
On the complexity of Decomposition Attack

Koh-ichi Nagao
nagao@kanto-gakuin.ac.jp

Dept. of Engineering, Kanto Gakuin Univ.,
1-50-1 Mutsuura Higashi Kanazawa-ku Yokohama 236-8501, Japan

Abstract. In recent researches, it is discovered that index calculus is
useful for solving the discrete logarithm problems (DLP) of the groups
of the Jacobian of curves (including elliptic curve) over finite field, which
are widely used to cryptosystems. In these cases, the probability that an
element of the group is written by the summation of N elements of large
primes and factor bases is O(1) where N is some pre-fixed constant. So
the situation is little different to the normal index calculus and it is pro-
posed that it should be called another name, ”decomposition attack”. In
decomposition attack, first, some relations are collected and the graph,
whose vertexes are the set of large primes and whose edges are the rela-
tions, is considered and the elimination of large prime is done by using
this graph. However, in the proposed algorithm, the randomness of the
graph, which is difficult to define, is needed. In this paper, we first formu-
late the decomposition attack and next propose a new algorithm, which
does not require the randomness of the graph and its worst complexity
can be estimated.

Keywords Index Calculus, Decomposition Attack, Discrete logarithm problem

1 Introduction

Index calculus is widely used for solving DLP of a finite group. Recently, Gaudry[2]
shows that for the DLP of a Jacobian group over finite field G = Jac(C/Fq),
taking the set of large primes B0 = {P −∞|P ∈ C(Fq}, index calculus works
well. Latter, the author [7] and Gaudry et al. [3] independently show that the
technique of 2-large prime elimination is useful for decreasing its expected com-
plexity. Moreover, Gaudry [4](elliptic curve case) and the author [8] (hyper-
elliptic curve case) show that for the DLP of a Jacobian group over finite exten-
sion field G = Jac(C/Fqn), taking the set of large primes B0 = {P −∞|P ∈
C(Fqn , x(P) ∈ Fq}, index calculus works well and also show that the technique
of the 2-large prime elimination is useful in this algorithm. In the 2-large prime
elimination, the graph, whose vertexes are the set of large primes and whose
edges are the relations, which are collected in the computation, is considered.
However, in the pre-proposed algorithm [7] [3], the randomness of the graph is
needed and it is difficult to define. In this paper, we propose a new algorithm,
which does not require the randomness of the graph and its worst complexity
can be estimated. Let G be a finite group whose order |G| is prime. Here, we
shortly note the summary of the 2-large prime elimination. Let B, B0 be fixed
subsets of G such that B ⊂ B0 ⊂ G. An element of B (resp. B0\B) is called
factor base (resp. large prime) in the theory of index calculus. In the compu-
tation of the index calculus, a family of the vectors, indexed by the elements
of B0, −→v i =

∏
b∈B0

vi,b ∈ A|B0|(Z/|G|Z) (i = 1, 2, .., N2(> |B0|)) are collected.
Each vector satisfies the property: 1) For each vector−→v i, the number of non-zero

terms is at most fixed positive integer N (i.e. #{b ∈ B0|vi,b 6= 0} ≤ N). By using
linear algebra of sparse matrix, we have some {si ∈ Z/|G|Z (i = 1, 2, .., N2)} such
that

∑N2
i=1 si

−→v i = 0 and ∃i, si 6= 0. Its complexity is around O(N2
2). However,

Fig. 1. Example of even length loop

if one only collects the vectors satisfying that the number of non-zero terms of
large prime is at most 2 (i.e. #{b ∈ B0\B|vi,b 6= 0} ≤ 2), and the value of these
terms are 1(i.e, vi,b = 0 or 1, for ∀b ∈ B0\B), the elimination of large prime is
simply done as follows: Let Graph = (Edge,Vertex) be the graph whose ver-
texes are large primes and the edge bb′ exists if and only if there is a vector −→v i
with vi,b = vi,b′ = 1. For simplicity, (only in Introduction), put B = {b1, ..., b|B|},
B0\B = {b|B|+1, ..., bB0} and −→v i = {vi,1, .., vi,|B|, vi,|B|+1, .., vi,|B0|}.

For example, let{−→v 1 = (∗ ∗ ∗ ∗ ∗, 1, 1, 0, 0, 0, 0), −→v 2 = (∗ ∗ ∗ ∗ ∗, 0, 1, 1, 0, 0, 0), −→v 3 = (∗ ∗ ∗ ∗ ∗, 0, 0, 1, 1, 0, 0),−→v 4 = (∗ ∗ ∗ ∗ ∗, 1, 0, 0, 1, 0, 0), −→v 5 = (∗ ∗ ∗ ∗ ∗, 0, 0, 0, 1, 1, 0), −→v 6 = (∗ ∗ ∗ ∗ ∗, 1, 0, 0, 0, 0, 1)
where ”****”　 is the terms of factor bases. Then the graph is written by
Fig 1. This graph contains an even length loop l = −→v 1

−→v 2
−→v 3

−→v 4, and from
even length loop, the elimination of large prime terms is done by Eli(l) :=∑length of loop

i=1 (−1)i−1−→v i = −→v 1 −−→v 2 +−→v 3 +−→v 4 = (∗ ∗ ∗∗, 0, 0, 0, 0, 0, 0).
Moreover, suppose 1) |B| ≤ O(

√
|B0, 2) there are sufficiently large number

of even small length(≤ O(log |B0|)) loops, and 3) these loops can be computed
in O(|B0|)×poly(log |B0|) complexity. So the computation of {si} is reduced to
solving sparse linear algebra of the size around |B| × |B| and total complexity
is estimated by O(|B0|)× poly(log |B0|) which is very small. In [8], [3], there is
proposed algorithm of collecting enough even small length loops, which works
well under the assumption that 1) N2 = Const× |B0| where Const is some large
constant, and 2) the graph is random. However, the randomness of the graph,
which is hard to define, is needed for this algorithm. So, not only the worst
complexity but also the guarantee that the algorithm returns the answer is not
known. In this paper, we propose a modified index calculus algorithm whose
worst complexity is known. In the concept and word of graph theory, we show
the following theorem.

Theorem 1. Let Graph = (Edge,Vertex) be a non-oriented graph (multi path
allowed, path to a vertex to itself not allowed, disjoint graph allowed). Assume
|Edge| − 4|Vertex| > M ′ for a positive integer M ′. Then Graph contains a
family of even length loops {lj |j = 1, 2, 3..,M ′′} and a family of edges {dj |j =
1, 2, ..,M ′′} satisfying the following properties:

i) M ′′ ≥ M ′, ii) Length of lj is < 4 + 4 log2 |Edge|,
iii) Edge dj only once appears in the loop lj and does not appear in the loop lj′
for any j′ > j. Moreover, there is an algorithm computing {lj} and {dj} from
Graph, whose complexity is estimated by |Edge| × poly(log |Edge|).

2 Discrete logarithm problem of Finite Group

Let G be a finite group whose order |G| is a prime.

Definition 1 (DLP) Let a, b ∈ G such that a = nb for unknown n ∈ Z/|G|Z.
DLP is the problem finding unknown n.

For a while, we prepare some notations and assumptions of the complexity. Let
q be an input size. For a function f(q), we define the notation of the complexity
upto poly(log q) term by r2

(log q)r1 ≤ Õ(f(q)) ≤ r3(log q)r4 , ri ∈ R>0. Also, for

functions f(q), g(q), we define f(q) ≈ g(q) ⇐⇒ Õ(f(q)/g(q)) = 1. Further, we
will assume that i) |G| ≤ Õ(qr) for some r ∈ R>0, ii) Data length of g ∈ G and
group operation of G is in Õ(1), iii) Group order |G| is prime and known. Let
B0, B be fixed subsets of G such that B ⊂ B0 ⊂ G. An element of B is called
factor base and an element of B0\B is called large prime in index calculus. Also
let N be a fixed small positive integer.

Definition 2 (Decomposed factor) Let g ∈ G. g is written by g =
∑N

i=1 gi,
i) gi ∈ B0, resp. ii) g1, ..., gN−2 ∈ B, gN−1, gN ∈ B0,
resp. iii) g1, ..., gN−1 ∈ B, gN ∈ B0, resp. iv) g1, ..., gN ∈ B,
g is called i) potentially decomposed element, resp. ii) 2-almost decomposed el-
ement, resp. iii) almost decomposed element, resp. iv) decomposed element. In
these cases, the set {gi}N

i=1 is called decomposed factor of g.

Further, we will assume the following assumption, which is true for the index
calculus of a Jacobian of a curve, for some N .

Assumption 1 (Assumption of Index Calculus) a)The computation, whether
g is potentially decomposed element or not and the computation of {gi}, is done
by the complexity Õ(1).
b) The probability that g(∈ G) is i) potentially decomposed element, resp. ii)
2-almost decomposed element, resp. iii) almost decomposed element, resp. iv)
decomposed element is O(1), resp. O((|B|/|B0|)N−2), resp. O((|B|/|B0|)N−1),
resp. O((|B|/|B0|)N).

3 Universe

In order to solve the DLP a = nb (a, b ∈ G, n ∈ Z/|G|Z), we prepare the
algebraic structure named Universe. Throughout this paper, finite group G, its
two subsets B0,B, and a, b(∈ G) in DLP are fixed.

Definition 3 (Universe) Put
U := {u = (gu,−→v u,−→r u) | gu ∈ G,−→v u =

∏

b∈B0

vu,b ∈ A|B0|(Z/|G|Z),

−→r u = (r1, r2) ∈ A2(Z/|G|Z) such that gu = r1a + r2b =
∑

b∈B0

vu,b b }.

The set U is called Universe and for an element of u ∈ U , the length of u is
defined by lu(u) := #{b ∈ B0|vu,b 6= 0}.

Definition 4 Let U0, U1, U2 be the subset of U defined by the following:
U0 := {u ∈ U| vu,b = 0 for ∀b ∈ B0\B},
U1 := {u ∈ U| vu,b = 0 or 1 for ∀b ∈ B0\B, #{b ∈ B0\B| vu,b = 1} = 1},
U2 := {u ∈ U| vu,b = 0 or 1 for ∀b ∈ B0\B, #{b ∈ B0\B| vu,b = 1} = 2}
Moreover. let U ′0(⊂ U0), U ′1(⊂ U1), U ′2(⊂ U2) be the subset of U defined by
U ′i := {u ∈ Ui| lu(u) = N}, (i = 0, 1, 2).

Let r1, r2 ∈ Z/|G|Z and suppose that r1a+ r2b is decomposed element, resp.
almost decomposed element, resp. 2-almost decomposed element. Also let {gi}N

i=1
be the decomposed factor of r1a+r2b (i.e., r1a+r2b = g1+g2+ ...+gN , gi ∈ B0)

Put DEC(r1, r2) = (g,−→v ,−→r) where g = r1a + r2b, vb =
{

1, b ∈ {gi}
0, otherwise and

−→r = (r1, r2). So, we easily have that DEC(r1, r2) is an element of U ′0, resp. U ′1,
resp. U ′2. Further, we will make an algebraic structure of U .

Definition 5 (support) For any u ∈ U2, put sup(u) := {b ∈ B0\B| vu,b 6= 0}.
For any u ∈ U1, put sup(u) := {b ∈ B0\B| vu,b 6= 0} ∪ {∞}.

Note that for any u ∈ U1 ∪ U2, sup(u) is a subset of B0\B ∪ {∞} consists of 2
elements.

Definition 6 (Linear Sum) Let {ti ∈ U|i = 1, 2, ..., n} be a list of Universe
and let {λi ∈ Z/|G|Z | i = 1, 2, ..., n} be a list of number. Linear sum of {ti} by
{λi}, which is written by

∑n
i=1 λiti, is the element of U satisfying the follow-

ing: 1) gPn
i=1 λiti

=
∑n

i=1 λigti , 2) −→v Pn
i=1 λiti

=
∑n

i=1 λi
−→v ti , 3) −→r Pn

i=1 λiti
=∑n

i=1 λi
−→r ti .

By using this definition, we will define the elimination of large prime and factor
base.

Definition 7 (Elimination of Large Prime) Let {ui ∈ U ′1∪U ′2| i = 1, 2, .., N2}
be a list of the elements in U ′1 ∪ U ′2 and let M ′ be a positive integer such that
M ′ ≥ |B| + 1. Elimination of large primes from {ui} is a computation of a list
of linear sum {wj ∈ U0|j = 1, 2, ..., M ′′} satisfying the following:
1) M ′′ ≥ M ′, 2) wj ∈ U0 is written by wj =

∑N2
i=1 αi,jui, (αi,j ∈ Z/|G|Z),

3)For any j, there is some D(j) such that αD(j),j 6= 0, αD(j),j′ = 0 for any
j′ > j, 4)For any j, #{i |αi,j 6= 0} ≤ O(log N2).

In section 6, we will show the following claim is directly from Theorem 1.

Claim 2 {wj} and {uD(j)} in Definition 7 are computable with Õ(N2) complex-
ity under the assumption N2 > 4|B0\B|+ 4 + M ′.

Definition 8 (Elimination of Factor Base) Let {wj ∈ U0|j = 1, 2, ..., M ′}
be a list of U0. Elimination of factor base from {wj} is a computation of a linear
sum uo =

∑M ′

j=1 βjwj ∈ U0, (βj ∈ Z/|G|Z) satisfying the following:

1) −→v uo
=
−→
0 , (from this, guo

= 0 is reduced),
2) There is some J such that βJ 6= 0, βj = 0 for any j < J .

We see easily that the computation of the elimination of factor base can
be done by linear algebra of the size around |B| × |B| matrix. Assume that
{wj} is obtained from elimination of large prime. So, from the property 3) of
Definition 7, the linear algebra, which is used to eliminate the factor base, is
sparse and its complexity is Õ(|B|2). Put sj :=

∑M ′

j=1 βjαi,j . So, we see easily

uo =
∑N2

i=1 siui and sD(J) =
∑M ′

j=1 βjαD(J),j = βJαD(J),J 6= 0. From the defini-

tion, uo = (0,
−→
0 ,−→r uo

) where −→r uo
=

∑N2
i=1 si

−→r ui
. So, remark that if ui ∈ U ′1∪U ′2

are selected randomly, the probability of −→r uo
=
−→
0 is 1

|G| and it is negligible(cf
the following Theorem 3). The following algorithm 1 is an algorithm solving
DLP of finite group.

Algorithm 1 Solving DLP of finite group
Input: a, b ∈ G s.t. a = nb for some unknown n ∈ Z/|G|Z. Output: find n.
1: Collecting 2-almost and almost decomposed elements
2: U1 ← {}, U2 ← {}
3: while |U1 ∪ U2| < suitable number N2 do
4: (r1, r2) ← random pair of Z/|G|Z,.
5: IF r1a + r2b being 2-almost decomposed Then U2 ← U2 ∪ {DEC(r1, r2)}
6: IF r1a + r2b being almost decomposed Then U1 ← U1 ∪ {DEC(r1, r2)}
7: Put {ui| i = 1, 2, ..., N2} = U1 ∪ U2, M ′ = |B|+ 1

8: Elimination of large prime Compute {wj =
PN2

i=1 αi,jui ∈ U0| j = 1, 2, .., M ′}
9: Elimination of factor base (by solving sparse linear algebra)

10: Compute uo =
PM′

j=1 βjwj = (0,
−→
0 ,−→r uo)

11: (r1, r2) ← −→r uo , return −r2/r1 mod |G|

Theorem 3. In Algorithm 1, the probability that −→r uo =
−→
0 , which means that

the algorithm does not return the value, is 1
|G| .

Proof. For −→r = (r1, r2),−→s = (s1, s2) ∈ A2(Z/|G|Z), put the relation ∼ by −→r ∼−→s ⇔ r1a+r2b = s1a+s2b. Then we have 1) (r1−s1) loga b+(r2−s2) = 0, 2) ∼
is an equivalent relation, and 3) for any element of A2(Z/|G|Z), the number of ∼
equivalent elements in A2(Z/|G|Z) is |G|. For any (r1, r2), (s1, s2) ∈ A2(Z/|G|Z)
such that (r1, r2) ∼ (s1, s2), the first and second coordinates of DEC(r1, r2)
and DEC(s1, s2) are the same. In Algorithm 1, let (R1, R2) be the element
of A2(Z/|G|Z) such that usD(J) = DEC(R1, R2). Here, (R1, R2) is ramdomely
choosen vector, however, suppose that instead of choosing (R1, R2), another
(R′1, R

′
2), which is ∼ equivalent to (R1, R2), is choosen. Since the first and second

coordinates of DEC(R1, R2) and DEC(R′1, R
′
2) are the same, the large prime

elimination part and the factor base elimination part of Algorithm 1 is done

by the same way and the value of si is the same. Suppose −→r uo
=
−→
0 . From

−→r uo =
∑N2

i=1 si
−→r ui , sD(J) 6= 0, if one chooses another DEC(R′1, R

′
2) instead of

DEC(R1, R2), we have new−→r uo
= sD(J)((R′1, R

′
2)− (R1, R2)) 6= −→

0 and we have
desired result.

Note that the set of factor bases B is usually unconditional subset of B0 and
its size |B| can be coordinated.

Theorem 4. The complexity of solving DLP by Algorithm 1 is minimized at
|B| ≈ |B0|(N−1)/N , and it is estimated by Õ(|B0|(2N−2)/N).

Proof. From Assumption 1, the probability that for randomly chosen r1, r2 ∈
Z/|G|Z, DEC(r1, r2) is in U1∪U2 is O(|B/B0|N−2)+O(|B/B0|N−1) = O(|B/B0|N−2).
From Claim 2, we must collect N2 = O(|B0|) number of DEC(r1, r2) ∈ U1 ∪U2.
Then we see that the cost for collecting U1 ∪ U2 is Õ(|B0/B|N−2 · |B0|). From
this Claim, we also have the cost of the elimination of large prime is Õ(|B0|)
and it is smaller than that of collecting U1∪U2 part. The cost of the elimination
of factor base is Õ(|B|2), since in this computation, sparse linear algebra of the
size around |B| × |B| is used. So, rebalancing the cost of collecting U1 ∪U2 part
and elimination of factor base part, we have |B0/B|N−2 · |B0| ≈ |B|2. Thus,
|B| ≈ |B0|(N−1)/N is obtained and we have desired result.

4 Graph and Global variables of the System

Let U1(⊂ U ′1) and U2(⊂ U ′2) be the sets of Universe, which are collected in
the former part of Algorithm 1. Further, we fix U1, U2 and exceed the discus-
sion. For the purpose of the elimination of large prime, we consider the graph
Graph = (Edge,Vertex) such that
1) Edge is a subset of U1 ∪ U2,
2) Vertex is the subset of B0\B ∪ {∞}, which appears in sup(u) for some
u ∈ Edge, (i.e., Vertex = ∪u∈Edge sup(u)),
3) Edge u ∈ Edge contains 2 vertexes {b1, b2} = sup(u).

Definition 9 (Citation) For any b ∈ Vertex, put cite(b) := {u ∈ Edge|b ∈
sup(u)}.
Note that cite(b) is the set of edges which contain vertex b. At first, the graph
is initialized by Edge ← U1 ∪ U2, Vertex ← ∪u∈U1∪U2 sup(u) and latter, some
edges and therefore the vertexes, which have no edge, are removed from graph.

In the computation of the elimination of large prime, we use some global
variables of the system.

Definition 10 (List of the Global Variables of the Graph)
Table SUP := {sup(u)|u ∈ U1 ∪U2}, Table CITE := {cite(b)| b ∈ B\B ∪ {∞}}
Set Edge(⊂ U1 ∪ U2) and its cardinality |Edge|
Set Vi := {b ∈ B\B ∪ {∞}|#cite(b) = i} and its cardinality |Vi|
In these variables, vertexes of the graph is considered as Vertex = ∪i≥1Vi.

In the whole computation, we seek the loop of Graph, which start form
some base point b. In order to preserve the number of discovered loop, the global
variable Counter is prepared. The value of Counter is initialized by 0. If a loop

l is discovered, in order not to re-found the same loop, some one edge ul, which
appears only once in l, is deleted from Graph and the value of the Counter is
incremented. Suppose cl is the value of the Counter, when the edge l is found.
The 3-ple ex(l) := (l, ul, cl) is called the extended data of found loop l. In the
computation, we collect the even length loops. By this mean, we prepare the
global variable LP, which is the list of the collection of the extended data of
even length loops. LP is initialized by [] and if an even length loop is found,
its extended data is inserted to LP. Suppose that two odd length loops l1,l2,
which start from the same base point, is found. The conjunction of l1,l2, which
is simply written by l1 + l2, is an even length loop. Put cl1+l2 := min(cl1 , cl2),

ul1+l2 :=
{

ul1 if cl1 < cl2

ul2 if cl1 > cl2
, and ex(l1 + l2) := (l1 + l2, ul1+l2 , cl1+l2),

From the notations of extended data, we have the following two lemmas.
Lemma 1. Let l1,l2 be found odd length loops start from the same point.
i) cl1 = cl1+l2 if cl1 < cl2 ,
ii) The edge ul1+l2 appears only once in the loop l1 + l2.

Lemma 2. Let l3,l4 be even length loops, which are 1) found even length loop(s)
or 2) even length loop(s) obtained by conjunction(s) of two odd length loops.
Suppose cl3 < cl4 . Then, ul3 appears only once in the loop l3 and does not appears
in l4.

We prepare the global variable ROL(b), which is indexed by b ∈ B0\B ∪
{∞}. ROL(b) is initialized by ∅. If an odd loop l, which starts from b, is first
found, ROL(b) is updated by ex(l). Moreover, suppose ROL(b) 6= ∅ and let
(lold, uold, cold) be the stored data in ROL(b). Thus, we have an even length loop
lold + l. And so, the extended data ex(lold + l) is inserted to LP and ROL(b) is
also updated by ex(l).

Definition 11 (List of the Global Variables of the loop)
List LP list of the collection of 3-ple (extended data of even loop)
List ROL := {ROL(b)|b ∈ B\B ∪ {∞}} list of recent odd loop start from b.
Counter Counter The number of found loops (Not include the number of even
loop obtained by conjunction)

In the computation, we collect the even length loops by the policy of Algo-
rithm 2.
Lemma 3. Let e1 = (l1, ul1 , cl1), e2 = (l2, ul2 , cl2) (e1 6= e2) be two extended
data in LP obtained from Algorithm 2. Then, cl1 6= cl2 .
Proof. When one of the {l1, l2} is a found even length loop, it is trivial. Suppose
l1, l2 are the even loops obtained by conjunction. Note that from the construction
of Algorithm 2, cl1 is the value of Counter of ROL(b) for some b and when the
conjunction loop l1 in made, the value of Counter of ROL(b) is updated. So, it is
never used further.

Lemma 4. Let LP be the list obtained from Algorithm 2. Put M ′′ := |LP| and
{(lj , dj , cj)| j = 1, 2, 3..., M ′′} := LP. Then, dj appears only once in lj and does
not appear lj′ (j′ > j).
Proof. Remark that the list {(lj , dj , cj)} is sorted by the value of cj . From Lemma 2
and Lemma 3, we have desired result.

Initialization of global valiables is given by Algorithm 3.
Lemma 5. The complexity of initializing global variables of the system by Al-
gorithm 3 is Õ(|U1 ∪ U2|).

Algorithm 2 Policy of the Collection of Even length Loops
1: Global Variable Counter,LP,ROL(b) are used
2: Counter ← 0, LP ← []
3: for all b ∈ B0\B ∪ {∞} do Put ROL(b) ← ∅
4: while Some Condition do
5: Seeking the loop of Graph
6: if Even length loop l is found then
7: select one edge ul which appears once in l, delete ul from Graph, Counter++
8: insert (l, ul,Counter) to LP sorted by 3rd coordinate
9: if Odd length loop l start from b is found then

10: if ROL(b) 6= ∅ then
11: (lold, uold, cold) ← ROL(b)
12: insert (l + lold, uold, cold) to LP sorted by 3rd coordinate
13: select one edge ul which appears once in l, delete ul from Graph, Counter++
14: ROL(b) ← (l, ul,Counter)

Algorithm 3 Initialization of Global variables of the Sysyem
Input: U1, U2, Output: Global Variables of the System
1: Edge ← U1 ∪ U2
2: for allu ∈ U1 ∪ U2 do Compute sup(u) and store in SUP
3: for all b ∈ B0\B ∪ {∞} do Put cite(b) ← {}
4: for all u ∈ U1 ∪ U2 do (b1, b2) ← sup(u), cite(b1) ← cite(b1) ∪ {u}, cite(b2) ← cite(b2) ∪ {u}
5: for all Vi, (i ≥ 0) do Put Vi ← {}, |Vi| ← 0
6: for all b ∈ B0\B ∪ {∞} do i ← #cite(b), Vi ← Vi ∪ {b}, |Vi|+ +
7: LP ← [], Counter ← 0
8: for all b ∈ B0\B ∪ {∞} do ROL(b) ← ∅

5 Operation of Graph

Here, we prepare the two operations of graph Graph = (Edge,Vertex). First
one is the operation deleting edge u0 from Graph. This operation is done by
the algorithm 4. From Algorithm 4, we easily have the following lemma.

Algorithm 4 Deleting edge u0 from graph
Input: u0, Output Update Global Variables of the graph
1: Edge ← Edge\{u0}, (b1, b2) ← sup(u0)
2: for i = 1, 2 do
3: n ← #cite(bi), Vn ← Vn\{bi}, |Vn| − −, Vn−1 ← Vn−1 ∪ {bi}, |Vn−1|+ +

Lemma 6. The complexity of deleting one edge from graph is Õ(1).

Second operation of graph is called n-gleton. Let n be a small positive integer.
n-gleton is the operation that delete the vertexes which have only less than or
equals to n edges(i.e. {b ∈ Vertex|#cite(b) ≤ n}) and delete the edges which
contains deleted vertexes and continue these operations recursively. So after this
operation, any vertex b have more than n + 1 edges (i.e.,#cite(b) ≥ n + 1 for
∀b ∈ Vertex). n-gleton is done by the Algorithm 5. In Algorithm 5, delete
of the vertexes is automatically done in the sub-deleting edge operation. From
Algorithm 5, we easily have the following lemma.

Algorithm 5 n-gleton
Input: n, Output Update Global Variables of the graph
1: while b ∈ ∪n

i=1Vi do
2: C ← cite(b)
3: for all u ∈ C do
4: delete u from graph (note that Vi’s are updated and recursive deleting is done)

Lemma 7. i) The complexity of n-gleton is Õ(number of deleted edges).
ii) The value |Edge| − n|Vertex| is unchanged or increasing after n-gleton op-
eration.

6 Chain and Loop of Graph

In this section, we define the chain and loop of the Graph = (Edge,Vertex).

Definition 12 (Chain) Chain is a sequence of Edges c = u1u2...un (ui ∈
Edge) such that there are some vertexes b0, b1, ..., bn ∈ Vertex satisfying sup(ui) =
{bi−1, bi}. Moreover, the length of the chain lc(c) is defined by the length of the
sequence (i.e., lc(c) = n). The vertexes b0 (resp. bn) is called start point (resp.
end point) of chain C and they are written by start(c) = b0, end(c) = bn.
For the generality, the 0-chain, whose length is 0, is also considered.

Note that the start point and end point are not unique (however, the pair of the
start point and end point exists from the definition). Also note that each edge u ∈
Edge is considered as a chain of length 1, whose {start(u), end(u)} = sup(u).
For the generality, put start(0-chain) = end(0-chain) = b for ∀b ∈ Vertex.

Definition 13 (Arithmetic Operation of Chain) For a chain c = u1u2...un−1un,
put its reversal by rev(c) := unun−1...u2u1. For two chains c1 = u1u2...un and
c2 = un+1un+2...um such that end(c1) = start(c2), put there conjunction by
c1 + c2 := u1u2..unun+1..um.

Note that we easily have start(rev(c)) = end(c), end(rev(c)) = start(c), start(c1+
c2) = start(c1), and end(c1 + c2) = end(c2) form the definition. For any chain
c, (0-chain) + c, c + (0-chain) are considered by c.

Definition 14 (Loop) Loop is a chain l = u1u2...un such that its start point
and end point can be taken the same vertex (i.e., start(l) = end(l)).

Definition 15 (Large Prime Elimination via Even Length Loop) Let l =
u1u2..., u2n be an even length loop. Put

Eli(l) :=
lc(l)∑

i=1

ui × (−1)i−1 = (
lc(l)∑

i=1

(−1)i−1gui ,

lc(l)∑

i=1

(−1)i−1−→v ui ,

lc(l)∑

i=1

(−1)i−1−→r ui)

Lemma 8. For an even length loop l, Eli(l) ∈ U0.

Proof. Let l = u1u2..., u2n and let b0, b1.., b2n be the vertexes such that sup(ui) =
{bi−1, bi}. Since l is a loop, b0 = b2n holds. For vectors −→v 1,

−→v 2 ∈ A|B0|(Z/|G|Z),
the equivalent relation ≡ is defined by −→v1 ≡ −→v2 ⇔ −→v1 − −→v2 ∈ U0. For any
b′ ∈ Vertex, put

−→
V b′ ∈ A|B0|(Z/|G|Z) by Vb′,b′ = 1, Vb′,b = 0 for any b 6= b′. So

we have, −→v ui
≡ −→

V bi−1 +
−→
V bi

and −→v Eli(l) ≡ (
−→
V b0 +

−→
V b1)− (

−→
V b1 +

−→
V b2) + ...−

(
−→
V b2n−1 +

−→
V b2n) =

−→
V b0 −

−→
V b2n =

−→
0 . So, we have Eli(l) ∈ U0.

Here, we show that Theorem 1 induces Claim 2 and then Theorem 4. Assume
that Theorem 1 is true. We apply Theorem 1 to the Graph = (Edge,Vertex)
whose Edge is {ui| i = 1, 2, ..., N2} and whose Vertex is ∪N2

i=1 sup(ui) ⊂ B0 \
B ∪ {∞}. Note that N2 = |Edge| and |Vertex| ≤ |B0 \ B| + 1. On the other
hands, N2 > 4|B0\B|+ 4 + M ′ holds from assumption of Claim 2. So, we have
|Edge| − 4|Vertex| > M ′, which is the assumption of Theorem 1. Suppose that
{lj |j = 1, 2, ..., M ′′} and {dj |j = 1, 2, ..., M ′′} are the lists which are obtained
from Theorem 1. Also put wj := Eli(lj) (j = 1, 2, ..,M ′′). Here, we must show
that the list {wi} and {dj} satisfy the properties of Definition 7. From lemma
8, we have wj ∈ U0. From its construction, wj is written by the form wj =∑N2

i=1 αi,jui. For any j, the value #{i|αi,j 6= 0} is the same or smaller than
N × lc(lj) < 4N + 4N log2 |N2| = O(log |N2|). Also put D(j) by uD(j) = dj ,
and D(j) satisfied the property iii)of Defintion 7, since {lj} and {dj} satisfy the
property iii) of Theorem 1. So we have Claim 2 and therefore have Theorem 4,
which comes from Claim 2. So, further in this paper, we will prove Theorem 1.

7 Computing Ln

Definition 16 (Distance of vertexes) Let b, b′ be vertexes of the Graph = (Edge,Vertex).
Suppose that
1) There is some chain c such that {start(c), end(c)} = {b, b′}, lc(c) = n, and
2) There is no chain c such that {start(c), end(c)} = {b, b′}, lc(c) = n− 1.
Then we say the distance of b and b′ is n and it is denoted by dist(b, b′) = n.

Further, we fix the base point b0 ∈ Vertex.

Definition 17 Put Ln := {b ∈ Vertex| dist(b, b0) = n} (n = 1, 2, 3, ..,). For
the generality, also put L0 := {b0}.

Let b ∈ Ln. From the definition of the distance, there is some (generally not
unique) chain cb such that start(cb) = b0, end(cb) = b, lc(cb) = n. Such cb is
called associate chain of b ∈ Ln.

Definition 18 Put L̃n := {(b, cb)| b ∈ Ln} (n = 1, 2, 3, ...). For the generality,
also put L̃0 := {(b0, 0-chain)}, where 0-chain is the chain of length 0.

We will compute Ln and L̃n (n ≥ 1) under the assumption that Li, L̃i (i =
0, 1, 2, .., n − 1) are already computed. Suppose b ∈ Ln−1 and u ∈ cite(b). Put
{b′} := sup(u)\{b}. From the definition of Li, b′ ∈ ∪n

i=max(0,n−2)Li. So suppose
b′ 6∈ ∪n−1

i=max(0,n−2)Li, we easily have dist(b0, b
′) = n and cb′ = cb + u. Thus, we

have Ln = ∪b∈Ln−1 ∪u∈cite(b) sup(u) \∪n−1
i=max(0,n−2)Li. Further, in the process of

Fig. 2. Odd length loop(left) and Even length loop(right)

the computation of Ln, we seek and collect the loops of the graph. Note that the
global variables LP,Counter,ROL(b) are used for the collection of the loops.
case 1(odd length loop) (cf. Fig 2) Let b, b′(6= b) ∈ Ln−1. Suppose that there
is some u ∈ cite(b) ∩ cite(b′). Then we see sup(u) = {b, b′} and there is an
odd length (2n− 1) loop cb + u + rev(cb′). In Algorithm 6, we collect such odd
length loop in the list OLn (it means Odd Loop) and delete the edge u from
the graph in order not to collect the same loop. Note that the vertexes of the
graph is unchanged under the operation of deleting u, since u is a edge of some
loop. Also note that the distance from the base point is unchanged under the
operation of deleting u.

Suppose that two odd length loops l1, l2 with the same base point are found,
one has even length loop l1 + l2. By this mean, when an odd length loop l1
is found, the 3-ple of the data (l1, d1, c1), where l1 is the data of odd length
loop, d1 is the data of deleted edge, and c1 is the value of counter when the
edge is deleted, is substituted to the global variable ROL(b0). Latter, when
another odd length loop l2 whose 3-ple is (l2, d2, c2) is found, (ROL(b0)[1] +
l2,ROL(b0)[2],ROL(b0)[3]) is appended to the list LP and ROL(b0) is updated
by (l2, d2, c2).

case 2(even length loop) (cf. Fig 2) Let b, b′(6= b) ∈ Ln−1. Suppose that
there are some u ∈ cite(b), u′ ∈ cite(b′), b′′ ∈ Ln such that sup(u) = {b, b′′},
sup(u′) = {b′, b′′}. Then there is an even length (2n) loop cb + u + u′ + rev(cb′).
In the Algorithm 6, we collect such even length loop in the list ELn (it means
Even Loop) and delete the edge u′, which is discovered latter, from the graph.
Also the 3-ple(cb + u + u′+ rev(cb′), u′, the value of Counter) is inserted to the
list LP. Similarly, note that the set of vertexes and the distance from the base
point is unchanged under the operation of deleting u′.

The following Algorithm 6 computes Ln, L̃n, collects loops and updates the
global variables of the system.

From the construction of Algorithm 6, we easily have the following lemma.
Lemma 9. i) The number of the decrease of the edges of the graph in Algorithm
6 equals to |OLn|+ |ELn|.
ii) No vertex is removed by the operation of Algorithm 6,
iii) The complexity of Algorithm 6 is Õ(|OLn|+ |ELn|+ |Ln|),
iv) Let b ∈ Vertex. The distance dist(b, b0) is unchanged by the operation of
Algorithm 6.

8 Proposed Algorithm and Proof of Theorem1

In this section, we propose an improved algorithm(Algorithm 7, 8, 9), which
does not need the randomness of the graph and its worst complexity can be

Algorithm 6 Computing Ln

Input: b0,n,Li, L̃i (i = 0, 1, 2, ..., n− 1)

Output: Ln, L̃n, OLn, ELn, Update Global Variables of the system
1: OLn ← {}, ELn ← {}, Ln ← {}, L̃n ← {}
2: for all (b, cb) ∈ L̃n−1 do
3: for all u ∈ cite(b) do
4: {b′} ← sup(u)\{b}
5: if b′ ∈ Ln−1 then
6: // Odd loop is found
7: OLn ← OLn ∪ {cb + u + rev(cb′)}, delete u from Graph,Counter + +
8: if ROL(b0) = ∅ then
9: ROL(b0) ← (cb + u + rev(cb′), u,Counter)

10: else
11: (l′, u′, c′) ← ROL(b0)
12: insert (l′ + cb + u + rev(cb′), u

′, c′) to LP sorted by 3rd coordinate
13: ROL(b0) ← (cb + u + rev(cb′), u,Counter)
14: if b′ 6∈ ∪n−1

i=max(0,n−2)Li then

15: if b′ 6∈ Ln then
16: // New vertex in Ln is found

17: Ln ← Ln ∪ {b′}, L̃n ← L̃n ∪ {(b′, cb + u)}
18: else
19: // Even loop is found
20: ELn ← ELn ∪ {cb′ + u + rev(cb)}, delete u from Graph,Counter + +
21: insert (cb′ + u + rev(Cb), u,Counter) to LP sorted by 3rd coordinate

estimated. Let U1(⊂ U ′1), U2(⊂ U ′2) be the sets of Universe and let M ′(≥ |B|+1)
be a positive integer. Suppose |U1∪U2| ≥ 4|B0\B|+4+M ′ and global variables
of the Graph is initialized by U1∪U2. Put M = M ′+ |B0\B|+1. Sub algorithm
1 (Algorithm 8) returns at least M number loops which are collected in OL∪EL
and at least M ′ number of even length loops which are collected in the list LP.
Thus, main algorithm (Algorithm7) returns a set U0(⊂ U0) such that |U0| ≥ M ′.

Algorithm 7 Proposed algorithm(main)
Input: U1 ∪ U2, M ′ such that |U1 ∪ U2| ≥ 4|B0\B|+ 4 + M ′

Output: U0(⊂ U0) such that |U0| ≥ M ′

1: Init system by U1 ∪ U2 (Not only the variables of Graph,LP,RE,ROL are init.)
2: call sub algorithm 1 (Algorithm 8)
3: U0 ← []
4: for j = 1, 2, ..., |LP| do (lj , dj , cj) ← LP [j], append Eli(ij) to U0

In sub algorithm 1(Algorithm 8) and sub algorithm 2(Algorithm 9), OL is
the set of the collection of odd length loops and EL is the set of the collection
of even length loops, whose loops are obtained in the sub computing Ln algo-
rithm(Algorithm 6). In sub algorithm 1(Algorithm 8), first, Graph is changed
by 3-gleton and next the operation of sub algorithm 2(Algorithm 9) is done. In
sub algorithm 2(Algorithm 9), starting from random base point b0, L1, L2, ..., Ln
are computed. In this process, loops, which have start point b0, are collected.
After the process of sub algorithm 2(Algorithm 9) finishes, process returns to
sub algorithm 1(Algorithm 8) and also the operation of 3-gleton and sub algo-

Algorithm 8 Proposed algorithm(sub algorithm 1)
Input: M ′, Output: OL,EL, Update global variables of the system
1: Assume |Edge| − 4|Vertex| > M ′

2: OL ← {}, EL ← {}, M ← M ′ + |B0\B|+ 1
3: while |OL|+ |EL| < M do
4: call 3-gleton algorithm(Algorithm 5, n = 3)
5: IF Graph = ∅ break (Remark that this does not happen from Lemma 14)
6: call sub algorithm 2 (Algorithm 9,Update OL,EL and global variables)

Algorithm 9 Proposed algorithm(sub algorithm 2)
Input: M, M ′,OL,EL, Output: OL,EL, Update global variables of the system
1: Assume #cite(b) ≥ 4 for ∀b ∈ Vertex (It holds, since 3-gleton is operated)

2: b0 ← random(Vertex), n ← 0, L0 ← {b0}, L̃0 ← {(b0, 0-chain)}
3: repeat
4: n + +
5: call computing Ln algorithm (Algorithm 6).

6: (c.f. Algorithm 6 compute OLn,ELn, Ln, L̃n and update global variables)
7: OL ← OL ∪OLn, EL ← EL ∪ELn,
8: until |Ln| < 2|Ln−1|

rithm 2 are done again until system collect enough number of loops. First we
prove some lemmas associated with sub algorithm 2(Algorithm 9). Suppose that
L1, L2, ..., Ln are the sets of vertexes obtained in Algorithm 9.

Lemma 10. i) |Ln−1| <
∑n

i=1 |Li| < 4|Ln−1|, ii) n < 1 + log2 |Vertex|.

Proof. From inequalities |Li| ≥ 2|Li−1| (i ≤ n− 1) and |Ln| < 2|Ln−1|, we have
the inequality i) and 2n−1 ≤ |Ln−1| < |Vertex|.
Lemma 11. |Vertex|, |Edge|+ |OL|+ |EL| are unchanged after the operation
of Algorithm 9.

Proof. From Lemma 9 i) and ii), this lemma is directly obtained.

Lemma 12. Let 4|OL| and 4|EL| be the increases of |OL| and |EL|, after the
operation of Algorithm 9.
i) 4|OL|+4|EL| ≥ 2, ii)The complexity of Algorithm 9 is Õ(4|OL|+4|EL|).

Proof. First, we remark that #cite(b) ≥ 4 for ∀b ∈ Vertex, since 3-gleton op-
eration is done just before the Algorithm 9. From Lemma 9 iii), the complexity
of Algorithm 9 is Õ(

∑n
i=1 |Li| +4|OL| +4|EL|), since 4|OL| =

∑n
i=1 |OLi|

and 4|EL| =
∑n

i=1 |ELi|. So, in order to prove ii), it is sufficient to show
O(4|OL|+4|EL|) ≥ O(|Ln−1|), since O(|Ln−1|) = O(

∑n
i=1 |Li|) from Lemma

10. Further we prove O(4|OL|+4|EL|) ≥ O(|Ln−1|) and 4|OL|+4|EL| ≥ 2
by case analysis.
In case of n = 1. There is a single vertex b such that L1 = {b}, since
|L1| < 2|L0| = 2. So, for any u ∈ cite(b0), we have sup(u) = {b0, b} and
4|EL| = #cite(b0)− 1 ≥ 3. Thus, we have 4|OL|+4|EL| ≥ 3 > 2 > 1 = |L0|
and desired result.

Fig. 3. Proof of Lemma 12

In case of n ≥ 2. Now, suppose Graph is the graph before the operation of Al-
gorithm 9. Let b ∈ Ln−1 and u ∈ cite(b). Put {b′} := sup(u)\{b}. From the defini-
tion of distance, b′ ∈ Ln−2∪Ln−1∪Ln. Put cite2(b) := {u ∈ cite(b)| sup(u)\{b} ⊂
Ln−2}, cite1(b) := {u ∈ cite(b)| sup(u)\{b} ⊂ Ln−1}, cite0(b) := {u ∈ cite(b)| sup(u)\{b} ⊂
Ln}.
So, we have ∪2

i=0citei(b) = cite(b),
∑2

i=0 #citei(b) = #cite(b) ≥ 4, and cite2(b) ≥
1, since b ∈ Ln−1 and there exists some edge which contains b and some element
in Ln−2. From the construction of the loop, we also have(cf Fig 3)
|ELn−1| =

∑
b∈Ln−1

(cite2(b)− 1), |OLn| = 1
2

∑
b∈Ln−1

cite1(b),
|ELn| = (

∑
b∈Ln−1

cite0(b))− |Ln|. Thus we have
4|OL|+4|EL| ≥ |ELn−1|+ |OLn|+ |ELn| ≥ 1

2 |ELn−1|+ |OLn|+ 1
2 |ELn|

> 1
2

∑
b∈Ln−1

#cite(b) − 1
2 |Ln−1| − 1

2 · 2|Ln−1| = 1
2 |Ln−1| ≥ 1 and desired

result.

Further, we show that the sub algorithm 1(Algorithm 8) satisfies the condi-
tion of Theorem 1.

Lemma 13. In Algorithm 8, the inequation |Edge|−3|Vertex|+|OL|+|EL| >
M always holds.

Proof. Just after Algorithm 8 start, since |Edge|−3|Vertex| > M ′+|Vertex| =
M , |OL| = |EL| = 0, this inequation holds. From Lemma 7, 3-gleton operation
increases the value |Edge| − 3|Vertex| and so, after 3-gleton operation, this
inequation also holds. On the other hands, from Lemma 11, the operation of
Algorithm 9 keeps the value |Vertex|, |Edge|+ |OL|+ |EL|. So, this inequality
also hold after the operation of Algorithm 9 and we have desired result.

Lemma 14. Empty graph (i.e.,the situation Graph = ∅) does not appears in
Algorithm 8.

Proof. Suppose Graph = ∅(i.e.,|Vertex| = |Edge| = 0). From Lemma 13, we
have |OL|+ |EL| > M . It is a contradiction, since n-gleton algorithm keeps the
value |OL|, |EL| and |OL| + |EL| < M is loop condition. (Also note that sub

algorithm 2 (Algorithm 9) does not returns empty graph, since it keeps |Vertex|
form Lemma 11).

Lemma 15. Algorithm 8 must stop and its complexity is estimated by Õ(|Edge|).
Proof. After once operation of sub algorithm 2 (Algorithm 9), the value |Edge|
decreases at least 2, since |Edge|+ |OL|+ |EL| is unchanged and |OL|+ |EL|
increases at least 2 from Lemma 11 and Lemma 12. Also n-gleton algorithm
(Algorithm 5) keeps or decreases the value |Edge|. Suppose that Algorithm 8
does not stop. So, we have Graph = ∅, since the value |Edge| decrease at least
2 by once loop and goes to 0. It is a contradiction to Lemma 14.

From Lemma 11 and Lemma 12, the complexity of sub algorithm 2 (Algo-
rithm 9) is Õ(number of deleted edges). On the other hands, from Lemma 7, the
complexity of n-gleton algorithm (Algorithm 5) is also Õ(number of deleted edges).
So, the total cost of this algorithm is estimated by Õ(|Edge|).
Lemma 16. Suppose LP is the list which are computed in Algorithm 8. Put
M ′′ := |LP|, and {(lj , dj , cj)| j = 1, 2, 3...,M ′′} := LP. Then, {lj},and {dj}
satisfy the condition of Theorem 1.

Proof. The number of even loops in LP obtained by conjunction is ≥ |OL| −
|B0\B ∪ {∞}|. So, we have |LP| ≥ |EL| + (|OL| − |B0\B ∪ {∞}|) = M −
|B0\B ∪ {∞}| = M ′, which is the property i) of Theorem 1. From Lemma 10
ii), the number n which appears sub algorithm 2 (Algorithm 9), is smaller than
1+log2 |Vertex|. On the other hands, the length of the loop, collected in LP, is
smaller than 4n. So we have property ii) of Theorem 1. Property iii) of Theorem
1 is directly from Lemma 4, since Algorithm 8 obeys the policy of the collection
of even length loop of Algorithm 2. Thus, we finish the proof of Theorem 1.

9 Conclusion
In this paper, in the case that an element of group is written by the summation
of N large primes and factor bases in O(1) probability, we formulate the index
calculus and propose a new algorithm, which does not require the randomness
of the graph and its worst complexity can be estimated.

References

1. C. Diem, On the discrete logarithm problem in class groups, preprint, 2009.
2. P.Gaudry, An algorithm for solving the discrete log problem on hyperelliptic curves,

Eurocrypt 2000, LNCS 1807, Springer-Verlag, 2000, pp. 19–34.
3. P. Gaudry, E. Thomé, Thériault, C. Diem, A double large prime variation for small

genus hyperelliptic decomposed attack, Math. Comp. 76, 2007, pp.475–492.
4. P. Gaudry, Index calculus for abelian varieties of small dimension and the elliptic

curve discrete logarithm problem, Journal of Symbolic Computation, Vol.44, 12,
2009, pp. 1690–1702.

5. R. Granger, F. Vercauteren, On the Discrete Logarithm Problem on Algebraic Tori,
Advances in Cryptology, CRYPTO 2005, LNCS 3621, Springer-Verlag, 2005, pp.
66-85.

6. B. A. LaMacchia, A. M. Odlyzko, Solving large sparse linear systems over finite
fields, Crypto ’90, LNCS 537, Springer-Verlag, 1990, pp. 109–133.

7. K. Nagao, Index calculus for Jacobian of hyperelliptic curve of small genus using
two large primes, Japan Journal of Industrial and Applied Mathematics, 24, no.3,
2007.

8. K. Nagao, Decomposition Attack for the Jacobian of a Hyperelliptic Curve over
an Extension Field, 9th International Symposium,ANTS-IX., Nancy, France, July
2010, Proceedings LNCS 6197,Springer, pp.285–300, 2010.

9. N. Thériault, Index calculus for hyperelliptic curves of small genus, ASI-
ACRYPT2003, LNCS 2894, Springer-Verlag, 2003, pp. 75–92.

10. D. H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans.
Inform. Theory, IT-32, no.1, 1986, pp.54–62.

