
Combining properties of cryptographic hash functions?

Michal Rjaško

Department of Computer Science
Faculty of Mathematics, Physics and Informatics

Comenius University
Mlynská dolina, 842 48 Bratislava, Slovak Republic

rjasko@dcs.fmph.uniba.sk

Abstract. A “strong” cryptographic hash function suitable for practical applications should si-
multaneously satisfy many security properties, like pseudo-randomness, collision resistance and
unforgeability. This paper shows how to combine two hash function families each satisfying differ-
ent security property into one hash function family, which satisfies both properties. In particular,
given two hash function families H1 and H2, where H1 is pseudo-random and H2 is collision re-
sistant, we construct a combiner which satisfies pseudo-randomness and collision resistance. We
also present a combiner for collision resistance and everywhere preimage resistance. When de-
signing a new hash function family for some particular application, we can use such combiners
with existing primitives and thus combine a hash function family satisfying all needed properties.

1 Introduction

Cryptographic hash functions are used in many applications including digital signatures,
message authentication and data integrity. Each application requires different set of properties,
which a “strong” hash function should have simultaneously. Several methods of constructing
hash function satisfying multiple properties have been proposed.

Bellare and Ristenpart [1, 2] suggest multi-property preserving (MPP) domain extension
transforms. Such transforms extend domain of a “small” compression function f : {0, 1}m →
{0, 1}n to a “big” hash function F : {0, 1}∗ → {0, 1}n. Moreover MPP domain extension trans-
forms preserve different security properties as long as they are all satisfied by the compression
function f . The domain extension transforms thus reduce the problem of multi-property sat-
isfaction from the hash function to the compression function, which can be easier to build.

Fischlin, Lehman and Pietrzak [4, 5] present robust MPP combiners. A robust combiner
for two cryptographic hash functions F1, F2 and a property P (e.g. collision resistance) is
a construction, which is secure (with respect to the property P) if at least one of the hash
functions F1 or F2 is secure. A robust MPP combiner for two hash functions F1, F2 and the
set of properties {P1, . . . , Pk} preserves all the properties P1, . . . , Pk if they are satisfied by at
least one hash function F1 and F2 independently (i.e. it doesn’t matter which properties are
satisfied by F1 and which by F2). Thus robust MPP combiners make it possible to construct
“fault tolerant” hash functions. If an attack against F2 on a property Pi is found, the MPP
combiner can still satisfy Pi as long as F1 satisfies Pi. However, it was shown [3, 7, 8] that
robust combiners for collision resistance must have at least twice as long output length as the
partial hash functions F1, F2. This fact limits practical applicability of MPP combiners.

We present a different approach how to construct a hash function satisfying multiple
properties. Given two hash function families H1 and H2, where H1 is pseudo-random and
H2 is collision resistant, we construct a hash function family CH1,H2

1 , which preserves both

? Research supported by VEGA grant No. 1/0266/09 and Comenius University grant No. UK/429/2010.

collision resistance and pseudo-randomness. By the results of Rogaway-Shrimpton [10] and
Rjaško [9], collision resistance implies second-preimage resistance, preimage resistance, target
collision resistance and several other properties (cf. [9]). Moreover, pseudo-randomness implies
unforgeability. Thus, our construction CH1,H2

1 has all the mentioned properties as long as H1

is pseudo-random and H2 is collision resistant.
Moreover, we present a construction CH1,H2

2 , which is collision resistant and everywhere
preimage resistant (cf. [10]) as long as H1 is collision resistant and H2 everywhere preimage

resistant. By combining constructions C1 and C2 we get a construction C3 = C
H1,C

H2,H3
2

1 ,
which preserves collision resistance, pseudo-randomness and everywhere preimage resistance.

H1

H2
1

H2
2

H2
0

M

H1 H2

H1

M

Fig. 1. Constructions combining properties Prf and Coll (left) and ePre and Coll (right).

Organization. We start the Section 2 by introducing some basic notations and definitions.
Then we present definitions of nine basic security properties of cryptographic hash functions.
The properties were introduced/used in [1, 2, 4, 10]. In the Section 3 we introduce the com-
biner C1 preserving pseudo-randomness and collision resistance. The Section 4 introduces and
analyzes the combiner C2 for collision resistance and everywhere preimage resistance. Finally,
in the Section 5 we show that these two combiners can be combined into the combiner, which
preserves pseudo-randomness, collision resistance and everywhere preimage resistance.

2 Preliminaries

We write M $←S for the uniform random selection of M from the finite set S. Concatenation
of finite strings M1 and M2 is denoted by M1||M2 or simply M1M2, M denotes bitwise
complement of string M . Let Func(D,R) represent the set of all functions ρ : D → R and

2

let RFD,R be a function chosen randomly from the set Func(D,R) (i.e. RFD,R
$←Func(D,R)).

By Perm(R) we denote the set of all permutations φ : R → R. Let RPR be a permutation
chosen randomly from the set Perm(R). We sometimes write RFd,r, Func(d, r) or Perm(r)
when D = {0, 1}d and R = {0, 1}r. If i is an integer, then 〈i〉r is r-bit string representation
of i. By Prefixn(M) we denote the n-bit prefix of string M .

Let n ∈ N be a security parameter. A hash function family is a function H : {0, 1}k ×
{0, 1}∗ → {0, 1}y computable in polynomial time, where k, y ∈ N are polynomially related to
the security parameter n (i.e. k = p1(n) and y = p2(n) for some polynomials p1, p2). We will
often write the first argument to H as a subscript, i.e. HK(M) := H(K,M).

A function f is negligible if for every polynomial p(·) there exists N such that for every
n > N it holds that f(n) < 1

p(n) . Negligible functions are denoted as negl(·).
An oracle Turing machine T with oracle access to Turing machines T1, . . . , Tl is a Turing

machine, which accepts inputs via input tape, performs some computation and replies via
output tape. During the computation it can write on some additional “oracle” input tapes
t1, . . . , tl and receives responses via “oracle” output tapes t′1, . . . , t

′
l – connections to the Turing

machines T1, . . . , Tl. Whenever T writes some input on tape ti, the Turing machine Ti is run
on that input and T receives the output on tape t′i. We call such a operation a query to
oracle Ti. All queries are performed in unit time (i.e. computation of Ti is not counted into
the running time of T). The fact that T has oracle access to T1, . . . , Tl is denoted as T T1,...,Tl .

An adversary is a probabilistic polynomial-time oracle Turing machine. Running time of
an adversary A is the worst case running time of A plus the description size of A (hence
one cannot precompute some large amount of information and store it into A’s description).
Running time of an adversary is polynomial in length of its inputs and the security parameter
n. Without loss of generality we assume that an adversary always stop and returns some
output.

Security notions. Below are definitions of the nine important security properties we consider
in this work (cf. [1, 2, 4, 10]). Let H : {0, 1}k × {0, 1}∗ → {0, 1}y be a hash function family
and let λ be a positive integer. Let A be an adversary. We define the following advantage
measures:

AdvColl
H (A) = Pr

[
K

$←{0, 1}k; (M,M ′)← A(K) :

(M 6= M ′) ∧ (HK(M) = HK(M ′))
]

AdvPre[λ]
H (A) = Pr

[
K

$←{0, 1}k;M $←{0, 1}λ;Y ← HK(M);

M ′ ← A(K,Y) : HK(M ′) = Y
]

AdvaPre[λ]
H (A) = Pr

[
(K,S)← A;M $←{0, 1}λ;Y ← HK(M);

M ′ ← A(Y, S) : HK(M ′) = HK(M)
]

AdvePre
H (A) = Pr

[
(Y, S)← A;K $←{0, 1}k;M ′ ← A(K,S) : HK(M ′) = Y

]
AdvSec[λ]

H (A) = Pr
[
K

$←{0, 1}k;M $←{0, 1}λ;M ′ ← A(K,M) :

(M 6= M ′) ∧ (HK(M) = HK(M ′))
]

3

AdvaSec[λ]
H (A) = Pr

[
(K,S)← A;M $←{0, 1}λ;M ′ ← A(M,S) :

(M 6= M ′) ∧ (HK(M) = HK(M ′))
]

AdveSec
H (A) = Pr

[
(M,S)← A;K $←{0, 1}k;M ′ ← A(K,S) :

(M 6= M ′) ∧ (HK(M) = HK(M ′))
]

AdvPrf
H (A) =

∣∣∣Pr
[
K

$←{0, 1}k; 1← AHK

]
− Pr

[
F $←Func(∗, y); 1← AF

]∣∣∣
AdvMAC

H (A) = Pr
[
K

$←K; (M,Y)← AHK : HK(M) = Y ∧M not queried
]

We say that H is xxx secure (or H is xxx) for xxx ∈ {Pre, aPre, Sec, aSec} if for all λ and
any polynomial adversary A there exists a negligible function negl, such that

Advxxx[λ]
H (A) ≤ negl(n).

For yyy ∈ {eSec, ePre, Coll, Prf} we say that H is yyy secure if for any polynomial adversary
A there exists a negligible function negl, such that

Advyyy
H (A) ≤ negl(n).

Pseudo-random permutation. We say function f : {0, 1}k ×{0, 1}y → {0, 1}y is keyed permu-
tation if fK(·) is bijective for all K ∈ {0, 1}k. A keyed permutation f is pseudo-random if for
any polynomial adversary A there exists a negligible function negl, such that∣∣∣Pr

[
K

$←{0, 1}k; 1← AfK

]
− Pr

[
P $←Perm(y); 1← AP

]∣∣∣ ≤ negl(n).

FK2

FK3

FK1

L0 R0

L3 R3

Fig. 2. Three round Feistel network FeistelFK1 ,FK2 ,FK3
is pseudo-random permutation if F is a pseudo-random

function.

4

Feistel permutation. A Feistel network is a way of constructing invertible functions from
possibly non-invertible ones. It operates in series of rounds. Input into the round i is divided
into two halves Li−1 and Ri−1. Output of the round i is defined as

Li := Ri−1 and Ri = Li−1 ⊕ fi(Ri−1),

where fi : {0, 1}n → {0, 1}n is a round function. By Feistelf1,...,fr we denote the r-round
Feistel network with round functions f1, . . . , fr. Hence Feistelf1,...,fr(L0, R0) outputs 2n bit
string (Lr, Rr).

It is easy to see that Feistel network is invertible. Moreover, it can be shown that if a
pseudo-random function F : {0, 1}k × {0, 1}n → {0, 1}n is used instead of round functions,
then the 3-round FeistelFK1

,FK2
,FK3

is pseudo-random permutation.

Proposition 1 ([6]). If F1,F2,F3
$←Func(n, n) are three independent random functions, then

FeistelF1,F2,F3 : {0, 1}2n → {0, 1}2n

is indistinguishable from a random permutation. If F : {0, 1}k×{0, 1}n → {0, 1}n is a pseudo-
random function then the function

F
(3)
K1,K2,K3

:= FeistelFK1
,FK2

,FK3

is a pseudo-random permutation.

3 Construction C1 for Coll and Prf

In this section we introduce a construction C1 illustrated in the Figure 1. It utilizes ideas
of Fischlin and Lehman [5] for the C4P robust MPP combiner, which is robust for Coll, Prf,
MAC and eSec.

Let H1, H2 : {0, 1}k × {0, 1}∗ → {0, 1}y be two hash function families. We will assume
that H1 is Prf secure and H2 is Coll secure. Let C1 be defined as:

CH1,H2
1 (K1,K2,M) := Feistel

H
(1)
1 ,H

(2)
1 ,H

(3)
1

(H2(K2,M)),

where
H

(i)
1 (M) := Prefixy/2(H1(K1, 〈i〉2||M)).

Idea behind the construction is to apply a pseudo-random permutation over the collision
resistant hash function family. This leads to a hash function family which is pseudo-random
and collision resistant.

Lemma 1. Let H : {0, 1}k × {0, 1}∗ → {0, 1}y be a collision resistant hash function family
and f : {0, 1}k × {0, 1}y → {0, 1}y be a pseudo-random permutation. Then a hash function
family C : {0, 1}2k × {0, 1}∗ → {0, 1}y defined as

CK1,K2(M) := fK1(HK2(M))

is collision resistant and pseudo-random.

5

Proof. Fix some security parameter n. Since fK1 is permutation for all K1 ∈ {0, 1}k, any
collision (M,M ′) in CK1,K2 also collides in HK2 :

HK2(M) = f−1
K1

(CK1,K2(M)) = f−1
K1

(CK1,K2(M ′)) = HK2(M ′).

Hence, if H is Coll secure, then also C is.
Let A be a polynomial adversary and let

ε(n) := AdvPrf
C (A).

The adversary A has oracle access either to CK1,K2 for K1,K2
$←{0, 1}k or to a random

function F $←Func(∗, y). Now consider the following adversary D:

Adversary D

D has oracle access either to fK1 for K1
$←{0, 1}k or to P $←Perm(y). Let O denote D’s

current oracle.
1. Choose K2

$←{0, 1}k.
2. Simulate an adversary A. When A asks its oracle a query M , answer O(HK2(M)).
3. When A outputs a bit b ∈ {0, 1}, output b and end.

It is clear that D runs in a polynomial time. When D’s oracle is fK1 , then view of A in the
simulation is the same as in the Prf experiment with oracle CK1,K2 . Hence,

Pr
[
K1

$←{0, 1}k; 1← DfK1

]
= Pr

[
K1,K2

$←{0, 1}k; 1← ACK1,K2

]
.

Consider the part when D has oracle access to the random permutation P. The adversary
A cannot find a difference between oracles P(HK2(·)) and F(·), unless it asks two distinct
queries M,M ′ for which it gets the same answer (otherwise outputs of both P and F are
uniformly random). This case can occur only with negligible probability if A’s oracle is F . If
A’s oracle is P(HK2(·)), then M,M ′ also collides in HK2 . Since HK2 is collision resistant, A
can find such M,M ′ only with negligible probability. Thus, there exists a negligible function
negl for which∣∣∣Pr

[
P $←Func(y, y); 1← DP

]
− Pr

[
F $←Func(∗, y); 1← AF

]∣∣∣ ≤ negl(n).

Hence,∣∣∣Pr
[
K1

$←{0, 1}k; 1← DfK1

]
− Pr

[
P $←Func(y, y); 1← DP

]∣∣∣
≥
∣∣∣Pr

[
K1,K2

$←{0, 1}k; 1← ACK1,K2

]
− Pr

[
F $←Func(∗, y); 1← AF

]∣∣∣+ negl(n)

= ε(n) + negl(n).

Since f is a pseudo-random permutation, we conclude that ε(n) must be negligible.

Lemma 2. If F : {0, 1}k ×{0, 1}y → {0, 1}n is a pseudo-random function, then the function

F ′(K,M) := Prefixl(F (K,M)),

where l ≤ n, is pseudo-random too.

6

Proof. (sketch) The proof is straightforward. If some adversary A can distinguish F ′ from
a random function, then it can do the same for F by looking on the corresponding part of
its output. Hence, truncating output bits of a pseudo-random function does not affect its
pseudo-randomness.

The following theorem is an easy consequence of Lemma 1, 2 and Proposition 1.

Theorem 1. Let H1 : {0, 1}k×{0, 1}∗ → {0, 1}y be a collision resistant hash function family
and H2 : {0, 1}k ×{0, 1}∗ → {0, 1}y be a pseudo-random hash function family. Then the hash
function family C1 defined as

CH1,H2
1 (K1,K2,M) := Feistel

H
(1)
1 ,H

(2)
1 ,H

(3)
1

(H2(K2,M)),

where
H

(i)
1 (M) := Prefixy/2(H1(K1, 〈i〉2||M)), i = 1, 2, 3

is collision resistant and pseudo-random.

Proof. Prepending the round prefix 〈i〉2, i = 1, 2, 3, to the input of pseudo-random function
H1 ensures that H1(K1, ·) is never invoked on the same input in different rounds. This means
the functions H1(K1, 〈i〉2||·) are indistinguishable from three independent random functions.
Hence, by Lemma 2 functions

H
(i)
1 (M) := Prefixy/2(H1(K1, 〈i〉2||M)),

are indistinguishable from three independent random functions. By Proposition 1 it means
that Feistel

H
(1)
1 ,H

(2)
1 ,H

(3)
1

is a pseudo-random permutation. Using the Lemma 1 we conclude
that C1 is collision resistant and pseudo-random.

Remark 1. In [9, 10] it was proven, that if some hash function family H is Coll secure, it is
also Pre, Sec and eSec secure. Similarly, if H is Prf, then it is also MAC secure. Hence, our
construction CH1,H2

1 preserves all these properties, as long as H1 is Prf and H2 is Coll.

Remark 2. We apply the pseudo-random permutation Feistel
H

(1)
1 ,H

(2)
1 ,H

(3)
1

over the collision
resistant hash function H2 to ensure that collisions in the combiner are also collisions in the
collision resistant hash function H2. Consider that we apply a pseudo-random function instead
of the pseudo-random permutation, i.e. C ′1 = H1(K1, H2(K2,M)) where H1 is Prf and H2

is Coll secure. Collisions in such a combiner can not be directly transformed into collisions
in the hash function H2, since H1 is not a permutation. On the other hand, this combiner
is much less complicated and it seems, that pseudo-randomness of H1 ensures that collisions
in the combiner are still hard to find, if H2 is collision resistant. However, formal proof that
such a combiner is collision resistant remains an open problem.

4 Construction C2 for Coll and ePre

In this section we introduce the construction CH1,H2
2 for two hash function families H1 and

H2. We show that if H1 is Coll and H2 is ePre secure, then CH1,H2
2 is both Coll and ePre

secure. The construction is illustrated in Figure 1.

7

Let H1, H2 : {0, 1}k × {0, 1}∗ → {0, 1}y be two hash function families. We will assume
that H1 is Coll secure and H2 is ePre secure. Let C2 be defined as:

CH1,H2
2 (K1,K2,M) := H1(K1, H1(K1,M)||H2(K2,M)).

We show that C2 is Coll and ePre secure.

Theorem 2. Let H1, H2 : {0, 1}k × {0, 1}∗ → {0, 1}y be two hash function families. If H1 is
Coll secure, then CH1,H2

2 is Coll secure.

Proof. Fix some security parameter n. Let A be a polynomial adversary and let

ε(n) := AdvColl
C2

(A).

From A we construct an adversary B attacking H1 in Coll sense.

Adversary B

B is given on input a key K $←{0, 1}k

1. Choose K2
$←{0, 1}k.

2. Simulate A(K,K2). At the end of its execution, A outputs a pair M,M ′.
3. If H1(K,M) = H1(K,M ′), output M,M ′.

Otherwise output H1(K,M)||H2(K2,M), H1(K,M ′)||H2(K2,M
′).

It is clear that B runs in a polynomial time. Consider that the pair M,M ′, which A outputs
at the end of its simulation collides for CH1,H2

2 . That is M 6= M ′ and

H1(K,H1(K,M)||H2(K2,M)) = H1(K,H1(K,M ′)||H2(K2,M
′)).

If H1(K,M)||H2(K2,M) 6= H1(K,M ′)||H2(K2,M
′), then the pair

(H1(K,M)||H2(K2,M), H1(K,M ′)||H2(K2,M
′))

is a collision for H1. Otherwise it must hold, that H1(K,M) = H1(K,M ′). This means M,M ′

collides also for H1. Hence, if A finds a collision for CH1,H2
2 , then B finds a collision for H1.

Thus,
ε(n) ≤ AdvColl

H1
(B).

Since H1 is collision resistant, we conclude that ε(n) is negligible.

Theorem 3. Let H1, H2 : {0, 1}k × {0, 1}∗ → {0, 1}y be two hash function families. If H1 is
Coll and H2 is ePre secure, then CH1,H2

2 is ePre secure.

Proof. We will use an equivalent “one stage” definition of the ePre advantage measure, we
denote this definition as ePre2:

AdvePre2
H (A) = max

Y ∈{0,1}y

{
Pr
[
K

$←{0, 1}k;M ← A(K) : HK(M) = Y
]}
.

For the proof of equivalence between ePre and ePre2 see [10]. Fix some security parameter n.
Let A be a polynomial adversary and let

ε(n) := AdvePre2
C2

(A).

8

Let Y ′ be the image for which A has the maximum probability of success, i.e.

Pr
[
K1,K2

$←{0, 1}k;M ← A(K1,K2) : CH1,H2
2 (K1,K2,M) = Y ′

]
= ε(n)

To make our presentation more succinct, let AWins(K1,K2) be the shortcut for the event
that A wins given keys K1 and K2, i.e.

AWins(K1,K2)⇔M ← A(K1,K2) ∧ CH1,H2
2 (K1,K2,M) = Y ′

. Consider the following adversary B, which attacks H2 in the ePre sense.

Adversary B
[1st stage]

1. Choose K ′1,K
′
2

$←{0, 1}k.
2. Simulate M ′ ← A(K ′1,K

′
2).

3. Compute Y := H2(K ′2,M
′) and output (Y,K ′1).

[2nd stage]

B is given on input a key K2
$←{0, 1}k and “state” variable from the previous stage

K ′1.

1. Simulate M ← A(K ′1,K2).
2. Output M .

It is clear that B runs in a polynomial time. Consider that A outputs a valid preimage for Y ′

in both simulations, i.e. CH1,H2
2 (K ′1,K

′
2,M

′) = CH1,H2
2 (K ′1,K2,M) = Y ′. From the definition

of C2 we have

Y ′ = H1(K ′1, H1(K ′1,M
′)||H2(K ′2,M

′)) = H1(K ′1, H1(K ′1,M)||H2(K2,M)).

If H2(K ′2,M
′) = H2(K2,M), then M is a valid preimage for Y , i.e. B wins. Otherwise, the

pair

H1(K ′1,M
′)||H2(K ′2,M

′), H1(K ′1,M)||H2(K2,M)

collides for H1(K ′1, ·). Since H1 is collision resistant, this case can occur only with negligible
probability negl1(n). Let E1 denote the event Y ′ = CH1,H2

2 (K ′1,K
′
2,M

′) (i.e. A wins in the
first simulation) and E2 be the event Y ′ = CH1,H2

2 (K ′1,K2,M) (i.e. A wins in the second
simulation). Hence,

AdvePre
H2

(B) ≥ Pr[K1,K2,K
′
2

$←{0, 1}k; E1 ∧ E2 ∧H2(K ′2,M
′) = H2(K2,M)]

= Pr[K1,K2,K
′
2

$←{0, 1}k; E1 ∧ E2]

−Pr[K1,K2,K
′
2

$←{0, 1}k; E1 ∧ E2 ∧H2(K ′2,M
′) 6= H2(K2,M)]

≥ Pr[K1,K2,K
′
2

$←{0, 1}k; E1 ∧ E2]− negl1(n) (1)

9

We find the lower bound for the first member of the equation (1). The events E1 and E2 share
the same randomly chosen key K1, hence they are not independent. However,

Pr[K1,K2,K
′
2

$←{0, 1}k; E1 ∧ E2] =

=
1
2k

∑
K1∈{0,1}k

Pr[K2,K
′
2

$←{0, 1}k; E1 ∧ E2] (2)

=
1
2k

∑
K1∈{0,1}k

Pr[K2
$←{0, 1}k; E1] · Pr[K ′2

$←{0, 1}k; E2] (3)

=
1
2k

∑
K1∈{0,1}k

(
Pr
[
K2

$←{0, 1}k; AWins(K1,K2)
])2

, (4)

where equation (3) is given by the fact, that the events E1 and E2 are independent if the key
K1 is fixed.

Let GOOD ⊆ {0, 1}k denote the set of keys K1 for which the probability that A wins is
at least ε(n)/2. That is

∀K1 ∈ GOOD : Pr
[
K2

$←{0, 1}k;M ← A(K1,K2) : CH1,H2
2 (K1,K2,M) = Y ′

]
≥ ε(n)

2
.

Let BAD be the set of all other keys, i.e. BAD = {0, 1}k −GOOD. The left hand side of the
equation (4) can be bounded from below as follows:

1
2k

∑
K1∈{0,1}k

(
Pr
[
K2

$←{0, 1}k; AWins(K1,K2)
])2

=

=
1
2k

∑
K1∈GOOD

(
Pr
[
K2

$←{0, 1}k; AWins(K1,K2)
])2

+

+
1
2k

∑
K1∈BAD

(
Pr
[
K2

$←{0, 1}k; AWins(K1,K2)
])2

≥ 1
2k

∑
K1∈GOOD

ε(n)2

4
. (5)

On the other hand, we know that

ε(n) =
1
2k

∑
K1∈GOOD

Pr
[
K2

$←{0, 1}k; AWins(K1,K2)
]

+

+
1
2k

∑
K1∈BAD

Pr
[
K2

$←{0, 1}k; AWins(K1,K2)
]

≤ 1
2k

∑
K1∈GOOD

1 +
1
2k

∑
K1∈BAD

ε(n)
2

=
1
2k
|GOOD|+ ε(n)

2k+1
|BAD|

=
1
2k
|GOOD|+ ε(n)

2k+1
(2k − |GOOD|)

=
2− ε(n)

2k+1
|GOOD|+ ε(n)

2
(6)

10

Thus

|GOOD| ≥ 2k
ε(n)

2− ε(n)
. (7)

By combining equations (1),(4),(5),(7) we have

AdvePre
H2

(B) ≥ 1
2k

2k
ε(n)

2− ε(n)
ε(n)2

4
− negl1(n)

=
ε(n)3

4(2− ε(n))
− negl1(n)

>
ε(n)3

8
− negl1(n).

Since H2 is ePre secure, we conclude that ε(n) must be negligible.

5 Combining combiners

It is easy to see, that the construction CH1,H2
1 defined as

CH1,H2
1 (K1,K2,M) := Feistel

H
(1)
1 ,H

(2)
1 ,H

(3)
1

(H2(K2,M)),

where
H

(i)
1 (M) := Prefixy/2(H1(K1, 〈i〉2||M)), i = 1, 2, 3

is ePre secure, if H2 is ePre secure. The formal proof follows.

Theorem 4. Let H1, H2 : {0, 1}k × {0, 1}∗ → {0, 1}y be two hash function families. If H2 is
ePre secure, then the construction CH1,H2

1 is ePre secure.

Proof. Let A be an adversary and let

ε(n) := AdvePreC1
(A).

Consider the following adversary B attacking H2 in the ePre sense.

Adversary B
[1st stage]
1. Simulate (Y ′, S)← A().
2. Compute Y := Feistel−1

H
(1)
1 ,H

(2)
1 ,H

(3)
1

3. Output (Y, S).
[2nd stage]

B is given on input a key K $←{0, 1}k and “state” variable from the previous stage S.
1. Simulate M ← A(K,S).
2. Output M .

Clearly, B runs in a polynomial time. If A finds a valid preimage for Y ′, then B finds a valid
preimage for Y . Since A’s view in the simulation above is the same as in the ePre experiment
against CH1,H2

1 , we have
AdvePre

H2
(B) ≥ ε(n).

Since H2 is ePre secure, we conclude that ε(n) must be negligible.

Thus, if H1 is Prf and H2 is Coll and ePre secure, then CH1,H2
1 is Prf, Coll and ePre secure.

By replacing H2 with the combiner C2, we get a construction C
H1,C

H2,H3
2

1 , which is Prf, Coll
and ePre secure, if H1 is Prf, H2 is Coll and H3 is ePre secure.

11

6 Conclusion

In this paper we introduced two combiners for properties of cryptographic hash functions.
The combiner CH1,H2

1 is collision resistant and pseudo-random, if H1 is pseudo-random and
H2 is collision resistant. The combiner CH1,H2

2 is collision resistant and everywhere preimage
resistant, if H1 is collision resistant and H2 is everywhere preimage resistant. We showed, that

these two combiners can be used together so that the resulting combiner C3 := C
C

H1,H2
2 ,H3

1

is collision resistant, pseudo-random and everywhere preimage resistant. Collision resistance
implies preimage resistance and 2nd-preimage resistance [10], pseudo-randomness implies un-
forgeability, the combiner C3 thus satisfies all mentioned properties.

Construction of the combiner satisfying aPre and aSec, i.e. always versions of preimage
resistance and 2nd-preimage resistance, remains an open problem. Another open problem is
analysis of the candidate combiner C ′1 := H1(K1, H2(K2,M)) for pseudo-randomness (H1)
and collision resistance (H2). This combiner is more efficient than C1, on the other hand, a
collision in the combiner C ′1 cannot be directly transformed to a collision in the hash function
H2.

References

1. M. Bellare and T. Ristenpart. Hash Functions in the Dedicated-Key Setting: Design Choices and MPP
Transforms. In International Colloquim on Automata, Languages, and Progamming, LNCS vol. 4596,
pages 399–410. Springer, 2006.

2. M. Bellare and T. Ristenpart. Multi-Property-Preserving Hash Domain Extension and the EMD Trans-
form. In Advances in Cryptology - ASIACRYPT 2006, LNCS vol. 4284, pages 299–314. Springer, 2006.

3. D. Boneh and X. Boyen. On the Impossibility of Efficiently Combining Collision Resistant Hash Functions.
In Advances in Cryptology - CRYPTO 2006, LNCS vol. 4117, pages 570–583. Springer, 2006.

4. M. Fischlin and A. Lehman. Multi-property Preserving Combiners for Hash Functions. In Theory of
Cryptography, LNCS vol. 4948, pages 375–392. Springer, 2008.

5. M. Fischlin, A. Lehmann, and K. Pietrzak. Robust Multi-property Combiners for Hash Functions Revis-
ited. In Automata, Languages and Programming, LNCS vol. 5126, pages 655–666, 2009.

6. M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions.
In SIAM Journal on Computing, volume 17, pages 373–386, 1988.

7. K. Pietrzak. Non-Trivial Black-Box Combiners for Collision-Resistant Hash-Functions don’t Exist. In
Advances in Cryptology - EUROCRYPT 2007, LNCS vol. 4515, pages 23–33. Springer, 2007.

8. K. Pietrzak. Compression from Collisions, or Why CRHF Combiners Have a Long Output. In Advances
in Cryptology 2008, LNCS vol. 5157, pages 413–432. Springer, 2008.

9. M. Rjasko. Properties of Cryptographic Hash Functions. Cryptology ePrint Archive, Report 2008/527,
2008.

10. P. Rogaway and T. Shrimpton. Cryptographic Hash-Function Basics: Definitions, Implications, and Sep-
arations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. In Fast Software
Encryption, LNCS vol. 3017, pages 371–388. Springer, 2004.

12

