
groups. We require that the group operations in G and GT as well as the bilinear map e are
computable in deterministic polynomial time in λ. In our construction we will make hardness
assumptions for bilinear settings whose order N = p1p2p3p4 product of four distinct primes each of
length Θ(λ). For an integer m dividing N , we let Gm denote the subgroup of G of order m. From
the fact that the group is cyclic, we have that if g and h are group elements of co-prime orders then
e(g, h) = 1. This is called the orthogonality property and is a crucial tool in our constructions.

The first assumption that we state is a subgroup-decision type assumption for bilinear settings
with groups of order product of four primes. For a generator G returning bilinear settings of
order product of four primes, we define the following distribution. First pick a random bilinear
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setting I = (N,G,GT , e) ← G(1λ) and then pick A3 ← Gp3 , A13 ← Gp1p3 , A12 ← Gp1p2 , A4 ←∈
Gp4 , T1 ← Gp1p3 , T2 ← Gp2p3 . and set D = (I, A3, A4, A13, A12). We define the advantage of an
algorithm A in breaking Assumption 1 to be

AdvA1 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|

Assumption 1 We say that Assumption 1 holds for generator G if for all probabilistic polynomial-
time algorithms A, AdvA1 (λ) is a negligible function of λ.

The second assumption can be seen as the Decision Diffie-Hellman Assumption for composite order
groups and is defined as follows. First pick a random bilinear setting I = (N,G,GT , e) ← G(1λ)
and then pick A1 ← Gp1 , A2 ← Gp2 , A3 ← Gp3 , A4, B4, C4, D4 ← Gp4 , α, β ← Zp1 , T2 ← Gp1p4 and

set T1 = Aαβ1 · D4 and D = (I, A1, A2, A3, A4, A
α
1 · B4, A

β
1 · C4). We define the advantage of an

algorithm A in breaking Assumption 2 to be

AdvA2 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|

Assumption 2 We say that Assumption 2 holds for generator G if for all probabilistic polynomial-
time algorithms A, AdvA2 (λ) is a negligible function of λ.

Assumption 3 is a generalization of Assumption 2 in the sense it posits the difficult of deciding
if two triplets sharing an element are both Diffie-Hellman and it is defined as follows. First pick
a random bilinear setting I = (N,G,GT , e) ← G(1λ) and then pick A1 ← Gp1 , A2 ← Gp2 , A3 ←
Gp3 , A4, B4, C4, D4, E4, F4, G4 ← Gp4 , α, β, γ ← Zp1 , T2 ← Gp1p4 and set T1 = Aαβ1 · G4 and

D = (I, A1, A2, A3, A4, A
α
1 ·B4, A

β
1 ·C4, A

γ
1 ·D4, A

αγ
1 ·E4, A

αβγ
1 ·F4). We define the advantage of an

algorithm A in breaking Assumption 3 to be

AdvA3 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|

Assumption 3 We say that Assumption 3 holds for generator G if for all probabilistic polynomial-
time algorithms A, AdvA3 (λ) is a negligible function of λ.

It is easy to see that Assumption 3 implies Assumption 2.
Our final assumption is again a subgroup-decision type of assumption and it is defined as follows.

First pick a random bilinear setting I = (N,G,GT , e) ← G(1λ) and then pick A2 ← Gp2 , A3 ←
Gp3 , A4, B4,← Gp4 , A14, B14 ← Gp1p4 and set T1 = B14, T2 = B4 and D = (I, A2, A3, A4, A14).
We define the advantage of an algorithm A in breaking Assumption 4 to be

AdvA4 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|

Assumption 4 We say that Assumption 4 holds for generator G if for all probabilistic polynomial-
time algorithms A, AdvA4 (λ) is a negligible function of λ.
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4 Constructing 0-secure HVE

In this section we describe our construction for a 0-secure (also called match revealing) HVE scheme.
We assume without loss of generality that the vectors ~y of the keys have at least two indices i, j
such that yi, yj 6= ?.

Setup(1λ, 1`): The setup algorithm chooses a description of a bilinear group I = (N = p1p2p3p4,
G,GT , e)← G(1λ) with known factorization. and random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 .
For i ∈ [`] and b ∈ {0, 1}, the algorithm chooses random ti,b ∈ ZN and random Ri,b ∈ Gp3 and sets

Ti,b = g
ti,b
1 ·Ri,b.

The public parameters are Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and the master secret key is Msk =
[g12, g4, (ti,b)i∈[`],b∈{0,1}], where g12 = g1 · g2.

KeyGen(Msk, ~y): Let S~y be the set of indices i such that yi 6= ?. The key generation algorithm
chooses random ai ∈ ZN for i ∈ S~y under the constraint that

∑
i∈S~y

ai = 0. For i ∈ S~y, the

algorithm chooses random Wi ∈ Gp4 and sets Yi = g
ai/ti,yi
12 Wi. The algorithm returns the tuple

(Yi)i∈S~y
. Notice that here we used the fact that S~y has size at least 2.

Encrypt(Pk, ~x): The encryption algorithm chooses random s ∈ ZN . For i ∈ [`], the algorithm
chooses random Zi ∈ Gp3 and sets Xi = T si,xiZi, and returns the tuple (Xi)i∈[`].

Test(Ct,Sk~y): The test algorithm computes T =
∏
i∈S~y

e(Xi, Yi) and returns TRUE iff T = 1.

Correctness. It is easy to verify the correctness of the scheme.

4.1 Security of our HVE scheme

In this section we prove that our HVE scheme is 0-secure. To prove security we rely on Assumptions
1 and 2. For a probabilistic polynomial-time 0-adversary A which makes q queries for KeyGen, our
proof of security will be structured as a sequence of q + 2 games between A and a challenger
C. The first game, GameReal, is the real HVE security game described in the previous section.
The remaining games, called Game0, . . . ,Gameq, are described (and shown indistinguishable) in the
following sections. In the rest of this section, when we refer to adversaries we mean 0-adversaries
and when we refer to GameReal we mean GameReal(0).

4.1.1 Proof of indistinguishability of GameReal and Game0

Description of Game0. Game0 is like GameReal, except that C uses g2 instead of g1 to construct
the public parameters Pk given to A. Specifically,

Setup. C chooses a description of a bilinear group I = (N = p1p2p3p4, G,GT , e) ← G(1λ) with
known factorization and random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 and sets g12 = g1 · g2. For

each i ∈ [`] and b ∈ {0, 1}, C chooses random ti,b ∈ ZN and Ri,b ∈ Gp3 and sets Ti,b = g
ti,b
2 · Ri,b

and T ′i,b = g
ti,b
1 · Ri,b. Then C sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}], Pk

′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}], and

Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}]. Finally, C interacts with A on input Pk.

Key Query Answering. On vector ~y, C returns the output of KeyGen(Msk, ~y).

Challenge Construction. C picks one of the two challenge vectors provided by A and encrypts it
with respect to public parameters Pk′.
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Lemma 4.1 Suppose there exists a PPT algorithm A such that AdvAGameReal
−AdvAGame0 = ε. Then,

there exists a PPT algorithm B with advantage ε in breaking Assumption 1.

Proof. We show a PPT algorithm B which receives (I, A3, A4, A13, A12) and T and, depending
on the nature of T , simulates GameReal or Game0 with A. This suffices to prove the Lemma.

Setup. B starts by constructing Pk and Pk′ as follow. B sets g3 = A3, g12 = A12, g4 = A4 and, for
each i ∈ [`] and b ∈ {0, 1}, B chooses random ti,b ∈ ZN and sets Ti,b = T ti,b and T ′i,b = A

ti,b
13 . Then B

sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}], Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}], and Pk′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}]

and starts the interaction with A on input Pk.

Key Query Answering. Whenever A asks to see the secret key Sk~y associated with vector ~y, B runs
algorithm KeyGen on input Msk and ~y.

Challenge Construction. The challenge is created by B by picking one of the two vectors provided
by A, let us call it ~x, and by encrypting it by running the Encrypt algorithm on input ~x and Pk′.

This concludes the description of algorithm B.

Now suppose T ∈ Gp1p3 , and thus it can be written as T = h1 · h3 for h1 ∈ Gp1 and h3 ∈ Gp3 .
This implies that Pk received in input by A in the interaction with B has the same distribution
as in GameReal. Furthermore, it’s easy to see that the answers to key queries and the challenge
ciphertext given by B to A have the same distribution as the answers and the challenge ciphertext
received by A in GameReal. We can thus conclude that C has simulated GameReal with A.

Instead, when T ∈ Gp2p3 , Pk provided by B has the same distribution as that produced by C in
Game0. Therefore, C is simulating Game0 for A. 2

4.1.2 Proof of indistinguishability of Gamek−1 and Gamek

Description of Gamek, for 1 ≤ k ≤ q. Each of these games is like Game0, except that the first k
key queries issued by A are answered with keys whose Gp1 parts are random. The remaining key
queries (that is, from the (k + 1)-st to the q-th) are answered like in the previous game. The Gp2

parts of all the answers to key queries are like in Game0. More precisely, in Gamek, the Setup phase
and the Challenge Construction are like in Game0 and the Key Query phase is the following.

Key Query Answering. C answers the first k key queries in the following way. On input vector
~y, for i ∈ S~y, C chooses random ai, ci ∈ ZN under the constraint that

∑
i∈S~y

ai = 0 and random

Wi ∈ Gp4 . C sets, for i ∈ S~y, Yi = gci1 · g
ai/ti,yi
2 ·Wi. The remaining q − k queries are answered like

in Game0.

Lemma 4.2 Suppose there exists a PPT algorithm A such that AdvAGamek−1
−AdvAGamek

= ε. Then,
there exists a PPT algorithm B with advantage at least ε/(2`) in breaking Assumption 2.

Proof. B receives (I, A1, A2, A3, A4, A
α
1 ·B4, A

β
1 ·C4) and T and, depending on the nature of T ,

simulates Gamek−1 or Gamek with A.
B starts by guessing the index j such that the j-th bit y(k)

j of the k-th query ~y(k) is different
from ? and different from the j-th bit xj of the challenge vectors provided by A that C uses to
construct the challenge ciphertext. Notice that the probability that B correctly guesses j and y(k)

j

is at least 1/(2`), independently from the view of A. Notice that, if during the simulation this is
not the case, then B aborts the simulation and fails. We next describe and prove the correctness
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of the simulation under the assumption that B’s initial guess is correct. Notice that if the initial
guess is correct xj and y(k)

j are uniquely determined and it holds that xj = 1− y(k)

j .

Setup. B sets g1 = A1, g2 = A2, g3 = A3, g4 = A4 and g12 = A1 · A2. For each i ∈ [`] \ {j} and

b ∈ {0, 1}, B chooses random ti,b ∈ ZN and Ri,b ∈ Gp3 , and sets Ti,b = g
ti,b
2 · Ri,b. Moreover, B

chooses random tj,xj ∈ ZN , Rj,xj ∈ Gp3 , r
j,y

(k)
j

∈ ZN and R
j,y

(k)
j

∈ Gp3 and sets

Tj,xj = g
tj,xj
2 ·Rj,xj T

j,y
(k)
j

= g
r
j,y

(k)
j

2 ·R
j,y

(k)
j

.

Notice that by assumption xj 6= y(k)

j . B then sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}]. In addition, for each

i ∈ [`] \ {j} and b ∈ {0, 1} and B chooses random R′i,b ∈ Gp3 and sets T ′i,b = g
ti,b
1 · R′i,b. Moreover

B chooses random Rj,xj and sets T ′j,xj = g
tx,xj
1 · R′j,xj . The value of T ′

j,y
(k)
j

remains unspecified.

As we shall see below, in answering key queries, B will implicitly set T ′
j,y

(k)
j

= g
1/β
1 · R′

j,y
(k)
j

for a

random R′
j,y

(k)
j

∈ Gp3 . B starts the interaction with A on input Pk. Notice that Pk has the same

distribution as that seen by A in Gamek−1 and Gamek.

Key Query Answering. For the first k− 1 queries B proceeds as follows. Let ~y be the input vector.
For i ∈ S~y, B chooses random ai such that

∑
i∈S~y

ai = 0, random zi ∈ ZN , and random Wi ∈ Gp4 .
Then, for i ∈ S~y, B computes

Yi =


gzi1 · g

ai/ti,yi
2 ·Wi, if i 6= j;

g
zj
1 · g

aj/tj,yj
2 ·Wj , if i = j and yj = xj ;

g
zj
1 · g

aj/rj,yj
2 ·Wj , if i = j and yj 6= ?.

Also notice that the first k− 1 answers produced by B have the same distribution as the first k− 1
answers seen by A in Gamek−1 and Gamek.

Let us now describe how B answers the k-th query the vector ~y(k) . Let h be an index such that
h 6= j and y(k)

h 6= ?; such an index always exists by our assumption that all keys are for vectors
with at least two entries different from ?. Also we remind the reader that y(k)

j = 1− xj .
Let S = S~y \ {j, h}. For each i ∈ S, B chooses random ai ∈ ZN and Wi ∈ Gp4 . Moreover B

chooses random a′j ∈ ZN and Wj ,Wh ∈ Gp4 and sets

Yi = g
ai/t

i,y
(k)
i

12 ·Wi, Yj = T · g
a′j/rj,y(k)

j

2 ·Wj ,

Yh = (Aα1B4)
−1/t

h,y
(k)
h · g

−s/t
h,y

(k)
h

1 · g
−(s+aj)/t

h,y
(k)
h

2 ·Wh,

where s =
∑

i∈S ai. This terminates the description of how B handles the k-th key query. Let us

now verify that when T = Aαβ1 ·D4 then B’s answer to the k-th key query is like in Gamek−1. By

our settings, we have that Yj = g

α/t′
j,y

(k)
j

1 · g
a′j/rj,y(k)

j

2 · D4 ·Wj with t′
j,y

(k)
j

= 1/β. By the Chinese

Remainder Theorem, we can conclude that the answer to the k-th query of A is distributed as in
Gamek−1. Instead, if T is random in Gp1p4 then the Gp1 parts of the Yi’s are random and thus the
answer to the k-th query of A is distributed as in Gamek.
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For the l-th key queries for l = k + 1, . . . , q, notice that if the j-th bit of the l-th query vector
is equal to xj then B has all the ti,yi ’s needed for running algorithm KeyGen. If this is not the

case then, by the previous settings, tj,yj ≡ 1/β mod p1 and B can use Aβ1 · C4 = g
1/tj,yj
1 · C4 (see

Assumption 2). So, the answers to the last q − k queries have the same distribution as in Gamek
and Gamek−1.

Challenge Construction. The challenge is created by running algorithm Encrypt on input the ran-
domly chosen challenge vector ~x and Pk′. Under the assumption that B has correctly guessed xj
and thus xj = 1−y(k)

j , Pk′ contains all the values to compute an encryption of ~x. Then the challenge
ciphertext is distributed exactly like in Gamek−1 and Gamek. 2

4.1.3 Gameq gives no advantage.

We observe that in Gameq the Gp1 part of the challenge ciphertext is the only one depending on η
and the Pk and the answer to the key queries give no help to A. Therefore we can conclude that
for all adversaries A, AdvAGameq = 0. We have thus proved.

Theorem 4.3 If Assumptions 1 and 2 hold for generator G, then the HVE scheme presented is
0-secure (also called match revealing secure).

5 Constructing 1-secure HVE

In this section we describe our construction for a 1-secure HVE scheme.

Setup(1λ, 1`): The setup algorithm chooses a description of a bilinear group I = (N = p1p2p3p4,
G,GT , e) ← G(1λ) with known factorization and chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 ,
g4 ∈ Gp4 . For i ∈ [`] and b ∈ {0, 1}, the algorithm chooses random ti,b ∈ ZN , random vi ∈
ZN and random Ri,b ∈ Gp3 and sets Ti,b = g

ti,b
1 · gvi4 · Ri,b. The public parameters are Pk =

[N, g3, (Ti,b)i∈[`],b∈{0,1}] and the master secret key is Msk = [g12 = g1 ·g2, g4, (ti,b)i∈[`],b∈{0,1}, (vi)i∈[`]].

KeyGen(Msk, ~y): Let S~y be the set of indices i such that yi 6= ?. For i ∈ S~y, the key generation
algorithm chooses random ai ∈ ZN such that

∑
i∈S~y

ai = 0. For i ∈ S~y, the algorithm sets

Yi = g
ai/ti,yi
12 g

ai/vi
4 . The algorithm returns the tuple (Yi)i∈S~y

. Notice that here we used the fact that
S~y has size at least 2.

Encrypt(Pk, ~x): The encryption algorithm chooses random s ∈ ZN . For i ∈ [`], the algorithm
chooses random Zi ∈ Gp3 , sets Xi = T si,xiZi, and returns (Xi)i∈[`].

Test(Ct, Sk~y): The test algorithm returns TRUE if
∏
i∈S~y

e(Xi, Yi) = 1.

Correctness. It is easy to verify the correctness of the scheme.

5.1 Security of our HVE scheme

To prove that our HVE scheme is 1-secure, we rely on static Assumptions 1 and 4. For a probabilistic
polynomial-time 1-adversary A our proof of security will be structured as a sequence of 2 games
between A and a challenger C. The first game, GameReal(1), is the real HVE security game described
in the previous section. The remaining games, called Game0,Game1, are described (and shown
indistinguishable) in the following sections.

In the rest of this section, when we refer to adversaries we mean 1-adversaries and when we
refer to GameReal we mean GameReal(1).
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5.1.1 Proof of indistinguishability of GameReal and Game0

Description of Game0. Game0 is like GameReal, except that C uses g2 instead of g1 to construct
the public parameters Pk given to A. Specifically,

Setup. C chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 . For i ∈ [`] and b ∈ {0, 1}, C
chooses random ti,b ∈ ZN , random vi ∈ ZN and random Ri,b ∈ Gp3 and sets Ti,b = g

ti,b
2 ·g

vi
4 ·Ri,b and

T ′i,b = g
ti,b
1 · gvi4 · Ri,b. Then C sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and Pk′ = [N, g3, (T

′
i,b)i∈[`],b∈{0,1}].

C starts the interaction with A on input Pk.

Key Query Answering. On a query for vector ~y, C returns the output of KeyGen on input ~y and
Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}, (vi)i∈[`]], where g12 = g1 · g2.

Challenge Construction. C picks one of the two challenge vectors provided by A and encrypts it
with respect to public parameters Pk′.

Lemma 5.1 Suppose there exists a PPT algorithm A such that AdvAGameReal
−AdvAGame0 = ε. Then,

there exists a PPT algorithm B with advantage ε in breaking Assumption 1.

The proof follows the line of that of Lemma 4.1 and therefore we omit the details.

5.1.2 Proof of indistinguishability of Game0 and Game1.

Description of Game1. This game is like Game0, except that in the answers provided by C the key
queries. Specifically the queries are answered without the Gp1 part. The Gp2 part of all answers is
like in Game0. Specifically, we have.

Query answering. C answers the queries in the following way. On input vector ~y, for i ∈ S~y, C
chooses random ai, bi ∈ ZN under the constraint that

∑
i∈S~y

ai =
∑

i∈S~y
bi = 0. C sets, for i ∈ S~y,

Yi = g
ai/ti,yi
2 · gbi/vi4 ·Wi.

Lemma 5.2 Suppose there exists a PPT algorithm A such that AdvAGame0 − AdvAGame1 = ε. Then,
there exists a PPT algorithm B with advantage at least ε in breaking Assumption 4.

Proof. B receives (I, A2, A3, A4, A14) and T and, depending on the nature of T , simulates Game0

or Game1 with A.

Setup. B sets g2 = A2, g3 = A3, g4 = A4. For i ∈ [`] and b ∈ {0, 1}, B chooses random ti,b, vi ∈ ZN
and Ri,b ∈ Gp3 , and sets Ti,b = g

ti,b
2 ·g

vi
4 ·Ri,b. These settings determine Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}].

used by B to interact with A. Notice that Pk has the same distribution as that seen by A in Game0

and Game1.

Key Query Answering. B computes the answer to query for vector ~y as follows. For i ∈ S~y, B chooses

random ai ∈ ZN subject to
∑

i∈S~y
ai = 0 and sets Yi = g

ai/ti,yi
2 · T ai/vi . Now suppose T = B14 and

write T = g1g
c
4 for some g1 ∈ Gp1 and c ∈ Zp4 . By our setting we have Yi = g

ai/vi
1 · gai/ti,yi2 · gcai/vi4

which implicitly sets ti,yi ≡ vi mod p1. It is easy to see that the answer to the query is distributed
as in Game0. Instead, if T = B4 then the key does not contain the Gp1 part and thus the answer
to the query is distributed as in Game1.
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Notice that, since A is a 1-adversary, then for every query vector ~y that A can submit, it holds
that for each i ∈ [`], yi = ? or yi = x0,i = x1,i. Therefore, or each i ∈ [`], B needs only to determine
ti,x0,i = ti,x1,i and it does so by setting it congruent to vi mod p1.

Challenge Construction. For i ∈ [`], B chooses random Zi ∈ Gp3 and sets, for i ∈ [`], Xi = Avi14 ·Zi.
Finally notice that by writing A14 = (g1 · gc4)s, the challenge ciphertext is distributed exactly like
in Game0 and Game1. 2

5.1.3 Game1 gives no advantage.

We observe that the Gp1 part of the challenge ciphertext is the only one depending on η and the
Pk and the answer to the key queries give no help to A. Therefore we can conclude that for all
adversaries A, AdvAGame1 = 0. We have thus proved.

Theorem 5.3 If Assumptions 1 and 4 hold for generator G, then the HVE scheme presented is
1-secure.

5.2 Merging the schemes

It is easy to see that our 1-secure HVE scheme can be extended to a scheme that is also 0-secure.
This can be done by using a bilinear instance of order product of five primes and by using the
new subgroup to randomize the secret keys. The proof of the 0-security of the resulting scheme is
very similar to that provided in section 4. We point out that this does not mean that the resulting
scheme is secure against adversaries that can request both matching and non-matching queries.

6 Reductions

6.1 Reducing k-CNF to HVE.

In this section we show how to construct a ξ-secure Encryption scheme for the class of Boolean
predicates that can be expressed as a k-CNF formula from a ξ-secure HVE scheme. We consider
formulae Φ in k-CNF, for constant k, over n variables in which each clause C ∈ Φ contains exactly k
distinct variables. We call such a clause admissible and denote by Cn the set of all admissible clauses
over the n variables x1, . . . , xn and set Mn = |C|. Notice that Mn = Θ(nk). We also fix a canonical
ordering C1, . . . , CMn of the clauses in Cn. LetH = (SetupH,KeyGenH,EncryptH,TestH) be an HVE

scheme and construct a k-CNF scheme kCNF = (SetupkCNF, KeyGenkCNF,EncryptkCNF,TestkCNF) as
follows:

SetupkCNF(1λ, 1n): The algorithm returns the output of SetupH(1λ, 1Mn).

KeyGenkCNF(Msk,Φ): For a k-CNF formula Φ, the key generation algorithm constructs vector
~y ∈ {0, 1, ?}Mn by setting, for each i ∈ {1, . . . ,Mn}, yi = 1 if Ci ∈ Φ; yi = ? otherwise. We
denote this transformation by y = FEncode(Φ). Then the key generation algorithm returns SkΦ =
KeyGenH(Msk, ~y).

EncryptkCNF(Pk, ~z): The algorithm constructs vector ~x ∈ {0, 1}Mn in the following way: For each
i ∈ {1, . . . ,Mn} the algorithms sets xi = 1 if Ci is satisfied by ~z; xi = 0 if Ci is not satisfied by
~z. We denote this transformation by ~x = AEncode(~z). Then the encryption algorithm returns
Ct = EncryptH(Pk, ~x).

13



TestkCNF(SkΦ,Ct): The algorithm returns the output of TestH(SkΦ,Ct).

Correctness. Correctness follows from the observation that for formula Φ and assignment ~z, we
have that Match(AEncode(~z),FEncode(Φ)) = 1 if and only if Satisfy(Φ, ~z) = 1.

Security. Let A be a ξ-adversary for kCNF that tries to break the scheme for n variables and
consider the following adversary B for H that uses A as a subroutine and tries to break a H with
` = Mn by interacting with challenger C. B receives a Pk for H and passes it to A . Whenever A
asks for the key for formula Φ, B constructs ~y = FEncode(Φ) and asks C for a key Sk~y for ~y and
returns it to A. When A asks for a challenge by providing truth assignments ~z0 and ~z1, B simply
computes ~x0 = AEncode(~z0) and ~x1 = AEncode(~z1) and gives the pair (~x0, ~x1) to C. B then returns
the challenge ciphertext obtained from C to A. Finally, B outputs A’s guess.

First, B’s simulation is perfect. Indeed, we have that if for all A’s queries Φ we have that
Satisfy(Φ, ~z0) = Satisfy(Φ, ~z1) = ξ, then all B’s queries ~y to C also have the property Match(~y, ~x0) =
Match(~y, ~x1) = ξ. Thus B’s advantage is the same as A’s. By combining the above reduction with
our constructions for HVE, we have the following theorems.

Theorem 6.1 For any constant k > 0, if Assumption 1 and 2 hold for generator G then there
exists a 0-secure encryption scheme for the class of predicates that can be represented by k-CNF
formulae. Moreover, If Assumption 1 and 4 hold for generator G then there exists a 1-secure
encryption scheme for the class of predicates that can be represented by k-CNF formulae.

Reducing Disjunctions to HVE. In this section we consider the class of Boolean predicates that
can be expressed as a single disjunction. We assume without loss of generality that a disjunction
does not contain a variable and its negated. Let H = (SetupH,KeyGenH,EncryptH,TestH) be an
HVE scheme and construct the predicate-only scheme ∨ = (Setup∨, KeyGen∨,Encrypt∨,Test∨) for
disjunctions in the following way:

Setup∨(1λ, 1n): the algorithm returns the output of SetupH(1λ, 1n).

KeyGen∨(Msk, C): For a clause C, the key generation algorithm constructs vector ~y ∈ {0, 1, ?}n in
the following way. Let ~w be a truth assignment to the n variables that does not satisfy clause C. For
each i ∈ {1, . . . , n}, the algorithms sets yi = wi if the i-th variable appears in C; yi = ? otherwise.
We denote this transformation by ~y = CEncode(C). The output is SkC = KeyGenH(Msk, ~y).

Encrypt∨(Pk, ~z): The encryption algorithm returns Ct = EncryptH(Pk, ~z).

Test∨(SkC ,Ct): The algorithm returns 1− TestH(SkC ,Ct).

Correctness. It follows from the observation that for a clause C and assignment ~z, Satisfy(~z, C) =
1 if and only if Match(~z,CEncode(C)) = 0.

Security. It is easy to see that if H is (1− ξ)-secure then ∨ is ξ-secure. Indeed notice that we can
transform any ξ-adversary A for ∨ into a (1 − ξ)-adversary B for H in the obvious way and that
any ξ-query of A for a key for ∨ can be answered by making a (1−ξ)-query for H. By applying the
above reduction to the 0-secure and 1-secure HVE construction of the previous sections we obtain
the following theorem.

Theorem 6.2 If Assumption 1 and 4 hold for generator G then there exists a 0-secure encryption
scheme for the class of predicates that can be represented by a disjunction. Moreover, if Assumption
1 and 2 hold for generator G then there exists a 1-secure encryption scheme for the class of predicates
that can be represented by a disjunction.
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6.2 Reducing k-DNF to k-CNF

We observe that if Φ is a predicate represented by a k-DNF formula then its negation Φ̄ can be repre-
sented by a k-CNF formula. Therefore let kCNF = (SetupkCNF,KeyGenkCNF,EncryptkCNF,TestkCNF)
and consider the following scheme kDNF = (SetupkDNF,KeyGenkDNF,EncryptkDNF,TestkDNF). The
setup algorithm SetupkDNF is the same as SetupkCNF. The key generation algorithm SetupkDNF for
predicate Φ represented by a k-DNF simply invokes the key generation algorithm SetupkCNF for Φ̄
that can be represented by a k-CNF formula. The encryption algorithm EncryptkDNF is the same
as EncryptkCNF. The test algorithm TestkDNF on input ciphertext Ct and key for k-DNF formula Φ
(that is actually a for k-CNF formula Φ̄) thus TestkCNF on Ct and the key and complements the
result. Correctness can be easily argued. We notice that this reduction however does not preserve
ξ-security but rather complements it. More precisely, for proving ξ-security we can easily see that
any ξ-adversary for kDNF can be used to construct a (1− ξ)-adversary for kCNF.

By combining the above reduction with the construction given by Theorem 6.1.

Theorem 6.3 If Assumption 1 and 2 hold for generator G then there exists a 1-secure encryption
scheme for the class of predicates represented by k-DNF formulae.

If Assumption 1 and 4 hold for generator G then there exists a 0-secure encryption scheme for
the class of predicates represented by k-DNF formulae.

7 Open problems and future work

We leave as a future work the implementation of a symmetric-key version of our encryption schemes
(see for example [13]).

We proved the full security in two models: in the case in which the adversary can request keys
which do not satisfy both the challenges (0-security, which is the only notion considered in [8]
and subsequent works) and in the case in which the adversary can request keys which satisfy both
the challenges (1-security). It would be interesting to have a construction that is secure against
adversaries allowed to request keys which either satisfy both challenges or satisfy neither (match
concealing model).

We gave a tight reduction that does not depend on the running time (and number of queries
q) for the case of our 1-secure scheme. It is an open problem the design of a scheme with a tight
security reduction for 0-secure schemes.
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