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1 Introduction

In many symmetric cryptosystems, Boolean functions are critical building blocks. To
resist known attacks, there have been many criteria for designing Boolean functions. Gen-
erally speaking, before 2003, cryptographic Boolean functions were usually required to be
balanced, have high algebraic degree and high nonlinearity. The concept of correlation
immunity was proposed by Siegenthaler [24], then Xiao and Massey [27] gave a simple
spectral characterization. Many papers discussed functions with high nonlinearity and
high-order correlation immunity, and there have been many constructions [2, 7, 14, 20],
but many of which are Maiorana-McFarland like functions. When n is small, some re-
silient functions with maximal nonlinearity have been obtained [23, 21, 18]. Since 2003,
the algebraic attacks proposed by Courtois and Meier [1, 8, 9, 19] have received the world’s
attention, as a result, the algebraic immunity of Boolean functions has been introduced,
and the study of annihilators of Boolean functions becomes important.

∗This is an enlarged and revised version of the paper: Ziran Tu and Yingpu Deng: A Class of 1-Resilient
Function with High Nonlinearity and Algebraic Immunity. Cryptology ePrint Archive, Report 2010/179.
http://eprint.iacr.org/2010/179.
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Definition 1.1. [19] The algebraic immunity AIn(f) of an n-variable Boolean function
is defined to be the lowest degree of nonzero functions g such that fg = 0 or (f + 1)g = 0.

To resist standard algebraic attacks, cryptographic Boolean functions should have high
algebraic immunity. Up to now, several classes of Boolean functions which are algebraic
immunity optimal have been proposed in [4, 6, 11, 15, 16]. Well, designing a Boolean
function to meet all criteria is really a challenge. Most known constructions that are alge-
braic immunity optimal are improper for cryptographic applications. In 2008, Carlet and
Feng made a breakthrough at this point in [5] and they constructed an infinite class of
n-variable Boolean functions with optimal algebraic immunity, maximal algebraic degree
and high nonlinearity. It is the first class of functions which meet the most cryptographic
necessities. Very recently, Tu and Deng proposed in [25] a class of algebraic immunity
optimal functions of even number variables under an assumption of a combinatoric con-
jecture, the nonlinearity of these functions were even better than functions proposed in [5].
Although Carlet proved in [3] that the functions in [25] were weak against fast algebraic
attacks, he could repair this weakness through small modifications. However, among all
the main designing criteria of Boolean functions, the correlation immunity or resiliency
was ignored by [5, 25] and all other known functions with optimal algebraic immunity.

In this paper, we propose an infinite class of 2k-variable Boolean functions, which
satisfy all the main cryptographic criteria: 1-resilient, algebraic degree optimal, have very
high nonlinearity. Based on the conjecture proposed in [25], it can be proved that the
algebraic immunity of our functions is at least suboptimal. Moreover, when k is odd,
the algebraic immunity is actually optimal, and for even k, we find that the algebraic
immunity is optimal at least for k 6 28.

2 Preliminaries

Let n be a positive integer. A Boolean function on n variables is a mapping from Fn
2 into

F2, which is the finite field with two elements. We denote Bn the set of all n-variable
Boolean functions.

Every Boolean function f in Bn has a unique representation as a multivariate polyno-
mial over F2

f(x1, x2, ..., xn) =
∑

I⊆{1,...,n}
aI

∏

i∈I

xi

where the aI ’s are in F2, such kind of representation is called the algebraic normal form
(ANF). The algebraic degree deg(f) of f is defined to be the maximum degree of those
monomials with nonzero coefficients in its algebraic normal form. A Boolean function f is
called affine if deg(f) 6 1, we denote An the set of all affine functions in Bn. The support
of f is defined as supp(f) = {x ∈ Fn

2 : f(x) = 1}, and the wt(f) is the number of vectors
which lie in supp(f). For two functions f and g in Bn, the Hamming distance d(f, g)
between f and g is defined as wt(f + g). The nonlinearity nl(f) of a Boolean function
f is defined as the minimum Hamming distance between f and all affine functions, i.e.
nl(f) = Ming∈And(f, g).
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For any a ∈ Fn
2 , the value

Wf (a) =
∑

x∈Fn
2

(−1)f(x)+<x,a>

is called the Walsh spectrum of f at a, where < x, a > denotes the inner product between
x and a, i.e. < x, a >= x1a1+ . . .+xnan. If Wf (a) = 0 for 1 6 wt(a) 6 m, then f is called
m-th order correlation immune, this is the famous Xiao-Massey [27] characterization of
correlation immune functions. Moreover, if f is also balanced, we call f is m-th order
resilient. The nonlinearity of a Boolean function f can be expressed via its Walsh spectra
by the next formula

nl(f) = 2n−1 − 1
2
Maxa∈Fn

2
|Wf (a)|.

Notice that for f : F2n −→ F2, the Walsh spectrum of f at a ∈ F2n is defined by

Wf (a) =
∑

x∈F2n

(−1)f(x)+tr(a·x),

where tr is the trace function from F2n onto F2. For f : F2k × F2k −→ F2, the Walsh
spectrum of f at (a, b) ∈ F2k × F2k is defined by

Wf (a, b) =
∑

(x,y)∈F
2k×F2k

(−1)f(x,y)+tr(a·x+b·y),

where tr is the trace function from F2k onto F2. It is well-known that the nonlinearity
satisfies the following inequality

nl(f) 6 2n−1 − 2
n
2
−1.

When n is even, the above upper bound can be attained, and such Boolean functions are
called bent [22]. Bent function has several equivalent definitions, for instance, a function
f is bent is equivalent to say that supp(f) is a (2n, 2n−1 ± 2

n
2
−1, 2n−2 ± 2

n
2
−1)-difference

set in the additive group of Fn
2 .

3 Boolean functions with all main cryptographic properties

In this section, we give our construction inspired by Dillon’s partial spread function [12]
and discuss its main cryptographic properties. Firstly we recall Dillon’s functions.
Dillon’s construction [12]. Let n = 2k, F2n ≈ F2k × F2k , g : F2k −→ F2 is a balanced
function which vanishes at 0, define f : F2k × F2k → F2 by

f(x, y) = g(xy2k−2)

then f is bent.
In the following construction, we try to consider functions’ resiliency property in ad-

dition to algebraic degree, nonlinearity and algebraic immunity.
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Construction 3.1. Let n = 2k, k > 3 and F2k be the finite field with 2k elements, α be

a primitive element of F2k . Set A = {0, 1, α, α2, · · ·, α2k−1−1}. We define an n-variable
Boolean function f : F2k×F2k → F2, whose support supp(f) is constituted by the following
four disjoint parts:

• {(x, y) : y = αix, x ∈ F∗
2k , i = 1, 2, · · ·, 2k−1 − 1}

• {(x, y) : y = x, x ∈ A}
• {(x, 0) : x ∈ F2k \A}
• {(0, y) : y ∈ F2k \A}

3.1 1-resiliency, algebraic degree and nonlinearity

Proposition 3.2. Let function f be defined as in Construction 3.1, then f is 1-resilient.

Proof. Since wt(f) = (2k − 1)(2k−1− 1) + (2k−1 + 1) + (2k−1− 1) + (2k−1− 1) = 2n−1, so
f is balanced. We need to verify that Wf (a, b) = 0 for each (a, b) ∈ F2k × F2k satisfying
wt(a, b) = 1. In fact, we can prove more. When a, b are not all zero, first note that

∑

(x,y)∈F
2k×F2k

(−1)tr(ax+by)

=
∑

x∈F
2k

(−1)tr(ax) ·
∑

y∈F
2k

(−1)tr(by) = 0,

where tr is the trace function from F2k onto F2, then we have

Wf (a, b) =
∑

(x,y)∈F
2k

(−1)f(x,y)+tr(ax+by)

= −2
∑

(x,y)∈supp(f)

(−1)tr(ax+by).

We can see

∑

(x,y)∈supp(f)

(−1)tr(ax+by) =
2k−1−1∑

i=1

∑

x∈F∗
2k

(−1)tr((a+bαi)x) +
∑

x∈A

(−1)tr((a+b)x)

+
∑

x∈F
2k\A

(−1)tr(ax) +
∑

y∈F
2k\A

(−1)tr(by).

We consider the Walsh spectra of two kinds of points:
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1. a 6= 0,b = 0, then
∑

(x,y)∈supp(f)

(−1)tr(ax+by) = 1− 2k−1 + 2k − |A|

+
∑

x∈F
2k\A

(−1)tr(ax) +
∑

x∈A

(−1)tr(ax);

2. b 6= 0,a = 0, then
∑

(x,y)∈supp(f)

(−1)tr(ax+by) = 1− 2k−1 + 2k − |A|

+
∑

y∈F
2k\A

(−1)tr(by) +
∑

y∈A

(−1)tr(by).

Combining with the equality |A| = 2k−1 + 1, it is obvious to see that Wf (a, b) = 0 for
ab = 0. Therefore f is 1-resilient.

From Siegenthaler’s inequality[24], we know that for an n-variable, m-th order resilient
Boolean function g, it should be satisfied that m + deg(g) 6 n− 1. We will see that f in
Construction 3.1 is algebraic degree optimal in this sense.

Proposition 3.3. Let function f be defined as in Construction 3.1, then deg(f) = n− 2.

Proof. Let g, h : F2k × F2k → F2 be two Boolean functions as defined by supp(g) =
{(x, y) : y = αix, x ∈ F∗

2k , i = 0, 1, · · ·, 2k−1 − 1} and by supp(h) = {(0, 0)} ∪ {(x, x) : x ∈
F2k \A}∪{(x, 0) : x ∈ F2k \A}∪{(0, y) : y ∈ F2k \A}. So f = g +h. Since g is a function
in the PS− class, it is a bent function, we know that deg(g) 6 k < n − 2 from [22]. To
prove deg(f) = n− 2, we only need to prove deg(h) = n− 2. By Lagrange’s interpolation
formula, we have

h(x, y) = (x2k−1 + 1)(y2k−1 + 1) +
∑

a/∈A

((x + a)2
k−1 + 1)((y + a)2

k−1 + 1)

+
∑

a/∈A

((x + a)2
k−1 + 1)(y2k−1 + 1) +

∑

a/∈A

(x2k−1 + 1)((y + a)2
k−1 + 1).

Expanding the terms, we have

h(x, y) =
∑

a/∈A

2k−1∑

i=1

2k−1∑

j=1

(
2k − 1

i

)(
2k − 1

j

)
x2k−1−iy2k−1−jai+j .

It is easy to see deg(h) 6 n− 2. The coefficient of x2k−1−1y2k−1−1 is

∑

a/∈A

a2 =

(
1 + α2k−1

1 + α

)2

which is obviously nonzero in F2k . Therefore deg(h) = n− 2.
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Now we consider the nonlinearity of functions from Construction 3.1, we need a result
in [5].

Proposition 3.4. [5] Let ω ∈ F∗2n be a primitive element and λ ∈ F2n, denote

Sλ =
2n−2∑

i=2n−1−1

(−1)tr(λωi).

If λ 6= 0, then
|Sλ| 6 2

n
2 n · ln2 + 1.

Proposition 3.5. Let function f be defined as in Construction 3.1, then nl(f) > 2n−1 −
2k−1 − 3 · k · 2 k

2 ln2− 7.

Proof. From the above proof we only need to consider

K(a,b) :=
∑

(x,y)∈supp(f)

(−1)tr(ax+by)

for (a, b) ∈ F2k × F2k with a · b 6= 0, and where tr is the trace function from F2k onto F2.
We know that

K(a,b) =
2k−1−1∑

i=1

∑

x∈F∗
2k

(−1)tr((a+bαi)x) +
∑

x∈A

(−1)tr((a+b)x)

+
∑

x∈F
2k\A

(−1)tr(ax) +
∑

y∈F
2k\A

(−1)tr(by).

By Proposition 3.4, we know that

|
∑

x/∈A

(−1)tr(ax)| = |
2k−2∑

i=2k−1

(−1)tr(aαi)| = |
2k−2∑

i=2k−1−1

(−1)tr(aαi) − (−1)tr(aα2k−1−1)|

6 (k · 2 k
2 ln2 + 1) + 1 = k · 2 k

2 ln2 + 2.

Similarly, we have

|
∑

y/∈A

(−1)tr(by)| 6 k · 2 k
2 ln2 + 2.

If a + b 6= 0, we also have

|
∑

x∈A

(−1)tr((a+b)x)| = | −
∑

x/∈A

(−1)tr((a+b)x)| 6 k · 2 k
2 ln2 + 2.

Now we can obtain an upper bound for |K(a,b)| easily:
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1. a + b = 0, then

|K(a,b)| = |(2k−1 − 1)(−1) + (2k−1 + 1) +
∑

x/∈A

(−1)tr(ax) +
∑

y/∈A

(−1)tr(by)|

6 2 + 2 · (k · 2 k
2 ln2 + 2);

2. a + bαi = 0 for some i, 0 < i < 2k−1, then

|K(a,b)| = |(2k − 1) + (−1) · (2k−1 − 2) +
∑

x∈A

(−1)tr((a+b)x) +
∑

x∈F
2k\A

(−1)tr(ax)

+
∑

y∈F
2k\A

(−1)tr(by)| 6 2k−1 + 1 + 3 · (k · 2 k
2 ln2 + 2);

3. otherwise

|K(a,b)| = | − (2k−1 − 1) +
∑

x∈A

(−1)tr((a+b)x) +
∑

x∈F
2k\A

(−1)tr(ax)

+
∑

y∈F
2k\A

(−1)tr(by)| 6 2k−1 + 1 + 3 · (k · 2 k
2 ln2 + 2).

Finally we get

nl(f) = 2n−1 − 1
2
Maxa,b∈F

2k
|Wf (a, b)| = 2n−1 −Maxa,b∈F∗

2k
|K(a, b)|

> 2n−1 − 2k−1 − 3 · k · 2 k
2 ln2− 7.

In fact, we can improve this lower bound according to the method in [26]. We use
Magma system to compute the nonlinearity of f in Construction 3.1, see the following
table. We can see that the nonlinearity of f is very high and satisfying.

Table 1 The nonlinearity of functions in Construction 3.1

n 2n−1 − 2
n
2−1 nl(f)

6 28 24
8 120 112
10 496 484
12 2016 1996
14 8128 8100
16 32640 32588
18 130816 130760
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3.2 The algebraic immunity

In this section we discuss the algebraic immunity property of Boolean functions from
Construction 3.1. We first recall a combinatorial conjecture proposed in [25].

Conjecture 3.6. [25] Assume k ∈ Z, k > 1. For every x ∈ Z, 0 6 x 6 2k − 1, we expand
x as a binary string of length k, and denote the number of one’s in the string by w(x).
For any t ∈ Z, 0 < t < 2k − 1, let

St = {(a, b)|a, b ∈ Z, 0 6 a, b < 2k − 1, a + b = t mod 2k − 1, w(a) + w(b) 6 k − 1}
then |St| 6 2k−1.

In fact, the authors designed in [25] an algorithm and validated their conjecture until
k 6 29. As a cornerstone of the algebraic immunity property of functions in [25], the
conjecture attracts people’s attention, the authors in [10, 13] tried to attack this problem
theoretically and some advances had been made, and they verified that the conjecture is
correct for many cases of t. In the remainder of this paper, we always assume that this
conjecture is correct.

In the course of the proof, we need the knowledge of BCH code (see, for example, [17]).
For the convenience of the reader, we recall the definition of a BCH code.

Theorem 3.7. (The BCH bound) Let Φ be a cyclic code of length n and with generator
polynomial g(x) such that for some integers b > 0, δ > 1

g(αb) = g(αb+1) = · · · = g(αb+δ−2) = 0

i.e. the code has a string of δ− 1 consecutive powers of α as zeros, where α is a primitive
n−th root of unity, then the minimal distance of Φ is at least δ.

This induces the definition of a BCH code.

Definition 3.8. A cyclic code of length n over Fq is a BCH code of designed distance δ
if, for some integer b > 0,

g(x) = lcm{m(b)(x),m(b+1)(x), · · ·,m(b+δ−2)(x)}
i.e. g(x) is the lowest degree monic polynomial over Fq having αb, αb+1, · · ·, αb+δ−2 as
zeros, where m(i)(x) is the minimal polynomial of αi over Fq.

We will use the BCH bound repeatedly, for later convenience we introduce the following
corollary:

Corollary 3.9. Let f(x) be a univariate polynomial over the finite field F2k with deg(f) 6
2k − 2, α be a primitive element of F2k . If f(x) has δ − 1 consecutive roots αs, αs+1, · ·
·, αs+δ−2, in which s is a nonnegative integer, and if f is not the zero polynomial, then
the number of nonzero coefficients in f(x) is larger than or equal to δ.

Proof. Write f(x) = a0 + a1x + . . . + a2k−2x
2k−2 with ai ∈ F2k . From the assumed

condition, we know that (a0, a1, . . . , a2k−2) is a codeword in some BCH code of length 2k−1
over F2k , having αs, αs+1, · · ·, αs+δ−2 as zeros and with designed distance δ. According
to the BCH bound, if this codeword is nonzero, then its weight should be larger than or
equal to δ.
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Firstly, we show that the algebraic immunity in Construction 3.1 is at least suboptimal.
For this we need the following lemma.

Lemma 3.10. For every 0 < t < 2k − 1 , the modular equation a + b = t mod 2k −
1, w(a) + w(b) = k − 1 has at least one pair of solution.

Proof. At first we observe that, if t and t′ belong to a same cyclotomic coset mod 2k − 1,
then the modular equations for t and for t′ have exactly the same number of solutions.
Without loss of generality we suppose that t has the following form:

t = 11 · · · 1︸ ︷︷ ︸
n1

00 · · · 0︸ ︷︷ ︸
n2

1 · · · 1︸ ︷︷ ︸
n3

0 · · · 0︸ ︷︷ ︸
n4

· · · · · · 1 · · · 1︸ ︷︷ ︸
n2r−1

0 · · · 0︸ ︷︷ ︸
n2r

In order to prove the lemma, we only need to construct a pair of (a, b) to be a solution.
If 0 6 a, b < 2k − 1 satisfy a + b = t mod 2k − 1, then w(a) + w(b) = w(t) + s,
in which s represents the number of carries when doing the modular addition. Since
w(t) = n1 + n3 + . . . + n2r−1 and k = n1 + n2 + . . . + n2r−1 + n2r, we have that (a, b)
is a required solution if and only if a + b = t mod 2k − 1 and the number of carries is
n2 + n4 + . . . + n2r − 1 when doing the modular addition.

If n2r > 1, we construct a pair (a, b) as follows:

a = 1 · · · 1︸ ︷︷ ︸
n1−1

0 1 · · · 11︸ ︷︷ ︸
n2

1 · · · 1︸ ︷︷ ︸
n3−1

0 1 · · · 11︸ ︷︷ ︸
n4

· · · · · · 1 · · · 1︸ ︷︷ ︸
n2r−1−1

0 1 · · · 110︸ ︷︷ ︸
n2r

b = 0 · · · 0︸ ︷︷ ︸
n1−1

0 0 · · · 01︸ ︷︷ ︸
n2

0 · · · 0︸ ︷︷ ︸
n3−1

0 0 · · · 01︸ ︷︷ ︸
n4

· · · · · · 0 · · · 0︸ ︷︷ ︸
n2r−1−1

0 0 · · · 010︸ ︷︷ ︸
n2r

If n2r = 1, we construct (a, b) as

a = 1 · · · 1︸ ︷︷ ︸
n1−1

0 1 · · · 11︸ ︷︷ ︸
n2

1 · · · 1︸ ︷︷ ︸
n3−1

0 1 · · · 11︸ ︷︷ ︸
n4

· · · · · · 1 · · · 1︸ ︷︷ ︸
n2r−1

0

b = 0 · · · 0︸ ︷︷ ︸
n1−1

0 0 · · · 01︸ ︷︷ ︸
n2

0 · · · 0︸ ︷︷ ︸
n3−1

0 0 · · · 01︸ ︷︷ ︸
n4

· · · · · · 0 · · · 0︸ ︷︷ ︸
n2r−1

0

It’s not difficult to verify that (a, b) is a required solution.

Proposition 3.11. Assume Conjecture 3.6 is correct. Let n = 2k, then the algebraic
immunity of function f in Construction 3.1 is at least suboptimal, i.e. AIn(f) > k − 1.

Proof. We need to prove that both f, f + 1 have no annihilators with degrees 6 k − 2.
Let h : F2k ×F2k → F2 satisfy deg(h) 6 k− 2 and f ·h = 0. We will prove h = 0. Observe
that h can be written as a polynomial of two variables on F2k as

h(x, y) =
2k−1∑

i=0

2k−1∑

j=0

hi,jx
iyj ,
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where hi,j ∈ F2k . By deg(h) 6 k − 2, we have hi,j = 0 with w(i) + w(j) > k − 1. Since

h(x, γx) = 0 for x ∈ F∗
2k , γ ∈ ∆ := {α, α2, . . . , α2k−1−1}. Write

h(x, γx) =
∑

i,j

hi,jx
i(γx)j = h0,0 +

2k−2∑

t=1

ht(γ)xt

in which

ht(γ) :=
2k−2∑

j=0

ht−j,jγ
j .

We have h0,0 = 0, ht(γ) = 0 for 1 6 t 6 2k − 2, γ ∈ ∆. Since ht has consecutive 2k−1 − 1
roots, by Corollary 3.9, if ht is not the zero polynomial, then the number of nonzero
coefficients of ht should be greater than or equal to 2k−1. Set J = {j | j ∈ Z, 0 6 j 6
2k − 2, w(t − j) + w(j) 6 k − 2}. However, by Conjecture 3.6 and Lemma 3.10, we have
|J | 6 2k−1 − 1. Hence ht = 0 for 1 6 t 6 2k − 2. So h = 0.

Since supp(f + 1) ⊇ {(x, αix) | x ∈ F∗
2k , i = 2k−1, . . . , 2k − 2}, a similar argument is

applicable to f + 1, and we can show that f + 1 has no annihilator of degree 6 k − 2.
Therefore AIn(f) > k − 1.

In fact, we can analyze the algebraic immunity of the given functions in Construction
3.1 more accurately. We will prove that the functions in Construction 3.1 have optimal
algebraic immunity when k is odd under the assumption of the correctness of Conjecture
3.6. For this we need the following lemma.

Lemma 3.12. With the notation of Conjecture 3.6. Assume Conjecture 3.6 is correct.
Let k be an odd integer. If w(t) 6 k−1

2 , then |St| is strictly less than 2k−1.

Proof. The proof is straightforward. If (a, b) ∈ St, then obviously (b, a) ∈ St. Since ( t
2 , t

2)

is a solution of St if and only if w( t
2) + w( t

2) = 2w(t) 6 k − 1. Hence if w(t) 6 k−1
2 , then

|St| must be odd, i.e. |St| is strictly less than 2k−1.

Proposition 3.13. Assume Conjecture 3.6 is correct. Let n = 2k. If k is odd, then the
algebraic immunity of the function f in Construction 3.1 is optimal, i.e. AIn(f) = k.

Proof. Similar to the proof of Proposition 3.11, we need to prove that both f, f + 1 have
no annihilators with degrees 6 k− 1. For the sake of completeness, we repeat appropriate
parts of the proof of Proposition 3.11. Let h : F2k × F2k → F2 satisfy deg(h) 6 k − 1 and
f · h = 0. We will prove h = 0. Write

h(x, y) =
2k−1∑

i=0

2k−1∑

j=0

hi,jx
iyj ,

where hi,j ∈ F2k . By deg(h) 6 k − 1, we have hi,j = 0 when w(i) + w(j) > k. Since

h(x, γx) = 0 for x ∈ F∗
2k , γ ∈ ∆ := {α, α2, . . . , α2k−1−1}. Write

h(x, γx) =
∑

i,j

hi,jx
i(γx)j = h0,0 +

2k−2∑

t=1

ht(γ)xt

10



in which

ht(γ) :=
2k−2∑

j=0

ht−j,jγ
j .

We have h0,0 = 0, ht(γ) = 0 for 1 6 t 6 2k − 2, γ ∈ ∆. Since ht has consecutive 2k−1 − 1
roots, by Corollary 3.9, if ht is not the zero polynomial, then the number of nonzero
coefficients of ht should be greater than or equal to 2k−1. Set Jt = {j | j ∈ Z, 0 6 j 6
2k − 2, w(t − j) + w(j) 6 k − 1}. If w(t) 6 k−1

2 , by Lemma 3.12, we have |Jt| < 2k−1.

Hence ht = 0 for w(t) 6 k−1
2 . In particular, we have ht,0 = 0 for w(t) 6 k−1

2 .

Since h(x, 0) = 0 for x ∈ F2k \A = {α2k−1
, . . . , α2k−2}, i.e.

0 = h0,0 +
2k−2∑

i=1

hi,0x
i := h0(x).

By Corollary 3.9, if h0 is not the zero polynomial, then the number of nonzero coefficients
of h0 should be greater than or equal to 2k−1. Since the number of hi,0 for which 0 6 i 6
2k − 2 and w(i) 6 k−1

2 is
∑(k−1)/2

j=0

(
k
j

)
= 2k−1, the number of nonzero coefficients of h0 is

6 2k − 1− 2k−1 = 2k−1 − 1. So h0 = 0. Hence ht,0 = 0 for all 1 6 t 6 2k − 2. Therefore,
the number of nonzero coefficients of ht is 6 2k−1 − 1. So ht = 0 for all 1 6 t 6 2k − 2.
We have h = 0.

Since

supp(f + 1) ⊇ {(x, αix) | x ∈ F∗2k , i = 2k−1, . . . , 2k − 2}
⋃
{(x, 0) | x = 1, α, . . . , α2k−1−1},

a similar argument is applicable to f + 1, and we can show that f + 1 has no annihilator
of degree 6 k − 1. Therefore AIn(f) = k.

For the case of even k, the actual computation by Magma system shows that the
functions in Construction 3.1 have optimal algebraic immunity for small k. To deal with
this case, we first make some assumption related to Conjecture 3.6.
Assumption A With the notation of Conjecture 3.6. Set T = {t | 1 6 t 6 2k−2, |St| =
2k−1}. Then |T | < 2k−1.

Remark 3.14. By Lemma 3.12, if the Conjecture 3.6 is correct, then the Assumption A
is also true for odd k. For even k, we use the algorithm for validating Conjecture 3.6 in
[25] to verify that the Assumption A is true for all even k 6 28.

Proposition 3.15. Assume both Conjecture 3.6 and Assumption A are correct. Let n =
2k. If k is even, then the algebraic immunity of the function f in Construction 3.1 is
optimal, i.e. AIn(f) = k.

Proof. Similarly, we need to prove that both f, f + 1 have no annihilators with degrees
6 k − 1. For the sake of completeness, we repeat appropriate parts of the proof of
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Proposition 3.11. Let h : F2k × F2k → F2 satisfy deg(h) 6 k − 1 and f · h = 0. We will
prove h = 0. Write

h(x, y) =
2k−1∑

i=0

2k−1∑

j=0

hi,jx
iyj ,

where hi,j ∈ F2k . By deg(h) 6 k − 1, we have hi,j = 0 when w(i) + w(j) > k. Since

h(x, γx) = 0 for x ∈ F∗
2k , γ ∈ ∆ := {α, α2, . . . , α2k−1−1}. Write

h(x, γx) =
∑

i,j

hi,jx
i(γx)j = h0,0 +

2k−2∑

t=1

ht(γ)xt

in which

ht(γ) :=
2k−2∑

j=0

ht−j,jγ
j .

We have h0,0 = 0, ht(γ) = 0 for 1 6 t 6 2k − 2, γ ∈ ∆. Since ht has consecutive 2k−1 − 1
roots, by Corollary 3.9, if ht is not the zero polynomial, then the number of nonzero
coefficients of ht should be greater than or equal to 2k−1.

Since h(x, x) = 0 for x ∈ {α, α2, . . . , α2k−1−1}, and h(x, x) = h0,0 +
∑2k−2

t=1 atx
t, where

at :=
∑

i+j≡t hi,j =
∑2k−2

i=0 hi,t−i, we have
∑2k−2

t=1 atx
t = 0 for x ∈ {α, α2, . . . , α2k−1−1}.

Set T1 = {t | 1 6 t 6 2k − 2, |St| < 2k−1} and T2 = {t | 1 6 t 6 2k − 2, |St| = 2k−1}.
By Assumption A, we have |T2| < 2k−1. Hence |T1| = 2k − 1 − |T2| > 2k−1 − 1, i.e.
|T1| > 2k−1. For t ∈ T1, since |St| < 2k−1, we have ht = 0, hence at = 0. So the number
of nonzero at(1 6 t 6 2k − 2) is at most 2k−1− 1. By Corollary 3.9, we have at = 0 for all
1 6 t 6 2k − 2. Thus, since ht(1) = at, we have ht(γ) = 0 for all 1 6 t 6 2k − 2 and for

γ ∈ {1, α, α2, . . . , α2k−1−1}. By Conjecture 3.6 and Corollary 3.9, we have ht = 0 for all
1 6 t 6 2k − 2, hence h = 0.

Since

supp(f + 1) ⊇ {(x, αix) | x ∈ F∗2k , i = 2k−1, . . . , 2k − 2}
⋃
{(x, x) | x = α2k−1

, . . . , α2k−2},

a similar argument is applicable to f + 1, and we can show that f + 1 has no annihilator
of degree 6 k − 1. Therefore AIn(f) = k.

4 Conclusion

In this paper, we construct an infinite class of 2k-variable boolean functions, which seem
to meet all the main criteria for designing Boolean functions: 1-resilient, algebraic degree
optimal, having very high nonlinearity. Based on the conjecture proposed in [25], it can
be proved that the algebraic immunity of our functions is at least suboptimal. Moreover,
when k is odd, the algebraic immunity is actually optimal, and for even k, we find that the
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algebraic immunity is optimal at least for k 6 28. We believe that this class of functions
are of both theoretical and practical importance.
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