
Implementing Gentry’s Fully-Homomorphic Encryption Scheme

Craig Gentry Shai Halevi

IBM Research
February 4, 2011

Abstract

We describe a working implementation of a variant of Gentry’s fully homomorphic encryption
scheme (STOC 2009), similar to the variant used in an earlier implementation effort by Smart
and Vercauteren (PKC 2010). Smart and Vercauteren implemented the underlying “somewhat
homomorphic” scheme, but were not able to implement the bootstrapping functionality that is
needed to get the complete scheme to work. We show a number of optimizations that allow us
to implement all aspects of the scheme, including the bootstrapping functionality.

Our main optimization is a key-generation method for the underlying somewhat homomor-
phic encryption, that does not require full polynomial inversion. This reduces the asymptotic
complexity from Õ(n2.5) to Õ(n1.5) when working with dimension-n lattices (and practically
reducing the time from many hours/days to a few seconds/minutes). Other optimizations in-
clude a batching technique for encryption, a careful analysis of the degree of the decryption
polynomial, and some space/time trade-offs for the fully-homomorphic scheme.

We tested our implementation with lattices of several dimensions, corresponding to several
security levels. From a “toy” setting in dimension 512, to “small,” “medium,” and “large”
settings in dimensions 2048, 8192, and 32768, respectively. The public-key size ranges in size
from 70 Megabytes for the “small” setting to 2.3 Gigabytes for the “large” setting. The time to
run one bootstrapping operation (on a 1-CPU 64-bit machine with large memory) ranges from
30 seconds for the “small” setting to 30 minutes for the “large” setting.

1 Introduction

Encryption schemes that support operations on encrypted data (aka homomorphic encryption)
have a very wide range of applications in cryptography. This concept was introduced by Rivest
et al. shortly after the discovery of public key cryptography [14], and many known public-key
cryptosystems support either addition or multiplication of encrypted data. However, supporting
both at the same time seems harder, and until very recently all the attempts at constructing
so-called “fully homomorphic” encryption turned out to be insecure.

In 2009, Gentry described the first plausible construction of a fully homomorphic cryptosystem
[4]. Gentry’s construction consists of several steps: He first constructed a “somewhat homomorphic”
scheme that supports evaluating low-degree polynomials on the encrypted data, next he needed to
“squash” the decryption procedure so that it can be expressed as a low-degree polynomial which is
supported by the scheme, and finally he applied a “bootstrapping” transformation to obtain a fully
homomorphic scheme. The crucial point in this process is to obtain a scheme that can evaluate
polynomials of high-enough degree, and at the same time has decryption procedure that can be
expressed as a polynomial of low-enough degree. Once the degree of polynomials that can be
evaluated by the scheme exceeds the degree of the decryption polynomial (times two), the scheme
is called “bootstrappable” and it can then be converted into a fully homomorphic scheme.

1

Toward a bootstrappable scheme, Gentry described in [4] a somewhat homomorphic scheme,
which is roughly a GGH-type scheme [8, 10] over ideal lattices. Gentry later proved [5] that with
an appropriate key-generation procedure, the security of that scheme can be (quantumly) reduced
to the worst-case hardness of some lattice problems in ideal lattices.

This somewhat homomorphic scheme is not yet bootstrappable, so Gentry described in [4] a
transformation to squash the decryption procedure, reducing the degree of the decryption poly-
nomial. This is done by adding to the public key an additional hint about the secret key, in
the form of a “sparse subset-sum” problem (SSSP). Namely the public key is augmented with a
big set of vectors, such that there exists a very sparse subset of them that adds up to the secret
key. A ciphertext of the underlying scheme can be “post-processed” using this additional hint, and
the post-processed ciphertext can be decrypted with a low-degree polynomial, thus obtaining a
bootstrappable scheme.

Stehlé and Steinfeld described in [18] two optimizations to Gentry’s scheme, one that reduces
the number of vectors in the SSSP instance, and another that can be used to reduce the degree of
the decryption polynomial (at the expense of introducing a small probability of decryption errors).
We mention that in our implementation we use the first optimization but not the second.1 Some
improvements to Gentry’s key-generation procedure were discussed in [11].

1.1 The Smart-Vercauteren implementation

The first attempt to implement Gentry’s scheme was made in 2010 by Smart and Vercauteren
[17]. They chose to implement a variant of the scheme using “principal-ideal lattices” of prime
determinant. Such lattices can be represented implicitly by just two integers (regardless of their
dimension), and moreover Smart and Vercauteren described a decryption method where the secret
key is represented by a single integer. Smart and Vercauteren were able to implement the underlying
somewhat homomorphic scheme, but they were not able to support large enough parameters to
make Gentry’s squashing technique go through. As a result they could not obtain a bootstrappable
scheme or a fully homomorphic scheme.

One obstacle in the Smart-Vercauteren implementation was the complexity of key generation
for the somewhat homomorphic scheme: For one thing, they must generate very many candidates
before they find one whose determinant is prime. (One may need to try as many as n1.5 candidates
when working with lattices in dimension n.) And even after finding one, the complexity of com-
puting the secret key that corresponds to this lattice is at least Θ̃(n2.5) for lattices in dimension n.
For both of these reasons, they were not able to generate keys in dimensions n > 2048.

Moreover, Smart and Vercauteren estimated that the squashed decryption polynomial will have
degree of a few hundreds, and that to support this procedure with their parameters they need to
use lattices of dimension at least n = 227(≈ 1.3× 108), which is well beyond the capabilities of the
key-generation procedure.

1.2 Our implementation

We continue in the same direction of the Smart-Vercauteren implementation and describe opti-
mizations that allow us to implement also the squashing part, thereby obtaining a bootstrappable
scheme and a fully homomorphic scheme.

For key-generation, we present a new faster algorithm for computing the secret key, and also
eliminate the requirement that the determinant of the lattice be prime. We also present many sim-

1The reason we do not use the second optimization is that the decryption error probability is too high for our
parameter settings.

2

plifications and optimizations for the squashed decryption procedure, and as a result our decryption
polynomial has degree only fifteen. Finally, our choice of parameters is somewhat more aggressive
than Smart and Vercauteren (which we complement by analyzing the complexity of known attacks).

Differently from [17], we decouple the dimension n from the size of the integers that we choose
during key generation.2 Decoupling these two parameters lets us decouple functionality from se-
curity. Namely, we can obtain bootstrappable schemes in any given dimension, but of course the
schemes in low dimensions will not be secure. Our (rather crude) analysis suggests that the scheme
may be practically secure at dimension n = 213 or n = 215, and we put this analysis to the test by
publishing a few challenges in dimensions from 512 up to 215.

1.3 Organization

We give some background in Section 2, and then the report is organized in two parts. In Part I
we describe our implementation of the underlying “somewhat homomorphic” encryption scheme,
and in Part II we describe our optimizations that are specific to the bootstrapping functionality.
To aid reading, we list here all the optimizations that are described in this report, with pointers to
the sections where they are presented.

Somewhat-homomorphic scheme.

1. We replace the Smart-Vercauteren requirement [17] that the lattice has prime determinant,
by the much weaker requirement that the Hermite normal form (HNF) of the lattice has a
particular form, as explained in Step 3 of Section 3. We also provide a simple criterion for
checking for this special form.

2. We decrypt using a single coefficient of the secret inverse polynomial (similarly to Smart-
Vercauteren [17]), but for convenience we use modular arithmetic rather than rational division.
See Section 6.1.

3. We use a highly optimized algorithm for computing the resultant and one coefficient of the
inverse of a given polynomial v(x) with respect to f(x) = x2

m±1 (without having to compute
the entire inverse). This is probably the most algorithmically interesting part of this work.
See Section 4.

4. We use batch techniques to speed-up encryption. Specifically, we use an efficient algorithm for
batch evaluation of many polynomials with small coefficients on the same point. See Section 5.
Our algorithm, when specialized to evaluating a single polynomial, is essentially the same as
Avanzi’s trick [1], which itself is similar to the algorithm of Paterson and Stockmeyer [12].
The time to evaluate k polynomials is only O(

√
k) more than evaluating a single polynomial.

Fully homomorphic scheme.

5. The secret key in our implementation is a binary vector of length S ≈ 1000, with only s = 15
bits set to one, and the others set to zero. We get significant speedup by representing the
secret key in s groups of S bits each, such that each group has a single 1-bit in it. See
Section 8.1.

2The latter parameter is denoted t in this report. It is the logarithm of the parameter η in [17].

3

6. The public key of the bootstrappable scheme contains an instance of the sparse-subset-sum
problem, and we use instances that have a very space-efficient representation. Specifically,
we derive our instances from geometric progressions. See Section 9.1.

7. Similarly, the public key of the fully homomorphic scheme contains an encryption of all the
secret-key bits, and we use a space-time tradeoff to optimize the space that it takes to store
all these ciphertexts without paying too much in running time. See Section 9.2.

Finally, our choice of parameters is presented in Section 10, and some performance numbers are
given in Section 11. Throughout the text we put more emphasis on concrete parameters than on
asymptotics, asymptotic bounds can be found in [18].

2 Background

Notations. Throughout this report we use ‘·’ to denote scalar multiplication and ‘×’ to denote
any other type of multiplication. For integers z, d, we denote the reduction of z modulo d by either
[z]d or ⟨z⟩d. We use [z]d when the operation maps integers to the interval [−d/2, d/2), and use
⟨z⟩d when the operation maps integers to the interval [0, d). We use the generic “z mod d” when
the specific interval does not matter (e.g., mod 2). For example we have [13]5 = −2 vs. ⟨13⟩5 = 3,
but [9]7 = ⟨9⟩7 = 2.

For a rational number q, we denote by ⌈q⌋ the rounding of q to the nearest integer, and by [q]

we denote the distance between q and the nearest integer. That is, if q = a
b then [q]

def
= [a]b

b and

⌈q⌋ def
= q − [q]. For example,

⌈
13
5

⌋
= 3 and [135] =

−2
5 . These notations are extended to vectors

in the natural way: for example if q⃗ = ⟨q0, q1, . . . , qn−1⟩ is a rational vector then rounding is done
coordinate-wise, ⌈q⃗⌋ = ⟨⌈q0⌋ , ⌈q1⌋ , . . . , ⌈qn−1⌋⟩.

2.1 Lattices

A full-rank n-dimensional lattice is a discrete subgroup of Rn, concretely represented as the set of
all integer linear combinations of some basis B = (⃗b1, . . . , b⃗n) ∈ Rn of linearly independent vectors.
Viewing the vectors b⃗i as the rows of a matrix B ∈ Rn×n, we have:

L = L(B) = {y⃗ ×B : y⃗ ∈ Zn} .

Every lattice (of dimension n > 1) has an infinite number of lattice bases. If B1 and B2 are
two lattice bases of L, then there is some unimodular matrix U (i.e., U has integer entries and
det(U) = ±1) satisfying B1 = U × B2. Since U is unimodular, |det(Bi)| is invariant for different
bases of L, and we may refer to it as det(L). This value is precisely the size of the quotient group
Zn/L if L is an integer lattice. To basis B of lattice L we associate the half-open parallelepiped
P(B)← {

∑n
i=1 xi⃗bi : xi ∈ [−1/2, 1/2)}. The volume of P(B) is precisely det(L).

For c⃗ ∈ Rn and basis B of L, we use c⃗ mod B to denote the unique vector c⃗′ ∈ P(B) such that
c⃗− c⃗′ ∈ L. Given c⃗ and B, c⃗ mod B can be computed efficiently as c⃗−⌊c⃗×B−1⌉×B = [⃗c×B−1]×B.
(Recall that ⌊·⌉ means rounding to the nearest integer and [·] is the fractional part.)

Every full-rank lattice has a unique Hermite normal form (HNF) basis where bi,j = 0 for all
i < j (lower-triangular), bj,j > 0 for all j, and for all i > j bi,j ∈ [−bj,j/2,+bj,j/2). Given any basis
B of L, one can compute HNF(L) efficiently via Gaussian elimination. The HNF is in some sense
the “least revealing” basis of L, and thus typically serves as the public key representation of the
lattice [10].

4

Short vectors and Bounded Distance Decoding. The length of the shortest nonzero vector
in a lattice L is denoted λ1(L), and Minkowski’s theorem says that for any n-dimensional lattice L
(n > 1) we have λ1(L) <

√
n · det(L)1/n. Heuristically, for random lattices the quantity det(L)1/n

serves as a threshold: for t≪ det(L)1/n we don’t expect to find any nonzero vectors in L of size t,
but for t≫ det(L)1/n we expect to find exponentially many vectors in L of size t.

In the “bounded distance decoding” problem (BDDP), one is given a basis B of some lattice L,
and a vector c⃗ that is very close to some lattice point of L, and the goal is to find the point in L
nearest to c⃗. In the promise problem γ-BDDP, we have a parameter γ > 1 and the promise that

dist(L, c⃗)
def
= minv⃗∈L{∥c⃗ − v⃗∥} ≤ det(L)1/n/γ. (BDDP is often defined with respect to λ1 rather

than with respect to det(L)1/n, but the current definition is more convenient in our case.)
Gama and Nguyen conducted extensive experiments with lattices in dimensions 100-400 [3],

and concluded that for those dimensions it is feasible to solve γ-BDDP when γ > 1.01n ≈ 2n/70.
More generally, the best algorithms for solving the γ-BDDP in n-dimensional lattices take time
exponential in n/ log γ. Specifically, currently known algorithms can solve dimension-n γ-BDDP in

time 2k up to γ = 2
µn

k/ log k , where µ is a parameter that depends on the exact details of the algorithm.
(Extrapolating from the Gama-Nguyen experiments, we expect something like µ ∈ [0.1, 0.2].)

2.2 Ideal lattices

Let f(x) be an integer monic irreducible polynomial of degree n. In this paper, we use f(x) = xn+1,

where n is a power of 2. Let R be the ring of integer polynomials modulo f(x), R
def
= Z[x]/(f(x)).

Each element of R is a polynomial of degree at most n− 1, and thus is associated to a coefficient
vector in Zn. This way, we can view each element of R as being both a polynomial and a vector.
For v⃗(x), we let ∥v⃗∥ be the Euclidean norm of its coefficient vector. For every ring R, there is
an associated expansion factor γMult(R) such that ∥u⃗× v⃗∥ ≤ γMult(R) · ∥u⃗∥ · ∥v⃗∥, where × denotes
multiplication in the ring. When f(x) = xn + 1, γMult(R) is

√
n. However, for “random vectors”

u⃗, v⃗ the expansion factor is typically much smaller, and our experiments suggest that we typically
have ∥u⃗× v⃗∥ ≈ ∥u⃗∥ · ∥v⃗∥.

Let I be an ideal of R – that is, a subset of R that is closed under addition and multiplication
by elements of R. Since I is additively closed, the coefficient vectors associated to elements of I
form a lattice. We call I an ideal lattice to emphasize this object’s dual nature as an algebraic ideal
and a lattice.3 Ideals have additive structure as lattices, but they also have multiplicative structure.
The product IJ of two ideals I and J is the additive closure of the set {v⃗ × w⃗ : v⃗ ∈ I, w⃗ ∈ J},
where ‘×’ is ring multiplication. To simplify things, we will use principal ideals of R – i.e., ideals
with a single generator. The ideal (v⃗) generated by v⃗ ∈ R corresponds to the lattice generated by

the vectors {v⃗i
def
= v⃗×xi mod f(x) : i ∈ [0, n− 1]}; we call this the rotation basis of the ideal lattice

(v⃗).
Let K be a field containing the ring R (in our case K = Q[x]/(f(x))). The inverse of an ideal

I ⊆ R is I−1 = {w⃗ ∈ K : ∀v⃗ ∈ I, v⃗× w⃗ ∈ R}. The inverse of a principal ideal (v⃗) is given by (v⃗−1),
where the inverse v⃗−1 is taken in the field K.

2.3 GGH-type cryptosystems

We briefly recall Micciancio’s “cleaned-up version” of GGH cryptosystems [8, 10]. The secret
and public keys are “good” and “bad” bases of some lattice L. More specifically, the key-holder

3Alternative representations of an ideal lattice are possible – e.g., see [13, 9].

5

generates a good basis by choosing Bsk to be a basis of short, “nearly orthogonal” vectors. Then

it sets the public key to be the Hermite normal form of the same lattice, Bpk
def
= HNF(L(Bsk)).

A ciphertext in a GGH-type cryptosystem is a vector c⃗ close to the lattice L(Bpk), and the
message which is encrypted in this ciphertext is somehow embedded in the distance from c⃗ to the
nearest lattice vector. To encrypt a message m, the sender chooses a short “error vector” e⃗ that
encodes m, and then computes the ciphertext as c⃗ ← e⃗ mod Bpk. Note that if e⃗ is short enough
(i.e., less than λ1(L)/2), then it is indeed the distance between c⃗ and the nearest lattice point.

To decrypt, the key-holder uses its “good” basis Bsk to recover e⃗ by setting e⃗ ← c⃗ mod Bsk,
and then recovers m from e⃗. The reason decryption works is that, if the parameters are chosen
correctly, then the parallelepiped P(Bsk) of the secret key will be a “plump” parallelepiped that
contains a sphere of radius bigger than ∥e⃗∥, so that e⃗ is the point inside P(Bsk) that equals c⃗
modulo L. On the other hand, the parallelepiped P(Bpk) of the public key will be very skewed,
and will not contain a sphere of large radius, making it useless for solving BDDP.

2.4 Gentry’s somewhat-homomorphic cryptosystem

Gentry’s somewhat homomorphic encryption scheme [4] can be seen as a GGH-type scheme over
ideal lattices. The public key consists of a “bad” basis Bpk of an ideal lattice J , along with some
basis BI of a “small” ideal I (which is used to embed messages into the error vectors). For example,
the small ideal I can be taken to be I = (2), the set of vectors with all even coefficients.

A ciphertext in Gentry’s scheme is a vector close to a J-point, with the message being embedded
in the distance to the nearest lattice point. More specifically, the plaintext space is {0, 1}, which
is embedded in R/I = {0, 1}n by encoding 0 as 0n and 1 as 0n−11. For an encoded bit m⃗ ∈ {0, 1}n
we set e⃗ = 2r⃗ + m⃗ for a random small vector r⃗, and then output the ciphertext c⃗← e⃗ mod Bpk.

The secret key in Gentry’s scheme (that plays the role of the “good basis” of J) is just a short
vector w⃗ ∈ J−1. Decryption involves computing the fractional part [w⃗× c⃗]. Since c⃗ = j⃗+ e⃗ for some
j ∈ J , then w⃗× c⃗ = w⃗× j⃗+ w⃗× e⃗. But w⃗× j⃗ is in R and thus an integer vector, so w⃗× c⃗ and w⃗× e⃗
have the same fractional part, [w⃗ × c⃗] = [w⃗ × e⃗]. If w⃗ and e⃗ are short enough – in particular, if we
have the guarantee that all of the coefficients of w⃗× e⃗ have magnitude less than 1/2 – then [w⃗× e⃗]
equals w⃗× e⃗ exactly. From w⃗× e⃗, the decryptor can multiply by w⃗−1 to recover e⃗, and then recover
m⃗← e⃗ mod 2. The actual decryption procedure from [4] is slightly different, however. Specifically,
w⃗ is “tweaked” so that decryption can be implemented as m⃗← c⃗− [w⃗ × c⃗] mod 2 (when I = (2)).

The reason that this scheme is somewhat homomorphic is that for two ciphertexts c⃗1 = j⃗1 + e⃗1
and c⃗2 = j⃗2 + e⃗2, their sum is j⃗3 + e⃗3 where j⃗3 = j⃗1 + j⃗2 ∈ J and e⃗3 = e⃗1 + e⃗2 is small. Similarly,
their product is j⃗4 + e⃗4 where j⃗4 = j⃗1 × (⃗j2 + e⃗2) + e⃗1 × j⃗2 ∈ J and e⃗4 = e⃗1 × e⃗2 is still small. If
fresh encrypted ciphertexts are very very close to the lattice, then it is possible to add and multiply
ciphertexts for a while before the error grows beyond the decryption radius of the secret key.

2.4.1 The Smart-Vercauteren Variant

Smart and Vercauteren [17] work over the ring R = Z[x]/fn(x), where fn(x) = xn + 1 and n is a
power of two. The ideal J is set as a principal ideal by choosing a vector v⃗ at random from some
n-dimensional cube, subject to the condition that the determinant of (v⃗) is prime, and then setting
J = (v⃗). It is known that such ideals can be implicitly represented by only two integers, namely
the determinant d = det(J) and a root r of fn(x) modulo d. (An easy proof of this fact “from first
principles” can be derived from our Lemma 1 below.) Specifically, the Hermite normal form of this

6

ideal lattice is

HNF(J) =

d 0 0 0 0
−r 1 0 0 0
−[r2]d 0 1 0 0
−[r3]d 0 0 1 0

. . .

−[rn−1]d 0 0 0 1

(1)

It is easy to see that reducing a vector a⃗ modulo HNF(J) consists of evaluating the associated poly-
nomial a(x) at the point r modulo d, then outputting the vector ⟨[a(r)]d, 0, 0, . . . , 0⟩ (see Section 5).
Hence encryption of a vector ⟨m, 0, 0, . . . , 0⟩ with m ∈ {0, 1} can be done by choosing a random
small polynomial u(x) and evaluating it at r, then outputting the integer c← [2u(r) +m]d.

Smart and Vercauteren also describe a decryption procedure that uses a single integer w as the
secret key, setting m← (c−⌈cw/d⌋) mod 2. Jumping ahead, we note that our decryption procedure
from Section 6 is very similar, except that for convenience we replace the rational division cw/d by
modular multiplication [cw]d.

2.5 Gentry’s fully-homomorphic scheme

As explained above, Gentry’s somewhat-homomorphic scheme can evaluate low-degree polynomials
but not more. Once the degree (or the number of terms) is too large, the error vector e⃗ grows beyond
the decryption capability of the private key. Gentry solved this problem using bootstrapping. He
observed in [4] that a scheme that can homomorphically evaluate its own decryption circuit plus
one additional operation, can be transformed into a fully-homomorphic encryption. In more details,
fix two ciphertexts c⃗1, c⃗2 and consider the functions

DAddc⃗1 ,⃗c2(sk)
def
= Decsk(c⃗1) + Decsk(c⃗2) and DMul⃗c1 ,⃗c2(sk)

def
= Decsk(c⃗1)× Decsk(c⃗2).

A somewhat-homomorphic scheme is called “bootstrappable” if it is capable of homomorphically
evaluating the functions DAddc⃗1 ,⃗c2 and DMul⃗c1 ,⃗c2 for any two ciphertexts c⃗1, c⃗2. Given a bootstrap-
pable scheme that is also circular secure, it can be transformed into a fully-homomorphic scheme
by adding to the public key an encryption of the secret key, c⃗∗ ← Encpk(sk). Then given any
two ciphertexts c⃗1, c⃗2, the addition/multiplication of these two ciphertexts can be computed by
homomorphically evaluating the functions DAddc⃗1 ,⃗c2(c⃗

∗) or DMul⃗c1 ,⃗c2(c⃗
∗). Note that the error does

not grow, since we always evaluate these functions on the fresh ciphertext c⃗∗ from the public key.
Unfortunately, the somewhat-homomorphic scheme from above is not bootstrappable. Although

it is capable of evaluating low-degree polynomials, the degree of its decryption function, when
expressed as a polynomial in the secret key bits, is too high. To overcome this problem Gentry
shows how to “squash the decryption circuit”, transforming the original somewhat-homomorphic
scheme E into a scheme E∗ that can correctly evaluate any circuit that E can, but where the
complexity of E∗’s decryption circuit is much less than E’s. In the original somewhat-homomorphic
scheme E, the secret key is a vector w⃗. In the new scheme E∗, the public key includes an additional
“hint” about w⃗ – namely, a big set of vectors S = {x⃗i : i = 1, 2, . . . , S} that have a hidden sparse
subset T that adds up to w⃗. The secret key of E∗ is the characteristic vector of the sparse subset T ,
which is denoted σ⃗ = ⟨σ1, σ2, . . . , σS⟩.

Whereas decryption in the original scheme involved computing m⃗ ← c⃗ − [w⃗ × c⃗] mod 2, in
the new scheme the ciphertext c⃗ is “post-processed” by computing the products y⃗i = x⃗i × c⃗ for
all of the vectors x⃗i ∈ S. Obviously, then, the decryption in the new scheme can be done by
computing c⃗ − [

∑
j σj y⃗j] mod 2. Using some additional tricks, this computation can be expressed

7

as a polynomial in the σi’s of degree roughly the size of the sparse subset T . (The underlying
algorithm could be a simple grade-school addition – add up the least significant column, bring
a carry bit over to the next column if necessary, and so on.) With appropriate setting of the
parameters, the subset T can be made small enough to get a bootstrappable scheme.

Part I

The “Somewhat Homomorphic” Scheme

3 Key generation

We adopt the Smart-Vercauteren approach [17], in that we also use principal-ideal lattices in the

ring of polynomials modulo fn(x)
def
= xn + 1 with n a power of two. We do not require that these

principal-ideal lattices have prime determinant, instead we only need the Hermite normal form to
have the same form as in Equation (1). During key-generation we choose v⃗ at random in some
cube, verify that the HNF has the right form, and work with the principal ideal (v⃗). We have two
parameters: the dimension n, which must be a power of two, and the bit-size t of coefficients in the
generating polynomial. Key-generation consists of the following steps:

1. Choose a random n-dimensional integer lattice v⃗, where each entry vi is chosen at random

as a t-bit (signed) integer. With this vector v⃗ we associate the formal polynomial v(x)
def
=∑n−1

i=0 vix
i, as well as the rotation basis:

V =

v0 v1 v2 vn−1

−vn−1 v0 v1 vn−2

−vn−2 −vn−1 v0 vn−3

. . .

−v1 −v2 −v3 v0

 (2)

The i’th row is a cyclic shift of v⃗ by i positions to the right, with the “overflow entries” negated.
Note that the i’th row corresponds to the coefficients of the polynomial vi(x) = v(x) × xi

(mod fn(x)). Note that just like V itself, the entire lattice L(V) is also closed under “rota-
tion”: Namely, for any vector ⟨u0, u1, . . . , un−1⟩ ∈ L(V), also the vector ⟨−un−1, u0, . . . , un−2⟩
is in L(V).

2. Next we compute the scaled inverse of v(x) modulo fn(x), namely an integer polynomial w(x)
of degree at most n− 1, such that

w(x)× v(x) = constant (mod fn(x)).

Specifically, this constant is the determinant of the lattice L(V), which must be equal to
the resultant of the polynomials v(x) and fn(x) (since fn is monic). Below we denote the
resultant by d, and denote the coefficient-vector of w(x) by w⃗ = ⟨w0, w1, . . . , wn−1⟩. It is easy
to check that the matrix

W =

w0 w1 w2 wn−1

−wn−1 w0 w1 wn−2

−wn−2 −wn−1 w0 wn−3

. . .

−w1 −w2 −w3 w0

 (3)

8

is the scaled inverse of V , namely W×V = V ×W = d·I. One way to compute the polynomial
w(x) is by applying the extended Euclidean-GCD algorithm (for polynomials) to v(x) and
fn(x). See Section 4 for a more efficient method of computing w(x).

3. We also check that this is a good generating polynomial. We consider v⃗ to be good if the
Hermite-Normal-form of V has the same form as in Equation (1), namely all except the
leftmost column equal to the identity matrix. See below for a simple check that the v⃗ is good,
in our implementation we test this condition while computing the inverse.

It was observed by Nigel Smart that the HNF has the correct form whenever the determinant
is odd and square-free. Indeed, in our tests this condition was met with probability roughly
0.5, irrespective of the dimension and bit length, with the failure cases usually due to the
determinant of V being even.

Checking the HNF. In Lemma 1 below we prove that the HNF of the lattice L(V) has the
right form if and only if the lattice contains a vector of the form ⟨−r, 1, 0, . . . , 0⟩. Namely, if and
only if there exists an integer vector y⃗ and another integer r such that

y⃗ × V = ⟨−r, 1, 0, . . . , 0⟩

Multiplying the last equation on the right by W , we get the equivalent condition

y⃗ × V ×W = ⟨−r, 1, 0 . . . , 0⟩ ×W (4)

⇔ y⃗ × (dI) = d · y⃗ = −r · ⟨w0, w1, w2, . . . , wn−1⟩+ ⟨−wn−1, w0, w1, . . . , wn−2⟩

In other words, there must exists an integer r such that the second row of W minus r times the
first row yields a vector of integers that are all divisible by d:

−r · ⟨w0, w1, w2, . . . , wn−1⟩+ ⟨−wn−1, w0, w1, . . . , wn−2⟩ = 0 (mod d)

⇔ −r · ⟨w0, w1, w2, . . . , wn−1⟩ = ⟨wn−1,−w0,−w1, . . . ,−wn−2⟩ (mod d)

The last condition can be checked easily: We compute r := w0/w1 mod d (assuming that w1 has
an inverse modulo d), then check that r · wi+1 = wi (mod d) holds for all i = 1, . . . , n − 2 and
also −r · w0 = wn−1 (mod d) . Note that this means in particular that rn = −1 (mod d). (In
our implementation we actually test only that last condition, instead of testing all the equalities
r · wi+1 = wi (mod d).)

Lemma 1. The Hermite normal form of the matrix V from Equation (2) is equal to the identity
matrix in all but the leftmost column, if and only if the lattice spanned by the rows of V contains
a vector of the form r⃗ = ⟨−r, 1, 0 . . . , 0⟩.

Proof. Let B be the Hermite normal form of V . Namely, B is lower triangular matrix with non-
negative diagonal entries, where the rows of B span the same lattice as the rows of V , and the
absolute value of every entry under the diagonal in B is no more than half the diagonal entry above
it. This matrix B can be obtained from V by a sequence of elementary row operations, and it is
unique. It is easy to see that the existence of a vector r⃗ of this form is necessary: indeed the second
row of B must be of this form (since B is equal the identity in all except the leftmost column). We
now prove that this condition is also sufficient.

It is clear that the vector d · e⃗1 = ⟨d, 0, . . . , 0⟩ belongs to L(V): in particular we know that
⟨w0, w1, . . . , wn−1⟩ × V = ⟨d, 0, . . . , 0⟩. Also, by assumption we have r⃗ = −r · e⃗1 + e⃗2 ∈ L(V), for

9

some integer r. Note that we can assume without loss of generality that −d/2 ≤ r < d/2, since
otherwise we could subtract from r⃗ multiples of the vector d · e⃗1 until this condition is satisfied:

⟨−r 1 0 . . . 0⟩
−κ· ⟨ d 0 0 . . . 0⟩
= ⟨[−r]d 1 0 . . . 0⟩

For i = 1, 2, . . . , n − 1, denote ri
def
= [ri]d. Below we will prove by induction that for all i =

1, 2, . . . , n− 1, the lattice L(V) contains the vector:

r⃗i
def
= − ri · e⃗1 + e⃗i+1 = ⟨−ri, 0 . . . 0, 1, 0 . . . 0⟩︸ ︷︷ ︸

1 in the i+1′st position

.

Placing all these vectors r⃗i at the rows of a matrix, we got exactly the matrix B that we need:

B =

d 0 0 0
−r1 1 0 0
−r2 0 1 0

. . .

−rn−1 0 0 1

 . (5)

B is equal to the identity except in the leftmost column, its rows are all vectors in L(V) (so they
span a sub-lattice), and since B has the same determinant as V then it cannot span a proper
sub-lattice, it must therefore span L(V) itself.

It is left to prove the inductive claim. For i = 1 we set r⃗1
def
= r⃗ and the claim follow from our

assumption that r⃗ ∈ L(V). Assume now that it holds for some i ∈ [1, n− 2] and we prove for i+1.
Recall that the lattice L(V) is closed under rotation, and since r⃗i = −rie⃗1 + e⃗i+1 ∈ L(V) then the

right-shifted vector s⃗i+1
def
= −rie⃗2 + e⃗i+2 is also in L(V).4 Hence L(V) contains also the vector

s⃗i+1 + ri · r⃗ = (−rie⃗2 + ⃗ei+2) + ri(−re⃗1 + e⃗2) = = −rir · e⃗1 + e⃗i+2

We can now reduce the first entry in this vector modulo d, by adding/subtracting the appropriate
multiple of d · e⃗1 (while still keeping it in the lattice), thus getting the lattice vector

[−r · ri]d · e⃗1 + ⃗ei+2 = − [ri+1]d · e⃗1 + ⃗ei+2 = r⃗i+1 ∈ L(V)

This concludes the proof.

Remark 1. Note that the proof of Lemma 1 shows in particular that if the Hermite normal form
of V is equal to the identity matrix in all but the leftmost column, then it must be of the form
specified in Equation (5). Namely, the first column is ⟨d,−r1,−r2, . . . ,−rn−1⟩t, with ri = [ri]d for
all i. Hence this matrix can be represented implicitly by the two integers d and r.

3.1 The public and secret keys

In principle the public key is the Hermite normal form of V , but as we explain in Remark 1 and
Section 5 it is enough to store for the public key only the two integers d, r. Similarly, in principle
the secret key is the pair (v⃗, w⃗), but as we explain in Section 6.1 it is sufficient to store only a single
(odd) coefficient of w⃗ and discard v⃗ altogether.

4This is a circular shift, since i ≤ n− 2 and hence the rightmost entry in r⃗i is zero.

10

4 Inverting the polynomial v(x)

The fastest known methods for inverting the polynomial v(x) modulo fn(x) = xn + 1 are based on
FFT: We can evaluate v(x) at all the roots of fn(x) (either over the complex field or over some
finite field), then compute w∗(ρ) = 1/v(ρ) (where inversion is done over the corresponding field),
and then interpolate w∗ = v−1 from all these values. If the resultant of v and fn has N bits,
then this procedure will take O(n log n) operations over O(N)-bit numbers, for a total running
time of Õ(nN). This is close to optimal in general, since just writing out the coefficients of the
polynomial w∗ takes time O(nN). However, in Section 6.1 we show that it is enough to use for
the secret key only one of the coefficients of w = d · w∗ (where d = resultant(v, fn)). This raises
the possibility that we can compute this one coefficient in time quasi-linear in N rather than
quasi-linear in nN . Although polynomial inversion is very well researched, as far as we know this
question of computing just one coefficient of the inverse was not tackled before. Below we describe
an algorithm for doing just that.

The approach for the procedure below is to begin with the polynomial v that has n small
coefficients, and proceed in steps where in each step we halve the number of coefficients to offset
the fact that the bit-length of the coefficients approximately doubles. Our method relies heavily
on the special form of fn(x) = xn+1, with n a power of two. Let ρ0, ρ1, . . . , ρn−1 be roots of fn(x)
over the complex field: That is, if ρ is some primitive 2n’th root of unity then ρi = ρ2i+1. Note
that the roots ri satisfy that ρi+n

2
= −ρi for all i, and more generally for every index i (with index

arithmetic modulo n) and every j = 0, 1, . . . , log n, if we denote nj
def
= n/2j then it holds that(

ρ
i+nj/2

)2j

=
(
ρ2i+nj+1

)2j
=

(
ρ2i+1

)2j · ρn = − (ρ 2j

i
) (6)

The method below takes advantage of Equation (6), as well as a connection between the coefficients
of the scaled inverse w and those of the formal polynomial

g(z)
def
=

n−1∏
i=0

(
v(ρi)− z

)
.

We invert v(x) mod fn(x) by computing the lower two coefficients of g(z), then using them to
recover both the resultant and (one coefficient of) the polynomial w(x), as described next.

Step one: the polynomial g(z). Note that although the polynomial g(z) is defined via the
complex numbers ρi, the coefficients of g(z) are all integers. We begin by showing how to compute
the lower two coefficients of g(z), namely the polynomial g(z) mod z2. We observe that since
ρi+n

2
= −ρi then we can write g(z) as

g(z) =

n
2
−1∏

i=0

(v(ρi)− z)(v(−ρi)− z)

=

n
2
−1∏

i=0

(
v(ρi)v(−ρi)︸ ︷︷ ︸

a(ρi)

−z(v(ρi) + v(−ρi)︸ ︷︷ ︸
b(ρi)

) + z2
)

=

n
2
−1∏

i=0

(
a(ρi)− zb(ρi)

)
(mod z2)

We observe further that for both the polynomials a(x) = v(x)v(−x) and b(x) = v(x) + v(−x), all
the odd powers of x have zero coefficients. Moreover, the same equalities as above hold if we use
A(x) = a(x) mod fn(x) and B(x) = b(x) mod fn(x) instead of a(x) and b(x) themselves (since we

11

only evaluate these polynomials in roots of fn), and also for A,B all the odd powers of x have zero
coefficients (since we reduce modulo fn(x) = xn + 1 with n even).

Thus we can consider the polynomials v̂, ṽ that have half the degree and only use the nonzero
coefficients of A,B, respectively. Namely they are defined via v̂(x2) = A(x) and ṽ(x2) = B(x).
Thus we have reduced the task of computing the n-product involving the degree-n polynomial
v(x) to computing a product of only n/2 terms involving the degree-n/2 polynomials v̂(x), ṽ(x).
Repeating this process recursively, we obtain the polynomial g(z) mod z2. The details of this
process are described in Section 4.1 below.

Step two: recovering d and w0. Recall that if v(x) is square free then d = resultant(v, fn) =∏n−1
i=0 v(ρi), which is exactly the free term of g(z), g0 =

∏n−1
i=0 v(ρi).

Recall also that the linear term in g(z) has coefficient g1 =
∑n−1

i=0

∏
j ̸=i v(ρi). We next show

that the free term of w(x) is w0 = g1/n. First, we observe that g1 equals the sum of w evaluated
in all the roots of fn, namely

g1 =

n−1∑
i=0

∏
j ̸=i

v(ρj) =

n−1∑
i=0

∏n−1
j=0 v(ρj)

v(ρi)

(a)
=

n−1∑
i=0

d

v
(
ρi
) (b)

=

n−1∑
i=0

w
(
ρi
)

where Equality (a) follows since v(x) is square free and d = resultant(v, fn), and Equality (b) follows
since v(ρi) = d/w(ρi) holds in all the roots of fn. It is left to show that the constant term of w(x)
is w0 = n

∑n−1
i=0 w(ρi). To show this, we write

n−1∑
i=0

w
(
ρi
)

=
n−1∑
i=0

n−1∑
j=0

wjρ
j
i =

n−1∑
j=0

wj

n−1∑
i=0

ρji
(⋆)
=

n−1∑
j=0

wj

n−1∑
i=0

(ρj)2i+1 (7)

where the Equality (⋆) holds since the i’th root of fn is ρi = ρ2i+1 where ρ is a 2n-th root of
unity. Clearly, the term corresponding to j = 0 in Equation (7) is w0 · n, it is left to show that
all the other terms are zero. This follows since ρj is a 2n-th root of unity different from ±1 for all
j = 1, 2, . . . , n− 1, and summing over all odd powers of such root of unity yields zero.

Step three: recovering the rest of w. We can now use the same technique to recover all the
other coefficients of w: Note that since we work modulo fn(x) = xn + 1, then the coefficient wi is
the free term of the scaled inverse of xi × v (mod fn).

In our case we only need to recover the first two coefficients, however, since we are only in-
terested in the case where w1/w0 = w2/w1 = · · · = wn−1/wn−2 = −w0/wn−1 (mod d), where
d = resultant(v, fn). After recovering w0, w1 and d = resultant(v, fn), we therefore compute the
ratio r = w1/w0 mod d and verify that rn = −1 (mod d). Then we recover as many coefficients
of w as we need (via wi+1 = [wi · r]d), until we find one coefficient which is an odd integer, and
that coefficient is the secret key.

4.1 The gory details of step one

We denote U0(x) ≡ 1 and V0(x) = v(x), and for j = 0, 1, . . . , log n we denote nj = n/2j . We proceed
in m = log n steps to compute the polynomials Uj(x), Vj(x) (j = 1, 2, . . . ,m), such that the degrees

of Uj , Vj are at most nj − 1, and moreover the polynomial gj(z) =
∏nj−1

i=0 (Vj(ρ
2j
i)− zUj(ρ

2j
i)) has

the same first two coefficients as g(z). Namely,

gj(z)
def
=

nj−1∏
i=0

(
Vj(ρ

2j

i)− zUj(ρ
2j

i)
)

= g(z) (mod z2). (8)

12

Equation (8) holds for j = 0 by definition. Assume that we computed Uj , Vj for some j < m such
that Equation (8) holds, and we show how to compute Uj+1 and Vj+1. From Equation (6) we know

that
(
ρi+nj/2

)2j
= −ρ2ji , so we can express gj as

gj(z) =

nj/2−1∏
i=0

(
Vj(ρ

2j

i)− zUj(ρ
2j

i)
)(

Vj(−ρ2
j

i)− zUj(−ρ2
j

i)
)

=

nj/2−1∏
i=0

(
Vj(ρ

2j

i)Vj(−ρ2
j

i)︸ ︷︷ ︸
=Aj(ρ2

j
i)

−z
(
Uj(ρ

2j

i)Vj(−ρ2
j

i) + Uj(−ρ2
j

i)Vj(ρ
2j

i)︸ ︷︷ ︸
=Bj(ρ2

j
i)

))
(mod z2)

Denoting fnj (x)
def
= xnj + 1 and observing that ρ 2j

i is a root of fnj for all i, we next consider the
polynomials:

Aj(x)
def
= Vj(x)Vj(−x) mod fnj (x) (with coefficients a0, . . . , anj−1)

Bj(x)
def
= Uj(x)Vj(−x) + Uj(−x)Vj(x) mod fnj (x) (with coefficients b0, . . . , bnj−1)

and observe the following:

• Since ρ 2j
i is a root of fnj , then the reduction modulo fnj makes no difference when evalu-

ating Aj , Bj on ρ 2j
i . Namely we have Aj(ρ

2j
i) = Vj(ρ

2j
i)Vj(−ρ2

j

i) and similarly Bj(ρ
2j
i) =

Uj(ρ
2j
i)Vj(−ρ2

j

i) + Uj(−ρ2
j

i)Vj(ρ
2j
i) (for all i).

• The odd coefficients of Aj , Bj are all zero. For Aj this is because it is obtained as Vj(x)Vj(−x)
and for Bj this is because it is obtained as Rj(x)+Rj(−x) (with Rj(x) = Uj(x)Vj(−x)). The
reduction modulo fnj (x) = xnj + 1 keeps the odd coefficients all zero, because nj is even.

We therefore set

Uj+1(x)
def
=

nj/2−1∑
t=0

b2t · xt, and Vj+1(x)
def
=

nj/2−1∑
t=0

a2t · xt,

so the second bullet above implies that Uj+1(x
2) = Bj(x) and Vj+1(x

2) = Aj(x) for all x. Combined
with the first bullet, we have that

gj+1(z)
def
=

nj/2−1∏
i=0

(
Vj+1(ρ

2j+1

i)− z · Uj+1(ρ
2j+1

i)
)

=

nj/2−1∏
i=0

(
Aj(ρ

2j

i)− z ·Bj(ρ
2j

i)
)

= gj(z) (mod z2).

By the induction hypothesis we also have gj(z) = g(z) (mod z2), so we get gj+1(z) = g(z)
(mod z2), as needed.

5 Encryption

To encrypt a bit b ∈ {0, 1} with the public key B (which is implicitly represented by the two

integers d, r), we first choose a random 0,±1 “noise vector” u⃗
def
= ⟨u0, u1, . . . , un−1⟩, with each

13

entry chosen as 0 with some probability q and as ±1 with probability (1− q)/2 each. We then set

a⃗
def
= 2u⃗+ b · e⃗1 = ⟨2u0 + b, 2u1, . . . , 2un−1⟩, and the ciphertext is the vector

c⃗ = a⃗ mod B = a⃗−
(⌈
a⃗×B−1

⌋
×B

)
=

[⃗
a×B−1

]︸ ︷︷ ︸
[·] is fractional part

× B

We now show that also c⃗ can be represented implicitly by just one integer. Recall that B (and
therefore also B−1) are of a special form

B =

d 0 0 0 0
−r 1 0 0 0
−[r2]d 0 1 0 0
−[r3]d 0 0 1 0

. . .

−[rn−1]d 0 0 0 1

, and B−1 =

1

d
·

1 0 0 0 0
r d 0 0 0
[r2]d 0 d 0 0
[r3]d 0 0 d 0

. . .

[rn−1]d 0 0 0 d

.

Denote a⃗ = ⟨a0, a1, . . . , an−1⟩, and also denote by a(·) the integer polynomial a(x)
def
=

∑n−1
i=0 aix

i.
Then we have a⃗ × B−1 =

⟨
s
d , a1, . . . , an−1

⟩
for some integer s that satisfies s = a(r) (mod d).

Hence the fractional part of a⃗×B−1 is
[
a⃗×B−1

]
=

⟨
[a(r)]d

d , 0, . . . , 0
⟩
, and the ciphertext vector

is c⃗ =
⟨
[a(r)]d

d , 0, . . . , 0
⟩
× B = ⟨[a(r)]d, 0, . . . , 0⟩. Clearly, this vector can be represented

implicitly by the integer c
def
=

[
a(r)

]
d
=

[
b + 2

∑n−1
i=1 uir

i
]
d
. Hence, to encrypt the bit b, we only

need to evaluate the noise-polynomial u(·) at the point r, then multiply by two and add the bit b
(everything modulo d). We now describe an efficient procedure for doing that.

5.1 An efficient encryption procedure

The most expensive operation during encryption is evaluating the degree-(n− 1) polynomial u at
the point r. Polynomial evaluation using Horner’s rule takes n− 1 multiplications, but it is known
that for small coefficients we can reduce the number of multiplications to only O(

√
n), see [1, 12].

Moreover, we observe that it is possible to batch this fast evaluation algorithm, and evaluate k such
polynomials in time O(

√
kn).

We begin by noting that evaluating many 0,±1 polynomials at the same point x can be done
about as fast as a naive evaluation of a single polynomial. Indeed, once we compute all the powers
(1, x, x2, . . . , xn−1) then we can evaluate each polynomial just by taking a subset-sum of these
powers. As addition is much faster than multiplication, the dominant term in the running time
will be the computation of the powers of x, which we only need to do once for all the polynomials.

Next, we observe that evaluating a single degree-(n − 1) polynomial at a point x can be done
quickly given a subroutine that evaluates two degree-(n/2 − 1) polynomials at the same point x.

Namely, given u(x) =
∑n−1

i=0 uix
i, we split it into a “bottom half” ubot(x) =

∑n/2−1
i=0 uix

i and a “top

half” utop(x) =
∑n/2−1

i=0 ui+ d/2x
i. Evaluating these two smaller polynomials we get ybot = ubot(x)

and ytop = utop(x), and then we can compute y = u(x) by setting y = xn/2ytop + ybot. If the
subroutine for evaluating the two smaller polynomials also returns the value of xn/2, then we need
just one more multiplication to get the value of y = u(x).

These two observations suggest a recursive approach to evaluating the 0,±1 polynomial u of
degree n − 1. Namely, we repeatedly cut the degree in half at the price of doubling the number
of polynomials, and once the degree is small enough we use the “trivial implementation” of just

14

computing all the powers of x. Analyzing this approach, let us denote by M(k, n) the number of
multiplications that it takes to evaluate k polynomials of degree (n− 1). Then we have M(k, n) ≤
min(n− 1, M(2k, n/2) + k + 1). To see the bound M(k, n) ≤M(2k, n/2) + k + 1, note that once
we evaluated the top- and bottom-halves of all the k polynomials, we need one multiplication per
polynomial to put the two halves together, and one last multiplication to compute xn (which is
needed in the next level of the recursion) from xn/2 (which was computed in the previous level).
Obviously, making the recursive call takes less multiplications than the “trivial implementation”
whenever n − 1 > (n/2 − 1) + k + 1. Also, an easy inductive argument shows that the “trivial
implementation” is better when n− 1 < (n/2− 1) + k + 1. We thus get the recursive formula

M(k, n) =

{
M(2k, n/2) + k + 1 when n/2 > k + 1
n− 1 otherwise.

Solving this formula we get M(k, n) ≤ min(n− 1,
√
2kn). In particular, the number of multiplica-

tions needed for evaluating a single degree-(n− 1) polynomial is M(1, n) ≤
√
2n.

We comment that this “more efficient” batch procedure relies on the assumption that we have
enough memory to keep all these partially evaluated polynomials at the same time. In our ex-
periments we were only able to use it in dimensions up to n = 215, trying to use it in higher
dimension resulted in the process being killed after it ran out of memory. A more sophisticated
implementation could take the available amount of memory into account, and stop the recursion
earlier to preserve space at the expense of more running time. An alternative approach, of course,
is to store partial results to disk. More experiments are needed to determine what approach yields
better performance for which parameters.

5.2 The Euclidean norm of fresh ciphertexts

When choosing the noise vector for a new ciphertext, we want to make it as sparse as possible, i.e.,
increase as much as possible the probability q of choosing each entry as zero. The only limitation is
that we need q to be bounded sufficiently below 1 to make it hard to recover the original noise vector
from c. There are two types of attacks that we need to consider: lattice-reduction attacks that try
to find the closest lattice point to c, and exhaustive-search/birthday attacks that try to guess the
coefficients of the original noise vector (and a combination thereof). Pure lattice-reduction attacks
should be thwarted by working with lattices with high-enough dimension, so we concentrate here
on exhaustive-search attacks.

Roughly, if the noise vector has ℓ bits of entropy, then we expect birthday-type attacks to be
able to recover it in 2ℓ/2 time, so we need to ensure that the noise has at least 2λ bits of entropy
for security parameter λ. Namely, for dimension n we need to choose q sufficiently smaller than
one so that 2(1−q)n ·

(
n
qn

)
> 22λ.

Another “hybrid” attack is to choose a small random subset of the powers of r (e.g., only 200
of them) and “hope” that they include all the noise coefficients. If this holds then we can now
search for a small vector in this low-dimension lattice (e.g., dimension 200). For example, if we
work in dimension n = 2048 and use only 16 nonzero entries for noise, then choosing 200 of the
2048 entries, we have probability of about (200/2048)16 ≈ 254 of including all of them (hence we
can recover the original noise by solving 254 instances of SVP in dimension 200). The same attack
will have success probability only ≈ 2−80 if we use 24 nonzero entries.

For our public challenges we chose a (somewhat aggressive) setting where the number of nonzero
entries in the noise vector is between 15 and 20. We note that increasing the noise will have only
moderate effect on the performance numbers of our fully-homomorphic scheme, for example using

15

30 nonzero entries is likely to increase the size of the key (and the running time) by only about
5-10%.

6 Decryption

The decryption procedure takes the ciphertext c (which implicitly represents the vector c⃗ =
⟨c, 0, . . . , 0⟩) and in principle it also has the two matrices V,W . The vector a⃗ = 2u⃗+ b · e⃗1 that was
used during encryption is recovered as

a⃗← c⃗ mod V = c⃗−
(⌈
c⃗× V −1︸︷︷︸

=W/d

⌋
× V

)
=

[
c⃗ × W/d

]︸ ︷︷ ︸
[·] is fractional part

× V,

and then outputs the least significant bit of the first entry of a⃗, namely b := a0 mod 2.
The reason that this decryption procedure works is that the rows of V (and therefore also of W)

are close to being orthogonal to each other, and hence the operator l∞-norm of W is small. Namely,
for any vector x⃗, the largest entry in x⃗×W (in absolute value) is not much larger than the largest
entry in x⃗ itself. Specifically, the procedure from above succeeds when all the entries of a⃗×W are
smaller than d/2 in absolute value. To see that, note that a⃗ is the distance between c⃗ and some
point in the lattice L(V), namely we can express c⃗ as c⃗ = y⃗ × V + a⃗ for some integer vector y⃗.
Hence we have[

c⃗ × W/d
]
× V =

[
y⃗ × V ×W/d + a⃗×W/d

] (⋆)
=

[
a⃗ × W/d

]
× V

where the equality (⋆) follows since y⃗× V ×W/d is an integer vector. The vector
[⃗
a × W/d

]
× V

is supposed to be a⃗ itself, namely we need[⃗
a × W/d

]
× V = a⃗ =

(
a⃗ × W/d

)
× V.

But this last condition holds if and only if [⃗a ×W/d
]
= (⃗a ×W/d), i.e., a⃗ ×W/d is equal to its

fractional part, which means that every entry in a⃗×W/d must be less than 1/2 in absolute value.

6.1 An optimized decryption procedure

We next show that the encrypted bit b can be recovered by a significantly cheaper procedure: Recall
that the (implicitly represented) ciphertext vector c⃗ is decrypted to the bit b when the distance
from c⃗ to the nearest vector in the lattice L(V) is of the form a⃗ = 2u⃗ + be⃗1, and moreover all
the entries in a⃗ ×W are less than d/2 in absolute value. As we said above, in this case we have
[⃗c×W/d] = [⃗a×W/d] = a⃗×W/d, which is equivalent to the condition

[⃗c×W]d = [⃗a×W]d = a⃗×W.

Recall now that c⃗ = ⟨c, 0, . . . , 0⟩, hence

[⃗c×W]d = [c · ⟨w0, w1, . . . , wn−1⟩]d = ⟨[cw0]d, [cw1]d, . . . , [cwn−1]d⟩ .

On the other hand, we have

[⃗c×W]d = a⃗×W = 2u⃗×W + be⃗1 ×W = 2u⃗×W + b · ⟨w0, w1, . . . , wn−1⟩ .

Putting these two equations together, we get that any decryptable ciphertext c must satisfy the
relation

⟨[cw0]d, [cw1]d, . . . , [cwn−1]d⟩ = b · ⟨w0, w1, . . . , wn−1⟩ (mod 2)

In other words, for every i we have [c · wi]d = b · wi (mod 2). It is therefore sufficient to keep only
one of the wi’s (which must be odd), and then recover the bit b as b := [c · wi]d mod 2.

16

80 100 120 140 160 180 200 220 240
0

10

20

30

40

50

60

70

80

Number of variables

La
rg

es
t s

up
po

rt
ed

 d
eg

re
e

Number of variables vs. degree

bitlength=64
bitlength=128
bitlength=256

64 128 256 384
10

16

32

64

128

bit−length of coefficients in generating polynomial

La
rg

es
t s

up
po

rt
ed

 d
eg

re
e

bit−length vs. degree

128 variables
256 variables

m =#-of-variables m = 64 m = 96 m = 128 m = 192 m = 256
t =bit-length

t = 64 13 12 11 11 10

t = 128 33 28 27 26 24

t = 256 64 76 66 58 56

t = 384 64 96 128 100 95

Cells contain the largest supported degree for every m, t combination

Figure 1: Supported degree vs. number of variables and bit-length of the generating polynomial,
all tests were run in dimension n = 128

7 How Homomorphic is This Scheme?

We ran some experiments to get a handle on the degree and number of monomials that the somewhat
homomorphic scheme can handle, and to help us choose the parameters. In these experiments we
generated key pairs for parameters n (dimension) and t (bit-length), and for each key pair we
encrypted many bits, evaluated on the ciphertexts many elementary symmetric polynomials of
various degrees and number of variables, decrypted the results, and checked whether or not we got
back the same polynomials in the plaintext bits.

More specifically, for each key pair we tested polynomials on 64 to 256 variables. For every
fixed number of variables m we ran 12 tests. In each test we encrypted m bits, evaluated all the
elementary symmetric polynomials in these variables (of degree up to m), decrypted the results,
and compared them to the results of applying the same polynomials to the plaintext bits. For each
setting of m, we recorded the highest degree for which all 12 tests were decrypted to the correct
value. We call this the “largest supported degree” for those parameters.

In these experiments we used fresh ciphertexts of expected Euclidean length roughly 2·
√
20 ≈ 9,

regardless of the dimension. This was done by choosing each entry of the noise vector u⃗ as 0 with
probability 1− 20

n , and as ±1 with probability 10
n each. With that choice, the degree of polynomials

that the somewhat-homomorphic scheme could evaluate did not depend on the dimension n: We

17

tested various dimensions from 128 to 2048 with a few settings of t andm, and the largest supported
degree was nearly the same in all these dimensions. Thereafter we tested all the other settings only
in dimension n = 128.

The results are described in Figure 1. As expected, the largest supported degree grows linearly
with the bit-length parameter t, and decreases slowly with the number of variables (since more
variables means more terms in the polynomial).

These results can be more or less explained by the assumptions that the decryption radius of
the secret key is roughly 2t, and that the noise in an evaluated ciphertext is roughly cdegree ×√
#-of-monomials, where c is close to the Euclidean norm of fresh ciphertexts (i.e., c ≈ 9). For

elementary symmetric polynomials, the number of monomials is exactly
(
m
deg

)
. Hence to handle

polynomials of degree deg with m variables, we need to set t large enough so that 2t ≥ cdeg×
√(

m
deg

)
,

in order for the noise in the evaluated ciphertexts to still be inside the decryption radius of the
secret key.

Trying to fit the data from Figure 1 to this expression, we observe that c is not really a constant,
rather it gets slightly smaller when t gets larger. For t = 64 we have c ∈ [9.14, 11.33], for t = 128 we
have c ∈ [7.36, 8.82], for t = 256 we get c ∈ [7.34, 7.92], and for t = 384 we have c ∈ [6.88, 7.45]. We
speculate that this small deviation stems from the fact that the norm of the individual monomials
is not exactly cdeg but rather has some distribution around that size, and as a result the norm of
the sum of all these monomials differs somewhat from

√
#-of-monomials times the expected cdeg.

Part II

A Fully Homomorphic Scheme

8 Squashing the Decryption Procedure

Recall that the decryption routine of our “somewhat homomorphic” scheme decrypts a ciphertext
c ∈ Zd using the secret key w ∈ Zd by setting b ← [wc]d mod 2. Unfortunately, viewing c, d as
constants and considering the decryption function Dc,d(w) = [wc]d mod 2, the degree of Dc,d (as
a polynomial in the secret key bits) is higher than what our somewhat-homomorphic scheme can
handle. Hence that scheme is not yet bootstrappable. To achieve bootstrapping, we therefore
change the secret-key format and add some information to the public key to get a decryption
routine of lower degree, as done in [4].

On a high level, we add to the public key also a “big set” of elements {xi ∈ Zd : i = 1, 2, . . . , S},
such that there exists a very sparse subset of the xi’s that sums up to w modulo d. The secret key
bits will be the characteristic vector of that sparse subset, namely a bit vector σ⃗ = ⟨σ1, . . . , σS⟩
such that the Hamming weight of σ⃗ is s≪ S, and

∑
i σixi = w (mod d).

Then, given a ciphertext c ∈ Zd, we post-process it by computing (in the clear) all the integers

yi
def
= ⟨cxi⟩d (i.e., c times xi, reduced modulo d to the interval [0, d)). The decryption function

Dc,d(σ⃗) can now be written as

Dc,d(σ⃗)
def
=

[S∑
i=1

σiyi

]
d

mod 2

We note that the yi’s are in the interval [0, d) rather than [−d/2,+d/2). This is done for imple-
mentation convenience, and correctness is not impacted since the sum of these yi’s is later reduced

18

again modulo d to the internal [−d/2,+d/2). We now show that (under some conditions), this
function Dc,d(·) can be expressed as a low-degree polynomial in the bits σi. We have:[S∑

i=1

σiyi

]
d

=

(S∑
i=1

σiyi

)
− d ·

⌈∑
i σiyi
d

⌋
=

(S∑
i=1

σiyi

)
− d ·

⌈
S∑

i=1

σi
yi
d

⌋
,

and therefore to compute Dc,d(σ⃗) we can reduce modulo 2 each term in the right-hand-side sepa-
rately, and then XOR all these terms:

Dc,d(σ⃗) =

(S⊕
i=1

σi ⟨yi⟩2
)
⊕ ⟨d⟩2 ·

⟨⌈
S∑

i=1

σi
yi
d

⌋⟩
2

=

S⊕
i=1

σi ⟨yi⟩2 ⊕
⟨⌈

S∑
i=1

σi
yi
d

⌋⟩
2

(where the last equality follows since d is odd and so ⟨d⟩2 = 1). Note that the yi’s and d are
constants that we have in the clear, and Dc,d is a functions only of the σi’s. Hence the first big
XOR is just a linear functions of the σi’s, and the only nonlinear term in the expression above is

the rounding function
⟨⌈∑S

i=1 σi
yi
d

⌋⟩
2
.

We observe that if the ciphertext c of the underlying scheme is much closer to the lattice than
the decryption capability of w, then wc is similarly much closer to a multiple of d than d/2. In the
bootstrappable scheme we will therefore keep the noise small enough so that the distance from c to
the lattice is below 1/(s+1) of the decryption radius, and thus the distance from wc to the nearest
multiple of d is bounded below d/2(s+ 1). (Recall that s is the the number of nonzero bits in the
secret key.) Namely, we have

abs([wc]d) = abs

([S∑
i=1

σiyi

]
d

)
<

d

2(s+ 1)

and therefore also

abs

([S∑
i=1

σi
yi
d

])
<

1

2(s+ 1)

Recall now that the yi’s are all in [0, d− 1], and therefore yi/d is a rational number in [0, 1). Let p
be our precision parameter, which we set to

p
def
= ⌈log2(s+ 1)⌉ .

For every i, denote by zi the approximation of yi/d to within p bits after the binary point.5 Formally,
zi is the closest number to yi/d among all the numbers of the form a/2p, with a an integer and
0 ≤ a ≤ 2p. Then abs(zi − yi

d) ≤ 2−(p+1) ≤ 1/2(s + 1). Consider now the effect of replacing one
term of the form σi · yid in the sum above by σi · zi: If σi = 0 then the sum remains unchanged, and
if σi = 1 then the sum changes by at most 2p+1 ≤ 1/2(s+ 1). Since only s of the σi’s are nonzero,
it follows that the sum

∑
i σizi is at most s/2(s + 1) away from the sum

∑
i σi

yi
d . And since the

distance between the latter sum and the nearest integer is smaller than 1/2(s+1), then the distance
between the former sum and the same integer is strictly smaller than 1/2(s+1)+s/2(s+1) = 1/2.
It follows that both sums will be rounded to the same integer, namely⌈

S∑
i=1

σi
yi
d

⌋
=

⌈
S∑

i=1

σizi

⌋
5Note that zi is in the interval [0, 1], and in particular it could be equal to 1.

19

We conclude that for a ciphertext c which is close enough to the underlying lattice, the function
Dc,d can be computed as Dc,d(σ⃗) = ⟨⌈

∑
i σizi⌋⟩2 ⊕

⊕
i σi ⟨yi⟩2, and moreover the only nonlinear

part in this computation is the addition and rounding (modulo two) of the zi’s, which all have
only p bits of precision to the right of the binary point.

8.1 Adding the zi’s

Although it was shown in [4] that adding a sparse subset of the “low precision” numbers σizi’s can
be done with a low-degree polynomial, a naive implementation (e.g., using a simple grade-school
addition) would require computing about s · S multiplications to implement this operation. We
now describe an alternative procedure that requires only about s2 multiplications.

For this alternative procedure, we use a slightly different encoding of the sparse subset. Namely,
instead of having a single vector σ⃗ of Hamming weight s, we instead keep s vectors σ⃗1, . . . , σ⃗s, each
of Hamming weight 1, whose bitwise sum is the original vector σ⃗. (In other words, we split the
‘1’-bits in σ⃗ between the s vectors σ⃗k, putting a single ‘1’ in each vector.)

In our implementation we also have s different big sets, B1, . . . ,Bs, and each vector σ⃗k chooses
one element from the corresponding Bk, such that these s chosen elements sum up to w modulo d.
We denote the elements of Bk by {x(k, i) : i = 1, 2, . . . , S}, and the bits of σ⃗k by σk,i. We also

denote y(k, i)
def
= ⟨c · x(k, i)⟩d and z(k, i) is the approximation of y(k, i)/d with p bits of precision

to the right of the binary point. Using these notations, we can re-write the decryption function
Dc,d as

Dc,d (σ⃗1, . . . , σ⃗s) =

⟨⌈ s∑
k=1

(S∑
i=1

σk,iz(k, i)︸ ︷︷ ︸
qk

)⌋⟩
2

⊕
⊕
i,k

σk,i ⟨y(k, i)⟩2 (9)

Denoting qk
def
=

∑
i σk,iz(k, i) (for k = 1, 2, . . . , s), we observe that each qk is obtained by adding S

numbers, at most one of which is nonzero. We can therefore compute the j’th bit of qk by simply
XOR-ing the j’th bits of all the numbers σk,iz(k, i) (for i = 1, 2, . . . , S), since we know a-priori that
at most one of these bits in nonzero. When computing homomorphic decryption, this translate
to just adding modulo d all the ciphertexts corresponding to these bits. The result is a set of s
numbers uj , each with the same precision as the z’s (i.e., only p = ⌈log(s+ 1)⌉ bits to the right of
the binary point).

Grade-school addition. Once we have only s numbers with p = ⌈log(s+ 1)⌉ bits of precision in
binary representation, we can use the simple grade-school algorithm for adding them: We arrange
these numbers in s rows and p + 1 columns: one column for each bit-position to the right of the
binary point, and one column for the bits to the left of the binary point. We denote these columns
(from left to right) by indexes 0,−1, . . . ,−p. For each column we keep a stack of bits, and we
process the columns from right (−p) to left (0): for each column we compute the carry bits that
it sends to the columns on its left, and then we push these carry bits on top of the stacks of these
other columns before moving to process the next column.

In general, the carry bit that column −j sends to column −j+∆ is computed as the elementary
symmetric polynomial of degree 2∆ in the bits of column −j. If column −j has m bits, then we can
compute all the elementary symmetric polynomials in these bits up to degree 2∆ using less than
m2∆ multiplications. The ∆’s that we need as we process the columns in order (column −p, then
1 − p, all the way through column −1) are p − 1, p − 1, p − 2, p − 3, . . . 1, respectively. Also, the
number of bits in these columns at the time that we process them are s, s+ 1, s+ 2, . . . , s+ p− 1,

20

respectively. Hence the total number of multiplications throughout this process is bounded by
s · 2p−1 +

∑p−1
k=1(s+ k) · 2p−k = O(s2).

Other addition algorithms. One can also use other algorithms to add these s numbers of
precision p, which could could be done in less than O(s2) multiplications. (For example, using the
3-for-2 trick as proposed in [4] requires only O(s · p) multiplications.) In our implementation we
nonetheless used grade-school addition since (a) it results in a slightly smaller polynomial degree
(only 15 rather than 16, for our parameters); and (b) the addition algorithm takes only about 10%
of the total running time, hence optimizing its performance had low priority for us.

9 Reducing the Public-Key Size

Two main factors contribute to the size of the public key of the fully-homomorphic scheme. One
is the need to specify an instance of the sparse-subset-sum problem, and the other is the need to
include in the public key also encryption of all the secret-key bits. In the next two subsections we
show how we reduce the size of each of these two parts.

9.1 The Sparse-Subset-Sum Construction

Recall that with the optimization from Section 8.1, our instance of the Sparse-Subset-Sum problem
consists of s “big sets” B1, . . . ,Bs, each with S elements in Zd, such that there is a collection of
elements, one from each Bk, that add up to the secret key w modulo d.

Representing all of these big sets explicitly would require putting in the public key s ·S elements
from Zd. Instead, we keep only s elements in the public key, x1, . . . , xs, and each of these elements
implicitly defines one of the big sets. Specifically, the big sets are defined as geometric progressions
in Zd: the k’th big set Bk consists of the elements x(k, i) =

⟨
xk ·Ri

⟩
d
for i = 0, 1, . . . , S − 1, where

R is some parameter. Our sparse subset is still one element from each progression, such that these
s elements add up to the secret key w. Namely, there is a single index ik in every big set such that∑

k x(k, ik) = w (mod d). The parameter R is set to avoid some lattice-reduction attacks on this
specific form of the sparse-subset-sum problem, see the bottom of Section 10.2 for more details.

9.2 Encrypting the Secret Key

As we discussed in Section 8.1, the secret key of the squashed scheme consists of s bit-vectors, each
with S bits, such that only one bit in each vector is one, and the others are all zeros. If we encrypt
each one of these bits individually, then we would need to include in the public key s ·S ciphertexts,
each of which is an element in Zd. Instead, we would like to include an implicit representation that
takes less space but still allows us to compute encryptions of all these bits.

Since the underlying scheme is somewhat homomorphic, then in principle it is possible to store
for each big set Bk an encrypted description of the function that on input i outputs 1 iff i = ik.
Such a function can be represented using only logS bits (i.e., the number of bits that it takes to
represent ik), and it can be expressed as a polynomial of total degree logS in these bits. Hence,
in principle it is possible to represent the encryption of all the secret-key bits using only s logS
ciphertexts, but there are two serious problems with this solution:

Recall the decryption function from Equation (9), Dc,d(. . .) =
⟨⌈∑s

k=1

(∑S
i=1 σk,iz(k, i)

)⌋⟩
2
⊕⊕

i,k σk,i ⟨y(k, i)⟩2. Since the encryption of each of the bits σk,i is now a degree-logS polynomial in
the ciphertexts that are kept in the public key, then we need the underlying somewhat-homomorphic
scheme to support polynomials of degrees logS times higher than what would be needed if we store

21

all the σk,i themselves. Perhaps even more troubling is the increase in running time: Whereas

before computing the bits of qk =
∑S

i=1 σk,iz(k, i) involved only additions, now we also need
S logS multiplications to determine all the σk,i’s, thus negating the running-time advantage of
the optimization from Section 8.1.

Instead, we use a different tradeoff that lets us store in the public key only O(
√
S) ciphertexts for

each big set, and compute p
√
S multiplications per each of the qk’s. Specifically, for every big set Bk

we keep in the public key some c >
⌈√

2S
⌉
ciphertexts, all but two of them are encryptions of zero.

Then the encryption of every secret-key bit σk,i is obtained by multiplying two of these ciphertexts.
Specifically, let

(
c
2

)
be the set of pairs of distinct numbers in [1, c]. For any a ̸= b ∈ [1, c], denote

by i(a, b) the index of the pair (a, b) (in the lexicographical order over
(
c
2

)
). That is,

i(a, b)
def
= (a− 1) · c−

(
a

2

)
+ (b− a).

In particular, if ak, bk are the indexes of the two 1-encryptions (in the group corresponding to the
k’th big set Bk), then ik = i(ak, bk).

A naive implementation of the homomorphic decryption with this representation will compute
explicitly the encryption of every secret key bit (by multiplying two ciphertexts), and then add a
subset of these ciphertexts. Here we use a better implementation, where we first add the ciphertexts

in groups before multiplying. Specifically, let {η(k)m : k ∈ [s],m ∈ [c]} be the bits whose encryption

is stored in the public key (where for each k exactly two of the bits η
(k)
m are ‘1’ and the rest are ‘0’,

and each of the bits σk,i is obtained as a product of two of the η
(k)
m ’s). Then we compute each of

the qk’s as:

qk =
∑
a,b

η(k)a η
(k)
b︸ ︷︷ ︸

σ(k,i(a,b))

z(k, i(a, b)) =
∑
a

η(k)a

∑
b

η
(k)
b z(k, i(a, b)) (10)

Since we have the bits of z(k, i(a, b)) in the clear, we can get the encryptions of the bits of

η
(k)
b z(k, i(a, b)) by multiplying the ciphertext for η

(k)
b by either zero or one. The only real Zd

multiplications that we need to implement are the multiplications by the η
(k)
a ’s, and we only have

O(p
√
S) such multiplications for each qk.

Note that we get a space-time tradeoff by choosing different values of the parameter c (i.e.,
the number of ciphertexts that are stored in the public key for every big set). We must choose
c ≥ ⌈

√
2S ⌉ to be able to encode any index i ∈ [S] by a pair (a, b) ∈

(
c
2

)
, but we can choose

it even larger. Increasing c will increase the size of the public key accordingly, but decrease the
number of multiplications that need to be computed when evaluating Equation (10). In particular,
setting c = ⌈2

√
S ⌉ increases the space requirements (over c = ⌈

√
2S ⌉) only by a

√
2 factor, but

cuts the number of multiplications in half. Accordingly, in our implementation we use the setting
c = ⌈2

√
S ⌉.

10 Setting the Parameters

10.1 The security parameters λ and µ

There are two main security parameters that drive the choice of all the others: one is a security
parameter λ (that controls the complexity of exhaustive-search/birthday attacks on the scheme),
and the other is a “BDDP-hardness parameter” µ. More specifically, the parameter µ it quantifies

22

Parameter Meaning

λ = 72 security parameter (Section 10.1)
µ = 2.34, 0.58, 0.15 BDD-hardness parameter (Section 10.1)

s = 15 size of the sparse subset
p = 4 precision parameter: number of bits for the z(k, i)’s
d = 15 the degree of the squashed decryption polynomial
t = 380 bit-size of the coefficients of the generator polynomial v
n = 211, 213, 215 the dimension of the lattice
S = 1024, 1024, 4096 size of the big sets
R = 251, 2204, 2850 ratio between elements in the big sets

Table 1: The various parameters of the fully homomorphic scheme. The specific numeric values
correspond to our three challenges.

the exponential hardness of the Shortest-Vector-Problem (SVP) and Bounded-Distance Decoding
problems (BDDP) in lattices. Specifically, we assume that for any k and (large enough) n, it takes

time 2k to approximate SVP or BDDP in n-dimensional lattices6 to within a factor of 2
µ·n

k/ log k .
We use this specific form since it describes the asymptotic behavior of our best algorithms for
approximating SVP and BDDP (i.e., the ones based on block reductions [15]).

We can make a guess as to the “true value” of µ by extrapolating from the results of Gama and
Nguyen [3]: They reported achieving BDDP approximation factors of 1.01n ≈ 2n/70 for “unique
shortest lattices” in dimension n in the range of 100-400. Assuming that their implementation took
≈ 240 computation steps to compute, we have that µ log(40)/40 ≈ 1/70, which gives µ ≈ 0.11.

For our challenges, however, we start from larger values of µ, corresponding to stronger (maybe
false) hardness assumptions. Specifically, our three challenges correspond to the three values µ ≈
2.17, µ ≈ 0.54, and µ ≈ 0.14. This makes it plausible that at least the smaller challenges could be
solved (once our lattice-reduction technology is adapted to lattices in dimensions a few thousands).
For the security parameter λ we chose the moderate value λ = 72. (This means that there may be
birthday-type attacks on our scheme with complexity 272, at least in a model where each bignum
arithmetic operation counts as a single step.)

10.2 The other parameters

Once we have the parameters λ and µ, we can compute all the other parameters of the system.

The sparse-subset size s and precision parameter p. The parameter that most influences
our implementation is the size of the sparse subset. Asymptotically, this parameter can be made as
small as Θ(λ/ log λ),7 so we just set it to be λ/ log λ, rounded up to the next power of two minus
one. For λ = 72 we have λ/ log λ ≈ 11.7, so we set s = 15.

Next we determine the precision p that we need to keep of the z(k, i)’s. Recall that for any
element in any of the big sets x(k, i) ∈ Bk we set z(k, i) to be a p-bit-precision approximation of the
rational number ⟨c · x(k, i)⟩d /d. To avoid rounding errors, we need p to be at least ⌈log(s+ 1)⌉,
so for s = 15 we have p = 4. This means that we represent each z(k, i) with four bits of precision

6What we are really assuming is that this hardness holds for the specific lattices that result from our scheme.
7See, e.g., [2] for some upper- and lower-bounds on the complexity of related problems.

23

columns: 0• −1 −2 −3 −4
carry-degree from column −4: 8 4 2
carry-degree from column −3: 9 5 3
carry-degree from column −2: 9 7
carry-degree from column −1: 15

max degree: 15 8 4 2 1

Figure 2: Carry propagation for grade-school addition of 15 numbers with four bits of precision

to the right of the binary digit, and one bit to the left of the binary digit (since after rounding we
may have z(k, i) = 1).

The degree of squashed decryption. We observe that using the grade-school algorithm for
adding s = 2p−1 integers, each with p bits of precision, the degree of the polynomial that describes
the carry bit to the p+ 1’st position is less than 2p. Specifically for the cases of s = 15 and p = 4,
the degree of the carry bit is exactly 15. To see this, Figure 2 describes the carry bits that result
from adding the bits in each of the four columns to the right of the binary point (where we ignore
carry bits beyond the first position to the left of the point):

• The carry bit from column −4 to column −3 is a degree-2 polynomial in the bits of column
−4, the carry bit to column −2 is a degree-4 polynomial, the carry bit to column −1 is a
degree-8 polynomial, and there are no more carry bits (since we add only 15 bits).

• The carry bit from column −3 to column −2 is a degree-2 polynomial in the bits of column
−3, including the carry bit from column −4. But since that carry bit is itself a degree-2
polynomial, then any term that includes that carry bit has degree 3. Hence the total degree
of the carry bit from column −3 to column −2 is 3. Similarly, the total degrees of the carry
bits from column −3 to columns −1, 0 are 5, 9, respectively (since these are products of 4 and
8 bits, one of which has degree 2 and all the others have degree 1).

• By a similar argument every term in the carry from column −3 to −2 is a product of two
bits, but since column −3 includes two carry bits of degrees 4 and 3, then their product has
total degree 7. Similarly, the carry to column 0 has total degree 9 (= 4 + 3 + 1 + 1).

• Repeating the same argument, we get that the total degree of the carry bit from column −1
to columns 0 is 15 (= 7 + 8).

We conclude that the total degree of the grade-school addition algorithm for our case is 15, but
since we are using the space/degree trade-off from Section 9.2 then every input to this algorithm is
itself a degree-2 polynomial, so we get total degree of 30 for the squashed-decryption polynomial.

One can check that the number of degree-15 monomials in the polynomial representing our
grade-school addition algorithm is

(
15
8

)
×
(
15
4

)
×
(
15
2

)
× 15 ≈ 234. Also, every bit in the input of the

grade-school addition algorithm is itself a sum of S bits, each of which is a degree-2 monomial in the
bits from the public key. Hence each degree-15 monomial in the grade-school addition polynomial
corresponds to S15 degree-30 monomials in the bits from the public key, and the entire decryption
polynomial has 234 × S15 degree-30 monomials.

24

The bit-size t of the generating polynomial. Since we need to support a product of two
homomorphically-decrypted bits, then our scheme must support polynomials with 268 ·S30 degree-
60 monomials. Recall from Section 5.2 that we choose the noise in fresh ciphertexts with roughly
15-20 nonzero ±1 coefficients, and we multiply the noise by 2, so fresh ciphertexts have Euclidean
norm of roughly 2

√
20 ≈ 9. Our experimental results from Section 7 suggest that for a degree-

60 polynomial with M terms we need to set the bit-length parameter t large enough so that
2t ≥ c60 ×

√
M where c is slightly smaller than the norm of fresh ciphertexts (e.g., c ≈ 7 for

sufficiently large values of t).
We therefore expect to be able to handle homomorphic-decryption (plus one more multipli-

cation) if we set t large enough so that 2t−p ≥ c60 ·
√
268 · S30. (We use 2t−p rather than 2t

since we need the resulting ciphertext to be 2p closer to the lattice than the decryption radium of
the key, see Section 8.) For our concrete parameters (p = 4, S ≤ 2048) we get the requirement
2t−p ≥ c60 · 2(68+11·30)/2 = c60 · 2199.

Using the experimental estimate c ≈ 7 (so c60 ≈ 2170), this means that we expect to be able to
handle bootstrapping for t ≈ 170 + 199 + 4 = 373. Our experiments confirmed this expectation,
in fact we were able to support homomorphic decryption of the product of two bits by setting the
bit-length parameter to t = 380.

The dimension n. We need to choose the dimension n large enough so that the achievable
approximation factor 2µn log λ/λ is larger than the Minkowski bound for the lattice (which is ≈ 2t),
so we need n = λt/µ log λ. In our case we have t = 380 and λ/ log λ ≈ 11.67, so choosing the
dimension as n ∈ {211, 213, 215} corresponds to the settings µ ∈ {2.17, 0.54, 0.14}, respectively.

Another way to look at the same numbers is to assume that the value µ ≈ 0.11 from the work of
Gama and Nguyen [3] holds also in much higher dimensions, and deduce the complexity of breaking
the scheme via lattice reduction. For n = 2048 we get λ/ log λ = 2048 · 0.11/380 < 1, which means
that our small challenge should be readily breakable. Repeating the computations with this value of
µ = 0.11 for the medium and large challenges yields λ ≈ 6 and λ ≈ 55, corresponding to complexity
estimates of 26 and 255, respectively. Hence, if this estimate holds then even our large challenge
may be feasibly breakable (albeit with significant effort).

This “optimistic” view should be taken with a grain of salt, however, since there are significant
polynomial factors that need to be accounted for. We expect that once these additional factors
are incorporated, our large challenge will turn out to be practically secure, perhaps as secure as
RSA-1024. We hope that our challenges will spur additional research into the “true hardness” of
lattice reduction in these high dimensions.

The big-set size S. One constraint on the size of the big sets is that birthday-type exhaustive
search attacks on the resulting SSSP problem should be hard. Such attacks take time S⌈s/2⌉, so we
need S⌈s/2⌉ ≥ 2λ. For our setting with λ = 72, s = 15, we need S8 ≥ 272, which means S ≥ 512.

Another constraint on S is that it has to be large enough to thwart lattice attacks on the SSSP
instance. The basic lattice-based attack consists of putting all the s · S elements in all the big sets
(denoted {x(k, i) : k = 1, . . . , s, i = 1, . . . , S}) in the following matrix:

B =

1 x(1, 1)
1 x(1, 2)

. . .
...

1 x(s, S)
1 −w

d

25

Dimension n bit-size t determinant d keyGen Encrypt Decrypt

512 380 log2 d ≈ 195764 0.32 sec 0.19 sec —

2048 380 log2 d ≈ 785006 1.2 sec 1.8 sec 0.02 sec

8192 380 log2 d ≈ 3148249 10.6 sec 19 sec 0.13 sec

32768 380 log2 d ≈ 12625500 3.2 min 3 min 0.66 sec

Table 2: Parameters of the underlying somewhat-homomorphic scheme. The bit-length of the
determinant is |d| ≈ log2 d. Decryption time in dimension 512 is below the precision of our mea-
surements.

with w being the secret key of the somewhat homomorphic scheme8 and d being the determinant
of the lattice (i.e., the modulus in the public key). Clearly, if σ1,1, . . . , σs,S are the bits of the
secret key, then the lattice spanned by the rows of B contains the vector ⟨σ1,1, . . . , σs,S , 1, 0⟩, whose
length is

√
sS + 1. To hide that vector, we need to ensure that the BDDP approximation factor for

this lattice is larger than the Minkowski bound for it, namely 2µ(sS+2) log λ/λ ≥ sS+2
√
d ≈ 2tn/(sS+2),

which is roughly equivalent to sS ≥
√

tnλ/µ log λ. Using s = 15, t = 380, λ = 72 and the values of
n and µ in the different dimensions, this gives the bounds S ≥ 137 for the small challenge, S ≥ 547
for the medium challenge, and S ≥ 2185 for the large challenge.

Combining the two constraints, we set S = 512 for the small challenge, S = 547 for the medium
challenge, and S = 2185 for the large challenge.

The ratio R between elements in the big sets. Since we use “big sets” of a special type
(i.e., geometric progressions mod d), we need to consider also a lattice attack that uses this special
form. Namely, we consider the lattice that includes only the first element in each progression

B =

1 x(1, 1)
1 x(2, 1)

. . .

1 x(s, 1)
1 −w

d

and use the fact that there is a combination of these x(i, 1)’s with coefficients at most RS−1 that
yields the element w modulo d. R must therefore be chosen large enough so that such combinations
likely exist for many w’s. This holds when Rs(S−1) > d ≈ 2nt. Namely, we need logR > nt/sS. For

our parameters in dimensions 211, 213, 215, we need logR ≥ 380
15 · {

211

512 ,
213

547 ,
215

2185} ≈ {102, 381, 381}.

11 Performance

We used a strong contemporary machine to evaluate the performance of our implementation: We
run it on an IBM System x3500 server, featuring a 64-bit quad-core Intel Xeon E5450 processor,
running at 3GHz, with 12MB L2 cache and 24GB of RAM.

Our implementation uses Shoup’s NTL library [16] version 5.5.2 for high-level numeric algo-
rithms, and GNU’s GMP library [7] version 5.0.1 for the underlying integer arithmetic operations.
The code was compiled using the gcc compiler (version 4.4.1) with compilation flags gcc -O2 -m64.

8Recall that here we consider an attacker who knows w and tries to recover the sparse subset.

26

Dimension n bit-size t sparse-subset-size s big-set size S big-set ratio R

512 380 15 512 226

2048 380 15 512 2102

8192 380 15 547 2381

32768 380 15 2185 2381

of ctxts PK size
Dimension n bit-size t in PK (s·c) ≈ s·c ·|d| keyGen Recrypt

512 380 690 17 MByte 2.5 sec 6 sec

2048 380 690 69 MByte 41 sec 32 sec

8192 380 705 284 MByte 8.4 min 2.8 min

32768 380 1410 2.25 GByte 2.2 hour 31 min

Table 3: Parameters of the fully homomorphic scheme, as used for the public challenges.

The main results of our experiments are summarized in Tables 2 and 3, for the parameter-setting
that we used to generate the public challenges [6]. In Table 2 we summarize the main parameters
of the underlying somewhat-homomorphic scheme. Recall that the public key of the underlying
scheme consists of two |d|-bit integers and the secret key is one |d|-bit integer, so the size of these
keys range from 50/25 KB for dimension 512 up to 3/1.5 MB for dimension 32768.

In Table 3 we summarize the main parameters of the fully homomorphic scheme. We note that
most of the key-generation time is spent encrypting the secret-key bits: indeed one can check that
key generation time for a public key with m ciphertexts takes roughly

√
m longer than encryption

of a single bit. (This is due to our batch encryption procedure from Section 5.1.)
We also note that 80-90% of the Recrypt time is spent adding the S numbers in each of the s

big-sets, to come up with the final s numbers, and only 10-20% of the time is spent on the grade-
school addition of these final s numbers. Even with the optimization from Section 9.2, the vast
majority of that 80-90% is spent computing the multiplications from Equation (10). For example,
in dimension 32768 we compute a single Recrypt operation in 31 minutes, of which 23 minutes are
used to compute the multiplications from Equation (10), about 3.5 minutes are used to compute
the arithmetic progressions (which we use for our big sets), two more minutes for the additions in
from Equation (10), and the remaining 2.5 minutes are spent doing grade-school addition.

Acknowledgments. We thank Nigel Smart for many excellent comments. We also thank the
CRYPTO reviewers for their helpful comments and Tal Rabin, John Gunnels, and Grzegorz
Swirszcz for interesting discussions.

References

[1] R. M. Avanzi. Fast evaluation of polynomials with small coefficients modulo an integer. Web
document, http://caccioppoli.mac.rub.de/website/papers/trick.pdf, 2005.

[2] A. Bhattacharyya, P. Indyk, D. P. Woodruff, and N. Xie. The complexity of linear dependence
problems in vector spaces. In Innovations in Computer Science - ICS 2011, pages 496–508.
Tsinghua University Press, 2011.

27

[3] N. Gama and P. Q. Nguyen. Predicting lattice reduction. In N. P. Smart, editor, Advances in
Cryptology - EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages
31–51. Springer, 2008.

[4] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st ACM
Symposium on Theory of Computing – STOC 2009, pages 169–178. ACM, 2009.

[5] C. Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In T. Rabin,
editor, Advances in Cryptology - CRYPTO 2010, volume 6223 of Lecture Notes in Computer
Science, pages 116–137. Springer, 2010.

[6] C. Gentry and S. Halevi. Public Challenges for Fully-Homomorphic Encryption. https:

//researcher.ibm.com/researcher/view_project.php?id=1548, 2010.

[7] The GNU Multiple Precision Arithmetic Library. http://gmplib.org/, Version 5.0.1, 2010.

[8] O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lattice reduction
problems. In B. S. K. Jr., editor, Advances in Cryptology - CRYPTO 1997, volume 1294 of
Lecture Notes in Computer Science, pages 112–131. Springer, 1997.

[9] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over
rings. In H. Gilbert, editor, Advances in Cryptology - EUROCRYPT’10, volume 6110 of Lecture
Notes in Computer Science, pages 1–23. Springer, 2010.

[10] D. Micciancio. Improving lattice based cryptosystems using the hermite normal form. In
CaLC’01, volume 2146 of Lecture Notes in Computer Science, pages 126–145. Springer, 2001.

[11] N. Ogura, G. Yamamoto, T. Kobayashi, and S. Uchiyama. An improvement of key generation
algorithm for gentry’s homomorphic encryption scheme. In Advances in Information and
Computer Security - IWSEC 2010, volume 6434 of Lecture Notes in Computer Science, pages
70–83. Springer, 2010.

[12] M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications necessary
to evaluate polynomials. SIAM Journal on Computing, 2(1):60–66, 1973.

[13] C. Peikert and A. Rosen. Lattices that admit logarithmic worst-case to average-case connection
factors. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing – STOC
2007, pages 478–487. ACM, 2007.

[14] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. In
Foundations of Secure Computation, pages 169–177. Academic Press, 1978.

[15] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theor.
Comput. Sci., 53:201–224, 1987.

[16] V. Shoup. NTL: A Library for doing Number Theory. http://shoup.net/ntl/, Version 5.5.2,
2010.

[17] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In P. Q. Nguyen and D. Pointcheval, editors, Public Key Cryptography - PKC
2010, volume 6056 of Lecture Notes in Computer Science, pages 420–443. Springer, 2010.

28

[18] D. Stehlé and R. Steinfeld. Faster fully homomorphic encryption. In M. Abe, editor, Advances
in Cryptology - ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages
377–394. Springer, 2010.

29

