
Constant-Round Private Function Evaluation

with Linear Complexity

Jonathan Katz∗ Lior Malka†

Abstract

We consider the problem of private function evaluation (PFE) in the two-party setting. Here,
informally, one party holds an input x while the other holds a circuit describing a function f ; the
goal is for one (or both) of the parties to learn f(x) while revealing nothing more to either party.
In contrast to the usual setting of secure computation — where the function being computed
is known to both parties — PFE is useful in settings where the function (i.e., algorithm) itself
must remain secret, e.g., because it is proprietary or classified.

It is known that PFE can be reduced to standard secure computation by having the parties
evaluate a universal circuit, and this is the approach taken in most prior work. Using a universal
circuit, however, introduces additional overhead and results in a more complex implementation.
We show here a completely new technique for PFE that avoids universal circuits, and results in
constant-round protocols with communication/computational complexity linear in the size of the
circuit computing f . This gives the first constant-round protocol for PFE with linear complexity
(without using fully homomorphic encryption), even restricted to semi-honest adversaries.

1 Introduction

In the setting of two-party private function evaluation (PFE), a party P1 holds an input x while
another party P2 holds a (circuit Cf describing a) function f ; the goal is for one (or both) of the
parties to learn the result f(x) while not revealing to either party any information beyond this. (The
parties do agree in advance on the size of the circuit being computed, as well as the input/output
length. See Section 2.1 for further discussion.) PFE is useful when the function being computed
must remain private, say because the function is classified, because revealing the function would
lead to security vulnerabilities, or because the implementation of the function (e.g., the circuit Cf

itself) is proprietary even if the function f is known [33, 6, 8, 9, 11, 12, 13, 19, 5, 32, 30, 3].
PFE stands in contrast to the standard setting of secure two-party computation [36, 14], where

the parties hold inputs x and y, respectively, and wish to compute the result f(x, y) for some
mutually known function f using an agreed-upon circuit Cf for computing f . On the other hand,
it is well known that the problem of PFE can be reduced to the problem of secure computation using
universal circuits. In more detail, let Un be some (fixed) universal circuit such that Un(x,C) = C(x)
for every circuit C having at most n gates. (We implicitly assume here some fixed representation
for circuits.) Then if Cn is the class of circuits having at most n gates, PFE for this class is solved
by having the parties run a (standard) secure computation of Un.

∗Dept. of Computer Science, University of Maryland. Email: jkatz@cs.umd.edu. This work was supported in
part by DARPA and NSF award #1111599.

†Intel. Work done while at the University of Maryland. Email: lior34@gmail.com

1

There are, however, drawbacks to using universal circuits to implement PFE. First is the re-
sulting complexity: although PFE using universal circuits has been implemented [34], it is fair to
say that it is more challenging, tedious, and error-prone to write code involving universal circuits
than it is to implement secure computation “directly” using Yao’s garbled circuit approach (as
done, e.g., in [26, 25, 31, 16, 17]). Using universal circuits also impacts efficiency. Valiant [35]
showed a construction of a universal circuit achieving (optimal) |Un| = O(n log n); the construc-
tion is complex, however, and the constant terms (as well as the low-order terms) are significant.
Kolesnikov and Schneider [22, 34] gave a simpler construction of universal circuits: they obtain
the worse asymptotic bound |Un| = O(n log2 n), but their techniques are claimed to yield smaller
universal circuits than Valiant’s construction for “reasonable” values of n. (The exact improvement
depends also on the number of inputs and outputs. We refer the reader to their work for a detailed
comparison.) Even so, as secure two-party computation is used for ever-larger circuits (secure
computation of circuits with up to 1 billion gates has been reported [17]), the overhead introduced
by universal circuits becomes prohibitive. Indeed, the implementation of PFE by Kolesnikov and
Schneider [22, 34] can handle circuits of only a few thousand gates [30].

Another approach to PFE is given by Abadi and Feigenbaum [1]. They show a PFE protocol
with computational/communication complexity O(n) but using O(d) rounds, where d is (an upper
bound on) the depth of the circuit being computed.

1.1 Contributions of our Work

We show the first constant-round PFE protocols with linear complexity, without relying on fully
homomorphic public-key encryption.1 We begin by showing a protocol in the semi-honest setting;
this illustrates our core techniques and represents what we consider to be our main contribution.
(Semi-honest security was the focus of all prior work on PFE [33, 6, 8, 9, 11, 12, 13, 19, 5, 32, 30, 3].)
Zero-knowledge proofs can be used in the standard way [15] to obtain security against malicious
parties, still in constant rounds and with linear complexity; however, the resulting protocol is
unlikely in practice to out-perform secure computation of universal circuits using efficient protocols
for the malicious setting (e.g., [23]). We sketch a more efficient construction for achieving security
against a malicious P1.

Our protocols rely on (singly) homomorphic public-key encryption and symmetric-key encryp-
tion secure against linear related-key attacks; see Definition 3. The former can be instantiated
using various standard cryptosystems (e.g., [10, 29]); the latter can be instantiated in the random
oracle model, or in a provable sense [2] based on the decisional Diffie-Hellman assumption.

In addition to the theoretical improvement, we believe our approach will yield better perfor-
mance in practice for PFE of large circuits and/or in certain settings. Specifically, although our
protocol uses O(n) public-key operations — in contrast to universal-circuit-based approaches that
would use O(n log n) or O(n log2 n) symmetric-key operations2 — the protocol has linear communi-
cation complexity, making it advantageous when network communication is expensive. Moreover,
there are several ways our protocol can be improved (e.g., using elliptic-curve cryptography with
fast algorithms for multiple fixed-base exponentiations) to reduce its computational cost.

1It is easy to construct constant-round, linear-complexity PFE from fully homomorphic encryption. But it is
of theoretical interest to reduce the assumptions used, and of practical importance to avoid the overhead of fully
homomorphic encryption.

2This does not account for any oblivious transfers performed in the universal-circuit-based approaches. However
the number of oblivious transfers scales linearly in the input length, not the circuit size.

2

1.2 Overview of our Techniques

Our main technical contribution, as noted above, is our idea for achieving PFE with linear com-
plexity in the semi-honest setting; we describe this here. Our description is fairly detailed and we
will refer to it in the formal description of our protocol later; it should also be possible to skim
this section so as to obtain the main ideas. Our approach adapts Yao’s garbled-circuit technique.
At a very high level, our idea is to have P1 generate a sequence of gates; P2 then connects these
gates together, using (singly) homomorphic encryption, in a manner that is oblivious to P1, while
still enabling P1 to prepare a garbled circuit corresponding to the circuit Cf held by P2. This idea
of having one party connect gates of the circuit together is vaguely reminiscent of the “soldering”
approach taken in [28]; our setting, however, is different than theirs (in [28] it was required that
both parties know the circuit being computed), as is our implementation of the “soldering” step.

Say x ∈ {0, 1}`, and assume that f outputs a single bit and that Cf is known to contain exactly
n nand gates. (Neither of these assumptions is necessary, but we avoid complications for now.) It
will be useful to distinguish between outgoing wires and ingoing wires of a circuit. Outgoing wires
include the ` input wires of the circuit, along with the wire that exits each gate of the circuit; thus,
in a circuit with ` inputs and n gates there are exactly ` + n outgoing wires. The ingoing wires are
exactly the input wires to each gate of the circuit; thus, in a circuit with n two-input gates there
are exactly 2n ingoing wires. A circuit is defined by specifying the output wires, and by giving
a correspondence between outgoing wires and ingoing wires; e.g., specifying that outgoing wire i
(which may be an input wire or a wire exiting some gate) connects to ingoing wires j, k, and `. We
stress that even though we speak of each internal gate as having only a single outgoing wire, we
handle arbitrary fan-out since a single outgoing wire can be connected to several ingoing wires.

In our description below, we assume for concreteness that P2 learns the output f(x). However,
it is trivial to modify our protocol (with no additional cost) so that only P1 learns the output. See
the remark at the end of this section.

The protocol begins by having P1 generate and send a public key pk for a (singly) homomorphic
encryption scheme Enc. Similar to Yao’s garbled-circuit technique, P1 then chooses ` + n pairs of
random keys that will be assigned to each of the outgoing wires. Let sb

i denote the key corresponding
to bit b on wire i. Then P1 sends

[
Encpk(s0

1), Encpk(s1
1)

]
, . . . ,

[
Encpk(s0

`+n),Encpk(s1
`+n)

]

to P2. (It will become clear from what follows that P1 need not send the final encrypted pair[
Encpk(s0

`+n), Encpk(s1
`+n)

]
. We include it above for clarity.)

P2, in turn, obliviously defines keys for each of the 2n ingoing wires. P2 sorts the gates of Cf

topologically, so that if the outgoing wire from some gate i connects to an ingoing wire of some
gate j then i < j. This defines a natural enumeration of the outgoing wires in the circuit: outgoing
wires numbered from 1 to ` correspond to the input wires of the circuit, and outgoing wire `+ i (for
i ∈ {1, . . . , n}) corresponds to the wire exiting gate i. The output wire of the circuit corresponds
to outgoing wire ` + n. (Recall that here we assume f is boolean; in Section 3.1 we relax this.)

For each ingoing wire of the circuit, P2 does as follows. Say the ingoing wire of some gate i is
connected to outgoing wire j. Then P2 chooses random ai, bi and defines the (encrypted) keys for
this ingoing wire to be [

Encpk(ai · s0
j + bi), Encpk(ai · s1

j + bi)
]
,

where the above is computed using the homomorphic properties of the encryption scheme. (In
the above, the ciphertexts are re-randomized in the usual way.) Two observations are in order:

3

first, the (unencrypted) keys (r0, r1) def=
(
ai ·s0

j + bi, ai ·s1
j + bi

)
are random and independent of j.

Second, given sb
j it is possible for P2 to compute rb (using ai, bi); without s1−b

j , however, P2 learns no
information about r1−b. (Recall we are in the semi-honest setting, so ai, bi are chosen at random.)

Expanding upon the above, say gate i of the circuit has its left ingoing wire connected to
outgoing wire j and right ingoing wire connected to outgoing wire k. (As always, the outgoing wire
from this gate is numbered ` + i.) Then P2 defines the encrypted “garbled gate”

encGGi =




[
Encpk(ai · s0

j + bi), Encpk(ai · s1
j + bi)

]
[
Encpk(a′i · s0

k + b′i), Encpk(a′i · s1
k + b′i)

]
[
Encpk(s0

`+i), Encpk(s1
`+i)

]


 ,

where ai, bi, a
′
i, b

′
i are chosen uniformly at random. Finally, P2 sends

encGG1, . . . , encGGn

to P1. (In fact P2 need not transmit the final pair
[
Encpk(s0

`+i), Encpk(s1
`+i)

]
of each encrypted

garbled gate, since P1 already knows it. We include it above for clarity.)
Upon receiving this message, P1 decrypts each encGG to obtain, for each gate i, the three pairs

of keys
(
[L0

i , L
1
i], [R

0
i , R

1
i], [s

0
`+i, s

1
`+i]

)
. It then prepares a garbled version GGi of this gate in the

usual way: namely, it computes the four ciphertexts

C ′
b,c ← sEncLb

i

(
sEncRc

i

(
s
nand(b,c)
`+i

))
, b, c ∈ {0, 1}

(where sEnc denotes a symmetric-key encryption scheme), and sets GGi to be the four ciphertexts(
C ′

0,0, . . . , C
′
1,1

)
in random permuted order. P1 sends GG1, . . . , GGn to P2. In addition, P1 sends

the appropriate input-wire keys sx1
1 , . . . , sx`

` , as well as both output-wire keys
(
s0
`+n, s1

`+n

)
.

P2 now has enough information to compute the result, using a procedure analogous (but not
identical) to what is done in a standard application of Yao’s garbled-circuit methodology. P2 begins
knowing a key si for each outgoing wire i ∈ {1, . . . , `}. (Recall these are the input wires of the
circuit that correspond to P1’s input.) Inductively, P2 can compute a key for every outgoing wire
as follows: Consider the (` + i)th outgoing wire exiting from gate i, where the left ingoing wire to
this gate is connected to outgoing wire j < i and the right ingoing wire to this gate is connected
to outgoing wire k < i. Assume P2 has already determined keys sj , sk for outgoing wires j, k,
respectively. P2 computes keys Li = aisj + bi and Ri = a′isk + b′i for the left and right ingoing
wires to gate i. Then P2 tries to decrypt each of the four ciphertexts in GGi. With overwhelming
probability, only one of these decryptions will be successful; the result of this successful decryption
defines the key s`+i for outgoing wire `+ i. Once P2 has determined key s`+n, it can check whether
this corresponds to an output of ‘0’ or ‘1’ using the ordered pair

(
s0
`+n, s1

`+n

)
sent by P1.

Further details, intuition for security of the above, proofs of security, and extensions to handle
malicious behavior of P1 are described in the sections that follow. A more efficient variant of the
above protocol is described in Section 3.2.

Remark 1: It is trivial to modify the above protocol, at no additional cost, so that only P1 learns
the output (and P2 learns nothing): first, change round 3 so that P1 does not send the output-wire
keys

(
s0
`+n, s1

`+n

)
. Then when P2 learns the final key s`+n it simply sends this key back to P1, who

can then check whether it is equal to s0
`+n or s1

`+n.

4

1.3 Other Related Work

Several works have explored weaker variants of PFE. Paus et al. [30] consider semi-private function
evaluation where the circuit topology (i.e., the connections between gates) is assumed to be known
to both parties, but the boolean function computed by each gate can be hidden. Here we treat
the more difficult case where everything about the circuit (except an upper bound on its size and
the number of inputs/outputs) is hidden. Another direction has been to consider PFE for limited
classes of functions: e.g., functions defined by low-depth circuits [33, 4], branching programs [19, 3],
or polynomials [9, 27]. Here we handle functions defined by arbitrary (polynomial-size) circuits.

2 Definitions

We denote the security parameter by k. A distribution ensemble X = {X(1k, a)}k∈N, a∈D is an
infinite sequence of random variables indexed by k ∈ N and a ∈ D, for D some specified set. En-
sembles X = {X(1k, a)}k∈N, a∈D and Y = {Y (1k, a)}k∈N, a∈D are computationally indistinguishable,
denoted X

c≡ Y , if for every non-uniform polynomial-time algorithm D there exists a negligible
function µ(·) such that for every k and every a ∈ D

∣∣∣ Pr[D(X(1k, a)) = 1]− Pr[D(Y (1k, a)) = 1]
∣∣∣ ≤ µ(k).

2.1 Private Function Evaluation

Our definitions of security are standard, but we include them here for completeness. For simplicity,
we treat the case where P1 holds some value x ∈ {0, 1}` as input while P2 holds a circuit Cf

computing some deterministic function f ; the goal of the protocol is for P2 to learn f(x). The
definitions we provide here, as well as our protocols, extend rather easily to handle, e.g., additional
input provided by P2 (this can simply be incorporated into the circuit Cf), randomized functions f ,
or the case where P1 is to receive output (see Remark 1 at the end of Section 1.2).

The problem of PFE is meaningless in practice if P2 learns the output and f (resp., Cf) is
allowed to be completely arbitrary: in that case P2 could take f(x) = x and learn P1’s entire input!
It is thus reasonable to impose some restrictions on Cf . The most general formulation is to assume
that both parties fix some class C of circuits, and require that Cf ∈ C; in that case we refer to
the problem as C-PFE. This encompasses both the case when P1 knows some partial information
about f (as in [30]), as well as the case where Cf is restricted in some way (e.g., to have low depth).
In this work, we assume only that P1 knows the input length `, and upper bounds on the output
length m and the number of gates n (i.e., C contains only circuits satisfying those constraints).
Note that if m ¿ ` then meaningful privacy of P1’s input is maintained regardless of what circuit
Cf ∈ C is used by P2.

There are two ways one could incorporate a security parameter into the definition of the problem.
The usual way, which we find less natural in our setting, is to allow the sizes of the inputs to grow
and to set the security parameter equal to the input size(s). We prefer instead to treat the input
domains (namely, {0, 1}` and some class of circuits C) as fixed, and to treat the security parameter k
as an additional input.

A two-party protocol for C-PFE is a protocol running in polynomial time and satisfying the
following correctness requirement: if party P1, holding input 1k and x, and party P2, holding

5

input 1k and Cf ∈ C, run the protocol honestly, then (except with probability negligible in k) the
output of P2 is Cf (x).

Security in the semi-honest case. In the semi-honest case we assume both parties follow the
protocol honestly but may each try to learn some additional information from their (respective)
view. Fix C and let Π be a protocol for C-PFE. The view of the ith party during an execution of Π
when the parties begin holding inputs x and Cf , respectively, and security parameter 1k is denoted
by viewΠ

i (1k, x, Cf). The view of Pi contains Pi’s input and random tape, along with the sequence
of messages received from the other party P3−i.

When f is deterministic it suffices to consider the views of the parties in isolation without
considering the joint distribution with the output [14, Sect. 7.2.2.1]. We thus have:

Definition 1 Protocol Π is a secure C-PFE protocol for semi-honest adversaries if there exist proba-
bilistic polynomial-time simulators S1,S2 such that

{
S1

(
1k, x

)}
k∈N, x∈{0,1}`, Cf∈C

c≡
{
viewΠ

1

(
1k, x, Cf

)}
k∈N, x∈{0,1}`, Cf∈C

{
S2

(
1k, Cf , Cf (x)

)}
k∈N, x∈{0,1}`, Cf∈C

c≡
{
viewΠ

2

(
1k, x, Cf

)}
k∈N, x∈{0,1}`, Cf∈C

.

Security against malicious behavior. We define security for a malicious adversary via the
usual real/ideal framework [14]. We tailor our definition to the case of a malicious P1; the case of
a malicious P2 is exactly analogous.

Let Π be a protocol for C-PFE, and let A be a non-uniform probabilistic polynomial-time
machine corrupting P1 and holding auxiliary input z. We let viewΠ

A(z)(1
k, x, Cf) be the random

variable denoting the entire view of the adversary following an execution of Π with the indicated
inputs, and let outΠ

A(z)(1
k, x, Cf) be the random variable denoting the output of the honest party P2

after this execution. Set

realΠ
A(z)(1

k, x, Cf) def=
(
viewΠ

A(z)(1
k, x, Cf), outΠ

A(z)(1
k, x, Cf)

)
.

An ideal execution of C-PFE proceeds as follows:

Inputs: P1 and P2 hold inputs x ∈ {0, 1}` and Cf ∈ C, respectively; the adversary A (who
corrupts P1) also has 1k and z as inputs.

Send inputs to trusted party: P2 sends Cf to the trusted party. A sends a value x′ ∈ {0, 1}`

(if A sends nothing, or some x′ 6∈ {0, 1}`, then some default input in {0, 1}` is used instead).

Trusted party sends outputs: The trusted party computes Cf (x) and sends the result to P2.
The honest P2 outputs what it was sent by the trusted party, and A outputs an arbitrary
(probabilistic polynomial-time computable) function of its view.

We let viewPFE
A(z)(1

k, x, Cf) denote the output of A, and outPFE
A(z)(1

k, x, Cf) denote the output of P2,
following an execution in the ideal model as described above. Set

idealPFE
A(z)(1

k, x, Cf) def=
(
viewPFE

A(z)(1
k, x, Cf), outPFE

A(z)(1
k, x, Cf)

)
.

6

Definition 2 Protocol Π is a secure C-PFE protocol for a malicious P1 if it is a secure C-PFE protocol
for semi-honest adversaries and if, in addition, for every non-uniform probabilistic polynomial-time
adversary A corrupting P1 in the real model there exists a non-uniform probabilistic polynomial-time
adversary S in the ideal model such that
{
idealPFE

S(z)(1
k, x, Cf)

}
k∈N, x∈{0,1}`, Cf∈C, z∈{0,1}∗

c≡
{
realΠ

A(z)(1
k, x, Cf)

}
k∈N, x∈{0,1}`, Cf∈C, z∈{0,1}∗

.

2.2 Tools

Our protocol uses a (singly) homomorphic public-key encryption scheme (Gen,Enc, Dec). The
actual property we need is the ability to evaluate a pairwise-independent function on the plaintext
space. If the plaintext space is a group G of prime order p, written additively, this can be achieved
by mapping a ∈ Zp, b ∈ G, and Encpk(m) to a (random) encryption of Encpk(am + b). Thus,
e.g., standard El Gamal encryption [10] can be used (though G in that case is sometimes written
multiplicatively). In fact, the plaintext space is not required to have prime order, as we only require
“almost” pairwise-independence. In particular, Paillier encryption [29] could also be used.

We also use a symmetric-key encryption scheme (sEnc, sDec) whose key space is viewed as a
group G(k) of order p = p(k) that is, for simplicity, the same as the plaintext space of the public-key
encryption scheme being used. (In practice, this can be achieved for any desired G by implementing
encryption with key g ∈ G using AES with key SHA-1(g), truncated to 128 bits.) We impose the
same requirements on (sEnc, sDec) as in [24]: namely, that it have elusive and efficiently verifiable
range. (These properties are easily satisfied.) In addition, we require (sEnc, sDec) to satisfy a weak
form of related-key security where, roughly, encryption remains secure even when performed using
linearly related keys (where the linear relations are chosen at random). That is:

Definition 3 Encryption scheme (sEnc, sDec) is secure under linear related-key attacks if the fol-
lowing is negligible (in k) for all polynomials d and all ppt adversaries A:

∣∣∣∣∣∣
Pr




s ← G(k); c ← {0, 1};
a1, . . . ad ← Zp(k)

b1, . . . , bd ← G(k)
: AsEncc

a1s+b1
(·,·),...,sEncc

ads+bd
(·,·)(a1, b1, . . . , ad, bd) = c


− 1

2

∣∣∣∣∣∣
,

where sEncc
s(m0, m1)

def= sEncs(mc).

We remark that a weaker definition (where A queries each sEncc
ais+bi

(·, ·) only on two inputs, chosen
nonadaptively) suffices for our proof. It is easy to construct an encryption scheme satisfying the
above definition using a (non-programmable) random oracle, and it would be surprising if standard
encryption schemes based on AES could be shown not to satisfy the above definition. Moreover,
recent work of Applebaum et al. [2] can be used to construct a scheme satisfying the above definition
in a provable sense, based on the decisional Diffie-Hellman assumption.

3 A C-PFE Protocol for Semi-Honest Adversaries

3.1 Description of the Protocol

We now formally define our C-PFE protocol for semi-honest adversaries. In our description here,
we assume the reader is familiar with the protocol overview provided in Section 1.2.

7

We assume that all circuits in C are composed solely of nand gates. This is for simplicity only,
and our protocol can be easily modified to handle circuits over an arbitrary basis of 2-to-1 gates
with only a small impact on the efficiency. Let n be an upper bound on the size of any circuit in C,
and let m be an upper bound on the number of outputs. By adjusting n appropriately, we may
assume that every circuit in C has exactly m outputs (P2 can always add “dummy” outputs that
are fixed to some constant); that the output wires of the circuit do not connect to any other gates
(this can be achieved by adding at most m gates to the circuit); and that every circuit in C contains
exactly n gates (P2 can add “dummy” gates whose output wires are connected to nothing). We
make all these assumptions in what follows. We also assume that P2 learns the output; however, it
is trivial to modify the protocol so that P1 learns the output; see Remark 1 in Section 1.2.

Recall from Section 1.2 that we distinguish between outgoing wires and ingoing wires of Cf .
(Recall also that although each gate has only a single outgoing wire, we handle circuits with
arbitrary fan-out since a single outgoing wire can be connected to several ingoing wires.) As in
Section 1.2, party P2 sorts the gates of Cf topologically and this defines an enumeration of the

N
def= ` + n outgoing wires. The outgoing wires numbered from 1 to ` correspond to the ` input

wires of the circuit, and outgoing wire `+ i (for i ∈ {1, . . . , n}) corresponds to the output wire from
gate i. The output wires of the circuit correspond to the m outgoing wires N −m + 1, . . . , N .

It will be useful to define some notation before we describe the protocol. We define an algorithm
encYao that prepares garbled gates as in Yao’s protocol: encYao takes as input three pairs of keys
and outputs four ciphertexts, and is defined as

encYao
(
[L0, L1], [R0, R1], [s0, s1]

) def=
{

sEncLb

(
sEncRc

(
snand(b,c)

))}
b,c∈{0,1}

,

where the four ciphertexts are in random permuted order. We analogously define an algorithm
decYao that takes as input two keys (for each of two ingoing wires) and a garbled gate, and outputs
a key for the outgoing wire; this algorithm, given keys L, R and four ciphertexts {C ′

0, C
′
1, C

′
2, C

′
3},

computes sDecL(sDecR(C ′
i)) for all i and outputs the unique non-⊥ value that is obtained. (If more

than one non-⊥ value results, this algorithm outputs ⊥.)
Our protocol is described in Figure 1. It is not difficult to see that correctness holds with all

but negligible probability, via an argument similar to the one in [24].
In our description of the protocol we have aimed for clarity rather than efficiency, and several

improvements are possible. For one, P2 need not include
[
Encpk(s0

`+i), Encpk(s1
`+i)

]
as part of

encGGi since P1 already knows these values. Furthermore, P1 need not send the encrypted values[
Encpk(s0

N−m+1), Encpk(s1
N−m+1)

]
, . . .,

[
Encpk(s0

N),Encpk(s1
N)

]
in round 1 (since these outgoing

wires do not connect to any ingoing wires). Moreover, P1 can simply set s0
N−m+1 = · · · = s0

N = 0
and s1

N−m+1 = · · · = s1
N = 1 (and then there is no need to send the output-wires message in the

third round); that is, for the gates whose outgoing wires are the output of the circuit, P1 can
encrypt the wire value itself rather than encrypting a key that encodes the wire value.

Security against a semi-honest P1 is easy to see. In fact, security in that case holds in a statistical
sense. Indeed, with all but negligible probability it holds that s0

i 6= s1
i for all i ∈ {1, . . . , N}.

Assuming this to be the case, the top two rows of each encGGi sent by P2 to P1 in round 2 consist
only of (random) encryptions of the four independent, uniform values

ai · s0
j + bi, ai · s1

j + bi, a′i · s0
k + b′i, a′i · s1

k + b′i.

In particular, these values are independent of the interconnections between gates of Cf , and thus
the view of P1 is independent of the circuit held by P2.

8

Inputs: The security parameter is k. The input of P1 is a value x ∈ {0, 1}`, and the input of P2 is
a circuit Cf with `, n,m as described in the text.

Round 1 P1 computes (pk, sk) ← Gen(1k) and sends pk to P2. In addition, P1 chooses N = ` + n
pairs of random keys s0

i , s
1
i for i ∈ {1, . . . , N}. It then sends to P2 the ciphertexts

[
Encpk(s0

1), Encpk(s1
1)

]
, . . . ,

[
Encpk(s0

N),Encpk(s1
N)

]
.

Round 2 For each gate i ∈ {1, . . . , n} of Cf , with left ingoing wire connected to outgoing wire j,
right ingoing wire connected to outgoing wire k, and outgoing wire ` + i, party P2 chooses
ai, bi, a

′
i, b

′
i uniformly (from the appropriate domains) and computes

encGGi =




[
Encpk(ai · s0

j + bi), Encpk(ai · s1
j + bi)

]
[
Encpk(a′i · s0

k + b′i), Encpk(a′i · s1
k + b′i)

]
[
Encpk(s0

`+i), Encpk(s1
`+i)

]




using the homomorphic properties of Enc. (In the above, each ciphertext is re-randomized in
the usual way.) Then P2 sends encGG1, . . . , encGGn to P1.

Round 3 For i ∈ {1, . . . , n}, party P1 decrypts encGGi using sk to obtain the three pairs of keys
keysi

def=
(
[L0

i , L
1
i], [R

0
i , R

1
i], [s

0
`+i, s

1
`+i]

)
. It then computes GGi ← encYao(keysi), and sends

GG1, . . . , GGn to P2. Finally, P1 sends

input-wires: sx1
1 , . . . , sx`

` and output-wires:
(
s0

N−m+1, s
1
N−m+1

)
, . . . ,

(
s0

N , s1
N

)
.

Output determination Say P1 sent input-wires: s1, . . . , s` to P2 in the previous round. Then for
all i ∈ {` + 1, . . . , ` + n}, party P2 does: If the left ingoing wire of gate i is connected to
outgoing wire j < i and the right ingoing wire of gate i is connected to outgoing wire k < i,
then (1) compute Li = aisj + bi and Ri = a′isk + b′i, and then (2) set si = decYao(Li, Ri, GGi).

Once P2 has computed s1, . . . , s`+n, it sets the jth output bit oj (for j ∈ {N −m+1, . . . , N})
to be the (unique) bit for which sj = s

oj

j .

Figure 1: A C-PFE protocol for semi-honest adversaries.

Security against a semi-honest P2 holds computationally, assuming semantic security of the
homomorphic encryption scheme and security against linear related-key attacks for the symmetric-
key encryption scheme. Roughly, the initial encryptions sent to P2 in round 1 do not reveal
anything about the values s0

i , s
1
i that P1 assigns to each outgoing wire in the circuit. Thus, the

information sent to P2 in round 3 is essentially equivalent to the information sent to P2 in a standard
application of Yao’s garbled-circuit methodology, with the only difference being that here ingoing
wires and outgoing wires have different keys, and P2 must compute a key Li on some ingoing wire
by “translating” one of the keys sj on the outgoing wire connected to that ingoing wire.

Theorem 4 Assume the homomorphic encryption scheme used is semantically secure, and the
symmetric-key encryption scheme used is secure against linear related-key attacks (as in Defini-
tion 3) and has elusive and efficiently verifiable range. Then the protocol of Figure 1 is a secure
C-PFE protocol for semi-honest adversaries.

Proof: We start by proving security for a semi-honest P1, which is the easier case. The simulator

9

S1 in this case chooses a uniform random tape for P1; this defines pk, sk, and values {s0
i , s

1
i }N

i=1.
If there exists an i for which s0

i = s1
i then the simulator aborts. Otherwise, for i = 1 to n the

simulator chooses random values r0, r1, r2, r3 and computes

encGGi =




[Encpk(r0), Encpk(r1)]
[Encpk(r2), Encpk(r3)][

Encpk(s0
`+i), Encpk(s1

`+i)
]


 ; (1)

it gives encGG1, . . . , encGGn to P1 as the 2nd-round message of P2. This completes the simulation.
Note that the simulator aborts with only negligible probability. We claim that conditioned on

the simulator’s not aborting, the simulation is perfect. Indeed, when the simulator does not abort
we have s0

i 6= s1
i for all i. In a real execution of the protocol, each encrypted garbled gate would be

computed by P2 as

encGGi =




[
Encpk(ai · s0

j + bi), Encpk(ai · s1
j + bi)

]
[
Encpk(a′i · s0

k + b′i), Encpk(a′i · s1
k + b′i)

]
[
Encpk(s0

`+i), Encpk(s1
`+i)

]


 , (2)

where ai, bi, a
′
i, b

′
i are chosen uniformly at random and j, k depend on the specific circuit Cf held

by P2. Pairwise independence of the mapping fa,b(s) = as + b, along with distinctness of s0
j , s

1
j

and s0
k, s

1
k, imply that the encrypted garbled gates computed as in (2) are distributed identically

to encrypted garbled gates computed as in (1). Taking into account the negligible probability with
which S1 aborts, we see that the output of S1 is statistically close to P1’s view in a real execution.

We next describe a simulator S2 who is to simulate the view of a semi-honest P2. The simulator
is given 1k, Cf , and y = Cf (x), and does as follows. First, it chooses a uniform random tape
for P2; this defines ai, bi, a

′
i, b

′
i for i ∈ {1, . . . , n}. The simulator runs Gen(1k) to obtain (pk, sk),

and then sets C0
i , C1

i ← Encpk(0) for i ∈ {1, . . . , N}. (The 0 here denotes some “all-0 message” of
the appropriate length in the underlying plaintext space. It does not really matter what plaintext
is encrypted here, as long as its length matches the key length of the symmetric-key scheme.) S2

gives pk and
[
C0

1 , C1
1

]
, . . . ,

[
C0

N , C1
N

]
to P2 as the first-round message of the protocol.

For the third-round message of the protocol, S2 must simulate a garbling of each gate in Cf .
This is done similarly to the approach taken in [24], modifying their simulation appropriately for
our setting. For each outgoing wire i ∈ {1, . . . , N} in the circuit, S2 chooses two random keys si, s

′
i.

Then for each gate i ∈ {1, . . . , n} the simulator does the following. Say the left ingoing wire of
gate i is connected to outgoing wire j, and the right ingoing wire of gate i is connected to outgoing
wire k. (As always, the outgoing wire from gate i is numbered ` + i.) Then S2 computes

Li = aisj + bi, L′i = ais
′
j + bi, Ri = a′isk + b′i, R′

i = a′is
′
k + b′i, (3)

followed by

G̃Gi (4)

=
{

sEncLi(sEncRi(s`+i)), sEncL′i(sEncRi(s`+i)), sEncLi(sEncR′i(s`+i)), sEncL′i(sEncR′i(s`+i))
}

.

(The four ciphertexts are in random permuted order. Note that the same outgoing-wire key s`+i is
encrypted each time.) S2 gives G̃G1, . . . , G̃Gn to P2. It also gives s1, . . . , s` to P2 as the input-wire

10

keys. Finally, for i ∈ {1, . . . , m} it gives (sN−m+i, s
′
N−m+i) to P2 if yi = 0, or (s′N−m+i, sN−m+i) if

yi = 1 as the output-wire keys. This completes the simulation.
The proof that the simulated view of P2 is computationally indistinguishable from the view of P2

in a real execution of the protocol is very similar, at least at a high level, to the proof given in [24].
Fix some x and Cf for the remainder of the discussion. Let H denote the distribution of P2’s view
in a real execution of the protocol on those inputs. Define a distribution H ′ as follows: in round 1,
random values {s0

i , s
1
i }N

i=1 are chosen as in the real protocol, but the ciphertexts sent in the first
round are all encryptions of 0. The third-round message, however, is constructed honestly using
the {s0

i , s
1
i }N

i=1 chosen in round 1 along with the {ai, bi, a
′
i, b

′
i}n

i=1 values chosen by the honest P2.
That is, for each gate i whose left ingoing wire is connected to outgoing wire j, and whose right
ingoing wire is connected to outgoing wire k, the keys L0

i , L
1
i , R

0
i , R

1
i are computed as

L0
i = ais

0
j + bi, L1

i = ais
1
j + bi, R0

i = a′is
0
k + b′i, R1

i = a′is
1
k + b′i, (5)

and then the garbled gate

GGi ← encYao
(
[L0

i , L
1
i], [R

0
i , R

1
i], [s

0
`+i, s

1
`+i]

)

is computed. The third-round message is GG1, . . . , GGn, the input-wire keys sx1
1 , . . . , sx`

` , and the
output-wire keys

(
s0
N−m+1, s

1
N−m+1

)
, . . . ,

(
s0
N , s1

N

)
. It follows immediately from the semantic se-

curity of the public-key encryption scheme that H and H ′ are computationally indistinguishable.
Before continuing, we define a notion of active/inactive keys exactly as in [24]. Consider the

(normal) evaluation of Cf (x). If the value on a given wire i in this evaluation is the bit b, then we
say the corresponding outgoing wire key sb

i is active while s1−b
i is inactive.

We now define a sequence of distributions H0, . . . , Hn. In each of these distributions random
values {s0

i , s
1
i }N

i=1 and {ai, bi, a
′
i, b

′
i}n

i=1 are chosen as in H, H ′, and the ciphertexts sent in the first
round are all encryptions of 0 as in H ′. In distribution Hi, the final n−i garbled gates are computed
“normally”, as in H and H ′. (Recall the gates are sorted in topological order.) The first i garbled
gates, however, are computed as in (4), but encrypting the active key on the relevant outgoing wire
in each case; i.e., for gate j ∈ {1, . . . , i} where key sb

`+j is active, compute

G̃Gj (6)

=
{

sEncL0
j
(sEncR0

j
(sb

`+j)), sEncL1
j
(sEncR0

j
(sb

`+j)), sEncL0
j
(sEncR1

j
(sb

`+j)), sEncL1
j
(sEncR1

j
(sb

`+j))
}

.

The third round message is thus G̃G1, . . . , G̃Gi, GGi+1, . . . , GGn, along with the input-wire keys and
output-wire keys as in H,H ′.

Note that H0 is identical to H ′. Furthermore, as in [24], distribution Hn is identical to the
simulated view output by S2. Thus, the proof is complete once we show that Hi−1 is computation-
ally indistinguishable from Hi for all i. Computational indistinguishability of Hi−1 and Hi follows
roughly as in [24], except that in our case we need to rely on the security of the symmetric-key
encryption scheme against linear related-key attacks. Details follow.

Fix some i∗, and say the left ingoing wire of gate i∗ is connected to outgoing wire j, and the
right ingoing wire of gate i∗ is connected to outgoing wire j′. Furthermore, let d and d′ denote
the out-degree of wires j and j′, respectively; i.e., d is the number of ingoing wires that are
connected to outgoing wire j, and d′ is the number of ingoing wires that are connected to outgoing
wire j′. Consider an adversary A as in Definition 3, who is given two tuples (â1, b̂1, . . . , âd, b̂d) and

11

(â′1, b̂
′
1, . . . , â

′
d′ , b̂

′
d′), and access to two sets of oracles {sEncc

âis+b̂i
(·, ·)}d

i=1 and {sEncc
â′is′+b̂′i

(·, ·)}d′
i=1.

(Definition 3 only deals with the case where a single s is chosen and A is given access to a single
set of linearly related oracles, but a standard hybrid argument shows that security against linear
related-key attacks holds when two s’s are chosen and A is given access to two sets of linearly related
oracles.) Intuitively, A will (implicitly) use s as the inactive key on outgoing wire j, and s′ as the
inactive key on outgoing wire j′; also, A will (implicitly) use âk, b̂k as the pairwise-independent
hash for the kth ingoing wire to which outgoing wire j is connected, and will (implicitly) use â′k, b̂

′
k

as the pairwise-independent hash for the kth ingoing wire to which outgoing wire j′ is connected.
In this way A can generate a distribution that is identical to Hi∗−1 when c = 0, and is identical to
Hi∗ when c = 1; computational indistinguishability of Hi∗−1 and Hi∗ follows.

The details are straightforward, though tedious. Fixing some i∗, let j, j′ and d, d′ be as above.
Let b, b′ be such that sb

j and sb′
j′ are the active keys on outgoing wires j and j′, respectively. A

begins by generating a first-round message consisting of ciphertexts that are all encryptions of 0.
Next, A chooses random keys {s0

i , s
1
i } for i ∈ {1, . . . , N} \ {j, j′}, as well as random sb

j and sb′
j′ .

Then, A generates and outputs a garbled gate for each gate g of the circuit, as described next.

Case 1: g < i∗. Here A constructs a garbled gate as in (6), encrypting only the active key on
outgoing wire ` + g. If both ingoing wires to g are connected to outgoing wires other than j or j′,
then A can easily compute the garbled gate by itself using the keys it knows. (Note in particular
that this holds when g is the gate whose outgoing wire is j or j′ itself, since A knows the active key
on those wires. Recall that any such g must satisfy g < i∗ by our assumption that the gates are
topologically ordered.) Namely, A chooses random ag, bg, a

′
g, b

′
g, computes L0

g, L
1
g, R

0
g, R

1
g as in (5),

and computes G̃Gg as in (6).
When one of the ingoing wires to g is connected to j or j′, however, A must use one of

its oracles to generate the garbled gate. By way of example, say the left ingoing wire to g is
connected to outgoing wire j, and that g is the kth gate to which outgoing wire j is connected
(1 ≤ k ≤ d). Then A computes R0

g, R
1
g as before (it can do this since it knows both keys on the

outgoing wire that is connected to the right ingoing wire of g), and computes Lb
g = âks

b
j + b̂k.

A does not explicitly compute L1−b
g , but will instead define L1−b

g implicitly using its access to
oracle sEncc

âks+b̂k
(·, ·). (This also implicitly defines s1−b

j = s.) In detail, letting s∗ denote the
active key on the outgoing wire ` + g from gate g, we have A compute C1 ← sEncLb

g
(sEncR0

g
(s∗))

and C2 ← sEncLb
g
(sEncR1

g
(s∗)), followed by C ′

3 ← sEncR0
g
(s∗) and C ′

4 ← sEncR1
g
(s∗). It then uses

its oracle to compute C3 ← sEncc
âks+b̂k

(C ′
3, C

′
3) and C4 ← sEncc

âks+b̂k
(C ′

4, C
′
4). Finally, it sets

G̃Gg = {C1, C2, C3, C4}, where the ciphertexts are in random permuted order.
The other three possible sub-cases are handled analogously. Briefly:

1. Say the right ingoing wire of g is connected to outgoing wire j, and let k be such that g is
the kth gate to which outgoing wire j is connected (1 ≤ k ≤ d). Now L0

g, L
1
g are computed

normally (that is, as in (5)), and Rb
g is computed as Rb

g = âks
b
j + b̂k. Encryption using R1−b

g ,
however, is done using oracle access to sEncc

âks+b̂k
(·, ·).

2. Say the left ingoing wire of g is connected to outgoing wire j′. Let k be such that g is the
kth gate to which outgoing wire j′ is connected (1 ≤ k ≤ d′). Then R0

g, R
1
g are computed as

in (5), Lb′
g is computed as Lb′

g = â′ks
b′
j′ + b̂′k, and encryption using L1−b′

g is done using oracle

12

access to sEncc
â′ks′+b̂′k

(·, ·) (thus implicitly setting s1−b′
j′ = s′).

3. If the right ingoing wire of g is connected to outgoing wire j′, and k is such that g is the
kth gate to which outgoing wire j′ is connected, then L0

g, L
1
g are computed as in (5), Rb′

g

is computed as Rb′
g = â′ks

b′
j′ + b̂′k, and encryption using R1−b′

g is done using oracle access to
sEncc

â′ks′+b̂′k
(·, ·).

We assume for simplicity (and without loss of generality) that only gate i∗ has its incoming wires
connected to both j and j′, though in fact this assumption is not needed for the proof.

Case 2: g = i∗. Let k, k′ be such that i∗ is the kth gate to which outgoing wire j is connected,
and the k′th gate to which outgoing wire j′ is connected. A computes L

def= Lb
i∗ = âks

b
j + b̂k and

R
def= Rb′

i∗ = â′k′s
b′
j′ + b̂′k′ . (Recall that sb

j [resp., sb′
j′] is the active key on outgoing wire j [resp., j′].

Thus, L is the active key on the left ingoing wire to gate i∗, and R is the active key on the right
ingoing wire to gate i∗.) Let s0

`+i∗ and s1
`+i∗ be the keys on the outgoing wire `i∗ that exits gate i∗,

and let s∗ def= s
nand(b,b′)
`+i∗ denote the active key on that wire. Next, A computes four ciphertexts

C1, C2, C3, C4 as follows:

• A computes C1 ← sEncL (sEncR (s∗)).

• A first computes C ′
2 ← sEncR

(
s
nand(1−b, b′)
`+i∗

)
and C∗

2 ← sEncR (s∗). It then uses one of its
oracles to obtain C2 ← sEncc

âks+b̂k
(C ′

2, C
∗
2).

• A uses one of its oracles to obtain C ′
3 ← sEncc

â′
k′s

′+b̂′
k′

(snand(b, 1−b′)
`+i∗ , s∗), and then computes

C3 ← sEncL (C ′
3).

• A uses one of its oracles to obtain C ′
4 ← sEncc

â′
k′s

′+b̂′
k′

(snand(1−b, 1−b′)
`+i∗ , s∗), and then uses

another one of its oracles to obtain C4 ← sEncc
âks+b̂k

(C ′
4, C

′
4).

That is, A implicitly uses âks + b̂k as the inactive key on the left ingoing wire to i∗, and implicitly
uses â′k′s

′ + b̂′k′ as the inactive key on the right ingoing wire to i∗. Finally, A outputs GGi∗ =
{C1, C2, C3, C4}, where the ciphertexts are in random permuted order.

Case 3: g > i∗. This case is conceptually similar to case 1, with the difference being that here A
always constructs garbled gates as in the real protocol. Once again, if both ingoing wires to g are
connected to outgoing wires other than j or j′, then A can easily compute the garbled gate by
itself using the keys it knows. (Note that here it cannot be the case that j or j′ is the outgoing
wire from g, since the gates are topologically ordered.)

When one of the ingoing wires to g is connected to j or j′, however, A must use one of
its oracles to generate the garbled gate. By way of example, say the left ingoing wire to g is
connected to outgoing wire j, and that g is the kth gate to which outgoing wire j is connected
(1 ≤ k ≤ d). Then A computes R0

g, R
1
g as usual (it can do this since it knows both keys on the

outgoing wire that is connected to the right ingoing wire of g), and computes Lb
g = âks

b
j + b̂k.

Letting s0
`+g, s

1
`+g be the keys on outgoing wire `g, adversary A constructs four ciphertexts as

13

follows. It sets C1 ← sEncLb
g
(sEncR0

g
(snand(b, 0)

`+g)) and C2 ← sEncLb
g
(sEncR1

g
(snand(b, 1)

`+g)), followed

by C ′
3 ← sEncR0

g
(snand(1−b, 0)

`+g) and C ′
4 ← sEncR1

g
(snand(1−b, 1)

`+g). It then uses its oracle to compute
C3 ← sEncc

âks+b̂k
(C ′

3, C
′
3) and C4 ← sEncc

âks+b̂k
(C ′

4, C
′
4). Finally, it sets GGg = {C1, C2, C3, C4},

where the ciphertexts are randomly permuted. The other sub-cases are handled as in case 1, above.

The only dependence on c in the above is in the construction of garbled gate i∗. Indeed, the
first i∗ − 1 garbled gates are constructed as in (6), with four encryptions of the active key on the
outgoing wire of the gate, and the last n − i∗ + 1 garbled gates are constructed as in the real
protocol. As for garbled gate i∗, if c = 0 then this is constructed as in the real protocol whereas if
c = 1 then it is constructed as in (6). As claimed, then, if c = 0 then the output of A is distributed
identically to Hi∗−1 while if c = 1 then the output of A is distributed as in Hi∗ . Computational
indistinguishability of Hi∗−1 and Hi∗ follows, and this concludes the proof.

3.2 A More Efficient Variant

In this section we describe a more efficient variant of our protocol in which the wire labels are
chosen in a coordinated fashion, as in [21]. Unfortunately, we are only able to prove security of the
resulting protocol in the random oracle model; see further discussion at the end of this section.

We merely sketch the basic idea. Now, in round 1, P1 chooses a global random shift r and `+n
outgoing-wire keys {s0

i }; it then sets s1
i = s0

i + r for all i. The first-round message from P1 now
contains pk and the ` + n ciphertexts Encpk(s0

1), . . . , Encpk(s0
`+n).

For each ingoing wire of the circuit, P2 does as follows. Say the ingoing wire is connected to
outgoing wire j. Then P2 chooses random a and defines the (encrypted) 0-key for this ingoing
wire to be (a re-randomization of) Encpk(s0

j + a), where this is computed using the homomorphic
properties of the encryption scheme. Thus, if gate i of the circuit has its left ingoing wire connected
to outgoing wire j and right ingoing wire connected to outgoing wire k, party P2 defines the ith
encrypted “garbled gate” via

encGGi =




Encpk(s0
j + ai)

Encpk(s0
k + a′i)

Encpk(s0
`+i)


 ,

where ai, a
′
i are chosen uniformly at random. Finally, P2 sends encGG1, . . . , encGGn to P1.

Upon receiving this message, P1 decrypts each encGG to obtain, for each gate i, the keys(
L0

i , R
0
i , s

0
`+i,

)
. It defines L1

i = L0
i + r and R1

i = R0
i + r, and then prepares a garbled version GGi of

this gate as in the previous sections. P2 can then compute the result as usual. The entire protocol
is roughly twice as efficient as the original.

As we have mentioned, however, we are only able to prove security of this modified protocol in
the (non-programmable) random oracle model. Although it may appear possible to prove security
in the standard model if the symmetric-key encryption scheme satisfies a strong enough definition of
security, we were not able to isolate any suitable definition. In particular, correlation robustness [18]
does not appear to suffice, since there is a circularity when, e.g., keys s, s + r, s′, s′ + r are used
to encrypt keys s′′ and s′′ + r. (Some combination of correlation robustness and circular security
appears necessary.) The same issue seems to be present in the works of [21, 28] as well.

14

4 Security for Malicious Adversaries

As noted in the Introduction, we can apply zero-knowledge proofs in the standard way [15] to
obtain a protocol with linear complexity (and constant round complexity) that is secure against
malicious adversaries. However, the resulting protocol is unlikely in practice to out-perform secure
computation of universal circuits using efficient protocols for the malicious setting (e.g., [23]). Here,
we sketch a more efficient construction that achieves security against a malicious P1 only. As in the
previous section, our goal here is not to optimize the efficiency of the resulting protocol but rather
to illustrate the main ideas.

We continue to assume that P2 learns the output, however Remark 1 of Section 1.2 applies here
as well and so the protocol is easily modified so that only P1 learns the output.

4.1 Protocol Modifications

We introduce the following changes to the protocol described in Section 3.1:

Proof of well-formedness of pk. We require P1 to prove that the public key pk it sends in
round 1 was output by the specified key-generation algorithm Gen. (This step is not necessary if it
is possible to efficiently verify whether a given pk could have been output by Gen, as is the case with,
e.g., El Gamal encryption.) We remark further that it suffices for the proof to be honest-verifier
zero knowledge (since we only require security against a semi-honest P2), and we do not require it
to be a proof of knowledge.

The complexity of this step is independent of n.

Validity of outgoing-wire keys. Let
[
C0

1 , C1
1

]
, . . . ,

[
C0

N , C1
N

]
denote the ciphertexts sent by P1

in round 1. (Recall that it is supposed to be the case that Cb
i = Encpk(sb

i).) We now require P1 to
prove that (1) each Cb

i is a well-formed ciphertext with respect to the public key pk (once again,
this step is unnecessary if it is possible to efficiently verify validity of ciphertexts, as is the case
with El Gamal encryption), and (2) for each i, the ciphertexts C0

i , C1
i are encryptions of distinct

values. If the encryption scheme is additively homomorphic, and we let s0
i (resp., s1

i) denote the
plaintext corresponding to C0

i (resp., C1
i), then P2 can compute Encpk(s0

i − s1
i) and the latter step

is equivalent to proving that this is not an encryption of 0. Once again, it suffices for these proofs
to be honest-verifier zero knowledge and they are not required to be proofs of knowledge.

The complexity of this step is linear in n since the statement being proved can be written as a
conjunction of n statements, each of which has size independent of n.

Correctness of garbled circuit construction. We require P1 to prove correctness of the garbled
gates it sends to P2 in the final round. This amounts to proving, for each i ∈ {1, . . . , n}, that GGi

was correctly constructed from encGGi. As before, it suffices for these proofs to be honest-verifier
zero knowledge and they are not required to be proofs of knowledge.

The complexity of this step is linear in n since the statement being proved is a conjunction of
n statements, each of which has size independent of n. We also note that by using an appropriate
homomorphic encryption scheme and symmetric-key encryption scheme, these proofs can be made
(reasonably) efficient using the techniques of Jarecki and Shmatikov [20] (who show efficient proofs
for exactly this purpose, assuming a common reference string, using a variant of the Camenisch-
Shoup encryption scheme [7]).

Correctness of input-wire and output-wire keys. Finally, P1 is required to prove that the
input-wire and output-wire keys it sends in the final round are correct. Let

[
C0

1 , C1
1

]
, . . . ,

[
C0

N , C1
N

]

15

denote the ciphertexts sent by P1 in round 1 (recall it is supposed to be the case that Cb
i =

Encpk(sb
i)), and let

input-wires: s1, . . . , s` and output-wires:
(
s0
N−m+1, s

1
N−m+1

)
, . . . ,

(
s0
N , s1

N

)

be the values sent by P1 in the last round. Then P1 must prove that: (1) that for each index
i ∈ {1, . . . , `}, one of the ciphertexts C0

i , C1
i is an encryption of the plaintext si, and (2) that for

each index i ∈ {N−m+1, . . . , N}, the ciphertext C0
i (resp., C1

i) is an encryption of s0
i (resp., s1

i). It
suffices for each of these proofs to be honest-verifier zero knowledge; the first set of proofs (proving
correctness of the input-wire keys) must be proofs of knowledge to allow for input extraction.
(Alternately, if the proof of well-formedness of the public key is a proof of knowledge then proofs
of knowledge are not needed here.)

The complexity of this step is linear in ` + m.

We remark that most of the above proofs can be implemented efficiently for any homomorphic
encryption scheme. The main exception is the proof of correctness of the garbled circuit construc-
tion; however, as noted already, there exists at least one specific homomorphic encryption scheme
for which this step can be done reasonably efficiently [20].

4.2 Proof of Security

Theorem 5 Under the same assumptions as in Theorem 4, the protocol of Figure 1 with the
modifications described in the previous section is a secure C-PFE protocol for a malicious P1.

Proof: Security for a semi-honest P2 follows from Theorem 4, since all the proofs added to the
protocol are honest-verifier zero knowledge.

We briefly sketch the proof of security for a malicious P1, assuming the reader has already gone
through the proof of Theorem 4. Consider the following simulator S1 that is given black-box to P1

and acts as follows: it receives the round 1 message from P1, and verifies the relevant proofs given
by P1 showing that pk is valid and that each pair C0

i , C1
i encrypts distinct plaintexts. If any of

these proofs fails, S1 simply aborts. Otherwise, S1 generates a second-round message as in the
proof of Theorem 4; i.e., for i = 1 to n the simulator chooses random r0, r1, r2, r3, computes

encGGi =




[Encpk(r0), Encpk(r1)]
[Encpk(r2), Encpk(r3)][

C0
`+i, C1

`+i

]


 , (7)

and gives encGG1, . . . , encGGn to P1.
S1 receives the third-round message from P1 and verifies the relevant proofs given by P1. If any

of these proofs fails, S1 aborts. Otherwise, for each i ∈ {1, . . . , `} the simulator extracts (using the
fact that the relevant proof here is a proof of knowledge) a bit xi such that Cxi

i is an encryption
of si, the ith input-wire value sent by P1. (If extraction of any of these bits fails, S1 aborts.) It sets
x = x1 · · ·x` and sends x to the trusted party, and outputs whatever P1 outputs. This completes
the simulation.

Computationally indistinguishability of the simulation just described and the view of P1 in a
real execution of the protocol follows from the following observations:

16

• Assuming the proofs given by P1 after the first round all succeed, with all but negligible
probability it holds that (1) pk is a valid public key and (2) each pair C0

i , C1
i encrypts

distinct plaintexts. Assuming these to be the case then, as in the proof of Theorem 4, the
second-round message generated by S1 is identically distributed to the second-round message
that would be sent in an honest execution of the protocol. (As in the proof of that theorem,
this follows from pairwise independence of the mapping used by an honest P2.)

• Assuming the proofs given by P1 after the third round all succeed, with all but negligible
probability it holds that (1) each garbled gate was computed correctly; (2) P1 sent valid
input-wire labels; and (3) P1 sent valid output-wire labels. Moreover, with all but negligible
probability, for each xi extracted by S1 it holds that Cxi

i is an encryption of si and so si is
the key corresponding to bit xi on input wire i. (Note further that it cannot be that C1−xi

i is
also an encryption of si, since P1 proved is round 1 that C0

i , C1
i encrypt distinct plaintexts.)

It follows that the real P2 would output Cf (x), which is identical to the output of P2 in the
ideal world.

This completes the proof.

5 Conclusions and Future Work

In this paper we have shown the first constant-round protocol for PFE with complexity linear in
the size of the circuit being computed (without relying on fully homomorphic encryption). Our
results leave several interesting open questions:

• In addition to its theoretical importance, we believe our work is also of practical relevance:
specifically, we expect that our approach to PFE will be both easier to implement and more
efficient (for large circuits) than approaches relying on universal circuits. It remains to ex-
perimentally validate this claim.

• Our work leaves open the question of designing a fully secure protocol for PFE (i.e., PFE
with security against a malicious P1 and a malicious P2) with linear complexity that would
have better performance than what results from running a secure computation of universal
circuits using efficient protocols for the malicious setting (e.g., [23]).

• It would also be interesting to improve the cryptographic assumptions needed for our results:
e.g., to construct a protocol based on semantically secure symmetric-key encryption (without
requiring related-key security), or to avoid the use of homomorphic public-key encryption.

References

[1] M. Abadi and J. Feigenbaum. Secure circuit evaluation. Journal of Cryptology, 2(1):1–12,
1990.

[2] B. Applebaum, D. Harnik, and Y. Ishai. Semantic security under related-key attacks and
applications. In 2nd Symp. on Innovations in Computer Science (ICS), 2011. Available at
http://eprint.iacr.org/2010/544.

17

[3] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, and T. Schneider. Secure
evaluation of private linear branching programs with medical applications. In 14th European
Symposium on Research in Computer Security (ESORICS), volume 5789 of LNCS, pages 424–
439. Springer, 2009.

[4] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In 2nd Theory
of Cryptography Conference — TCC 2005, volume 3378 of LNCS, pages 325–341. Springer,
2005.

[5] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel. Privacy-preserving remote diagnostics.
In 14th ACM Conf. on Computer and Communications Security (CCS), pages 498–507. ACM
Press, 2007.

[6] C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-round secure computation and secure
autonomous mobile agents. In 27th Intl. Colloquium on Automata, Languages, and Program-
ming (ICALP), volume 1853 of LNCS, pages 512–523. Springer, 2000.

[7] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete log-
arithms. In Advances in Cryptology — Crypto 2003, volume 2729 of LNCS, pages 126–144.
Springer, 2003.

[8] R. Canetti, Y. Ishai, R. Kumar, M. K. Reiter, R. Rubinfeld, and R. N. Wright. Selective private
function evaluation with applications to private statistics. In 20th Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 293–304. ACM Press, 2001.

[9] Y.-C. Chang and C.-J. Lu. Oblivious polynomial evaluation and oblivious neural learning. In
Advances in Cryptology — Asiacrypt 2001, volume 2248 of LNCS, pages 369–384. Springer,
2001.

[10] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Information Theory, 31:469–472, 1985.

[11] K. Frikken, M. Atallah, and J. Li. Hidden access control policies with hidden credentials. In
Proc. ACM Workshop on Privacy in the Electronic Society (WPES), page 27. ACM, 2004.

[12] K. Frikken, M. Attallah, and C. Zhang. Privacy-preserving credit checking. In ACM Conf. on
Electronic Commerce (EC), pages 147–154. ACM, 2005.

[13] K. B. Frikken, J. Li, and M. J. Atallah. Trust negotiation with hidden credentials, hidden
policies, and policy cycles. In Network and Distributed System Security Symposium (NDSS),
pages 157–172. The Internet Society, 2006.

[14] O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cambridge University
Press, Cambridge, UK, 2004.

[15] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, or a completeness
theorem for protocols with honest majority. In 19th Annual ACM Symposium on Theory of
Computing (STOC), pages 218–229. ACM Press, 1987.

18

[16] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: Tool for
automating secure two-party computations. In 17th ACM Conf. on Computer and Communi-
cations Security (CCS), pages 451–462. ACM Press, 2010.

[17] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using garbled
circuits. In USENIX Security Symposium (to appear), 2011.

[18] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In
Advances in Cryptology — Crypto 2003, volume 2729 of LNCS, pages 145–161. Springer, 2003.

[19] Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data. In 4th Theory of
Cryptography Conference — TCC 2007, volume 4392 of LNCS, pages 575–594. Springer, 2007.

[20] S. Jarecki and V. Shmatikov. Efficient two-party secure computation on committed inputs.
In Advances in Cryptology — Eurocrypt 2007, volume 4515 of LNCS, pages 97–114. Springer,
2007.

[21] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications. In
35th Intl. Colloquium on Automata, Languages, and Programming (ICALP), Part II, volume
5126 of LNCS, pages 486–498. Springer, 2008.

[22] V. Kolesnikov and T. Schneider. A practical universal circuit construction and secure evalua-
tion of private functions. In Financial Cryptography and Data Security, volume 5143 of LNCS,
pages 83–97. Springer, 2008.

[23] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In Advances in Cryptology — Eurocrypt 2007, volume 4515 of LNCS,
pages 52–78. Springer, 2007.

[24] Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party computation.
Journal of Cryptology, 22(2):161–188, 2009.

[25] Y. Lindell, B. Pinkas, and N. Smart. Implementing two-party computation efficiently with
security against malicious adversaries. In 6th Intl. Conf. on Security and Cryptography for
Networks (SCN ’08), volume 5229 of LNCS, pages 2–20. Springer, 2008.

[26] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party computation
system. In Proc. 13th USENIX Security Symposium, pages 287–302. USENIX Association,
2004.

[27] M. Naor and B. Pinkas. Oblivious polynomial evaluation. SIAM Journal on Computing,
35(5):1254–1281, 2006.

[28] J. B. Nielsen and C. Orlandi. LEGO for two-party secure computation. In 6th Theory of
Cryptography Conference — TCC 2009, volume 5444 of LNCS, pages 368–386. Springer, 2009.

[29] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Ad-
vances in Cryptology — Eurocrypt ’99, volume 1592 of LNCS, pages 223–238. Springer, 1999.

19

[30] A. Paus, A.-R. Sadeghi, and T. Schneider. Practical secure evaluation of semi-private functions.
In 7th Intl. Conference on Applied Cryptography and Network Security (ACNS), volume 5536
of LNCS, pages 89–106. Springer, 2009.

[31] B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure two-party computation is practical.
In Advances in Cryptology — Asiacrypt 2009, volume 5912 of LNCS, pages 250–267. Springer,
2009.

[32] A.-R. Sadeghi and T. Schneider. Generalized universal circuits for secure evaluation of private
functions with application to data classification. In 11th Intl. Conf. on Information Security
and Cryptology (ICISC), volume 5461 of LNCS, pages 336–353. Springer, 2008.

[33] T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for NC1. In 40th Annual
Symposium on Foundations of Computer Science (FOCS), pages 554–567. IEEE, 1999.

[34] T. Schneider. Practical secure function evaluation. Master’s thesis, University Erlangen-
Nürnberg, 2008. Available from http://thomaschneider.de/FairplayPF.

[35] L. Valiant. Universal circuits. In 8th Annual ACM Symposium on Theory of Computing
(STOC), pages 196–203. ACM Press, 1976.

[36] A. C.-C. Yao. How to generate and exchange secrets. In 27th Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 162–167. IEEE, 1986.

20

