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SUMMARY: In this paper we propose new key 

agreement protocols based on multivariate polynomials 

over finite field Fq. We concretely generate the 

multivariate polynomial F(X)∈Fq[x1,..,xn] such that 

F(X)=Σi=1
m 

ki[Ai(X)
d
+ Ai(X)

d-1
+ ..+ Ai(X)] where Ai(X) 

=ai1x1+…+ainxn ,coefficients ki , aij ∈ Fq 
(i=1,..,m:j=1,..,n) and variables X=(x1,..,xn)

T ∈
Fq[x1,..,xn]

n. The common key K(X) has the form 

such that K(X)=Σi=1
m 

hi F((bi1x1,...,binxn)
 T

) where hi ,bij

∈Fq (i=1,..,m:j=1,..,n) to be the temporary secret keys 

of the partner . Our system is immune from the Gröbner 

bases attacks because obtaining coefficients of F(X) to 

be secret keys arrives at solving the multivariate 

algebraic equations, that is, one of NP complete 

problems .Our protocols are also thought to be immune 

from the differential attacks because of the equations of 

high degree. 
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1. Introduction 

Since Diffie and Hellman proposed the concept of the 

key agreement protocols (KAP) and the public key 

cryptosystem (PKC) in 1976[1], various KAP and the 

PKC were proposed.  

  Though typical examples of KAP are almost based on 

the discrete logarithm problem over finite fields ,some 

schemes of KAP based on the multivariate equations 

were proposed by the current auther[10],[11].  

Typical examples of PKC are classified as follows. 

1) RSA cryptosystem[2] based on factoring problem ,    

2) ElGamal cryptosystem[3] based on the discrete 

logarithm problem over finite fields , 

3) the elliptic curve cryptosystem[4] based on the 

discrete logarithm problem on the elliptic curve[5],[6],  

4)  multivariate public key cryptosystem (MPKC) [7]. 

and so on.  

   It is said that the problem of factoring large integers, 

the problem of solving discrete logarithms and the 

problem of computing elliptic curve discrete logarithms 

are efficiently solved in a polynomial time by the 

quantum computers. 

 It is thought that MPKC is immune from the attack of 

quantum computers. But MPKC proposed until now 

almost adopts multivariate quadratic equations because 

of avoiding the explosion of key length. 

In the current paper, we propose KAP using 

multivariate polynomials over finite field Fq without the 

explosion of key length. The security of this system is 

based on the computational difficulty to solve the 

multivariate algebraic equations of high degree. 

 To break this cryptosystem it is thought that we  

probably need to solve the multivariate algebraic 

equations of high degree that is equal to solving the NP 

complete problem. Then it is thought that our system is 

immune from the attacks by quantum computers.  

   In the next section, we begin with generating the 

multivariate polynomials of high degree over finite field. 

In section 3, we describe the expansions of the 

multivariate polynomials of high degree. In section 4, we 

construct proposed KAP. In section 5, we verify the 

strength of our KAP. We consider the size of the keys for 

our KAP in section 6. In the last section, we provide 

concluding remarks.  

2. The multivariate polynomials of high degree  

Let q be a prime. Let Fq be the finite field.  

Let m ,n and d be positive integers .  

Let S be system parameters such that  

S=[q,d,m,n]  .                             (1) 

As secret keys SK ,we choose arbitrary parameters ki 

and aij∈Fq (i=1,..,m;j=1,..,n).   

Let F(X) be the polynomials in Fq[x1,..,xn] such 

that  

                 (2) 

 

where 

 Ai(X)=ai1x1+…+ainxn   ,(i=1,..,m)             (3) 
variables;X=(x1,..,xn)

T ∈Fq[x1,..,xn]
n
          (4) 

SK=[ ki,aij](i=1,..,m;j=1,..,n).                 (5) 

 
We determine the value of m later so that the total 

number of coefficients ki and aij (i.e secret keys) is nearly 
equal to the number of equations . 

3.  The expansion of F(X) 

We obtain the expansion of F(X ) from (2) as follows;  

 

 

(6) 

 

with the coefficients fiei1..ein ∊Fq to be published , where  
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eij(i=1,..,d;j=1,..,n) are non-negative integers which 

satisfy ei1+..+ein =i. 

Then the number N of fiei1..ein  is  

 

 

                (7) 

 

Let {fiei1..ein } be the set that includes all fiei1..ein  . 

We determine the value of m as follows.  
m=┎(N)/(n+1)┒,                            (8) 

where ┎*┒ means the largest integer less than or the 

integer equal to *. 

4. Proposed key agreement protocol 

Let's describe the procedure that user U and user V 

obtain the common keys using F(X) as follows. 

1) The set of system parameters S=[q,d,m,n] is published 

by the system center which is trusted third party(TTP).  

                      

2) User U chooses randomly parameters  

ki,ai1∈Fq, (i=1,..,m:j=1,..,n). 

   The secret key of user U is  

SK=[ ki,ai1](i=1,..,m;j=1,..,n). 

                

3) User U generates F(X)  such that 

 

                                          (9) 

 

 

4)  User U calculates the set of coefficients {fiei1..ein } 

from (9) . 

5) Let PK be the public key of user U such that 

 

    PK={fiei1..ein }.                       (10) 

 

Beforehand user U publishes PK which consists of N 

parameters in Fq. 

 

6) User V chooses randomly parameters  

hi,bi1∈Fq, (i=1,..,m:j=1,..,n) 

 

7)  User V generates the temporary polynomial T(X) 

such that 

                                          

(11) 

 

where 

 Bi(X)=bi1x1+…+binxn   ,(i=1,..,m). 

8) From (11) user V calculates the set of coefficients 

{tiei1..ein } which consists of N parameters in Fq . 

The expansion of T(X) is given such that  

    

 

(12) 

 

with the coefficients tiei1..ein ∊Fq to be published , where  

eij(i=1,..,d;j=1,..,n) are non-negative integers which 

satisfy ei1+..+ein =i. 

 

Then the number N’ of tiei1..ein  is equal to N. 

 Let { tiei1..ein } be the set that includes all tiei1..ein. 

9) User V sends {tiei1..ein} to user U . 

10) User V calculates common keys Kv as follows. 

Let Kv be  

 

                                   

 

     

(13) 

                                         

 

From (2) we obtain  

 

 

 

(14) 

 

 

From (6) we obtain 

                                         

 

 

 

(15) 

 

 

11)  User U calculates common keys Ku as follows. 

Let Ku be  

 

 

 

(16) 

 

 

 

From (11) we obtain 

                                        

 

 

(17) 

 

 

From (12) we obtain 

 

                                         

 

 

(18) 

 

 

 

From (14) and (17) we can confirm that 
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Ku=Kv,                                    (19) 

 

The common key of user U and user V is Ku or Kv. 

5. Verification of the strength of our KAP  

Let's examine the strength of our KAP. The strength of 

our KAP depends on the strength of the multivariate 

functions described in section 2.  In other words, we 

mention the difficulty to obtain ki and aij
 (i=1,.., 

m;j=1,..,n) from the set of coefficients {fiei1..ein } of F(X) 

to be the public keys .  

5.1 Multivariate algebraic equations from F(X ) 

From (6) all fiei1..ein  have the form such that 

  

 

 

                                          

(20) 

 

  (i=1,..,d) 

 

with the coefficients ciei1…ein∈Fq where eij(j=1,..,n) 

are non-negative integers which satisfy 

 

 ei1+..+ein=i. (i=1,..,m). 

 

From (20) we obtain N multivariate algebraic equations 

over Fq where ki and ajr (j=1,..,m;r=1,..n) are the 

variables i.e. unknown numbers. 

 

5. 2 Cryptanalysis using Gröbner bases 

 

It is said that the Gröbner bases attacks is efficient 

for solving multivariate algebraic equations .We 

calculate the complexity G[9] to obtain the Gröbner 

bases for our multivariate algebraic equations over Fq so 

that we confirm immunity of our KAP to the Gröbner 

bases attack . 

We describe the complexity in case of d=6,n=6 and 

q=7 as samples of lower degree equations. 

s:degree of equations =d+1=7. 

N :the number of equations =6H6 +..+1H1=637. 

We select m so that (n+1)m,the number of variables(i.e 

secret keys) is nearly equal to N , that is  

m=┎(N)/(n+1)┒=┎(637)/7┒=91. 

z :the number of variables =(n+1)m=7*91=637 

dreg =s+1=8 
G=O((zGdreg)

w
)=O(2

141
) is more than 2

80  
which is the 

standard for safety ,where w=2.39. 

 So our KAP is immune from the Gröbner bases attacks 

and is immune from the differential attacks because of 

the equations of high degree in (20). 

It is thought that the polynomial-time algorithm to 

break our KAP does not exist probably.  

6. The size of the keys  

We consider the size of the system parameter q . As q 

is a prime ,we obtain a
q
=a∈Fq. Then we select the 

size of q such that the modulus q is larger than d, the 

degree of F(X). 

In the case of d=6,n=6 and q=7, the size of PK or SK is 

smaller than 2kbits .  

7. Conclusion 

We proposed the key agreement protocols based on 

multivariate polynomials over finite field Fq. It was 

shown that our system is immune from the Gröbner 

bases attacks by calculating the complexity to obtain the 

Gröbner bases for our multivariate algebraic equations.  
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