
Multi-Party Privacy-Preserving Set Intersection with
Quasi-Linear Complexity

Jung Hee Cheon1, Stanislaw Jarecki2, Jae Hong Seo1

1Department of Mathematical Sciences, Seoul National University,
{jhcheon,jhsbhs0}@snu.ac.kr

2Department of Computer Science, University of California, Irvine
stasio@ics.uci.edu

Abstract. Secure computation of the set intersection functionality allows n parties to find the
intersection between their datasets without revealing anything else about them. An efficient pro-
tocol for such task could have multiple potential applications, in commerce, health-care, and
security. However, all currently known secure set intersection protocols for n > 2 parties have
computational costs that are quadratic in the (maximum) number of entries in the dataset con-
tributed by each party, rendering secure computation of set intersection impractical on anything
but small datasets.
In this paper we describe the first multi-party protocol for securely computing the set intersec-
tion functionality with both the communication and the computation costs that are quasi-linear
in the size of the datasets. Specifically, our protocols require O(n2kλ) bits of communication
and Õ(n2λ + (nλ + n2)k) group multiplications per player in the malicious adversary setting,
where k is the size of each dataset and λ is security parameter. Our protocol follows the basic
idea of the protocol proposed by Kissner and Song [16], but we gain efficiency by using different
representation of the polynomials associated with users’ datasets, and careful employment of
algorithms that interpolate or evaluate polynomials on multiple points more efficiently.

Keywords: multi-party set intersection, privacy-preserving set operation

1 Introduction

Privacy-Preserving Set Intersection (PPSI) is one of the most interesting and useful invention
of multi-party computations. PPSI protocol enables each user to broadcast her encoded private
dataset and to obtain only intersection of all users’ private sets at the end of protocol. It can
be used when several commercial companies want to share intersection of their customer lists
while their own list except the set intersection is protected.

There are general multi-party computations that implement secure computation for any
function to be able to express as a circuit [26, 12], so that they can be solutions for PPSI. In
general, however, the overall overheads is often unacceptable since the complexity is depending
on the size of circuit and the protocol requires expensive operations such as several oblivious
transfers. Especially, the complexity of general multi-party computation is more higher in the
presence of the malicious adversary (who can do anything arbitrarily) than the honest-but-
curious adversary (who follows protocol’s directions correctly).

If we restrict the number of protocol participants to two, there are several improvements
for PPSI to attain better efficiency than general multi-party computation. From the work of
Freedman, Nissim, and Pinkas [8], recently Hazay and Nissim [14] proposed protocols effi-
ciently computing set intersection between two players. The protocol having the best perfor-
mance in terms of complexity in the input size (that is, it’s communication and computation
overhead are linear in input size.) was proposed by Hazay and Lindell [13], next Jarecki and
Liu [15] complemented its provable security against the malicious adversary.

In the case for multiple participants more than two (we simply call the multi-party case),
the improvement with respect to the complexity has gradually be done, compared with the
two-party case. Kissner and Song [16, 17] first addressed PPSI in the multi-party case using
outstanding techniques basing on the work by Freedman et al. Recently Sang and Shen [21,
22] advanced Kissner and Song’s result by reducing complexity in terms of the number of
players. In contrast with the two-party case, however, all proposed protocols for PPSI in
the multi-party case have quadratic complexity in the size of private dataset, and finding a
efficient solution for PPSI with linear complexity in the input size in the multi-party case
remains still open (even in the honest-but-curious adversary model).

In multi-party cryptography against the malicious adversary, the robustness has been
considered as an important property [3, 7]. When a corrupted player’s malicious behavior is
detected, a non-robust protocol will stop, and then the protocol should restart excluding a
corrupted player. On the other hand, a robust protocol can output the desired result without
restarting even if some subset of corrupted players’ malicious behaviors are detected.

In this paper our contributions are two folds. First, we present a PPSI protocol and show
that each player in our PPSI protocol requires to transfer O(n2k) encryptions and to compute
Õ(n2λ+(nλ+n2)k) group multiplications. (k: the size of user’s dataset, n: the number of users,
λ: security parameter) Especially, if we focus on the online computation (that is, computations
except the local computations used for input/output data representation conversions), each
player is required to compute O(n2λ+(nλ+n2)k) group multiplications. Second, we prove that
the proposed PPSI protocol is robust in the presence of malicious adversary. That is, even
if corrupted players leave before the end of protocol, our protocol outputs set intersection
among players who proved that their input datasets are well-formed.

Technical Overview Let us explain key ideas of our construction. When one employs a
polynomial to represent her private dataset, multiplications over encrypted polynomials and
their zero-knowledge proofs are the most expensive in the system. In particular, all previous
works dealing with PPSI in the multi-party setting by using polynomials to represent datasets
consider a polynomial as a tuple of its coefficients, so that a multiplication over encrypted
polynomials impose quadratic computational and communicational complexities in the degree
of polynomials [16, 17, 20–22].

Our approach to reduce the complexity is to represent a polynomial f(x) by several points
on the curve y = f(x). This gives us two benefits: one is that polynomial multiplications can
be efficiently performed and the other is that it allows simple zero-knowledge proofs for mul-
tiplications over encrypted polynomials. For the first part, if we write polynomials f(x) and
g(x) by {(s, f(s))}s∈S and {(s, g(s))}s∈S , respectively for an index set S, a multiplication of
two polynomials is simply done by {(s, f(s) · g(s))}s∈S . Hence the computational complexity
of the protocol except the input/output data representation conversions becomes linear. Be-
cause of the simple computation for a polynomial multiplication, we can construct a simple
zero-knowledge proof for a multiplication over encrypted polynomials. It impose only linear
computation and communication overheads to the protocol.

In the proposed protocol, each user is required to convert her private dataset into a
suggested form (a set of points on the curve y = f(x)) at the beginning of the protocol, and
to convert the suggested form into a set at the end of the protocol. We call such conversions
by Input Conversion and Output Conversion, respectively. These conversions use algorithms for
polynomial interpolation and polynomial evaluation, and they require quadratic operations
in input size k. In general, the cost for polynomial arithmetics in the underlying field will

2

be dominated by cryptographic operations such as encryptions, exponentiations, etc. In our
protocol, however, each player should perform polynomial arithmetics such as evaluation and
interpolation when coefficients or values are given in the exponent. For example, given a
set of group elements {ga0 , · · · , gak} and a field element α one should compute gf(α) where
f(x) =

∑k
i=0 aix

i and g is a group generator. In this case, for polynomial arithmetics group
multiplications and group exponentiations should be used instead of field additions and scalar
multiplications. Therefor the cost for polynomial arithmetics in our protocol is as significant as
that of cryptographic operations. We will deal with a way how to speed up these conversions,
and show that the way is appropriate to our protocol.

The goal of robust PPSI protocol is to compute set intersection among players who proved
their well-formed input (i.e. a set of pairs of a point and an encrypted value {(s, cs)}s∈S
satisfies that for each s ∈ S an equality cs = Encpk(h(s)) holds for some k-degree polynomial
h(x) where an index set S is given by the protocol.) even when some subset of corrupted
players leave protocol after proving their well-formed input. One may think that this problem
is easily solved by using Verifiable Secret Sharing (VSS) scheme, such as Pedersen VSS (Ped-
VSS) [19]. It is, however, difficult to deal with encryptions that are shared by VSS. More
precisely, it is uneasy to construct zero-knowledge proofs on encrypted messages that are
shared by VSS before recovering shared encryption. For example, let c be an encryption of
m, and suppose that a dealer wish to share c by using Ped-VSS. Then, the dealer should
encode c as an element of some field Fq of size q and commit GcHd where G,H are elements
in some group of order q and d is chosen at random at random from Fq. If we used an
additive homomorphic encryption to encrypt m for c, then usually the message is located in
the exponent of encryption. (For example, messages are located in exponents of encryptions if
we use Paillier encryption [18] and the modified ElGamal encryption which is explained in the
section 2.) Then, m in the shared encryption should be located in the exponent of exponent
of committed value GcHd. To the best of our knowledge, there is no known zero-knowledge
proofs for the relation associated with such m, e.g. zero-knowledge proof for knowledge of
such m.

We construct a robust protocol in the presence of the malicious adversary by proposing
simple VSS scheme which allows to share encryptions and supports zero-knowledge proofs
on shared encryptions. To share an encryption Encpk(m) the dealer can broadcast Com′ck(c)
and Encpk(m + c) where Com′ck is an additive homomorphic trapdoor commitment, Encpk
is an additive homomorphic encryption, and c is a random integer. Thereafter, the dealer
verifiably secret-shares c by using VSS. To recover Encpk(m), all players recover c and next
compute Encpk(m+ c)⊕Encpk(−c) where ⊕ denotes an add operation between corresponding
plaintexts. Since both Com′ck and Encpk have the additive homomorphic property, we can
efficiently construct zero-knowledge proofs for the statement associated with m, e.g. zero-
knowledge proof for knowledge of m. Furthermore, in the security proof, the simulator can
equivocate on m as it can equivocate on c if it has a trapdoor of Com′ck. Therefore, we can
construct a robust PPSI protocol by using such a simple VSS.

It is worth to note that our PPSI protocol uses a so-called ‘common reference string’ since
we use Pedersen commitment scheme as a building block to design PPSI protocol, and we
assume that there exists a broadcast channel.

Related Works of PPSI Protocols Except the general multi-party computation ap-
proach [12], Kissner and Song proposed the first efficient privacy-preserving set intersection
protocol secure in the honest-but-curious (HBC) adversary model [16] and extended to be

3

secure in the malicious adversary model using general zero-knowledge proof techniques [17].
Sang and Shen [20–22] proposed protocols having better efficiency than [17]. However, they
only reduced the complexity in terms of the number of players, and their protocols still keep
quadratic complexity in the input size.

In the two-party case of PPSI, there are several notable researches. Freedman, Nissim,
and Pinkas proposed the first asymmetric two-party set intersection protocol using oblivious
polynomial evaluation [8]. However, their schemes are only secure against malicious client, or
secure against malicious server (not both). Dachman-Soled et al. improved security so that
proposed a protocol secure against both malicious parities [5]. Hazay and Nissim advanced
complexity so that they attains almost linear complexity in the input size [14]. Camenisch
and Zaverucha considered the case that no malicious adversaries can choose arbitrary their
private inputs [2]. Using an oblivious pseudorandom function, Hazay and Lindell [13] provided
two-party protocols which are secure in the standard model against covert parties [1]. Jarecki
and Liu [15] improved its security so that secure in the standard model against both malicious
parties. Cristofaro and Tsudik [4] presented two-party protocols with linear complexity by
extending privacy-preserving information transfer, and they also proposed the authorized set
intersection protocol which allows the set intersection only for authorized private set.

Outline We give definitions and tools of cryptography. In Section 3 we propose a new repre-
sentation, call point representation, to describe private datasets, and possible operations over
point representation. We present two protocols, each for different adversary models, so-called
Honest-But-Curious adversary and the malicious adversary, in Section 4. In Section 5 we
show how to speed up local computations of protocols, and analyze the complexities of the
proposed protocol.

2 Definitions and Primitives

Notations Throughout this paper we will use several notations. Let n be the number of
players participating in the protocol, k be the number of entries in each player,1 Zp be a
finite field with prime p of size 2λ, Zp[x] be a polynomial ring over Zp, Zdp[x] be a set of all

polynomials of degree at most d in Zp[x]. For a set A, a
$← A denotes a is uniformly chosen

at random from A. [a, b] denotes a set {α ∈ Z|a ≤ α ≤ b}.

Adversary Model In this paper we are interested in the malicious adversary model rather
than the Honest-But-Curious (HBC) adversary model, but we present a HBC protocol as
an intermediate protocol to obtain a malicious one. In HBC adversary model, the adversary
follows protocol’s prescribed directions and he can utilize all information obtained during
the protocol procedure for purpose to gain other information than the protocol’s desired
result, set intersection in PPSI protocol. In contrast to HBC adversary model, malicious
adversary may corrupted some subset of players less than half and gain full controls over
the corrupted players. She may not follow the given prescribed actions of protocol and may
behave arbitrarily. We cannot prevent refusing of malicious adversary to participate in the
protocol, running the protocol along with arbitrary values as his private input, or prematurely
aborting the protocol.

1 We assume that all players have same size private dataset. If each player needs, then he can add dummy
inputs having invalid encoding, e.g. elements not in P which is the domain of private data.

4

Informally, we say an PPSI protocol is secure in the presence of malicious adversary if for
any malicious adversary fully controlling a set of colluders in the real world, there exists a
probabilistic polynomial running-time algorithm that translates all strategies of a malicious
adversary in the real world to the strategies in the the ideal world, and follows in the ideal
world. Furthermore, the real execution is computationally indistinguishable from the execu-
tion in the ideal world to the malicious adversary. We refer to [11] for the formal definitions
for the HBC adversary model and the malicious adversary model.

Additive Homomorphic Encryption Our construction utilizes an additive homomorphic
encryption scheme. In particular we describe our protocol by using the modified encryption
scheme widely used in the set intersection protocol [8, 2, 5].

The modified ElGamal encryption consists of three algorithms.
• Setup(λ): Group generating algorithm takes the security parameter λ and generates group
description (G, g, 1G, p) where g is a generator of a cyclic group G of prime order p, and 1G is
the identity element in G. Choose a random integer x from Zp and set pk ← {gx}, sk ← {x}.
• Encpk(m; r): CT ← (gr, pkrgm).
• Decsk(CT): Parse CT as (C0, C1) and output C1 · C−sk0 .

This modified ElGamal encryption is additively homomorphic on message, and random-
ness as well:

Encpk(m1; r1)⊕ Encpk(m2; r2) = Encpk(m1 +M2 mod p; r1 + r2 mod p)

where ⊕ operation denotes component-wise group multiplications. To denote additions of
several ciphertexts CTi for i ∈ [1, `], we use a notation ⊕i∈[1,`]CTi. A scalar multiplication is
also easily allowed by repeatedly computing ⊕ operation, that is, given a scalar c ∈ Zp,

Encpk(m; r)⊕ · · · ⊕ Encpk(m; r)︸ ︷︷ ︸
c times

= Encpk(cm mod p; cr mod p)

For a ciphertext CT and an integer c we simply denote a scalar multiplication of CT by c
as CT c. Since Dec algorithm outputs gm instead of the plaintext m, it does not support a
complete decryption. However, its the additive homomorphic property still allows to enjoy
our PPSI protocol without a complete decryption algorithm. Further, the modified ElGamal
encryption allows that ciphertexts can be re-randomize without the secret key.

Distributed Key Generation and Threshold Decryption We use the threshold version
of the modified ElGamal encryption for which there exists efficient distributed key generation
and the threshold decryption protocols which are secure in the malicious adversary setting.
We take the distributed key generation protocol, denoted DKG, from [10]. For the threshold
decryption protocol, denoted TDec, we use the protocol of [6], amended by the use of a zero-
knowledge proof of correctness of partial decryption. We use the distributed version of this
zero-knowledge proof which is suitable to the multi-party computation setting, as we explain
in Section 4.2. For completeness we note that the proof of correctness of partial decryption is a
proof of discrete-logarithm equality, which is actually a simplification of the proof HVZKPK-P
we explain in that section.

Verifiable Secret Sharing We use the verifiable secret sharing (VSS) for two reasons, one
for distributed zero-knowledge proofs in the section 4.2 and the other for the robustness in
the presence of the malicious adversary. Specifically, we use Pedersen VSS (Ped-VSS) [19].

5

3 Representation for Efficient Private Data Manipulation

Let Xi ⊂ Zp be the set of private inputs of a player Pi. We associate the set Xi with a
polynomial fi(x) =

∏
aj∈Xi(x− aj), called the private polynomial of Pi.

All previous protocol [8, 16, 2, 5] that use polynomials to encode private datasets utilize
the coefficient representation: a set of coefficients of the private polynomial. When we adopt
the coefficient representation, a multiplication between two polynomials f(x) =

∑k
i=0 aix

i

and g(x) =
∑k

i=0 bix
i is given by

f(x) · g(x) =

2k∑
`=0

∑
i+j=`

aibjx
`.

This makes the computational complexity be quadratic in k. Furthermore, the zero-
knowledge proof proving this computation makes the communication complexity be quadratic
in k, too.

To achieve linear complexity in k, we propose a new representation for private datasets,
called Point Representation (PR).

Point Representation Given a set X, and a public index set S of size `, we define PR of X
by the result of conversion ConvStoP on input X and S where ConvStoP is defined as follows:
To compute ConvStoP, we construct a polynomial f having X as a set of roots, and next we
evaluate f at all elements in S as {f(s)}s∈S . Then, the resulting a set of pairs of a point in S
and a corresponding value on f , {(s, f(s))}s∈S is PR of X with S. We denote this conversion
by

ConvStoP : Zkp × Z`p → Z2`
p

(X, S) 7→ {(s, f(s))}s∈S

where k < `.

Before considering about the conversion that is a return from PR to a set, let us consider
the last format of interactions in our protocol that will be described in the next section. We
will use the modified ElGamal encryption which does not support a complete decryption.
It causes each participants in the protocol to obtain PR of some polynomial (precisely, the
intersection polynomial explained below) in the exponent instead of PR itself at the end of
interactions among players in the protocol. In other words, {s, gf(s)}s∈S is given instead PR
{s, f(s)}s∈S for some polynomial f(x) where g is a generator of some cyclic group. Therefore
we need to convert PR into a set when PR is given in the exponent.

Now we explain how to convert into a set from given PR in the exponent {(s, gfs)}s∈S
where g is a generator of a cyclic group G. We can find {gai}i∈[0,`−1] by using polynomial

interpolation where f(x) =
∑`−1

i=0 aix
i and f(s) = fs. Since polynomial interpolation consists

of additions and scalar multiplications, we can apply polynomial interpolation even when PR
is in the exponent. Then, we make an effort to extract all f(x)’s roots in Zp such that all
roots are in P, where P is a domain of private data and exactly defined below. If we have a
set A containing all roots of f , then we can decide whether each element a ∈ A is a root of
f by evaluating gf(a). If gf(a) = 1G where 1G is the identity element of G, then a is a root of
f . Otherwise, a is not a root of f . We know that such a set A exists since at least Zp can be
A. If we use, however, Zp as A, computing ConvPtoS will be very inefficient. (That is, it takes

6

exponential time in the security parameter.) In our PPSI protocol we will use a smaller set of
size k < ` than Zp as A. We denote this conversion by

ConvPtoS : (Zp ×G)` → Z`−1p

{(s, gf(s))}s∈S 7→ {x ∈ P|f(x) = 0}

To reduce a chance that a random element belongs to a private dataset accidentally in
the midst of the protocol, private data is restricted to choose from a subset of Zp, denoted by
P, which has a special encoding. For instance, we can define P a set of the form a‖0λ where λ
is the security parameter. We usually set the size of p is equal to 2λ, so thus the chance that
a random element hits P is negligible in λ.

This restriction of P gives some advantage: Let fi be a private polynomial of Pi and ri be
a random polynomial for each i. Then, a set of all roots of the polynomial

∑
i fi · ri, called

the intersection polynomial, is equal to intersection of Pi with overwhelming probability in λ.
Lemma 1 prove above and show that

∑
i fi ·ri leaks no information except for set intersection.

Lemma 1 ([16]) Let f, h ∈ Zαp [x] and gcd(f, h) = 1, and r, s
$← Zβp [x] where β ≥ α. Then,

f · r + h · s = gcd(f, h) · u where u uniformly distributes in Zα+βp [x].2

Arithmetic Operations on Point Representation If PRs of two k-degree polynomials
f and h, {(s, f(s))}s∈S and {(s, h(s))}s∈S respectively, are given, an addition and a multipli-
cation of two polynomials are simply done by {(s, f(s) + h(s))}s∈S and {(s, f(s) · h(s))}s∈S ,
respectively where |S| ≥ 2k+1. They require |S| operations which is linear in degree k. This is
our key observation to reduce complexity from quadratic to linear during Online phase. (Online
phase contains all processes in the protocol except the local computation for input/output
data conversions and distributed key generations.) Moreover, to prove this linear operations,
zero-knowledge proof also requires only linear size communications and computations.

Arithmetic Operations on Encrypted Polynomials Let Encpk(·) be an additive homo-
morphic encryption with a public key pk, and S be a public index set for PR. When fi is the
private polynomial of Pi, we denote the encryption of PR of fi by EncSpk(fi) that is a set of
pairs {(s,Encpk(fi(s)))}s∈S . We define two operations over encrypted PR:

(1) ⊕i∈[1,n]EncSpk(fi) : Given encrypted PRs {EncSpk(fi)}i∈[1,n], we can compute the sum of

encrypted PRs as {(s,⊕i∈[1,n]Encpk(fi(s)))}s∈S = {(s,Encpk(
∑

i∈[1,n] fi(s)))}s∈S and denote

it by ⊕i∈[1,n]EncSpk(fi)

(2) h⊗ EncSpk(f) : Given an unencrypted PR {(s, h(s))}s∈S and an encrypted PR EncSpk(f),

we can compute the product as {(s,Encpk(f(s))h(s))}s∈S = {(s,Encpk(h(s) · f(s)))}s∈S and
denote it by h⊗ EncSpk(f).

4 Application to PPSI Protocols

Point representation is useful to design PPSI protocols. In this section we present two protocols
to perform intersection of players’ private sets with preserving each player’s privacy.

2 The original lemma in [16] states for arbitrary ring satisfying some conditions that Zp satisfies. In this paper
we use a field Zp, so we just state the lemma for the case of Zp.

7

Public Parameters: The number of players n, maximum threshold of corrupted players t satisfying
2t + 1 ≤ n, maximum size of each dataset k, set S of size at least 2k + 1, and descriptions of Encpk (the
modified ElGamal), G (a base group), and P ⊂ Zp (the encoding for private inputs).
Private Input of Player Pi: A set Xi of k values in P.

(Initialization). All players perform the DKG protocol to generate a public key pk of Encpk. Private
output of player Pi is denoted ski.
(Input Data Conversion). Each player Pi carries out local computations.

(1). Compute ConvStoP(Xi, S) = {(s, fi(s))}s∈S and encrypt them to EncSpk(fi).
(2). Choose random k-degree polynomials {ri`(x) ∈ Zp[x]}`∈[1,n], encode them to {{ri`(s)}s∈S}`∈[1,n].

(Online phase). Each player Pi carries out computing an encryption of the intersection polynomial I(x) =∑
i,`∈[1,n] ri`f`, and then performs the threshold decryption protocol.

(1). Send EncSpk(fi) to all players.
(2). For each ` ∈ [1, n], compute Ci` = ri` ⊗ EncSpk(f`) and broadcast them to all players.
(3). Compute C = ⊕i,`Ci` = {(s,Encpk(

∑
i,`∈[1,n] ri`f`(s)))}s∈S .

(4). Perform the threshold decryption protocol TDec on each ciphertext in C to obtain a set of values
{(s, gI(s))}s∈S .

(Output Data Conversion). Each player Pi computes ConvPtoS({(s, gI(s))}s∈S).

Fig. 1. PPSI-HBC protocol against HBC adversary

4.1 Construction in HBC Adversary Model

We give a PPSI-HBC protocol secure against HBC adversary in the figure 1.

Look into Output Data Conversion: After finishing Online phase each player Pi has {(s, gI(s))}s∈S
where I(x) is the intersection polynomial of degree 2k. ConvPtoS should output all roots in
I(x) which are contained in P. Therefore, to extract all roots of I(x) which are contained P,
first Pi performs polynomial interpolation to recover {gai}i∈[0,2k] where I(x) =

∑
i∈[0,2k] aix

i,

second he carries out multiple evaluations gI(α) at all elements α ∈ Xi, and then concludes
for ∀α ∈ Xi,

α ∈
{
∩j∈[1,n]Xj if gI(α) = 1G
(∩j∈[1,n]Xj)c otherwise

Correctness: Lemma 1 says I(x) =
∑

i,`∈[1,n] ri` · f` is equal to gcd(f1, · · · , fn) · u for some
random polynomial u(x). Each root of u will be included in P with only negligible probability
in λ, and hence a set of all roots of I(x) that are contained in P is equal to ∩j∈[1,n]Xj with
overwhelming probability in λ. Since ∩j∈[1,n]Xj ⊂ Xi for ∀i, each player Pi can find set
intersection in Output Data Conversion phase with overwhelming probability in λ.

Security: As we use a semantically secure encryption Encpk and all private inputs are
encrypted by Encpk, no player can obtain non-trivial information about other player’s pri-
vate inputs during the protocol PPSI-HBC with non-negligible probability. The intersection
polynomial

∑
i,`∈[1,n] ri` · f` leaks no information except for set intersection. This comes from

Lemma 1 and the fact that for ∀`,
∑

i∈[1,n] ri` is indistinguishable from a random polynomial

in Zkp[x] in the point of view of a coalition of HBC adversaries less than n. Therefore no HBC
adversary can obtain any other information than the intersection with more than negligible
probability.

8

4.2 Distributed Zero-Knowledge Proofs

To adapt PPSI-HBC protocol in HBC model to the malicious adversary model we need zero-
knowledge proofs for the following statements involving polynomials encrypted by an additive
homomorphic encryption Encpk:
• P[EncSpk(f1),Enc

S
pk(f2),Enc

S
pk(f3)] holds if EncSpk(f3) = f1 ⊗ EncSpk(f2).

• D[EncSpk(f)] holds if f ∈ Zkp[x].

• DO[Comck(Enc
S
pk(f))] holds if f ∈ Zkp[x] and f(1) = 1 (i.e.f 6= 0)

where Comck(Enc
S
pk(f)) is a commitment to an encrypted polynomial EncSpk(f) defined as

follows:

Comck(Enc
S
pk(f)) = {(s,Com′ck(cs),Encpk(f(s) + cs))}s∈S for cs

$← Zp

where Com′ck is a trapdoor commitment, ck is public parameter of Comck, and cs is a random
integer. We would use Pedersen commitment scheme [19] as Com′ck in this paper. To open
committed encryption, for ∀s ∈ S open cs, then the receiver can recover EncSpk(f) by comput-
ing Encpk(f(s) + cs) ⊕ Encpk(−cs; 0). If Com′ck is perfectly hiding, then Comck also perfectly
hides an encrypted polynomial, and if Com′ck is computationally binding, then Com is, too.3

Moreover, if Com′ is an additive homomorphic commitment, then Com is, too as Encpk is an
additive homomorphic encryption.

For each statement we construct a so-called sigma protocol, i.e. a 3-round public-coin
interactive proof with special honest-verifier zero-knowledge and special strong soundness.
We denote these sigma protocols as, respectively, HVZKPK-P, HVZKPK-D, HVZKPK-DO.
We relegate the descriptions of these sigma protocols to Appendix A since these proof sys-
tems are simple extensions of well-known sigma protocols for proving knowledge of discrete
logarithms, representations, and arithmetic relations between these representations. For ex-
ample the sigma protocol for HVZKPK-P[Encpk(f1),Encpk(f2),Encpk(f3)] is a conjunction of
|S| instances, one for each s ∈ S, of a sigma protocol for proving knowledge of plaintexts
f1(s), f2(s), f3(s) encrypted in Encpk(f1(s)),Encpk(f2(s)), Encpk(f3(s)), which satisfy relation
f1(s) · f2(s) is equal to f3(s) as an element in Zp, the plaintext domain.

We use a generic conversion from a sigma protocol to a ‘distributed zero-knowledge proof’
protocol for the same statement: First, the prover broadcasts the initial message of the sigma
protocol. Then the challenge is generated by a distributed coin-toss, i.e. each player in parallel
verifiably secret-shares a random value in Zp, each sharing is then reconstructed in parallel,
and the challenge is the sum of the shared values. (Moreover, using the VSS of Pedersen
[19] homomorphic on Zp one can first add all the VSS instances and reconstruct the result.)
Finally, the prover broadcasts its response to this challenge, and each player verifies the
proof. We denote the distributed proofs for the above statements as D-ZKPK-P, D-ZKPK-D,
D-ZKPK-DO. It is easy to see that the distributed proof protocol has an efficient straight-line
simulator (the simulator who controls more players than the half of protocol participants can
steer the distributed coin-toss to hit a random challenge of its choice, and therefore it can use
the special HVZK simulation of the underlying sigma protocol) and an efficient extraction of
adversary’s witnesses (the simulator can run a second execution on the side which produces
different challenges then the main execution path, and sigma protocol guarantees witness
extraction from successful responses to two different challenges).

3 Comck does not hide the randomness used in Encpk, but, the randomness does contain no information about
f . Therefore, Comck perfectly hides f and we need only this property.

9

4.3 Construction in Malicious Adversary Model

We give a protocol PPSI-MAL securely computing multi-party set intersection in the presence
of malicious adversary in the figure 2. PPSI-MAL is based on PPSI-HBC presented in Section
4, with the following essential changes made: We add distributed protocols for zero-knowledge
proofs of statements DO[Comck(Enc

S
pk(fi))], D[EncSpk(ri`)], and P[EncSpk(ri`),Enc

S
pk(f`),Enc

S
pk(ri`·

f`)], we rely on the fact that the distributed key generation and the threshold decryption pro-
tocols DKG and TDec of [10, 6] are secure in the malicious model, and furthermore, to prevent
players from setting their private polynomials to zero polynomials, we add a constraint that
every private polynomial must pass point (1, 1). Namely, every player Pi, given its private set
Xi, constructs its private polynomial as

fi(x) = (
∏
at∈Xi

(x− at)(1− at)−1)

It is easy to see that fi(1) = 1. Since the zero-knowledge proofs of DO[Encpk(fi)] ensures that
fi(1) = 1 (and that the degree of fi is at most k), it follows that fi cannot be equal a zero
polynomial.

Furthermore, PPSI-MAL has the robust property. That is, even if corrupted players be-
have maliciously, our protocol outputs set intersection among players who proved that their
input data is well-formed (DO[Comck(Enc

S
pk(fi))]). Each player makes an encrypted private

polynomial and next verifiably secret-shares his encrypted private polynomial, and then
proves shared encryption is well-formed, i.e., runs DO[Comck(Enc

S
pk(fi))]. More precisely, to

share an encrypted polynomial EncSpk(fi) for private polynomial fi of player Pi, Pi commits

to Comck(Enc
S
pk(f)) = {(s,Com′ck(cs),Encpk(f(s) + cs; rs))}s∈S , and verifiably secret-share

{cs}s∈S by using Ped-VSS. Then, zero-knowledge proofs for the statement that f is well-
formed can be easily done by D-ZKPK-DO[Comck(Enc

S
pk(f))]. If a corrupted player Pi leaves

after passing D-ZKPK-DO[Comck(Enc
S
pk(fi))], then remaining players can recover EncSpk(fi) by

recovering {cs}s∈S and then computing {Encpk(f(s) + cs; rs) ⊕ Encpk(−cs; 0)}s∈S . Therefore
our protocol is robust against corrupted players’ leaving.

Correctness: Since EncSpk(
∑

i∈R,`∈M ri` · f`) = {(s,Encpk(
∑

i∈R,`∈M (ri` · f`)(s)))}s∈S and
|S| is larger than degree of polynomial 2k, it is an encryption of valid PR of a polynomial∑

i∈R,`∈M ri` · f`. M is a set of indices of all players being proved their well-formed input
and R is a set of indices of all players being passed all zero-knowledge proofs protocols. For
∀` ∈ M ,

∑
i∈R ri` is a random polynomial in the view of corrupted players since we assume

that honest players are majority, and hence by Lemma 1
∑

i∈R,`∈M ri` · f` is the intersection
polynomial of all players Pi such that i ∈M .

Security: The following theorem proves PPSI-MAL protocol is secure in the presence of
the malicious adversary when we assume the majority of honest players.

Theorem 1 (Security of PPSI-MAL) If Encpk is semantically secure additive homomorphic
encryption, protocol PPSI-MAL is a secure computation protocol for computing the PPSI func-
tionality in the presence of any coalition C of t corrupt players such that 2t+ 1 ≤ n. Specif-
ically, for any arbitrarily malicious adversarial algorithm A controlling players in C, there
exists an efficient simulator S such that for any set of inputs {Xi}i 6∈C to the honest players,
the outputs of adversary A and of the honest players interacting in the PPSI-MAL protocol
are computationally indistinguishable from the outputs of S and of the honest players in the
ideal world interacting with the ideal PPSI functionality fPPSI.

We relegate the proof of Theorem 2 to Appendix B.

10

Public Parameters: The number of players n, maximum threshold of corrupted players t satisfying
2t + 1 ≤ n, maximum size of each dataset k, set S of size at least 2k + 1, and descriptions of Encpk (the
modified ElGamal), G (a base group), Comck (commitment scheme using Pedersen commitment scheme),
and P ⊂ Zp (the encoding for private inputs).
Private Input of Player Pi: A set Xi of k values in P.

(Initialization). All players perform the DKG protocol to generate a public key pk of Encpk. Private
output of player Pi is denoted ski.
(Input Data Conversion). Each Pi performs the following local computations:

(1). Compute ConvStoP(Xi, S) = {(s, fi(s))}s∈S for private polynomial fi(x) = (
∏

at∈Xi(x−at)(1−at)
−1),

and encrypt them to EncSpk(fi).

(2). Choose n random polynomials in Zk
p[x], {ri`(x)}`∈[1,n] and encrypt them to {EncSpk(ri`)}`∈[1,n].

(Online phase). Each player Pi computes an encryption of the intersection polynomial I(x) =
∑

i∈R,`∈M ri` ·
f`, where M is a set of indices of players proving their well-formed input (that is, verifiably secret-share
their input and pass the proof D-ZKPK-DO), and R is a set of index of players passing all zero-knowledge
proofs protocols. Next, Pi decrypts it via threshold decryption protocol together with other players:

(1). Set M = [1, n] and R = [1, n], commit to EncSpk(fi) to all players, (that is, send Comck(EncSpk(fi)) =
{(s,Com′ck(cis),Encpk(fi(s)+cis))}s∈S), and verifiably secret-share {cis}s∈S . If player Pj fails verifiable
secret-sharing of his input, then set M := M \ {j} and R := R \ {j}.

(2). Play the prover part in proof protocol D-ZKPK-DO[Comck(EncSpk(fi))] and the verifier part in
D-ZKPK-DO[Comck(EncSpk(fj))] for j ∈ M \ {i}. All n instances of this distributed proof protocol
proceed in parallel. If player Pj fails to pass D-ZKPK-DO[Comck(EncSpk(fj))], then set M := M \ {j}
and R := R \ {j}.

(3). Each EncSpk(fj) for j ∈M is computed by recovering shared values {cjs}s∈S .
(4). Compute {Ci` = ri` ⊗ Encpk(f`)}`∈M and broadcast them together with {Encpk(ri`)}`∈M to all

players.
(5). Run D-ZKPK-D[EncSpk(ri`)] and D-ZKPK-P[EncSpk(ri`),Enc

S
pk(f`), Ci`] protocols as the prover for ` ∈

M , and also play the verifier part in D-ZKPK-D[EncSpk(rj`)] and D-ZKPK-P[EncSpk(rj`),Enc
S
pk(f`), Cj`]

protocols for j ∈M \ {i}, ` ∈M . All n instances of this distributed proof protocol proceed in parallel.
If player Pj fails to pass D-ZKPK-D[EncSpk(rj`)] or D-ZKPK-P[EncSpk(rj`),Enc

S
pk(f`), Cj`], then set R :=

R \ {j}.
(6). Compute C = ⊕i∈R,`∈MCi` = EncSpk(

∑
i∈R,`∈M ri` · f`).

(7). Participate in |S| parallel instances of the threshold decryption protocol TDec, using its private input
ski, on each ciphertext in C, to obtain the set of values {(s, gI(s))}s∈S .

(Output Data Conversion). Each player Pi compute ConvPtoS({(s, gI(s))}s∈S).

Fig. 2. PPSI-MAL protocol against the malicious adversary

5 Refinement for Efficiency’s Sake

We use notations exp and mul to respectively denote the number of exponentiations and
multiplications in G. In PPSI-MAL protocol except Input/Output Data Conversion phases,
each player is required to perform DKG, TDec, verifiable secret-sharings, the distributed zero-
knowledge proofs, and multiplications/additions of encrypted polynomials. Almost operations
are dominated by the distributed zero-knowledge proofs that require O(n2 + nk) exp. (O(n)
exp for DKG, O(nk) exp for TDec, O(nk) exp for verifiable secret-sharings and recovering,
O(nk) exp for multiplications of n number of k-degree encrypted polynomials.) Each player
also computes O(n2k) mul in the step (6) for additions of n2 number of 2k-degree encrypted
polynomials. If we assume that O(1) exp is equal to O(λ) mul, then the overall computational
costs except Input/Output Data Conversion phases is O(n2λ+ (nλ+ n2)k) mul.

11

For local computations in PPSI-MAL, each player performs O(nk2) multiplications in Zp
for conversions and O(nk) exp for encryptions in Input Data Conversion phase, and O(k2) exp
for conversions in Output Data Conversion phase. For Input/Output Data Conversion phases we
need to calculate polynomial interpolation, and we need to evaluate polynomial at multiple
points, such that both computation require quadratic operations in degree of a polynomial.
The one of the best known algorithm to perform polynomial interpolation or evaluation is
using the Fast Fourier Transform (FFT) such that polynomial interpolation/evaluation using
FFT require O(k(log k)2) field operations for k-degree of polynomial. We refer to [24, 25] for
details. We note that FFT can be applied to polynomials even when values or coefficients of
polynomials are in the exponent since FFT uses only scalar multiplications and additions.
Similarly, polynomial evaluation at multiple points or polynomial interpolation using FFT
can be also applied to polynomials even when polynomial coefficient or values are in the
exponent. Therefore we can utilize FFT in Output Data Conversion phase.

In fact, to utilize FFT we need a restriction for Zp such that Zp has a primitive 2m-th
root of unity where 2m is larger than 2k. The existence of a primitive 2m-th root of unity in
Zp is equivalent to 2m|p− 1. If we take p = 2m · r+ 1 for a random r and perform a primality
test until obtaining a prime, we will get such a prime in O(log p) trials. (That is, the running
time to generate an prime p appropriate to FFT is linear in the security parameter, O(λ).)
Hence r must be at least O(log p), which means that m < log p− log log p. It does not restrict
our protocol’s parameters since p is much larger than 2k. The security of ElGamal encryption
does not depend on the specific prime p. Lower bound of generic attacks to the decisional
Diffie-Hellman problem whose hardness is equivalent to the semantic security of ElGamal
encryption is independent of a format of p [23]. If we use an elliptic curve group, then there
is not known non-generic attack to the decisional Diffie-Hellman problem. Therefore we can
assume that the modified ElGamal encryption is still semantically secure when we are working
on Zp supporting FFT.

Remark. The most expensive operations in Input/Output Data Conversion are polynomial
arithmetics when values are given in the exponent. If we use Paillier encryption [18] instead
of the modified ElGamal encryption as an additive homomorphic encryption, then we do know
need these expensive polynomial arithmetics for the case of values being in the exponent since
Paillier encryption support a complete decryption. Then, if we use Paillier encryption, and do
not use FFT and hence polynomial arithmetics are quadratic in k, polynomial arithmetics are
field operations dominated by cryptographic operations such as encryption and exponentia-
tions, so that we may obtain PPSI protocol with linear complexity. However, in the security
proof of PPSI-MAL protocol the simulator should factor polynomials to extract their roots, but
factoring a polynomial over ZN where N is RSA modulus is an intractable problem. Therefore
we cannot use Paillier encryption in our protocol without modifying the proof or the protocol.
Kissner and Song’s protocol [17] has a similar problem to ours if they use Paillier encryption.
They suggested two options to prove security without factoring polynomials. One is to prove
security in the random oracle model. If every root of polynomials is forced to be hash output,
then the simulator can extract each root of polynomials by simulating hash oracle. Another is
to prove that each polynomial is a product of degree-1 polynomials in zero-knowledge proof
manner with strong soundness. Then, the simulator can extract all roots from the property
of strong soundness of zero-knowledge proof. However, these zero-knowledge proofs impose
O(k3) complexity.

12

Estimated Complexity By applying FFT to Input/Output Data Conversion phases, we can
reduce computational overhead to O(nk(log k)2) multiplications in Zp and O(nk + k(log k)2)
exp, so that the total computational complexity of PPSI-MAL is O(n2λ + (nλ + n2)k +
λk(log k)2) mul and O(nk(log k)2) multiplications in Zp. It can be simply written by Õ(n2λ+
(nλ+ n2)k) mul.

To estimate the communication overhead is easier than the computational overhead. Each
player in PPSI-MAL is required to transfer O(n2k) encryptions in (4) and (5) of Online phase.
Since other steps’ communication overhead in Online phase is smaller than these steps, the
overall communication overhead is O(n2k). We compare our PPSI protocol secure against
malicious adversary with previous works in Table 1.4

Protocol Communication Computation

(the number of bits) (the number of mul)

[17] O(n2k2λ) O(n2k + nλk2)

[20] O(c2k2λ) O(c2λk2)

[21, 22] O(nk2λ) O(nλk2)

Ours O(n2kλ) Õ(n2λ+ (nλ+ n2)k)

c: the number of corrupted players

Table 1. Comparisons PPSI in the presence of malicious adversary

6 Conclusion and Further Work

In this paper we proposed a privacy-preserving set intersection protocol satisfying (1) linear
communication and quasi-linear computation overheads in the size of data input, (2) the
robustness property in the presence of malicious adversary. The proposed protocol attains
linear/quasi-linear complexities, however, there are some open issues.

One interesting open problem is to construct a PPSI protocol with linear complexity in
both the size of data input and the number of players. Sang and Shen [22] attain linear
complexity in the number of players, and our protocol achieves quasi-linear complexity in the
size of data input. There is, however, no PPSI protocol with linear or quasi-linear complexity
in both parameters.

Finding practical solutions for other privacy-preserving set operations, such as set union [9]
and threshold set union [16], are also interesting open problems.

4 In [17], Kissner and Song also proposed (without proof) that the cut-and-choose technique may be used to
reduce communication complexity to O(n2k). Sang and Shen, however, pointed out that the cut-and-choose
technique will give the adversary chances to behave maliciously in KS protocol [21, 22].

13

References

1. Y. Aumann and Y. Lindell. Security against covert adversaries: efficient protocols for realistic adversaries.
In TCC 2007, LNCS, pages 137–156. Springer-Verlag, 2007.

2. J. Camenisch and G. M. Zaverucha. Private intersection of certified sets. In Financial Cryptography 2009,
LNCS. Springer-Verlag, 2009.

3. J. Cohen and M. Fischer. A robust and verifiable cryptographically secure election scheme. In FOCS,
1985.

4. E. D. Cristofaro and G. Tsudik. Practical private set intersection protocols with linear complexity. In
Financial Cryptography, LNCS, pages 143–159. Springer, 2010.

5. D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust private set intersection. In
M. A. et al., editor, ACNS 2009, volume 5536 of LNCS, pages 126–142. Springer-Verlag, 2009.

6. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO, volume 435 of LNCS, pages 307–315.
Springer, 1989.

7. P. Feldman. A practival scheme for non-interactive verifiable secure sharing. In IEEE Annual Symposium
on Foundations of Computer Science, pages 427–437, 1987.

8. M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set-intersection. In C. C. et al.,
editor, Advances in Cryptology-EuroCrypt’04, volume 3027 of LNCS, pages 1–19. Springer-Verlag, 2004.

9. K. B. Frikken. Privacy-preserving set union. In ACNS, LNCS, pages 237–252. Springer, 2007.
10. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation for discrete-log

based cryptosystems. In Journal of Cryptology, volume 20(1), pages 51–83. Springer New York, 2007.
11. O. Goldreich. The Foundations of Cryptography, volume 2. Cambridge University Press, 2004.
12. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for

protocols with honest majority. In ACM STOC, pages 218–229, 1987.
13. C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern matching with security against

mailicious and covert adversaries. In TCC 2008, LNCS, pages 155–175. Springer-Verlag, 2008.
14. C. Hazay and K. Nissim. Efficient set operations in the presence of malicious adversaries. In Public Key

Cryptography, LNCS, pages 312–331. Springer, 2010.
15. S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications to adaptive ot and

secure computation of set intersection. In TCC 2009, LNCS. Springer-Verlag, 2009.
16. L. Kissner and D. Song. Privacy-preserving set operations. In V. Shoup, editor, Advances in Cryptology-

Crypto’05, volume 3621 of LNCS, pages 241–257. Springer-Verlag, 2005.
17. L. Kissner and D. Song. Privacy-preserving set operations. Technical Report CMU-CS-05-133, Carnegie

Mellon University, 2006.
18. P. Paillier. Public-key cryptosystems based on composite degree residuosity public-key cryptosystems

based on composite degree residuosity classes. In J. Stern, editor, Advances in Cryptology-EuroCrypt’99,
volume 1592 of LNCS, pages 223–238. Springer-Verlag, 1999.

19. T. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Advances in
Cryptology-Crypto’91, volume 576 of LNCS, pages 129–140. Springer-Verlag, 1991.

20. Y. Sang and H. Shen. Privacy preserving set intersection protocol secure against malicious behaviors. In
Proceedings of the Eighth International Conference on Parallel and Distributed Computing, Applications
and Technologies, pages 461–468, Washington, DC, USA, 2007. IEEE Computer Society.

21. Y. Sang and H. Shen. Privacy preserving set intersection based on bilinear groups. In Proceedings of the
thirty-first Australasian conference on Computer science, volume 74, pages 47–54, Darlinghurst, Australia,
Australia, 2008. Australian Computer Society, Inc.

22. Y. Sang and H. Shen. Efficient and secure protocols for privacy-preserving set operations. In ACM
Transactions on Information and Systems Security, 2009.

23. V. Shoup. Lower bounds for discrete logarithms and related problems. In EUROCRYPT, pages 256–266.
Springer, 1997.

24. V. Shoup. A Conputational Introduction to Number Theory and Algebra. Cambridge University Press,
2005.

25. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 2003.
26. A. Yao. Protocols for secure computations. In FOCS, 1982.

14

A Honest-Verifier Zero-Knowledge Proofs

In this section we describe the sigma protocol, i.e. (special) honest verifier zero-knowledge
proof systems with (special) strong soundness, for the statements P,D,DO needed in the
PPSI-MAL protocol, as described in section 4.2. These proof systems are simple extensions
of well-known sigma protocols for proving knowledge of discrete logarithms, representations,
and arithmetic relations between these representations. For example the sigma protocol for
HVZKPK-P[Encpk(f1),Encpk(f2),Encpk(f3)] is a conjunction of |S| instances, one for each
s ∈ S, of a sigma protocol for proving knowledge of plaintexts f1(s), f2(s), f3(s) encrypted in
Encpk(f1(s)),Encpk(f2(s)), Encpk(f3(s)), which satisfy relation f1(s) · f2(s) is equal to f3(s)
as an element in Zp, the plaintext domain.

We use notation Encpk(·; ·) and Com′ck(·; ·) instead of Encpk(·) and Com′ck(·), respectively,
to indicate randomizers in addition to messages in a encryption and a commitment scheme,
respectively. We assume that both Encpk and Com′ck have the additively homomorphic prop-
erty on both message and randomness, for example the modified ElGamal encryption and
Pedersen commitment scheme, respectively.

Sigma Protocol for Product Relation HVZKPK-P: We show a sigma protocol for relation
HVZKPK-P between the prover P and the verifier V, namely to prove equality EncSpk(f3) = f1⊗
EncSpk(f2) for given encrypted polynomials EncSpk(f1), Enc

S
pk(f2), Enc

S
pk(f3), is just a conjunc-

tion of |S| proof systems, one for each triple of ciphertexts Encpk(f1(s)),Encpk(f2(s)),Encpk(f3(s))
for each s ∈ S. Therefore we give SHVZK for the statement that for givenA = Encpk(a; ra), B =
Encpk(b; rb), C = Encpk(c; rc), (A,C) ∈ LB where LB={ (A,C) | A = Encpk(a; ra), B =
Encpk(b; rb), C = Encpk(a · b; a · rb + r) for a, ra, r ∈ Zp }.

HVZKPK-P

Common Input: Description of homomorphic encryption Enc including the plaintext
domain Zp, a public key pk, and A = Encpk(a; ra), B = Encpk(b; rb), C = Encpk(a · b; a ·
rb + r).
Prover Input: a, ra and r.
Goal: Prove that (A,C) ∈ LB.

P → V: P chooses a′, r′a, r
′ $← Zp. P computes A′ := Encpk(a

′; r′a) and C ′ := Ba′ =
Encpk(a

′ · b; a′ · rb + r′), and then, sends V A′, C ′.

V→ P: V chooses e
$← Zp, and then sends e to P.

P→ V: P computes ã := a′ + e · a, r̃a := r′a + e · ra, and r̃ := r′ + e · r, and then sends V
ã, r̃a, r̃.

V: V accepts if (1) Encpk(ã; r̃a)
?
= A′ ⊕Ae and (2) Bã ⊕ Encpk(0; r̃)

?
= C ′ ⊕ Ce.

Completeness: straightforward. �
(Special) Honest-Verifier Simulation: Given A,B,C and e, the simulator picks ã, r̃a and
r̃ at random, and computes corresponding A′ and C ′ as follows;

A′ = Encpk(ã; r̃a)⊕A−e.
C ′ = Bã ⊕ Encpk(0; r̃)⊕ C−e.

15

Then, A′ = Encpk(ã−e ·a; r̃a−e ·ra) and C ′ = Encpk((ã−e ·a) ·b; (ã−e ·a) ·rb+ r̃−e ·r). Hence
a′ = ã−ea, r′a = r̃a−era and r′ = r̃−er. In the simulated distribution (a′, r′a, r

′, A′, C ′, ã, r̃a, r̃),
ã, r̃a, and r̃ are uniformly distributed, and others are uniquely determined, in particular,
there are only one corresponding (a′, r′a, r

′, A′, C ′) for each (ã, r̃a, r̃). Let us consider real
distribution (a′, r′a, r

′, A′, C ′, ã, r̃a, r̃) generated by the prover. In real distribution a′, r′a, and
r′ are uniformly distributed, and others are calculated using a′, r′a and r′. If we consider the
restricted distribution (ã, r̃a, r̃), then (ã, r̃a, r̃) are uniformly distributed. Furthermore, there
exists one-to-one correspondence between (a′, r′a, r

′) and (ã, r̃a, r̃). Therefore the simulated
distribution is perfectly same to the real distribution. �
(Special) Strong Soundness: We show that if there exist (e, ã, r̃a, r̃) and (e∗, ã∗, r̃∗a, r̃

∗)
such that
(1) e 6= e∗

(2) A′ ⊕Ae = Encpk(ã; r̃a) and C ′ ⊕ Ce = Bã ⊕ Encpk(0; r̃)
(3) A′⊕Ae∗ = Encpk(ã

∗; r̃∗a) and C ′⊕Ce∗ = Bã∗ ⊕ Encpk(0; r̃∗), then (A,C) ∈ LB. Moreover,
the witness a can be efficiently extracted from the above two distinct related proof transcripts.

Let us show how to extract a. First, compute ((A′ ⊕ Ae) ⊕ (A′ ⊕ Ae∗)−1)(e−e∗)−1
where

(e− e∗)−1 is the multiplicative inverse element of (e− e∗) in the ring Zp. Then,

A

= ((A′ ⊕Ae)⊕ (A′ ⊕Ae∗)−1)(e−e∗)−1

= Encpk((e− e∗)−1(ã− ã∗); (e− e∗)−1(r̃a − r̃∗a))

Since Encpk(·; ·) is a one-to-one mapping, a = (e− e∗)−1(ã− ã∗) and ra = (e− e∗)−1(r̃a− r̃∗a).
Therefore we can extract the witness a.

Now we remain to show that (A,C) ∈ LB. Compute C as follows:

C

= ((C ′ ⊕ Ce)⊕ (C ′ ⊕ Ce∗)−1)(e−e∗)−1

= Encpk((ã− ã∗)b; (ã− ã∗)rb + (r̃ − r̃∗))(e−e∗)−1

Since a = (e − e∗)−1(ã − ã∗) and Encpk(·; ·) is a one-to-one mapping, C is an encryption
of ab with a randomness arb + (e− e∗)−1(r̃ − r̃∗). �

Sigma Protocol for Product Relation HVZKPK-D: We let L(k,S)={ EncSpk(f) | f ∈ Zkp[x]} be
a set of encrypted polynomials of degree less than or equal to k.

16

HVZKPK-D

Common Input: Description of homomorphic encryption Enc including the plaintext
domain Zp, a public key pk, and EncSpk(f) := {(s, Cs)}s∈S where S is an arbitrary index
set such that |S| ≥ k + 1, f is a k-degree polynomial f , and Cs = Encpk(f(s); rs) for a
random rs ∈ Zp.
Prover Input: f and {rs}s∈S .
Goal: Prove that EncSpk(f) ∈ L(k,S).

P → V: P chooses f ′
$← Zkp[x] and r′s

$← Zp for s ∈ S. P computes EncSpk(f
′) =

{(s, C ′s)}s∈S , where C ′s := Encpk(f
′(s); r′s), and sends EncSpk(f

′) to V.

V→ P: V chooses e
$← Zp, and then sends e to P.

P → V: P computes f̃ := f ′ + e · f and r̃s := r′s + e · rs for ∀s ∈ S, and then, sends V
f̃ , r̃s.

V: V accepts if (1) f̃ ∈ Zkp[x] and (2) Encpk(f̃ ; r̃s) = C ′s ⊕ Ces for ∀s ∈ S.

Completeness: It is straightforward. �
(Special) HVZK Simulatability: Given {Cs}s∈S , e, the simulator picks a polynomial f̃(x)
of degree less than or equal to k, and integers {r̃s}s∈S at random. Then, computes corre-
sponding {C ′s}s∈S as follows;

C ′s = Encpk(f̃(s); r̃s)⊕ C−es .

C ′s is equal to Encpk(f̃(s)−e·f(s); r̃s−e·rs), and thus f ′(s) = f̃(s)−e·f(s) and r′(s) = r̃s−e·rs.
Since f and f̃ are degree less than or equal to k, f ′ is, too. In the simulated distribution of pro-
tocol transcripts ({C ′s}s∈S , f̃ , {r̃s}s∈S), f̃ and {r̃s}s∈S are uniformly distributed, but {C ′s}s∈S
is uniquely determined by f̃ and {r̃s}s∈S . In real protocol f ′ and {r′s}s∈S are chosen at ran-
dom, and then f̃ and {r̃s}s∈S are computed. If we consider only the distribution of f̃ and
{r̃s}s∈S , it is uniformly distributed, and there exists one-to-one correspondence between (f̃ ,
{r̃s}s∈S) and (f ′, {r′s}s∈S). Therefore, there exists unique values of (f ′, {r′s}s∈S , {C ′s}s∈S) for
each (f̃ , {r̃s}s∈S), so that the simulated distribution is identical to the real distribution. �
(Special) Strong Soundness: We show that if there exist (e, f̃ , {r̃s}s∈S) and (e∗, f̃∗, {r̃∗s}s∈S)
such that
(1). e 6= e∗,
(2). f̃ ∈ Zkp[x] and Encpk(f̃ ; r̃s) = C ′s ⊕ Ces for ∀s ∈ S,

(3). f̃∗ ∈ Zkp[x] and Encpk(f̃
∗; r̃∗s) = C ′s ⊕ Ce

∗
s for ∀s ∈ S,

then EncSpk(f) ∈ L(k,S). Moreover, polynomial f can be extracted given the above two proof
transcripts.

From (2) and (3) we know for s ∈ S,

C ′s ⊕ Ces = Encpk(f̃(s); r̃s),

C ′s ⊕ Ce
∗
s = Encpk(f̃

∗(s); r̃∗s).

Compute Cs as follows:

Cs
= ((C ′s ⊕ Ces)⊕ (C ′s ⊕ Ce

∗
s)−1)(e−e

∗)−1

= Encpk((e− e∗)−1(f̃(s)− f̃∗(s)); (e− e∗)−1(r̃s − r̃∗s))

17

Since f̃ , f̃∗ ∈ Zkp[x], (e−e∗)−1(f̃− f̃∗) ∈ Zkp[x], too. Therefore {Cs}s∈S is also an encryption of

a polynomial in Zkp[x], and we can extract the witness polynomial by computing (e−e∗)−1(f̃−
f̃∗). �

Sigma Protocol for Product Relation HVZKPK-DO: Protocol HVZKPK-DO is a trivial modi-
fication of the above protocol HVZKPK-D: The prover chooses a polynomial f ′ s.t. f ′(1) = 0,
and uses Com instead of Encpk. Then, the verifier accepts only if f̃(1) = e.

We let LO(k,S)={ EncSpk(f) | f ∈ Zkp[x] and f(1) = 1} be a set of valid encrypted polyno-
mials passing a point (1, 1) of degree less than or equal to k. We use the Pedersen commitment
scheme Com′ck, and use the notation Com′ck(cs; ds) to indicate randomizer ds as well as mes-
sage cs.

HVZKPK-DO

Common Input: Description of Comck, Encpk including Zp, ck, and pk, and
Comck(Enc

S
pk(f)) := {(s,Ds, Cs))}s∈S , where Ds = Com′ck(cs; ds), Cs = Encpk(f(s) +

cs; rs), S is an index set such that |S| ≥ k + 1, f is a k-degree polynomial f , and rs is
chosen at random Zp.
Prover Input: f , {(cs, ds, rs)}s∈S .
Goal: EncSpk(f) ∈ LO(k,S).

P → V: P chooses f ′
$← Zkp[x] passing a point (1, 0) and r′s, c

′
s

$← Zp for s ∈ S, and then

computes Comck(Enc
S
pk(f

′)) = {(s,D′s, C ′s)}s∈S , where C ′s := Encpk(f
′(s) + c′s; r

′
s) and

D′s = Com′ck(c
′
s; d
′
s), and then sends Comck(Enc

S
pk(f

′)) to V.

V→ P: V chooses e
$← Zp, and then sends e to P.

P→ V: P computes f̃ := f ′ + e · f , r̃s := r′s + e · rs, c̃s := c′s + e · cs, and d̃s := d′s + e · ds
for ∀s ∈ S, and then, sends V f̃ , r̃s, c̃s, d̃s.

V: V accepts if (1) f̃ ∈ Zkp[x], (2) f̃(1) = e, and (3) Encpk(f̃(s) + c̃s; r̃s) = C ′s ⊕ Ces for

∀s ∈ S (4) Com′ck(c̃s; d̃s) = D′s ⊕De
s for ∀s ∈ S .

Completeness: It is straightforward. �
(Special) HVZK Simulatability: Given {Ds, Cs}s∈S , e, the simulator picks a polynomial

f̃(x)
$← Zkp[x] passing a point (1, e) and integers {c̃s, d̃s, r̃s}s∈S at random, and computes

corresponding {D′s, C ′s}s∈S as follows;

D′s = Com′ck(c̃s; d̃s)/D
e
s,

C ′s = Encpk(f̃(s) + c̃s; r̃s)/C
e
s .

D′s is equal to Comck(c̃s − e · cs; d̃s − e · ds), and thus c′s = c̃s − e · cs and d′s = d̃s − e · ds.
Thus, C ′s is equal to Encpk(f̃(s)− e · f(s) + c′; r̃s− e · rs), and thus f ′(s) = f̃(s)− e · f(s) and
r′(s) = r̃s − e · rs. Since both f and f̃ are in Zkp[x], so f ′ is, and since f(1) = 1 and f̃(1) = e,
f ′(1) = 0 as desired.

In the simulated distribution of protocol transcripts ({D′s, C ′s, c̃s, d̃s, r̃s}s∈S , f̃), f̃ and
{c̃s, d̃s, r̃s}s∈S are uniformly distributed, but {D′s, C ′s}s∈S is uniquely determined by others.

18

In real protocol f ′ and {c′s, d′s, r′s}s∈S are chosen at random, and then f̃ and {c̃s, d̃s, r̃s}s∈S
are computed.

Let us consider the restricted distribution of f̃ and {c̃s, d̃s, r̃s}s∈S in the real distribution.

Since f ′ = (x−1) ·h′ for h′
$← Zk−1p and f = (x−1) ·h+ 1 for some h ∈ Zk−1p [x], f̃ is equal to

f ′+ef = (x−1)(h′+eh)+e, and hence f̃ is uniformly distributed in Zkp[x] with passing a point

(1, e). We can easily check that c̃s, d̃s, r̃s are uniformly distributed in Zp. Since there exists
one-to-one correspondence between (f̃ , {c̃s, d̃s, r̃s}s∈S) and (f ′, {c′s, d′s, r′s}s∈S). Therefore,
there exists unique values of (f ′, {c′s, d′s, r′s}s∈S) for each (f̃ , {c̃s, d̃s, r̃s}s∈S). For each (f ′,
{c′s, d′s, r′s}s∈S), there exists unique values for D′ = Com′ck(c

′
s; d
′
s) and Encpk(f

′(s) + c′s; r
′
s), so

that the real distribution is identical to the simulated distribution. �
(Special) Strong Soundness: We show that if there exist (e, f̃ , {c̃s, d̃s, r̃s}s∈S) and (e∗, f̃∗,
{c̃∗s, d̃∗s, r̃∗s}s∈S) such that
(1). e 6= e∗,
(2). f̃ ∈ Zkp[x] passing (1, e), Com′ck(c̃s; d̃s) = D′s⊕De

s, and Encpk(f̃(s) + c̃s; r̃s) = C ′s⊕Ces for
∀s ∈ S,
(3). f̃∗ ∈ Zkp[x] passing (1, e∗), Com′ck(c̃

∗
s; d̃
∗
s) = D′s⊕De∗

s , and Encpk(f̃
∗(s)+ c̃∗s; r̃

∗
s) = C ′s⊕Ce

∗
s

for ∀s ∈ S,
then EncSpk(f) ∈ LO(k,S). Moreover, polynomial f can be extracted given the above two proof
transcripts.

From (2) and (3) we know for s ∈ S,

D′s ⊕De
s = Com′ck(c̃s; d̃s),

D′s ⊕De∗
s = Com′ck(c̃

∗
s; d̃
∗
s).

C ′s ⊕ Ces = Encpk(f̃(s) + c̃s; r̃s),

C ′s ⊕ Ce
∗
s = Encpk(f̃

∗(s) + c̃∗s; r̃
∗
s).

Compute Ds as follows:

Ds

= ((D′s ⊕De
s)⊕ (D′s ⊕De∗

s)−1)(e−e
∗)−1

= Com′ck((e− e∗)−1(c̃s − c̃∗s); (e− e∗)−1(d̃s − d̃∗s))

Then, we can extract cs and ds as cs = (e− e∗)−1(c̃s − c̃∗s) and ds = (e− e∗)−1(d̃s − d̃∗s).
Compute Cs as follows:

Cs
= ((C ′s ⊕ Ces)⊕ (C ′s ⊕ Ce

∗
s)−1)(e−e

∗)−1

= Encpk(f̃(s)− f̃∗(s) + cs; r̃s − r̃∗s)(e−e
∗)−1

Since f̃ , f̃∗ ∈ Zkp[x], f̃(1) = e and f̃(1)∗ = e∗, (e− e∗)−1(f̃ − f̃∗) ∈ Zkp[x] with passing a point

(1, 1). Therefore {Cs}s∈S is also an encryption of a polynomial in Zkp[x] with passing (1, 1),

and we can extract the witness polynomial by computing (e− e∗)−1(f̃ − f̃∗). �

B Security Proof of Theorem 2

Theorem 2 (Security of PPSI-MAL): If Encpk is semantically secure additive homomorphic
encryption, protocol PPSI-MAL is a secure computation protocol for computing the PPSI func-
tionality in the presence of any coalition C of t corrupt players such that 2t+ 1 ≤ n. Specif-
ically, for any arbitrarily malicious adversarial algorithm A controlling players in C, there

19

exists an efficient simulator S such that for any set of inputs {Xi}i 6∈C to the honest players,
the outputs of adversary A and of the honest players interacting in the PPSI-MAL protocol
are computationally indistinguishable from the outputs of S and of the honest players in the
ideal world interacting with the ideal PPSI functionality fPPSI.

Proof. We describe the simulator S, which interacts with adversary A who controls the set
of corrupted players C. Let H be the remaining honest players. Let {Xi}i∈H be the private
inputs of the honest players. Let X = fPPSI(X1, ..., Xn) denote the multi-party set intersection
function, i.e. X = X1 ∩ ...∩ Xn. The simulator’s goal is two-fold: To extract the effective inputs
{Xi}i∈C which the corrupted players enter into the PPSI computation, and to simulate the
same view that A would see when interacting with the honest players on inputs {Xi}i∈H but
given only these extracted adversarial inputs {Xi}i∈C and the output X = fPPSI(X1, ..., Xn).

Simulator Description:
[1]. S runs, on behalf of players in H, Input Data Conversion by setting fi = 1 for ∀i ∈ H, and
steps (1)-(2) of Online phase in the protocol. Let δ0, δ1 and δ2 be the random coins that S
uses in, respectively, Input Data Conversion, and (1)-(2) of Online phase in this execution.
[2]. S runs until the end of the step (2). Let D be the set of players in C that correctly carry
out verifiable secret sharing procedure in the step (1) and pass D-ZKPK-DO proof in the step
(2). That is, D = C ∩M . S rewinds A and runs it repeatedly until that for each player P in
D it finds a corresponding execution such that P pass, and a challenge on proof is different
from original one. In each run, S performs Input Data Conversion and step (1) of Online phase
on coins δ0 and δ1, respectively, and step (2) on fresh random coins. (Claim 4 below show that
the expected number of such rewindings is polynomial in security parameter λ.) Using the
strong soundness property of the D-ZKPK-DO proof, S extracts the witnesses fi for players in
D. S factors these polynomials to compute {Xi}i∈D′ (Factoring polynomials in Zp[x] requires
quadratic operations in k, so that it takes polynomial in the security parameter λ.), and sets
Xi ← φ for ∀i ∈ C \ D, then sends {Xi}i∈C to the ideal PPSI functionality, and receives the
output X = fPPSI(X1, ..., Xn).
[3]. The simulator S rewinds A to the end of step (2) on coins δ0, δ1, δ2, and performs step
(3) to reconstruct encrypted polynomials {EncSpk(f ′i)}i∈H where each f ′i , i ∈ H, encodes the
set X. Pedersen VSS allows S to equivocate on the reconstructed secret {cis}s∈S , and hence
EncSpk(f).
[4]. The simulator just performs the rest of the protocol on behalf of the players in H using
random coins δ4−7 and outputs execution, i.e. an execution between A and players in H using
inputs {f ′i}i∈H and coins δ0, δ1, δ2, δ4−7.

Claim: The expected number of rewindings in the step [2] in Simulator Description above
is polynomial in λ.

Proof. The simulation rewinds A until that for each P ∈ D it finds a corresponding execution
such that 1) P pass, and 2) a challenge on proof is different from original one. Since 2) is
satisfied with overwhelming probability if S choose a random coin independently per each
run, we focus on 1).

Let 2C be a set of power subsets of C, i.e. 2C = {∀ D such that D ⊂ C}, the probability
that a set of corrupted players D ⊂ C pass D-ZKPK-DO be εD where the probability goes
over δ2, and the probability that a corrupted player P ∈ C passes D-ZKPK-DO be ε′P where
randomness goes over δ2, that is, we assume that δ0 are δ1 fixed in the probability εD and ε′P .

20

Then the expected number of runs for each δ0, δ1 is as follows:∑
∀D∈2C εD

∑
∀P∈D(ε′P · 1 + (1− ε′P)ε′P · 2

+ · · ·+ (1− ε′P)k−1ε′P · k + · · ·)
=
∑
∀D∈2C εD

∑
∀P∈D ε

′
P
∑∞

k=1 k(1− ε′P)k−1

=
∑
∀D∈2C

∑
∀P∈D(εD

ε′P
)

=
∑
∀D∈2C εD

∑
∀P∈D(1

ε′P
)

=
∑
∀P∈C

∑
∀D3P(εD

ε′P
)

=
∑
∀P∈C

1
ε′P

∑
∀D3P εD

=
∑
∀P∈C

1
ε′P
ε′P

=
∑
∀P∈C 1

= |C| = poly(λ)

for some polynomial poly(·). Let us explain why the fourth equality holds. The summation∑
D∈2C

∑
P∈D is same to

∑
(D,P)∈S0 where S0 = {(D,P)|∀D ∈ 2C , and ∀P such that P ∈

D}. On the other hand, the summation
∑
P∈C

∑
D3P is same to

∑
(P,D)∈S1 where S1 =

{(P, D)|∀P ∈ C, and ∀D such that D 3 P}. For every (D,P) ∈ S0, P is an element of D, so
that (P, D) is also contained S1. That is, S0 ⊂ S1. For every (P, D) ∈ S1, D contains P, so
that S0 also has (D,P). That is, S1 ⊂ S0. Therefore S0 = S1 and the fourth equality holds.
Other equalities can be easily verified. Therefore we complete the proof of claim. �

Since simulator’s other steps than [2] can be run, the overall running time of S is polynomial
in λ.

Now we argue that in A’s view, S’s simulated transcript is indistinguishable from the real
protocol’s transcript. First, we consider the random space over which S uses randomness. In
the step [1] of simulation S chooses δ0, δ1, δ2 at random, and runs until the end of step (2).
In step [3] of simulation S rewinds A to the end of step (2) on coins δ0, δ1, δ2, and then it
performs the rest of the protocol using randomness δ4−7. Therefore, S simulation uses all
random uniformly.

Next, we show that the simulated transcript is indistinguishable from the real protocol’s
transcript. In the step [1] S commits encrypted constant polynomials as honest players’ input
instead of k-degree polynomials. A, however cannot distinguish because of perfectly hiding
property of Comck. Further, S can simulate all players in H to pass D-ZKPK-DO in the step
[2] since D-ZKPK-DO is straight-line simulatable ZKPK protocol. In the step [3] of simulation
is indistinguishable from the real protocol because of trapdoor opening property of Pedersen
commitment scheme. Since S follows the description of the protocol in the step [4], adversarial
view is identical in the both simulation and real protocol. At the end of simulation we have
the polynomial I(x) that is distributed as a product of a |X|-degree polynomial which encodes
X and a random polynomial of degree 2k−|X|, which is the same as the distribution of I(x) in
the real protocol between A and the honest players on inputs {Xi}i∈H by Lemma 1. Therefore
the simulated transcript is indistinguishable from the real protocol’s transcript.

At the end of protocol the adversary cannot obtain other information about honest players’
input than set intersection, and affect the result of the protocol to be wrong. Therefore we
complete the proof. �

21

