
SECURE COMPUTATIONS ON NON-INTEGER VALUES

M. Franz∗, B. Deiseroth∗, K. Hamacher+, S. Jha#, S. Katzenbeisser∗, H. Schröder∗

∗ Technische Universität Darmstadt, Security Engineering Group
+ Technische Universität Darmstadt, Computational Biology Group

University of Wisconsin, Computer Sciences Department

ABSTRACT
In this paper we present for the first time a framework that
allows secure two-party computations on approximations of real
valued signals. In our solution, we use a quantized logarithmic
representation of the signal samples, which enables to represent
both very small and very large numbers with bounded relative error.
We show that numbers represented in this way can be encrypted
using standard homomorphic encryption schemes; furthermore we
give protocols that allow to perform all arithmetic operations on
such encrypted values. Finally we demonstrate the practicality of
our framework by applying it to the problem of filtering encrypted
signals.

I. INTRODUCTION
Due to the ever increasing amount of digitally stored data, there

is a growing need for technical solutions that protect sensitive
personal information. In the past, data privacy was mainly assured
through procedures, laws or access control policies. However, these
protection mechanisms are ineffective once data is outsourced to
partially untrusted servers or processed by third parties. To alleviate
this problem, special Privacy Enhancing Technologies have been
proposed that allow to keep sensitive data encrypted and compute
directly on encrypted values using cryptographic protocols [1], [2].
This strategy allows to control, by design of the protocols, the
amount of sensitive data that is leaked to the protocol partici-
pants. Commonly, these constructions use techniques from Secure
Multiparty Computation [3], [4], which offers various protocols to
compute securely with data represented as integers.

However, many computational problems require processing of
very small non-integer values, some of them in the range of 10−1

to 10−300 or even smaller. The most prominent examples are
applications that require processing of probabilities over large sets
of events, such as dynamic programming algorithms, where a large
number of probabilities have to be multiplied. Other problems
require computing with values taken from a large interval such
as [2−100, 2100], where the relative representation error should
be constant. Standard tools from Secure Multiparty Computation
provide rather efficient ways to perform computations on integer
values; implicitly, these tools also allow to compute on rational
numbers of a fixed precision (by representing the numerator and
denominator separately) and on integers in fixed point represen-
tation (by appropriate scaling and quantization). However, these
frameworks usually cannot be used for the above-mentioned prob-
lems, as they cannot represent very small values; furthermore,
rounding errors accumulate once a large number of operations
are performed. We strive for a solution that provides numerical
stability, where computations can be performed on arbitrarily small
or large numbers with finite precision, but yield results as if they
were computed with standard floating-point arithmetic.

In this paper we present a computational framework which
allows two semi-honest parties to perform secure computations on
values which come from a bounded real interval D� = [−�; �].
While we refrain (for performance reasons) from implementing
standard floating point encodings, we do use a representation that

shares the most important properties of floating point arithmetic,
i.e., values in D� close to zero are represented with higher accuracy
than larger values, yielding a bounded relative error, regardless
whether representing very small or very large values. We further
demonstrate the practicality of our framework through a series of
tests. In particular, we perform measurements of the communication
and computation complexity for various parameter sizes; further-
more, we show that for a concrete scenario (namely a digital filter)
that our representation of numbers does not degrade the results
significantly when compared to a reference implementation.

II. RELATED WORK AND BUILDING BLOCKS

Secure Multiparty Computation (SMC). Several constructions
for Secure Multiparty Computation [3], [4] and Secure Function
Evaluation [5], [4] are known in the literature. In the latter case,
a set of players evaluate a given function on their private inputs;
while the result of the function should be available for everyone,
the parties do not want to share their inputs with each other. Various
approaches for securely evaluating a function have been developed
for different function representations, namely combinatorial cir-
cuits [5], [6], Ordered Binary Decision Diagrams [7], branching
programs [8], or one-dimensional look-up tables [9]. While these
methods target computations performed over the integers only,
extensions were proposed that can handle rational numbers [10] and
real values in fixed point notation [11]. The problem of computing
securely with non-integer values in a numerically stable way, as
presented in this paper, is still unsolved.

The availability of efficient SMC methods stimulated their use to
protect privacy of valuable data. For example, several solutions have
been proposed that use SMC to enhance privacy in auctions [12],
data clustering [13], [14] or filtering [15]. Recently, there is also
an increased interest in combining SMC with methods of signal
processing in order to be able to privately analyze signals; examples
are the analysis of medical signals [16] or the evaluation of
biometrics on encrypted data [2]. All these systems currently rely
on a fixed-point representation of the signals.

Paillier cryptosystem. As a central cryptographic tool, we use a
semantically secure additively homomorphic public-key encryption
scheme introduced by Paillier [17]. Let n = pq of size k, with
p, q distinct prime numbers and k in the range of 1000-2048
bits. Also let g = n + 1. To encrypt a message m ∈ Zn,
one selects a random value r ∈ Zn and computes the ciphertext
c = (mn + 1)rn = gmrn mod n2. We will write the encryption
of a message m in the Paillier cryptosystem as [m]. Since all
encryptions in the proposed protocols will be computed using one
fixed public key, we do not specify the key explicitly. It is easy to
see that the Paillier encryption scheme is additively homomorphic:
an encryption [a+ b] can be computed by [a+ b] = [a][b], where
all operations are performed in the algebra of the message or
ciphertext space. Furthermore, messages can be multiplied with
constants under encryption, i.e., given an encrypted message [a]
and a constant b, it is possible to compute [ab] by [ab] = [a]b.
Further details can be found in [17].

Secure multiplications. While additions and multiplications with
constants are immediately possible when using homomorphic en-
cryption, multiplications of ciphertexts require execution of a cryp-
tographic protocol. In this work, we often require a multiplication
protocol for a two party scenario as follows: Party A holds a
private key for some Paillier public key n. Party B holds two
encrypted values [a], [b] and should obtain an encryption [ab]. This
can be achieved as follows: party B generates two random values
ra, rb ∈R Zn and computes encryptions [a + ra] and [b + rb]. B
sends these values to A, who subsequently decrypts, multiplies
them and sends an encryption [(a+ ra)(b+ rb)] back to party B.
Party B now recovers the product by computing

[ab] = [(a+ ra)(b+ rb)][b]
−ra [a]−rb [−rarb].

If a and b are binary values from {0, 1}, then the operations become
much more lightweight. In this case the blinding factors ra, rb can
also be chosen as binary values. Party A now sends [a⊕ ra] and
[b⊕ rb], where ⊕ denotes XOR, to party A who subsequently
sends back the product [(a⊕ ra)(b⊕ rb)]. As before, using the
values ra, rb party B recovers the result [ab]. We denote a secure
multiplication by ∗, a secure multiplication of binary values by �.

Comparison of encrypted values. Sometimes we require to
compare two encrypted values [a] and [b] in order to obtain the
encryption of a bit γ indicating whether a ≤ b or a > b.
This problem is a variant of Yao’s Millionaire’s Problem and has
extensively been studied in the literature; for example, an optimized
protocol in the above scenario can be found in [2]. Such an
operation further allows to compute the minimum of the two values
a and b in an oblivious way.

Oblivious Pseudo-Random Function Evaluation (OPRF). An
OPRF is a two-party protocol, where one party holds a secret key
k and the second party wishes to evaluate a pseudo-random function
FPRF(k, x) on a value x. The evaluation is oblivious in the sense
that the party holding the key k does not learn x, while the other
party only obtains FPRF(k, x) and has no knowledge of k [18], [19],
[20].

III. PRIVATE FUNCTION EVALUATION
In this section we describe a protocol which will be the basis

of our framework for secure computations on non-integer values.
In particular, we give a two-party protocol which allows parties
A and B to evaluate any complex function f : X → Y , with
X,Y ⊂ N and X = [xl;xu] ⊆ [−2κ + 1; 2κ] in a private way:
This primitive allows to evaluate f on an encryption [x] of a value
x ∈ X , producing an encryption [f(x)], while keeping x and f(x)
secret from both parties. We will assume that party B holds an
homomorphic encryption [x], whereas party A knows the correct
decryption key and assists in the computations. We further assume
that all values are encrypted in the Paillier encryption scheme, thus
messages come from the plaintext space Zn for some RSA modulus
n (see Section II).

Our approach is based on the oblivious evaluation of a pseudo-
random function and consists of two phases: one initialization and
one evaluation phase. In the initialization phase, A generates a
prime number p in a way that n | (p−1) and an element g of order
n in Zp. A further selects a random element k ∈ Zn. These choices
assure that gx = g

1
k+x (mod p) is a pseudo-random function [20].

Let again X = {−2κ − 1, . . . , 2κ − 1} be the set of numbers
on which f operates on. A prepares a table T with two columns,
where the first column contains the value gz = g

1
k+x and the

second column contains an encryption of f(x) for each x ∈ X .
Furthermore A permutes the table by sorting in ascending order
according to the first row. Now A sends the table T together with
an encryption of k used in the function g

1
k+x to party B.

In the evaluation phase, B obliviously learns an encryption
[f(x)] for some value [x] (obliviously to himself and to party

Protocol 1 Computing f(x) using OPRFs

Input: Party B: [x] with x ∈ X

Output: Party B: [f(x)]

{Initialization:}
1: Party A:

Choose k ∈R Zn

for each x ∈ Z
Add gx = g

1
k+x and [f(x)] to table T

end
Send [k] and sorted table T to party B
{Evaluation:}

2: Party B:
Let r ∈R Zn in [y′] := [r(x+ k) + k] = [k]([x][k])r

Send [y′] to party A.
3: Party A:

y′ = Decrypt([y′])
y = y′ − k

gy = g(y
−1)

Send gy to party B.
4: Party B:

gx = gry
Look up entry gx in T and obtain [f(x)].

A), given [k] and T , by running Protocol 1. A and B obliviously
evaluate the pseudo-random function gx = g

1
k+x on [x], where the

result will be available in the clear only to B at the end of the
protocol. This knowledge allows B to “look up” the desired result
in the table received before by selecting the row of T that contains
an encryption of f(x). As party B does not know the key k in
the clear, he cannot access other encryptions in the table, since he
cannot look up their positions in T .

The indirection step of computing gx allows to use the same table
T prepared in an initialization phase for multiple queries. Thus,
the complexity of generating T can be amortized over a certain
number of operations, yielding to a good practical performance.
However, if T is used multiple times, there is a chance that a
single value will be requested more than once. This information will
be leaked to party B. Depending on the application scenario, this
may be acceptable if this event happens rarely. Note that party B
will have no information which value was queried more than once;
furthermore, he will not learn any information on values queried
only once. To limit this information flow, the table T can be updated
periodically after a number of queries have been performed: to this
end, party A runs the initialization phase again and provides party
B with the new table and a new key [k′].
Correctness. Party B obtains the correct value gx, as gx = gry =

(gy
−1

)r = (g(r(x+k))−1

)r = g(x+k)−1

. As party A used the same
value k when generating the table T , party A will retrieve a correct
encryption of f(x).
Security. The table T itself does not leak any information: the first
row consists only of pseudo-random elements, whereas the second
one contains semantically secure Paillier encryptions.

On computation of the value gx, information can only be leaked
when party A decrypts the value [y′] or when party B obtains the
value gy. However, the value y′ is obfuscated by multiplicative
blinding and therefore is indistinguishable from a value chosen
uniformly at random from Zn. Furthermore, under the Decisional
q-Diffie-Hellman Inversion Assumption (see [20]) party B can not,
in particular, compute the discrete logarithm for gy to base g in
Zp, thus no information can be inferred from seeing gy.

Optimizations. As T can become very large, depending on the
choices made for f and X , we present several optimizations to the
OPRF construction which help to decrease the size of T .

Table index. As each gz is a random value of approximately 1024
bits, but T has at most |T | 	 21024 entries, it is sufficient to choose
only the least significant bits of gx as an index. For example, for
realistic examples such as |T | = 216 it suffices to choose the 32
least significant bits.

Statistical hiding. Also the size of the second column can be
reduced. Let u > 0 and r0, . . . , ru be random ω-bit numbers,
where ω is a security parameter. Rather than storing an encryption
of the value f(x) in the table T , it suffices to store a value f(x)+r,
where r =

∑u
i=0 αi · ri is a linear combination of random values

r0, . . . , ru. If we provide party B with encryptions [ri], and if the
values αi are chosen pseudo-randomly, i.e., by extracting them as
random chunks (of small bit-length) of the value gz, then party B
can reconstruct the value f(x) by encrypting the table entry in row
with index gz and then subtracting [αiri]. As long as party B does
not access more than u − 1 blinded values from table T (which
each gives him a linear combination of the form

∑u
i=0 αi · ri),

the values ri remain hidden and thus also the values f(x) remain
statistically hidden from B.

IV. SECURE COMPUTATIONS ON REALS
In this section we present a framework which allows two parties

to perform secure computations on values from some interval
D� = [−�; +�] ⊂ R. Note that we describe the framework in
its full generality; in case that computations are performed only on
a limited set of numbers (e.g., only on probabilities in the interval
[0; 1]) further optimizations are possible.

IV-A. Data Representation
We start by giving a description of how values from the real

domain D� will be represented. We require the representation to
meet the following conditions:

• First, the scheme should allow a representation as integer
values, in order to use efficient methods from generic Secure
Multiparty Computation for some sub-problems.

• Second, the representation should have a similar behavior as
floating point arithmetic: the precision for numbers close to
0 should be higher than for numbers far away from 0. This
is desirable in order to achieve a bounded relative error when
representing both very small and rather big numbers.

• The data encoding should allow us to perform certain arith-
metic operations directly on the encoded values.

Our solution to this problem builds on the work of Kingsbury and
Rayner [21]. We use a logarithmic representation for the numbers in
the interval D� = [−�; �] with � > 0. Let S ∈ N be a scaling factor,
B > 0 a suitable base for some logarithm and C be a constant with
C ≥ �. We represent a value x ∈ D� as a tuple (ρx, σx, τx). Here,
ρx ∈ {0, 1} is a flag indicating whether the represented number is
zero, i.e., ρx = 1 if x is not equal to zero and ρx = 0 otherwise.
Similarly, σx encodes the sign, i.e., σx = 1 if x ≥ 0 and σx = −1
otherwise. If ρx = 1 we compute an encoding τx of the absolute
value as τx = �−S · logB(|x|

C
)�, where �·� denotes rounding to

the nearest integer. In case of ρx = 0 both σx and τx can contain
arbitrary values. If we limit the space for the values τx to some
interval [0; 2κ − 1] by storing τx as κ-bit number, we can exactly
represent a set of 2κ+1 + 1 distinct numbers from D�.

We denote the representation of any given x ∈ D� in Lκ :=
{0, 1} × {−1, 1} × {0, . . . , 2κ − 1} by x. The backward transfor-
mation Lκ → D� is given by

(ρx, σx, τx) → ρx · σx · C ·B(−τx/S).

IV-B. Parameters
According to the desired level of accuracy and the size � for the

interval of represented numbers the parameters S,B,C and κ can
be adjusted. We first note that for each pair (S1, B1) and a base
B2 there exists a unique S2 such that S1 logB1

(x) = S2 logB2
(x)

for all x ∈ R
+. Thus it suffices to consider only one fixed base B

and adjust the parameters S,C and κ accordingly.
The relative distance Δx/x between two subsequent numbers in

D�, which can exactly be represented in our encoding, is

Δx/x =
C ·B−τx/S − C ·B−(τx+1)/S

C ·B−τx/S

= 1−B−1/S,

(1)

and thus depends only on B and S. To achieve a fixed maximum
relative error Δx/x it thus suffices to fix a base B and compute S
as S = −(logB(1 − Δx/x))−1. For example, for a base B = 2
and scaling factor S = 100, the maximal relative representation
error is given by 6.9 · 10−3.

Other factors to consider when choosing the parameters are the
smallest and the greatest positive value which can be represented;
in our encoding we have C · B−(2κ−1)/S for the minimal and
C ·B−1/S for the maximal positive value. As the scheme represents
numbers from the interval D�, we choose C as C > � · B1/S .
Thus, for most choices of S and B we can let C ≈ �. For fixed
S,B and C, we can set the parameter κ to adjust the smallest
number which can be represented by the scheme. For example, for
parameter values of C = 1, B = 2, S = 100 and κ = 16 the
smallest positive value that can be represented is 5.25 · 10−198. In
addition, κ influences the number of values from D� which can
be represented exactly. There are no general guidelines on how
to choose the parameters; they must be chosen according to the
problem domain. Usually, this process involves an experimental
analysis of the propagation of errors during the computation.

IV-C. Arithmetic Operations
We will now describe how to perform basic arithmetic operations

on encoded values x, y ∈ Lκ.

Multiplication and Division. Due to the logarithmic representation
it is quite easy to compute an encoding xy of the product x · y,
given encodings x and y. Let τC2 = �S · logB(C)�. The function

LPROD(x, y) = LPROD((ρx, σx, τx), (ρy, σy , τy))

= (ρx · ρy, σx · σy , τx + τy − τC2)

= xy

(2)

achieves the desired functionality. Note that LPROD(x, y) = xy:
If either x = 0 or y = 0, then also xy is an encoding of zero, and
if both x, y �= 0 then

τxy = τx + τy − τC2

= −S logB(x/C)− S logB(y/C)− S logB(C)

= −S logB(xy/C).

Dividing two numbers x, y ∈ Lκ with y �= 0 is similar:

LDIV(x, y) = LDIV((ρx, σx, τx), (ρy, σy, τy))

= (ρx, σx · σy, τx − τy + τC2)

= x/y.

(3)

Addition and Subtraction. Given x and y, computing x+ y and
x− y, which will be denoted by LSUM and LSUB in the sequel, is
more involved. We first note that in order to compute a subtraction,
it suffices to swap the sign σy of y and then perform an addition.
Thus we limit ourselves to describe the addition here. The new sign
of σx+y of the value x+ y depends on the values σx, σy as well
as τx and τy. Let λ1, λ2 ∈ {0, 1}, where λ1 = 1 if τx < τy and
λ1 = 0 otherwise, and λ2 = 1 if τx = τy and λ2 = 0 otherwise.
Then σx+y = σx + λ1 · (σy − σx). The new value ρx+y can be
obtained by

ρx+y = (1− λ2(σxσy + 1)2−1)(ρx + ρy − ρx · ρy). (4)

For x, y �= 0 with the same sign, τx+y can be computed using the
Kingsbury-Rayner-Formula [21]:

τx+y = τy − S · �logB(1 +B(τx−τy)/S)�. (5)

If the signs of x and y differ, we have

τx−y = τy − S · �logB(1−B(τx−τy)/S)�. (6)

This leads to the general formula for arbitrary x and y:

τx±y = ρxτx + ρyτy + ρxρy

(−S �logB(1±B(τx−τy)/S)� − τx). (7)

IV-D. Secure Operations
In this section we describe how to perform secure computations

on values that are represented by the encoding described in Sec-
tion IV-A. In this paper, we assume a two-party scenario, where
computation is interactively performed by parties A and B. Party
A has generated secret keys in the past and is thus the only party
who has access to the private key. We encrypt each component
of x ∈ Lκ separately and denote the encryption [x] of x by
[x] = ([ρx], [σx], [τx]).

Multiplication and Division. The arithmetic operations LPROD
and LDIV can be computed in a straightforward manner by
utilizing the properties of homomorphic encryption (see Section II)
to implement Equations (2) and (3). The product operation requires
two secure binary multiplications:

[xy] = LPROD([x], [y])

= ([ρx] � [ρy], [σx]� [σy], [τx][τy][τC2]−1).

For y �= 0 the division can be computed by:

[x/y] = LDIV([x], [y])

= ([ρx], [σx]� [σy], [τx][τy]
−1[τC2]).

Subtraction. As noted above, the operation LSUB can be trans-
formed into a sum LSUM by using the homomorphic properties
of the encryption:

[x− y] = LSUB([x], [y])
= LSUB(([ρx], [σx], [τx]), ([ρy], [σy], [τy]))

= LSUM(([ρx], [σx], [τx]), ([ρy], [σy]
−1, [τy])).

Addition. In the following we describe the operation LSUM that
securely adds two encrypted values [x] and [y]. The flags [σx+y]
and [ρx+y] of the result can be computed in a straightforward
manner once encryptions [λ1] and [λ2] are available:

[σx+y] = [σx]([λ1] ∗ [σy − σx])

and

[ρx+y] = δ1 ∗ δ2, where

δ1 = [1]([λ2] ∗ (([σx] ∗ [σy])[1])
2−1

)−1 and

δ2 = [ρx][ρy]([ρx] ∗ [ρy])−1,

(8)

due to Equation (4). Encryptions of λ1, λ2 can be obtained by using
standard methods for secure computations (see Section II).

The main difficulty when computing the sum [x+ y] of two
encrypted values [x], [y] consists of computing τx+y. This can
be achieved by first computing a value [z] = [τx − τy] and then
evaluating the function f+(z) = S ·�logB(1 +Bz/S)� if σx = σy,
according to Equation (5), and f−(z) = S · �logB(1−Bz/S)� if
σx = −σy, according to Equation (6). Note that z takes on values

in the interval {−2κ − 1, . . . , 2κ − 1}. The final encryption [τx+y]
can then be computed as

[τx+y] = ([ρx] ∗ [τx])([ρy] ∗ [τy])([ρx]� [ρy]) ∗ ([f(z)][τx]−1),

where

[f(z)] = [(1 + σxσy)2
−1f+(z) + (1− σxσy)2

−1f−(z)]

= (([1]([σx] ∗ [σy])
2−1

) ∗ [f+(z)]) ·
(([1]([σx] ∗ [σy])

−1)2
−1

∗ [f−(z)]),

which directly evaluates Equation (7) on encrypted values. Thus,
[τx+y] can be computed by secure multiplications once encryptions
[f+(z)] and [f−(z)] are available. Computations for [f+(z)] and
[f−(z)] have to be done in a way that no party gains any infor-
mation about z or f±(z). Since both functions are very difficult
to compute analytically on encrypted values, we compute them by
running the lookup-table based primitive described in Section III.
Computations on positive values. In case that computations are
performed only on positive values (such as probabilities in the
interval [0, 1]), we can further simplify the representation of values,
as σx will always be set to one. Thus, computing the new sign can
be omitted, while other arithmetic operations can be simplified. For
example, to compute an addition, the value ρx+y can be computed
as [ρx+y] = [ρx][ρy]([ρx] ∗ [ρy])

−1, requiring only one secure
multiplication, instead of evaluating Equation (8), which requires
4 secure multiplications.

V. EXPERIMENTAL RESULTS
In this section we present experimental results to show that

the framework introduced in Section IV yields efficient solutions
that enable the processing of encrypted real-valued signals. To this
end, we first consider the complexity of the basic operations and
subsequently show that the framework can be used to filter digital
signals privately and accurately.

V-A. Experimental Setup
The framework for privacy-preserving arithmetic operations, as

described in Section IV, has been implemented in C++ using the
GNU GMP library version 5.0.1, in order to determine performance
and reliability. Tests were performed on a computer with two
2.1 GHz AMD Opteron quad-core processors and 4GB of RAM
running Linux. Both parties A and B were modeled as different
threads of one program, exchanging messages with each other;
thus the reported computation complexities do not include network
latency. To each thread we assigned some helper threads which
allowed to distribute the computational load on multiple cores; in
particular, independent operations (such as pre-computing random-
ness for Paillier encryption or tables for the LSUM operation) were
performed in parallel, to obtain an equally distributed load on all
cores.

V-B. Complexity of LSUM
Since computing the sum of two encoded elements is the most

complex basic operation, we focus on an analysis of LSUM,
implemented by the OPRF construction of Section III including
all mentioned optimizations. Its memory usage and computation
complexity is dominated by storing and computing the table T ,
which grows linearly with the table size |T |. For the experiment
we measured the time required to set up a table for the OPRF
construction (initialization step in Protocol 1) and perform 128
evaluations of the LSUM over the same table. Figure 1 depicts
the amortized complexity of a single LSUM operation. The left
axis shows the number of operations that can be performed within
one second, depending on the size |T |, where preparation of the
OPRF table is amortized over all 128 invocations of LSUM. The
the right axis plots the memory usage of one LSUM operation,
where again the size of the table is amortized over the number of

1000 2000 3000 4000 5000
100

200

300

400

Size of table

N
u

m
b

er
 o

f
L

S
U

M
 o

p
er

at
io

n
s

p
er

 s
ec

o
n

d

1000 2000 3000 4000 5000
0.6

0.8

1

1.2

M
em

o
ry

 u
sa

g
e

[k
ilo

b
yt

es
]

Fig. 1. Performance of the LSUM operation depending on the table
size |T |.

0 200 400 600 800 1000 1200 1400 1600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of operations

R
el

at
iv

e
er

ro
r

ra
te

S

1
=60 S

2
=120 S

3
=500

Fig. 2. Digital filter for different parameters S.

operations. We see that the latter indeed scales perfectly linear with
the table size, while 147 to 306 secure LSUM operations can be
performed within one second on the tested hardware platform.

Note that there is a tradeoff between accuracy and complexity.
The number of values of the interval D� that can be represented
without error in our encoding is determined by both the table
size |T | and the parameter S. The larger this number, the better
the accuracy, due to smaller rounding errors. At the same time,
complexity of the LSUM operation grows linearly in |T |.
V-C. Digital filters

In order to demonstrate the reliability of the proposed frame-
work, we consider the use case of digitally filtering encrypted real-
valued signals. In particular, we have implemented an averaging
filter fn(x) =

∑n
i=1

1
n
xi and tested its performance when applied

to signals whose components xi are randomly chosen positive 8-
bit numbers. We fixed the parameters of the number representation
as B = 2.71 (i.e. we use the natural logarithm) and consider the
cases of S1 = 60, S2 = 120 and S3 = 500. For each parameter Si,
the table sizes T1 = 500, T2 = 1200, T3 = 5000 were chosen in a

way that they can represent the smallest and biggest value occuring
during the computation. Figure 2 depicts the relative error of the
filtered signal coefficients, when compared to a standard floating
point implementation: the x-axis depicts the length of the filter (and
thus the number of dependent operations) and the y-axis plots the
relative error. We repeated the experiment 20 times with randomly
chosen signals and depict the average relative error as well as the
maximum and minimum values. The experiments show that for
even small values such as 1

n
= 1

800
= 1.25 · 10−3 accurate results

can be achieved (with a relative error of less than 1% for S = 500).

VI. CONCLUSIONS
In this paper we presented for the first time a framework that

allows to compute securely with values taken from a real interval in
a numerically stable way. To be able to process both very small and
very large values, we chose a logarithmic encoding and provided
secure two-party protocols to perform all arithmetic operations on
encoded values in an oblivious way. To demonstrate its practicality,
we implemented the framework and performed measurements to
show that the most complex operation (the addition) can be
performed in a reasonable amount of time; furthermore we analyzed
the propagation of quantization errors when applied to the problem
of privately filtering signals.

ACKNOWLEDGEMENTS

This work was supported in part by the German Research
Foundation (DFG) and the Center for Advanced Security Research
Darmstadt (CASED). Kay Hamacher gratefully acknowledges fi-
nancial support by Fonds der chemischen Industrie.

VII. REFERENCES
[1] Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and

Emmett Witchel, “Privacy-preserving remote diagnostics,” in
ACM Conference on Computer and Communications Security,
2007, pp. 498–507.

[2] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzen-
beisser, Inald Lagendijk, and Tomas Toft, “Privacy-preserving
face recognition,” in Privacy Enhancing Technologies Sym-
posium (PET), 2009, pp. 235–253.

[3] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen,
“Multiparty computation from threshold homomorphic en-
cryption,” in EUROCRYPT, 2001, pp. 280–299.

[4] A. C.-C. Yao, “Protocols for Secure Computations (Extended
Abstract),” in Annual Symposium on Foundations of Computer
Science — FOCS ’82. November 3-5, 1982, pp. 160–164,
IEEE.

[5] O. Goldreich, S. Micali, and A. Wigderson, “How to Play
any Mental Game or A Completeness Theorem for Protocols
with Honest Majority,” in ACM Symposium on Theory of
Computing — STOC ’87. May 25-27, 1987, pp. 218–229,
ACM.

[6] M. Jacobsson and A. Juels, “Mix and match: Secure function
evaluation via ciphertexts,” in Advances in Cryptology –
ASIACRYPT’00, T. Okamoto, Ed. 2000, vol. 1976 of LNCS,
pp. 162–177, Springer-Verlag.

[7] Louis Kruger, Somesh Jha, Eu-Jin Goh, and Dan Boneh,
“Secure function evaluation with ordered binary decision
diagrams,” in ACM Conference on Computer and Commu-
nications Security, 2006, pp. 410–420.

[8] M. Naor and K. Nissim, “Communication preserving proto-
cols for secure function evaluation,” in ACM Symposium on
Theory of Computing, 2001, pp. 590–599.

[9] M. Naor and K. Nissim, “Communication complexity and
secure function evaluation,” Electronic Colloquium on Com-
putational Complexity (ECCC), vol. 8, no. 062, 2001.

[10] Pierre-Alain Fouque, Jacques Stern, and Jan-Geert Wackers,
“Cryptocomputing with rationals,” in Financial Cryptogra-
phy, 2002, pp. 136–146.

[11] O. Catrina and A. Saxena, “Secure computation with fixed-
point numbers,” in Financial Cryptography, 2010.

[12] Peter Bogetoft, Ivan Damgård, Thomas Jakobsen, Kurt
Nielsen, Jakob Pagter, and Tomas Toft, “A practical im-
plementation of secure auctions based on multiparty integer
computation,” in Financial Cryptography, 2006, pp. 142–147.

[13] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen, “On
secure scalar product computation for privacy-preserving data
mining,” in 7th ICISC. 2004, vol. 3506 of LNCS, pp. 104–120,
Springer.

[14] G. Jagannathan and R. N. Wright, “Privacy-preserving dis-
tributed k-means clustering over arbitrarily partitioned data,”
in KDD ’05: Proceeding of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data
mining, New York, NY, USA, 2005, pp. 593–599, ACM Press.

[15] J. F. Canny, “Collaborative filtering with privacy.,” in IEEE
Symposium on Security and Privacy, 2002, pp. 45–57.

[16] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo
Lazzeretti, Ahmad-Reza Sadeghi, and Thomas Schneider,
“Secure evaluation of private linear branching programs with
medical applications,” in 14th European Symposium on
Research in Computer Security (ESORICS), 2009, pp. 424–
439.

[17] P. Paillier, “Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes,” in Advances in Cryptology —
EUROCRYPT ’99, J. Stern, Ed. May 2-6, 1999, vol. 1592 of
LNCS, pp. 223–238, Springer.

[18] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer
Reingold, “Keyword search and oblivious pseudorandom
functions,” in Theory of Cryptography, Second Theory of
Cryptography Conference, TCC 2005, Cambridge, MA, USA,
February 10-12, 2005, Proceedings, Joe Kilian, Ed. 2005, vol.
3378 of Lecture Notes in Computer Science, pp. 303–324,
Springer.

[19] Carmit Hazay and Yehuda Lindell, “Efficient protocols for
set intersection and pattern matching with security against
malicious and covert adversaries,” in Theory of Cryptography,
Fifth Theory of Cryptography Conference, TCC 2008, New
York, USA, March 19-21, 2008. 2008, vol. 4948 of Lecture
Notes in Computer Science, pp. 155–175, Springer.

[20] Stanislaw Jarecki and Xiaomin Liu, “Efficient oblivious pseu-
dorandom function with applications to adaptive ot and secure
computation of set intersection,” in Theory of Cryptography,
6th Theory of Cryptography Conference, TCC 2009, San
Francisco, CA, USA, March 15-17, 2009. Proceedings, Omer
Reingold, Ed. 2009, vol. 5444 of Lecture Notes in Computer
Science, pp. 577–594, Springer.

[21] P.J.W. Kingsbury, N.G. Rayner, “Digital filtering using
logarithmic arithmetic,” Electronics Letters, pp. 56–58, 1971.

