
Rational Secret Sharing with Side Information in Point-to-Point

Networks via Time-Delayed Encryption

Anna Lysyanskaya
Brown University

anna@cs.brown.edu

Aaron Segal
Brown University

aaronak@cs.brown.edu

October 15, 2010

In this paper, we give the first construction of a rational secret sharing protocol that is strict Nash (or
Nash with respect to trembles) in the computational sense, works in a standard point-to-point network with
loose synchronization (i.e. does not rely on the availability of a broadcast channel), and can tolerate players
with arbitrary side information about the secret. Since this has been proved impossible in the plain model,
our protocol requires us to make assumptions about upper and lower bounds on the computational resources
of the participants, and also to assume that they are out of sync with each other by at most a known
quantity τ and that their network latency is at most some known quantity ∆. Specifically, we define and
realize (in the random-oracle model, and assuming so-called standard architecture) time-delayed encryption,
a primitive that allows a sender to create a ciphertext such that, for some parameter h, it will take Ω(2h)
time for the recipient to recover the plaintext, where, following the work on memory-bound functions, time
is measured in memory accesses.

Rational parties will prefer to follow our protocol for reconstructing the secret even given a lot of side
information about this secret. This was not true of any of the previously proposed strict Nash protocols for
this task: In fact access to side information gave players in those protocols an incentive to deviate. As a
result, for the first time, we have a rational secret reconstruction protocol that can be used in applications
where the secret can be useful in the outside world (e.g. it can give players access to a valuable resource, or
decrypt a file).

1 Introduction

In the last few years, the problem of rational secret sharing (RSS) and more broadly rational multi-
party computation (RMPC) has become an active research topic [HT04, GK06, LT06, ADGH06,
KN08a, KN08b, AL09, MNT09, FKN10]. Informally, the RSS problem is as follows: a set of rational
(as opposed to honest or adversarial, as is the convention in cryptography) parties P1, . . . , Pn each
hold a share of a valuable secret s. Each of them is curious and wants to discover the secret s,
and is also selfish and wants as few others as possible to be privy to s. A rational secret sharing
protocol is one where P1, . . . , Pn reconstruct s, such that none of them have an incentive to deviate.

To motivate the study of RSS, the following points are important: (1) it is a good idea to model
protocol participants as rational rather than honest because this modeling is a better reflection of
reality; (2) secret sharing is one of the most basic tasks for secure multi-party computation (MPC),
and is in fact the building block in most general MPC protocols. Thus, before studying general
rational MPC, it makes sense to understand rational secret sharing.

A formalization for what it means for participants to be motivated to follow a protocol, especially
in the computational setting, has been the focus of much of recent work. The simplest and best
understood solution concept is a Nash equilibrium. Informally, a protocol Π is a Nash equilibrium
if Pi that believes that everyone else is following Π has nothing to gain by deviating from Π.
Halpern and Teague [HT04] observed that it is not sufficient that a secret sharing protocol be a
Nash equilibrium if we want a rational Pi to follow it. This is easy to see, using, for example,
the following argument: Consider the case where n− 1 shares are sufficient to compute s; further,
consider the protocol Π in which each player Pi just broadcasts his share. If the other n−1 players
follow the protocol, Pi has nothing to gain from deviating: everyone will see n−1 shares broadcast,
and will be able to reconstruct the secret. But neither will Pi lose anything by deviating by staying
silent: either way, he will receive the other players’ shares. However, if another player Pj also stays
quiet, Pi wins big by staying quiet: now only he and Pj are in a position to reconstruct s. If several
other players stay quiet, then no one can reconstruct the secret, but even in that case Pi didn’t lose
anything by staying quiet: he would not have been able to reconstruct s even if he had broadcast
his share. Therefore, even though Π is a Nash equilibrium, a rational player does no worse by
deviating from it, and may in fact do better if not all other players follow the protocol. Hence it is
in the player’s best interest to deviate.

If a Nash equilibrium is not a sufficient condition to motivate rational players to follow a
protocol, then what game-theoretic solution concept can give such motivation? And can a protocol
satisfying a good enough solution concept be given in a realistic communication setting?

Starting with the work of Halpern and Teague [HT04], several papers suggested various protocols
that survive iterated deletions of weakly dominated strategies [GK06, LT06, ADGH06]. Roughly,
strategy σ′i (such as the one where Pi stays silent in the example above) weakly dominates another
strategy σi (such as the one where Pi broadcasts his share) if, depending on what other players
do, Pi is never worse off, and sometimes better off, if he sticks to σ′i. A strategy survives iterated
deletion if it is not weakly dominated by anything, even after other weakly dominated strategies
have been deleted (and there are an infinite number of iterations of these deletions).

To design a protocol that survives iterated deletion, the key idea, due to Halpern and Teague,
is that the players don’t know until after they’ve broadcasted their messages for a given round,
whether or not this was the last round. As a result, they can be motivated not to deviate: deviation
from the protocol can be detected and punished by the other players. Although working in slightly
different models, all of the papers that focused on surviving iterated deletion required simultaneous

1

broadcast, i.e. broadcast where Alice must send out her message for a given round before she
receives Bob’s messages for this round.

Although uncertainty about which round is last indeed fixed the problem that the (n−1)-out-of-
n secret sharing example above suffers from, Kol and Naor [KN08b] demonstrated that just because
a strategy survives iterated deletion does not mean that it is intuitively desirable; instead, they
proposed the notion of a strict Nash equilibrium in which Pi has something to lose from deviating in
the case when the others are following Π. The way to realize this concept was to ensure that in any
given round, there is a unique message that Pi must send if he chooses to follow the protocol, and if
he does not send it, then he visibly deviates and the other players can punish him. Moreover, their
protocol did not rely on any cryptographic assumptions, and so for example was not susceptible
to backwards induction [KN08a]. They also gave a version of their protocol that was strict ε-Nash
without simultaneous broadcast; however, their protocols still needed a broadcast channel (but
it didn’t need to be simultaneous, in fact in their construction only one designated player would
broadcast during any given round). Additionally, the way Kol and Naor treat side information is
not suitable for many applications: as part of her share of the secret s, Alice received a vector of
elements that was likely to contain s in the clear. In the absence of side information, Alice does
not know for sure which element in her vector can be s (if any) and so is motivated to participate
in the protocol. But if she has any side information about s, then she may be able to identify it
among the vector of values she received and then she is best off not participating in the protocol
at all.

The fact that a protocol does not allow the participants to have any side information about
the secret s is inconvenient for applications. In particular, if s is the decryption key for a valuable
encrypted file, or a password that gives you access to a valuable resource, then such a protocol
cannot be used to have rational parties reconstruct s. But if s is just a random secret that has no
value in the real world, then why would anyone be curious to learn it?

Among other contributions, Asharov and Lindell [AL09] showed that this limitation — no side
information — is inherent whenever simultaneous broadcast cannot be assumed. Intuitively, this
can be explained as follows: if some Pi can delay his round r messages until after he has received
the round r messages from everyone else, then he can test if r is the last round by seeing what
his output would be, if any, if it were the last round, and then checking that against his side
information.

As for broadcast, Fuchsbauer, Katz and Naccache [FKN10] showed that this assumption could
be dispensed with (but only did so in the computational setting, and achieving the computational
versions of the appropriate equilibrium notions, also defined by Fuchsbauer, Katz and Naccache)
and gave the first rational secret sharing protocols that did not require broadcast. Their protocols
assumed that the players do not have access to any side information about the secret, however, and
that all they know a priori is that s is a uniformly chosen binary string of a given length (known
to all players).

In this paper, we restrict the model in a way that allows us to overcome the impossibility result
of Asharov and Lindell: we give a rational secret sharing protocol that is a computational strict
Nash equilibrium even in the presence of side information, and runs over a standard point-to-point
network without requiring any form of broadcast. Instead of considering the standard model in
which every player is an interactive probabilistic poly-time Turing machine (this is the model for
which the impossibility result of Asharov and Lindell holds), we consider what happens when Pi is
modeled in such a way that he cannot test whether round r is the last round fast enough to make

2

the decision whether to send out his round r message or not. This is because in the last round all
the players will output a time-delayed encryption of the secret s (introduced below), rather than s
itself, and it will take each of them longer than the amount of time a round takes to decrypt it or
in fact tell it apart from a (pseudo)random string — our protocol will essentially have the players
output a pseudorandom string in every round other than the last one.

Time-delayed encryption. Motivated by this application to rational secret sharing, we define
the new cryptographic primitive of a time-delayed encryption (TDE) scheme. The idea of TDE is
to construct an encrypted message which can only be decrypted by its intended recipient, and even
then cannot be decrypted until a moderate amount of time has elapsed. Although our primitive
is a new one, we are not the first to consider such a problem; substantial work has been done in
the field of timed-release cryptography (TRC), the goal of which is to encrypt a message so that it
cannot be decrypted before a specific point in time [BCHVS08].

Past work in TRC is geared towards applications such as key escrow or protecting the secrecy
of bids in a sealed auction, and is constructed with decryption delays of potentially days or years
in mind. As such, existing TRC schemes often assume the presence of trusted authorities such as
time servers [CHKO06], or identity-based encryption infrastructures [BF01]. By comparison, we
need to ensure that the decryption of a message takes longer, but not a significant time longer,
than a single round of a cryptographic protocol, and we cannot afford to assume the existence of
trusted authorities.

The other major approach towards TRC, which does not rely on third parties, is the idea of
the time-lock puzzle (TLP), first introduced by Rivest, Shamir, and Wagner [RSW96]. A TLP
requires the decrypting party to perform a large computation in order to recover a decryption
key; in most of the existing work on TRC, this computation is based on the non-parallelizable
problem of repeated squaring modulo a product of two large primes. Although the notion of using
a TLP to instantiate time-delayed encryption is attractive, using the repeated squaring problem is
unrealistic for our application. Specifically, in order for a rational player to want to participate in
our protocol, that player must be convinced that none of the others has a significant computational
advantage in computing the TLP. If we design the TLP such that decrypting a message requires
a large computational overhead, a rational player might not be willing to spend the resources to
decrypt the message at all, preferring not to participate in the protocol. However, if the TLP takes
only a moderate amount of time to solve, then a player running a computer with a very fast CPU
might be able to decrypt the message well before a player with a slower computer is able to do so.
In modern computers, the disparity between “fast” and “slow” CPUs is wide enough that a TLP
relying on a CPU-bound algorithm like repeated squaring could not be fair for players with a range
of technology available.

Our construction of the time-delayed encryption, both in the definition and in the construction,
builds upon an alternative form of time-lock puzzle — a memory-bound function (MBF). Introduced
by Dwork, Goldberg and Naor [DGN03] and studied further by Abadi et al. [ABMW05], MBF was
motivated by proof-of-work applications to deter e-mail spammers. The justification for counting
memory accesses rather than computational steps is that the speed of the former is more uniform
throughout different architectures (see [DGN03] for a discussion on this).

How to construct a TDE from an MBF as originally defined by Dwork, Goldberg and Naor was
not immediate, because their definition gave a lower bound on the expected number of memory
accesses of an adversary/spammer, while we want to give a lower bound that will hold for every

3

adversary with all but negligible probability. Thus, in adapting their work to our application, we
needed to give a revised definition of MBF (called cryptographic MBF, or CMBF). We showed that
the Dwork et al. construction of MBF, with very minor modifications, also satisfies our CMBF
definition. Finally, we constructed a time-delayed encryption scheme from a CMBF. The lower
bound on the number of memory accesses holds under the same assumptions on standard computer
architecture as those made by Dwork et al.

Overview of the rest of this paper. We give a formal definitions of two (related) cryptographic
primitives, a time-delayed encryption scheme, and a time-delayed encryption scheme indistinguish-
able from random. We then discuss and formalize two notions of a memory-bound, time-lock puzzle:
the memory-bound function and the cryptographic memory-bound function. We show how to build a
time-delayed encryption scheme indistinguishable from random by using a cryptographic memory-
bound function treated as a black box, and prove that this construction satisfies our definition.
We then show how to adapt an existing memory-bound algorithm to instantiate a cryptographic
memory-bound function.

We then turn our focus to the problem of rational secret sharing in the presence of side in-
formation. We model side information as both a polynomially long string of information about
the secret, and an oracle whose behavior may be dependent upon the secret (for example, it may
output 1 only when given the correct secret as input), and discuss the game theoretic equilibria
which motivate the construction of our protocol, specifically the notions of computational strict
Nash equilibrium, and computational Nash stable with respect to trembles. We then give a full
specification of our protocol, and analyze its performance with respect to these equilibria.

2 Time-Delayed Encryption

Consider the following problem: Alice has a message, m, which she wants to send to Bob. She
is not concerned about security or demonstrating authenticity. Rather, she wishes to ensure that
Bob must wait a moderate amount of time (say, a few seconds to a mintue) before he can read the
message.

This problem motivates a cryptographic primitive which we call a time-delayed encryption
scheme. We define this primitive in terms of a security parameter 1k, and a hardness parameter h
such that 2h is polynomial (potentially quite large) in k, such that Alice can be sure that Bob will
not recover m in less than Ω(2h) steps. By a “step” here we mean a memory access on a “standard
architecture” as defined by Dwork, Goldberg and Naor [DGN03]. We review their definition of a
standard architecture in Appendix A.

Let Gen be an algorithm that, on input the security parameter 1k and the hardness parameter h,
outputs a key K, a sealed key K̃, and some additional information F that will be used in unsealing
the key. Let Enc and Dec be encryption and decryption algorithms respectively, that are indexed
by a key K output by Gen, such that (Gen,EncK ,DecK) constitute an adaptively secure (under
CPA and CCA2) symmetric cryptosystem. Let UnsealF be an algorithm such that, if (K, K̃, F) are
the output of Gen, then UnsealF (K̃) = K. The time-delayed nature of the cryptosystem dictates
that there is a lower bound of Ω(2h) on the running time of UnsealF , and that in fact this lower
bound applies to any algorithm that computes the unsealed key K from K̃. More formally:

Definition 1 (Time-delayed encryption (TDE)). (Gen,EncK ,DecK ,UnsealF) with the properties
described above is a time-delayed encryption scheme for message space M for security parameter k

4

and hardness parameter h if for any adversary A running on a standard architecture,1 which runs
in time polynomial in k and, in Step 4 of the following game, makes o(2h) memory accesses, the
following experiment returns 1 with probability equal to 1/2 + ν(k) for some negligible ν:

1. (K, K̃, F)← Gen(1k, h).

2. On input F , A runs for any polynomial in k number of steps, adaptively sending a set of
queries {mi, ci} and getting back {c′i ← EncK(mi),m′i ← DecK(ci)} and then outputs two
messages, m0 and m1, both in the message space M . The contents of A’s cache and memory
is saved.

3. A challenge ciphertext is generated: c← EncK(mb) for a random bit b.

4. A(c, K̃) is restarted using the same cache and memory state where it stopped. It is allowed
to make at most o(2h) memory accesses. A makes more queries as in Step 2. If A asks for
the decryption of c, return 0. If A outputs b, return 1. Else, return 0.

For our application, we need a stronger notion: we need the challenge ciphertext c and the sealed
key K̃ to be indistinguishable from random strings of the same lengths, even when the distinguisher
(whose number of memory accesses is o(2h)) is given the sealed key K̃. This is defined below. Note
that Definition 2 implies Definition 1, while the converse is not true.

Definition 2 (TDE indistinguishable from random). (Gen,EncK ,DecK ,UnsealF) with the prop-
erties described above is a time-delayed encryption scheme indistinguishable from random for mes-
sage space M for security parameter k and hardness parameter h if for any adversary A running
on a standard architecture, which runs in time polynomial in k and, in Step 4 of the following
game, makes o(2h) memory accesses, the following experiment returns 1 with probability equal to
1/2 + ν(k) for some negligible ν:

1. (K, K̃, F)← Gen(1k, h).

2. On input F , A runs for any polynomial in k number of steps, adaptively sending a set of
queries {mi, ci} and getting back {c′i ← EncK(mi),m′i ← DecK(ci)} and then outputs a
message m ∈M . The contents of A’s cache and memory is saved.

3. Two ciphertexts are generated: c0 ← EncK(m), c1 ← {0, 1}|c0|. Two candidate sealed keys
are set as follows: K̃0 = K̃, K̃1 ← {0, 1}|K̃|, and a random bit b is chosen.

4. A(cb, K̃b) is restarted using the same cache and memory state where it stopped. It is allowed
to make at most o(2h) memory accesses. A makes more queries, as in Step 2. If A asks for
the decryption of c, return 0. If A outputs b, return 1. Else, return 0.

2.1 Construction

In order to introduce a time delay, we use memory-bound functions [DGN03], which require a
large number of memory accesses to compute. This is preferable to CPU-bound functions (which
require a large number of operations) only in that memory access speed varies relatively little

1See Appendix A.

5

across architectures compared with CPU speed. (We refer the reader to Dwork et al. [DGN03] for
a discussion on this issue.)

We give two definitions of memory-bound functions: the original definition [DGN03], and an-
other definition that we need as a building block for our construction of a time-delayed encryption
scheme indistinguishable from random.

Definition 3 ([DGN03]). A memory-bound function (MBF) family is a family C of deterministic
functions such that an efficient (polynomial in security parameter k and with the number of memory
accesses polynomial in the hardness parameter h) key generation algorithm outputs a key F for the
function such that the evaluation of CF , when executed on a standard architecture for an arbitrarily
long but finite number of times on random inputs, has an amortized complexity of Ω(2h). More
precisely: suppose a key F is chosen by the key generation algorithm with parameters k and h;
suppose that, on input F , A outputs a set of tuples {(xi, yi)} such that xi 6= xj for all i 6= j and
for some polynomial p, p(k) of these tuples are such that yi = CF (xi). Then A’s expected number
of memory accesses, where the expectation is over the choice of F and the random choices made
by A, is p(k)Ω(2h).

The construction of Dwork, Goldberg and Naor (DGN) [DGN03] satisfies this definition in
the random-oracle model. Note, however, that this gives us only an amortized lower bound in
expectation2. This definition works very well for the DGN application of fighting spam: to send
a message xi the adversary needs to invest some effort into computing yi = CF (xi), and the total
amount of effort has to be proportional to the number of messages sent out, so that the effort that
went into computing yi does not help with yj . However, here the choice of the messages themselves
is entirely up to the adversary.

This definition does not quite work for our purposes: instead of a lower bound on the adversary’s
memory accesses that holds in expectation, we need a lower bound that holds with overwhelming
probability. Additionally, in our application, there will be a specific input x, chosen by the chal-
lenger, and we want an adversary making o(2h) memory accesses to be unable to compute CF (x),
even after investing a lot of time and memory accesses in the precomputation phase. Therefore, we
give a revised definition.

Definition 4. A cryptographic memory-bound function (CMBF) family is family C of deterministic
functions such that an efficient (polynomial in security parameter k and with the number of memory
accesses polynomial in the hardness parameter h) key generation algorithm outputs a key F for
the function such that the evaluation of CF (x), when executed on a standard architecture, requires
Ω(2h) memory accesses whenever it computes CF (x) correctly, even after a long pre-computation,
except with probability negligible in k, where k is a security parameter, and the probability is taken
over the choice of the key F and the choice of the input x.

More precisely: Suppose a key F is chosen by the key generation algorithm with parameters k
and h; A is given F and is allowed to run for some polynomial in k number of steps, and can make
any polynomial in k (so, potentially many more than 2h which is only polynomial in k) number
of memory operations. Finally, A signals that it is ready to be challenged, and receives a random
challenge x, takes an additional poly number of steps during which it makes only o(2h) memory
accesses, and outputs y. Then the probability that y = CF (x) is upper-bounded by some negligible
ν(k).

2The DGN paper does not actually give a formal definition of an MBF; our interpretation of their definition comes
from their analysis of their construction.

6

Luckily, although the two definitions are incomparable3, as we show in the proof of Theorem 2,
in the random oracle model, the MBF of Dwork et al. [DGN03] satisfies this definition as well.

Now we give a construction, secure in the random-oracle model, of a time-delayed encryption
indistinguishable from random using a CMBF family as a building block. For Enc and Dec, we can
use any block cipher (strong PRP) with block and key length k, and just append a k/2-bit nonce to
a k/2-bit message before encrypting (to give us adaptive CPA and CCA2 security). Note that the
standard definition of a strong pseudorandom permutation implies that the resulting ciphertexts
are indistinguishable from random strings, even in the presence of the EncK and DecK oracles, as
long as the decryption oracle is not asked to decrypt a ciphertext that the adversary is trying to
distinguish from random.

Let C be a CMBF that takes k-bit strings as input, and outputs strings of length k′. Let
H : {0, 1}k′ 7→ {0, 1}k be a function that will be modeled as a random oracle in our proof of security.
We define UnsealF as follows: UnsealF (K̃) = H(CF (K̃)). Finally, we define Gen(1k, h) as follows:
(1) generate K̃ ← {0, 1}k; (2) generate F for the CMBF family C; (3) compute K ← UnsealF (K̃);
(4) output (K, K̃, F).

Theorem 1. The tuple (Gen,Enc,Dec,Unseal) as defined above is a time-delayed encryption indis-
tinguishable from random for message space M = {0, 1}k/2 with security parameter k and hardness
parameter h.

Proof of Theorem 1. First, we note that the input-output behavior of the resulting algorithms
is correct, and that (Gen,EncK ,DecK) constitute a symmetric cryptosystem whose ciphertexts
are indistinguishable from random strings, so just with oracle access to EncK and DecK , and
without K̃, c is indistinguishable from random. K̃ was chosen at random, and so, by itself, is
already indistinguishable from a random string. Our goal is to show that when viewed jointly by
a memory-constrained adversary with access to Enc and Dec, c and K̃ are indistinguishable from
random.

Next, we claim that, except with negligible probability, none of A’s queries to its random oracle
H will contain the value CF (K̃). To see that this claim is true, suppose the opposite. Then the
following reduction B computes CF (x̃) with o(2h) memory accesses with black-box access to A:
on input F , generate a random key K. Start A on input F . Interact with A the way that the
challenger for Definition 2 does: answer A’s encryption and decryption queries using a random K
as the key. Also answer A’s queries to H by providing k-bit random strings as responses. Finally,
A is ready to be challenged, and provides a message m. Compute c ← EncK(m), and signal to
the CMBF challenger that B is ready to be challenged. Now B receives its challenge x and is
not allowed to make more than o(2h) memory accesses (including those made by A). It now sets
K̃ = x, and, implicitly (because it does not know the value CF (x), in fact that’s the value B wants
to output), engineers the random oracle H so that K = H(CF (x)) (this is OK because K was
chosen at random). Give (c, K̃) to A, and from this point on, both B and A are allowed only o(2h)
memory accesses. Continue answering A’s encryption and decryption queries as directed by the
challenger in Definition 2. Also answer A’s queries to H, up until the ith query for a randomly
chosen i: when A makes its ith query to H — let us say A asks for the value H(y), — output this

3CF can be a CMBF but not an MBF if it is easy to compute on the inputs x that start with many 0’s: the CMBF
challenger is unlikely to pick such an easy x as a challenge, but the MBF adversary will just output a list that includes
all the easy x’s. CF can be an MBF but not a CMBF if there is a noticeable fraction of bad keys F . It is actually
possible to construct a CMBF from an MBF by picking many keys F = F1, . . . , F` and setting CF(x) = {CFi(x)}, but
we took the (arguably) simpler and more efficient route of showing that the DGN MBF is also a CMBF.

7

y. If, with non-negligible probability ε(k), one of A’s p(k) (for some polynomial p) queries was for
the value CF (K̃), then with probability ε(k)/p(k) (which is still non-negligible), B correctly guessed
the index i of this query, and thus outputs y = CF (x̃), even though, like A, it made only o(2h)
memory accesses once its challenge was issued. This contradicts the definition of a CMBF.

Note that, if A never queries H for the value CF (K̃), then K = H(CF (K̃)) is in fact independent
of K̃ given the view of A, or, equivalently, K̃ is a random string that is independent of A’s EncK
and DecK oracles and challenge ciphertext c. Therefore, (c, K̃) are indistinguishable from random
when viewed together and with access to EncK and DecK (other than for querying DecK on the
challenge ciphertext c).

2.2 Adapting the DGN Construction

Here, we show that the original DGN construction of an MBF also satisfies our definition of a
CMBF.

The DGN memory-bound algorithm was designed as a countermeasure against spammers.
Keyed by F , it takes as input the e-mail message, date, sender, and recipient, and returns a
valid (not necessarily unique) ”proof of work” for these inputs, that is to say, proof that the sender
has spent some time on computing his message, so that it may be worth the recipient’s while to
look at it. We modify this algorithm only slightly. Again, the algorithm is keyed by F .

We specify that all strings of length |K̃| are valid inputs, and only accept one specific response
as a valid output for each input. Making no other changes to the DGN algorithm apart from these,
we prove below that our adapted function is a cryptographic memory-bound function. Our CMBF
takes as input a string x of length |K̃|, and returns a trial number t and a string y. H0, H1, H2,
and H3 are random oracles. A is a modifiable array of size |A|w > b bits, where w is the number
of bits in a word, and b is the number of bits in a cache line (that is, the number of bits that are
read in one memory access).

Theorem 2. Given the following conditions, Algorithm 1 is a cryptographic memory-bound func-
tion for security parameter k and hardness parameter h: (1) |F | ≥ 2s (where the adversary’s cache
contains s words of w bits each), (2) z = h + k, (3) |A|w > 68.25b (where b is the size of a cache
line, in bits), and (4) l > 40|A|.

We note that the precise values in the third and fourth conditions above are due only to the
constants we use in our proof; for different constants, these values may vary. Our proof of this
theorem closely follows the DGN proof that their construction (this same construction) is an MBF.

Proof of Theorem 2. We start with a simple lemma about the number of calls to H1 made by the
adversary.

Lemma 1. Except with probability negligible in k, the number of calls to H1 necessary to determine
the first successful path is Ω(2hl).

Proof of Lemma 1. Since H1 and H2 are random oracles, it takes ` calls to H1 to determine whether
a given path is successful. Since H3 is a random oracle, the probability that any given path is
successful is 2−z. We want to use a Chernoff bound to give us the probability that, after looking
at only 2h paths, we will have at least 1 successful path. We get that this probability is at most
2h−ze1−2h−z

. Since we took z = h+ k, this gives us 2−ke1−2−k ≤ 2−ke.

8

Setup: Let F be a random function from the set {0, 1, . . . ,#F} to the set of w-bit integers. Once F is
chosen, it is fixed for the entire execution of the memory-bound function, and may be reused for future
executions of the same function. (F can also be thought of as a table containing #F words of size w bits
— we use these two notions interchangeably.) Also choose ` and z, parameters which control the amount of
effort required to calculate the function.
Algorithm: On input x, do the following: For t = 1, 2, . . .:

• A← H0(x, t)

• Repeat l times:

q ← H1(A)

A← H2(A,F (q))

• y ← H3(A)

• If the last z bits of y are all zero, return t, y and halt. Else, continue with t+ 1.

Each complete walk through the outer loop is called a path. We say that a path number t is successful if, at
the end of the path, the last z bits of H3(A) are all zero. Note that there may be more than one successful
path, but only the first successful path is the correct output from our function.
We remark that the paths are independent of each other (that is, the initialization of the path depends only
on the function input x and the path number). This property allows successful paths to be verified in only
O(l) memory accesses, which is crucial for anti-spam applications [DGN03]. However, the independence of
the paths allow for trivial parallelization of the algorithm, which could allow the function to be computed
too quickly. The algorithm can be made non-parallelizable by substituting A for x in each call to H0, except
in the first path of the algorithm.

Figure 1: CMBF based on the DGN MBF

We next present a purely combinatorial lemma which we use in our proof.

Lemma 2. Let the set S be constructed by picking n integers uniformly (with replacement) from
the range [1,m]. Then the probability that S contains at most k distinct values is negligible in n,
as long as 0 < k < n < m and 1.5nk/m ≤ n− k.

Proof of Lemma 2. Consider the game (which we will call G1) in which we draw the integers one
at a time; after n draws, the game is lost if there are at most k distinct values among the integers
drawn, and won otherwise. Equivalently, the game is lost if at least n− k of the draws are repeats
of previous draws.
Let an instance of G1 be described as an n-tuple of integers in [1,m]; a run of G1 is equivalent
to uniformly choosing one of these mn n-tuples. We give a permutation from instances of G1 into
instances of another game G2, which is in some sense “harder” than G1. We will then argue that
the probability of losing G1 is no more than the probability of losing G2, and that the probability
of losing G2 is negligible. This will give us the desired result, that the chance of losing G1 is
negligible.
We first specify G2. Let G2 be the following game: Draw n integers uniformly one at a time
(with replacement) from 1, . . . ,m. If, during the game, at least n − k draws are integers between
1 and k, inclusive, then the game is lost. Otherwise, the game is won. Since the n integers
are chosen independently, each has a k/m probability of being in the range from 1 to k. In
expectation, the number of integers in the range is nk/m, and using a Chernoff bound, we get that

9

the probability that at least 1.5nk/m integers fall in the range is (8e/27)kn/2m. Therefore, as long
as 1.5nk/m ≤ n − k, the probability of losing H2 is negligible in n. Now, we have to construct
the permutation from games of G1 to games of G2. We define an instance of G2 analogously to
instances of G1; both types of instances are specified by n-tuples of integers from 1 to m. We also
note that any run of either game has a m−n chance of being each of these n-tuples. Therefore, if
the number of n-tuples that are losing for G1 as at most the number n-tuples that are losing for
G2, then the probability of losing a game of G1 is at most the probability of losing a game of G2,
which we have shown is negligible.
In order to ensure that there are at least as many losing instances of G2 as of G1, our permutation
will enforce that every losing instance of G1 is mapped to a losing instance of G2. It may map
some winning instances of G1 to losing instances of G2 as well, but this is acceptable since all we
need is an upper bound.
Our permutation will work as follows. To convert a run of G1 into a run of G2, we step one at a
time through each integer drawn in G1, and decide which integer was drawn in the corresponding
instance of G2. During this process, we will maintain a set S of unique integers drawn in G1, and
a modifiable array M of m integers in [1,m], which will give us a mapping from numbers drawn
in G1 to integers drawn in G2. Whenever an integer a is drawn in G1, we will say that the integer
M [a] has been drawn in G2. In between draws, we may modify M by swapping two entries in it.
Initialize S = ∅, and initialize M by setting M [i] = i for each i from 1 to m. We then repeat the
following process n times:

1. Let a be the next integer that was drawn in G1.

2. M [a] is the next integer that is drawn in the corresponding instance of G2.

3. If a 6∈ S, add a to S, and then swap M [|S|] and M [a]. (Note that |S| starts at 0, and is
incremented by 1 every time we draw a new unique element.)

To see why every losing game of G1 maps to a losing game of G2 by this process, remember that
a losing instance of G1 is one in which at least n− k of the draws are repeats of previous numbers
drawn, and a losing instance of G2 is one in which at least n−k of the draws are numbers between 1
and k. Our permutation ensures that, as long as there are fewer than k distinct elements drawn in
G1, every draw in G1 which counts against our n− k repeats is a draw in G2 which counts against
our n− k numbers ≤ k.
Finally, we need to show that our transformation of G1 games into G2 games is, in fact, a permu-
tation. To do this, we exhibit the reverse transformation of G2 games into G1 games. This reverse
transformation will be very similar to our forward one. It will go step by step as in the forward
transformation, and will maintain a set S′ and an array M ′ of m numbers from 1 to m.
Initialize S′ = ∅, and initialize M ′ by setting M ′[i] = i for each i from 1 to m. Repeat the following
process n times:

1. Let a be the next integer that was drawn in G2.

2. M ′[a] is the next integer that is drawn in the corresponding instance of G1.

3. If M ′[a] 6∈ S, add M ′[a] to S′, and then swap M ′[|S′|] and M ′[M ′[a]].

Suppose we ran the forward transformation on a game of G1, and at the same time, we ran the
reverse transformation on the draws of G2 recorded by the forward transformation. At the end

10

of each step, S = S′, and M ′[M [i]] = i for all i from 1 to m. Therefore, our transformation is a
permutation, as required.

We now want consider the adversary’s program, broken up into intervals. Similarly to [DGN03],
we will show that, during each of these intervals, the adversary must make a large number of memory
reads. Since each A is the output of a random oracle, we want to think of it as incompressible.
However, the adversary could just store the values (x, t) associated with the beginning of the path,
and reconstruct A when needed. If the A in question came from the second half of a path, however,
it would be less work for the adversary to finish the path than to restart the same path. We will
therefore count only accesses to H1 made in the second half of a path when determining the length
of an interval.

Let a mature progress call be defined as a call to H1 such that at least l/2 calls to H1 have
already been made on the same path. Define n := s/|A|; that is, n is the number of A’s that can
fit in the cache at once. Define an interval by picking an arbitrary point in the execution of the
adversary’s program, and continuing until 8n mature progress calls have been made.

Lemma 3. The number of memory accesses made during any given interval is Ω(n) except with
negligible probability.

By Lemma 1, the number of intervals is Ω(2h`/n). Multiplying this number of intervals by
Ω(n) memory accesses per interval gives us Ω(2h`) memory accesses in total, and we will have our
theorem. The rest of our proof, therefore, is given over to proving Lemma 3.

Proof of Lemma 3. Since we require |F | ≥ 2s (where s is the number of words in the cache),
intuitively, at least half of the bits in F are missing from the cache at any time.

Claim 1. There exist γ, δ ≥ 1/2 and a set F ′ ⊆ F such that |F ′| = δ|F | and, given the cache
contents at the beginning of the interval, for each entry i in F ′ there is a set Si of 2γw possible
values for F [i], and all the Si’s are mutually consistent with the contents of the cache.

Proof. Since F is randomly generated, it is incompressible; that is, it takes |F |w bits of information
to specify the entire table. So, if the cache contains s words of size w, at most sw bits of information
about F are known, leaving at least (|F |−s)w ≥ (|F |/2)w bits of information about F still unknown.

Say the adversary wanted to specify as many entries in F using only sw bits. Assuming F is
incompressible, at most s ≤ |F |/2 entries could be completely specified in this way, leaving at least
|F |/2 entries of F completely unknown at the start of the interval. Alternatively, the sw bits could
be used to give w/2 bits of information about at most 2s ≤ |F | entries in F , leaving at least w/2
bits of information unknown (and thus at least 2w/2 valid possibilities) for every entry in F . We
can therefore say that there are 2γw ≥ 2w/2 valid possibilities for at least δ|F | > |F |/2 of the entries
in F that are consistent with the information in the cache. This is a generous lower bound, but
it captures all possibilities in which the adversary, at the start of the interval, knows all of some
entries of F and some bits of others.

Claim 2. If the number of memory accesses during an interval is o(n), then the number of different
paths on which a mature progress call can be made during an interval is at most 3n (except with
probability negligible in n).

11

Proof of Theorem 2. In order to make a mature progress call, the adversary must know the value
A. This A could have been known at the start of the interval, or a previous A from earlier in the
same path was known at the start of the interval, or the entire first half of the path was developed
during this interval. Consider all the paths for which a previous A was known at the start of the
interval, and suppose for the sake of contradiction that there are at least 2n such paths. In order
to make at least one call along each path, the adversary requires 2n|A|w bits of information. Since
the cache only holds s = n|A| words, only n|A|w bits of this information can possibly be in the
cache at the start of the interval, so the adversary needs to bring the other n|A|w bits into the
cache from main memory. Since we requried that |A|w > b, where b is the size of a single block,
this requires Ω(n) memory reads, contradicting our assumption that the number of memory reads
is o(n).

Now, consider all the paths for which no previous A was in the cache at the start of the interval.
Suppose the adversary can make at least one mature progress call on each of n such paths. This
requires that all n paths first be brought to maturity, which requires nl/2 accesses to F . We
argued above that there exists a subset of the entries of F , called F ′, which is missing almost fully
from the cache at the beginning of the interval, and that |F ′| ≥ 1/2|F |. Since H1 is a random
oracle, we say that each of the nl/2 (possibly repeating) elements we need is chosen uniformly
(with possible repetitions) from the entries in F . Consider the event that all of these elements fall
into a set of size at most 5/8|F |. By Lemma 2, the probability of this event is negligible in n as
long as (3/2)(nl/2)(5/8|F |)/(|F |) < 3/8|F |, or 20|F | < nl. Since |F | ≥ 2s and n = s/|A|, this is
guaranteed if l > 40|A|, which we assume in our statement of the theorem.

Except with negligible probability, 5/8 of the elements of F will be required to start n new
paths. We argued above that at least half the elements of F are missing almost fully from the
cache at the start of the interval, leaving at least 1/8|F | elements of |F ′| to be learned during the
interval. The adversary therefore needs to bring at least |F |w/8 = n|A|w/4 bits into the cache
from main memory, requiring Ω(n) memory reads and contradicting our assumption.

Claim 3. Except with probability negligible in n, the adversary must use an entry from F ′ to make
a call to H2 Ω(n) times during an interval.

Proof. During the interval, the adversary needs to make 8n calls to H1. In order to keep making
progress on a path, the adversary must follow each call to H1 by a call to H2, which requires
accessing an element of the table F . Since the elements of F ′ are missing from the cache, and
|F ′| ≥ 1/2|F |, each call to H2 has probability at least 1/2 of requiring an element of F ′. For each
element, the adversary has the choice whether or not to read it from main memory during this
interval, or not. If not, that call to H2 is not made, and no further progress along that particular
path can be made this interval. However, since we argued that the adversary can explore no more
than 3n paths during the interval, the adversary can refuse to learn an element of F ′ (which would
halt progress on a path) no more than 3n times. In expectation, the adversary will require at
least 4n − 3n = n words from F ′ during any given interval. By applying the Chernoff bound for
symmetric random variables, we get that the probability that at most 3.5n repsonses from H1 will
require elements of F ′ is e−n/16, which is negligible in n and would still require n/2 = Ω(n) elements
of F ′.

The adversary must, except with negligible in n probability, learn at least n/2 elements of F ′ in
order to complete the interval. However, it is possible that there are n/2 elements of F ′ are stored

12

close together in main memory, so that the adversary only needs to do o(n) memory reads in order
to learn all n/2 words. This would require that the 3.5n elements of F ′, selected randomly by H1

during the interval, fall into a relatively small number of blocks, say at most 3.25n blocks. The
adversary could ignore no more than 3n of these blocks in order to continue making progress on at
least one path, leaving n/4 = Ω(n) blocks that need to be read.

Define m := |F ′|w/b; since b is the number of bits in a block of memory, this is the minimum
number of blocks into which the words in F ′ can be stored. Suppose that the words in F ′ are indeed
stored in exactly m blocks; number these 1 through m. Since H1 is a random oracle, we can say
that each of the 3.5n elements of F ′ returned by H1 is stored in block i with probability 1/m, for
1 ≤ i ≤ m. By Lemma 2, the probability that the 3.5n elements of F ′ fall into at most 3.25n blocks
is negligible in n, as long as (1.5)(3.5n)(3.25n)/m ≤ n/4, which works out to 68.25n < m. We
have m = |F ′|w/b ≥ sw/b, and n = s/|A|, so our requirement is satisfied as long as |A|w > 68.25b,
which is assumed in the statement of our theorem.

Therefore, the probability that the adversary can complete the interval in o(n) memory reads
is negligible in n, completing our proof of Lemma 3 (and Theorem 2).

3 Rational Secret Sharing

A t-out-of-n secret sharing protocol consists of a secret sharing phase, and a reconstruction phase.
In the secret sharing phase, a dealer D takes as input some value s from some well-defined domain,
a security parameter 1k, the number of parties n and parameter t and outputs values s1, . . . , sn,
such that no subset of fewer than t of these values reveals any information about the secret s.
In the reconstruction phase, each party Pi is given si and the security parameter and they run
(potentially in the presence of an adversary that can control up to t − 1 of them and/or that
prevents participation of some additional honest parties) some secure multi-party protocol as a
result of which they reconstruct s whenever t of them follow the protocol (and the rest may possibly
deviate). (We omit the formal definition here.)

In the setting, introduced by Halpern and Teague [HT04], where there is no adversary, but
each Pi is rational rather than honest, we need to design protocols where no participant will have
an incentive to deviate. To that end, we first need to model the payoffs the participants receive
depending on whether or not they learn the secret s, or in fact any partial information about this
secret. Following Halpern and Teague [HT04], let us assume that the following holds about the
utility function µi of participants Pi: we assume that Pi strictly prefers any outcome in which he
outputs s to any outcome where he does not, and, additionally, whether he output s or not, he
strictly prefers the outcome where k others have output s to the one where k+1 have, for 0 ≤ k < n.

We use standard [HT04] notation for talking about strategies and their expected utilities. Let
σ = {σi : 1 ≤ i ≤ n} be a vector of strategies for the players P = {Pi : 1 ≤ i ≤ n}. Then ui(σ)
denotes the expected utility Pi receives when each Pj runs σj . This expectation is taken over the
choice of the secret s itself as well as the random choices of the dealer and each strategy. Further,
(σ′i, σ−i) denotes the vector of strategies obtained from σ by replacing σi with σ′i. By ui(σ), we
denote the utility derived by Pi when everyone follows the set of strategies σ.

Our goal is to design a protocol Π that a rational participant will prefer to follow, rather than
to deviate from. To that end, we will design a protocol Π that induces a computational strict Nash

13

equilibrium that is stable with respect to trembles, essentially as defined by Fuchsbauer, Katz and
Naccache [FKN10], but with some modifications (discussed below). We refer the reader to their
work for a definitional discussion, and below we simply reproduce their definition and explain why
our modifications were required. We note that, although our protocols work in the timing model,
they can still be analyzed with respect to these definitions; i.e. the game-theoretic notions need
not be revised due to the change of the model.

However, the timing model does allow us to achieve these forms of equilibrium even when
some players have access to arbitrary side information about the secret, something that cannot be
achieved in the standard model [AL09].

Corresponding to each player Pi, let aux i be any potentially randomized function whose output
length is polynomial in the length of its input. Further, let Ois be an oracle whose behavior may
be dependent on s (for example, it may output 1 on input s, and 0 on all other inputs; or it may
output 1 on input s′ if f(s) = f(s′) for some f , etc). We say that a player Pi is interested is the
publication of s in the presence of aux 1(s), . . . , auxn(s) and O1

s , . . . ,Ons if, when each Pj is given
aux j(s) and oracle Ojs, Pi derives more utility from the scenario where s is published than from
the one where nothing further about s is communicated to any participant.

We must restrict our attention to the situation where each participant is interested in the
publication of s, because a rational P who is not interested in the publication of s is not going to
participate in a secret reconstruction protocol: he would rather no reconstruction took place. An
example of when Pi is not interested would be if his auxiliary information aux i(s) narrows down
the choices of s to a small number of candidates, and his oracle Ois outputs 1 on input s and 0 on all
other inputs. In this case, Pi can learn s on his own and gain more utility, because he prefers that
as few as possible players learn s. Following Fuchsbauer et al., we focus on a somewhat simplified
setting where, in the presence of the auxiliary information and oracles for each player, if Pi outputs
the secret and no other player does, then he receives utility U+, if he outputs the secret and so
does some other player, then his utility is U , while if he does not output it then it is U−, and
U+ > U > U−.

Since we allow players to have side information about s, a player may, with some probabil-
ity, correctly guess s based only on his side information (that is, without running the protocol).
Let U guess

i = U+ Pr[Pi correctly guesses s] + U−(1 − Pr[Pi correctly guesses s]). Assuming Pi is
interested in the publication of s, then U guess

i < U .
An additional restriction on the oracles Ois is that their responses to every query must be poly-

time computable from s. This is because otherwise they can break security of our cryptographic
primitives.

By ui((σ1, . . . , σn), (aux 1, . . . , auxn), (O1, . . . ,On)), we denote the utility derived by Pi when
every player Pj , 1 ≤ j ≤ n, follows strategy σj with side information (aux j ,Oj).

3.1 Game Theoretic Equilibria

Our goal is to provide a protocol (also frequently referred to as a strategy) such that no rational
party has an incentive to deviate from it. A variety of notions proposed in the literature are a
formalization of this idea, notably (1) that of a Nash equilibrium where, assuming everyone else
is following a prescribed protocol, no player has anything to gain by deviating from it; (2) that of
computational Nash equilibrium [DHR00] where, assuming everyone else is following a prescribed
protocol, a polynomial-time player can only gain at most a negligible amount by deviating from
it; (3) that of (computational) strict Nash equilibrium [KN08a, FKN10] where, assuming everyone

14

else is following the protocol, (with all but negligible probability a poly-time) player has a non-
negligible amount to lose from deviating; (4) that of computational Nash equilibrium that is stable
with respect to trembles [Kat08, FKN10], where assuming everyone else is following the protocol
with high probability (and is deviating in an arbitrary way with some low, although noticeable,
probability), no player has anything to gain by deviating; (5) that of a strategy that survives the
process of iterated deletions of weakly dominated strategies, that is strategies for which another
strategy is better in some circumstances and at least as good in others [HT04, KN08a].

Following Kol and Naor and Fuchsbauer et al., we focus on the notions of strict computational
Nash and computational Nash stable with respect to trembles. As discussed in the introduction,
a non-strict equilibrium may still provide an incentive to deviate if a player believes that other
players may deviate. Further complicating the issue, in the computational setting each player
may want to deviate anyway, for example so that he can compute more information by investing
more time into the computation (see, for example, Lysyanskaya and Triandopoulos [LT06] for a
discussion on this issue); Fuchsbauer et al. get around this by only comparing a given strategy to
strategies that visibly deviate from it, so that essentially a strategy that carries out some additional
computation on the side is considered equivalent to one that does not, more on this definition below.
Surviving iterated deletion seemed like a good indication that a strategy does not suffer from such
shortcomings; however, as shown by Kol and Naor, this notion is useless in a setting where no
strategy weakly dominates another and so every strategy survives.

We now give a modified definitions of strict computational Nash equilibrium which takes into
account that in our setting each player has access to auxiliary information and, additionally, a side
information oracle. Here, let Π be a secret sharing scheme and σi be the prescribed strategy of Pi
in the reconstruction phase.

Definition 5 (Computational Nash with side information). Π induces a computational Nash equi-
librium with side information (AUX ,O) = {aux i,Oi} if for every Pi, any probabilistic polynomial-
time strategy σ′i, ui((σ

′
j , σ−j),AUX ,O) ≤ ui(σ,AUX ,O) + ν(k) for some negligible ν.

Fuchsbauer et al. defined the notion of equivalent play: let Π be a protocol for P1, . . . , Pn, and
let ρi be a strategy for Pi. Then ρi yields equivalent play with respect to Π (denoted ρi ≈ Π) if given
the views of all the players Pj 6= Pi, it is impossible to distinguish, in polynomial time, whether
Pi is following Π or some prefix of ρi. (By ”prefix” of ρi we mean that Pi was following ρi but at
some point stopped sending any messages to other players.) We augment their definition to that of
equivalent play with side information: Let (AUX ,O) = {aux i,Oi} be the side information available
to the players; then ρi ≈(AUX ,O) Π if, given the views of all the players Pj 6= Pi, including their
auxiliary information and all of their oracle queries, no polynomial-time algorithm can distinguish
whether Pi is following Π or some prefix of ρi. (Note that we’ve omitted some of the details of this
definition; we refer the reader to Fuchsbauer et al. for full details of their definition, and note that
our modifications are relatively straightforward.)

Definition 6 (Computational strict Nash with side information). Π induces a computational strict
Nash equilibrium with side information (AUX ,O) = {aux i,Oi} if it is a Nash equilibrium with
side information and for every Pi, for any probabilistic polynomial-time strategy σ′i 6≈(AUX ,O) Π,
ui((σ′i, σ−i),AUX ,O) < ui(σ,AUX ,O) + ε(k) for some non-negligible ε.

The idea of a protocol that is stable with respect to trembles is motivated by Katz [Kat08],
and defined by Fuchsbauer et al. [FKN10]. It captures the idea that if Pi believes that the other

15

players are most likely following Π, then Pi has nothing to gain from deviating – even if with some
probability they are following some other strategy, in fact some strategy designed in such a way
as to induce Pi to deviate. For 0 ≤ δ ≤ 1, 1 ≤ i ≤ n, let Σδ

−i be the set of strategies where
with probability 1− δ the players Pj 6= Pi follow Π = (σ1, . . . , σn), and with probability δ they do
something else.

Definition 7 (Computational Nash stable wrt trembles with side information). Π induces a com-
putational Nash equilibrium stable with respect to trembles with side information (AUX ,O) =
{aux i,Oi} if it is a Nash equilibrium with side information and for every Pi, for all non-negligible
δ, for all σ′−i ∈ Σδ

−i, for any σ′i 6≈(AUX ,O) Π, ui((σ′i, σ
′
−i),AUX ,O) ≤ ui((σi, σ′−i),AUX ,O)+ν(k)

for some negligible ν.

3.2 The Protocol

Intuition. Our protocol builds on that of Fuchsbauer et al. [FKN10], but is a strict computational
Nash with respect to trembles even if all or some of the participants Pi have access to a side
information oracle Ois or know other side information about s captured by a string aux i.

Fuchsbauer et al.’s protocol works as follows: the dealer picks a round r∗ using the geometric
distribution, such that in this round, the participants will reconstruct the secret s, and in the
following round r∗ + 1, they will learn that the value they just reconstructed was indeed s. A
participant ending the protocol or deviating from it after just learning the outcome sr of a particular
round r does not know whether sr = s, and has no way of finding that out, so he prefers to continue
participating in the protocol until he learns for sure that a particular value was correct. Of course,
this analysis crucially relies on the player’s inability to verify whether sr is the correct secret.

Access to side information (especially side information that the dealer may not have had and
had no way of accounting for, i.e. no way to create a believable-looking but still incorrect sr) may
dramatically alter a player’s payoffs, and may make deviation upon learning sr desirable.

For example, suppose that s is a decryption key for a publicly available ciphertext, or a signing
key corresponding to a publicly available verification key. Then all players have sufficient side
information to recognize s when they see it, so the Fuchsbauer et al. results don’t apply. What is
more, the impossibility result of Asharov and Lindell [AL09] showed that in the standard model,
this limitation is inherent.

Our main modification of the Fuchsbauer et al. protocol is to have the player learn sr∗ = s̃,
which is a time-delayed encryption of s, in round r∗, and a random string sr in every round r 6= r∗.
By introducing timed rounds, we force each participant to make the choice to either follow the
protocol or deviate from it before any of them can determine the contents of s̃ and check if it’s the
secret s. Thus, deviation upon learning sr is not desirable: no Pi has time to figure out if sr = s̃
or is just a random string, and so needs to play along so as not to disrupt the protocol: a Pi that
deviates from the protocol before obtaining s̃ will never learn s.

Building blocks. Our protocol requires verifiable random functions (VRFs), which were intro-
duced by Micali, Rabin, and Vadhan [MVR99]. Here, we need VRFs with unique proofs; con-
structions of such VRFs in the standard model have been given by [Dod03] and [DY05], among
others.

Recall that a VRF is a pseudo-random function, augmented with a public key and a secret key,
such that the function cannot be computed without the secret key, but input-output pairs can be

16

verified with the public key (and some proof information, generated with the secret key).
More formally a VRF is a tuple of probabilistic, polynomial-time algorithms (GenVRF,Eval,Prove,Vrfy),

such that for any (PK ,SK) output by GenVRF(1k), we have:

Pseudorandomness EvalSK is a PRF

Correctness VrfyPK (x,EvalSK (x),ProveSK (x)) = 1

Verifiablilty There does not exist a tuple (x, y, y′, π, π′) with y = y′ and VrfyPK (x, y, π) = 1 =
VrfyPK (x, y′, π′)

Unique proofs There does not exist a tuple (x, y, π, π′) with π = π′ and VrfyPK (x, y, π) = 1 =
VrfyPK (x, y, π′)

Timing assumptions. First, let us assume that all participants have a realistic idea of the clock
drift, network latencies, and each others’ speeds. In other words, all participants have agreed on
some values τ , ∆, speedmax that are upper bounds on the actual clock drift, network latency, and
speed of each party, respectively. All participants also agree on some value speedmin which is a lower
bound on their true speed of computation. The equilibrium properties of our protocol crucially
rely on the assumption that all parties have access to these values.

Note that if at time t, Pj is supposed to send a message to Pi, then Pi knows that by the
time his local clock shows t + τ + ∆, he should have heard from Pj if Pj is indeed following the
protocol. Note also that, if a particular subroutine of the protocol requires k computation steps
and is scheduled to start at time t, then at time t+ k/speedmin everyone will have completed it.

The Timing Model. Recall the cryptographic timing model introduced by Dwork, Naor and
Sahai [DNS04] and explored further [PTV10] in the context of concurrent zero-knowledge (cZK)
proofs. There, each participant in a protocol is modeled as a machine that is enhanced with a clock.
In the cZK literature, the adversary has full control of the clocks, except that he cannot cause the
clocks to go back in time, or cause the clocks of different players to drift more than a parameter τ
apart, or cause more than a ∆ latency in the transmission of any message.

Our model is inspired by the cZK timing model; however we need to be somewhat stricter,
because not only do we need to model the time it takes for protocol messages to be delivered,
we also need to model the time it takes for protocol messages to be computed. This is sensitive
to the way we model protocol participants; the cZK literature models them as interactive Turing
machines, but this is unsuitable if we want to be able to realistically estimate the time it takes them
to compute protocol messages. Therefore, also inspired by the work on memory-bound functions [],
we model every protocol participant as an interactive RAM machine with a read-only input tape,
a write-only output tape, a cache and a memory; its speed of computation is proportional to how
many memory accesses it can carry out within a unit of time. Thus, computation that can be
carried out using the cache only is essentially free in our model — this can be corrected for, when
needed, by simply revising more expensive computational tasks to instruct them to make some
number of memory accesses.

Although in our setting there is no adversary, we still assume that the clocks are set up adver-
sarially but within the following constraints:

Pi’s clock Each participant Pi has a local clock variable, denoted timei. The value of timei can
never decrease.

17

Pi’s computation speed Each participant Pi has a computation speed speedi such that, if Pi is
running an algorithm requiring k memory accesses, and timei = t at the beginning of the
computation of this message, then timei = t+ k/speedi when the message is computed.

τ-synchronization For every pair of participants Pi, Pj , |timei − timej | ≤ τ .

∆-latency If Pi sends a message to Pj when his local clock is timei = t, then Pj will have received
this message when timei = t+ ∆.

Following the cZK literature [PTV10], a protocol in this model can make use of these variables
as follows: A participant may be instructed to schedule a particular message to go out at a particular
time, to measure how much time has elapsed since a particular event happened, and to check if a
message from another participant was received by a specific deadline.

Rounds. The timing model naturally yields itself to protocols that proceed in rounds, which the
reconstruction protocol does. Let m be the maximum number of steps required for the computation
of each round. We assume that the start time of the first round is t1, which is agreed upon in
advance, and the start of each subsequent round r > 1 is tr = tr−1 + ∆ + τ +m/speedmin . Every
round has the following structure: at local time tr, each party checks messages on its input tape
and determines whether it has enough information to compute s, or whether any other player has
deviated from the protocol. If this is the case, it enters the postprocessing phase; otherwise, Pi
computes its responses to each Pj , sends out all the responses at local time tr + m/speedmin , and
does nothing until time tr+1.

Security, hardness, length and utility parameters. Our protocol uses (Gen,Enc,Dec,Unseal),
a time-delayed encryption scheme. Recall that a time-delayed encryption scheme requires a security
parameter k and a hardness parameter h. The security parameter k is just the regular security
parameter: only strategies whose running time is polynomial in k are considered feasible. The
hardness parameter h is set in such a way that even on a machine with speedmax , it is impossible
to unseal a key in time ∆ + 2τ + m/speedmin (this is not a circular definition because, as we will
see, m here does not depend on h).

Given k and h, let |K̃| be the length of sealed keys in the time-delayed encryption scheme,
and |c| be the length of ciphertexts in the time-delayed encryption scheme. Then we define
` = |K̃| + |c|. Note that ` depends only on k and h. Let (GenVRF,Eval,Prove,Vrfy) and
(GenVRF′,Eval′,Prove′,Vrfy′) be verifiable random functions (VRFs) with range {0, 1}` and {0, 1}k,
respectively.

Let S = {0, 1}|s| be the domain of the secret.
Let β be a parameter that depends on the utilities of the players in the secret sharing protocol;

namely, β is such that U+β + U guess
i (1 − β) < U for every Pi. We will refer to β as the utility

parameter.

The protocol for n-out-of-n secret sharing runs in time polynomial in k during the sharing and
postprocessing phases, and in time polynomial in h < k during the reconstruction phase. The
protocol is given in Figure 2.

18

Sharing phase: Let s be the secret to be shared. The dealer’s protocol for the sharing phase is as follows:

1. K, K̃, F ← Gen(1k)

2. Compute c← EncK(s), and set s̃← (c, K̃); s̃ is the value that the participants need to reconstruct in
the reconstruction phase.

3. Choose r∗ ∈ N, the round in whch s̃ will be reconstructed, according to a geometric distribution with
parameter β, i.e. ∀i ≥ 1,Pr[r∗ = i|r∗ ≥ i] = β.

4. (pk1, sk1), . . . , (pkn, skn)← GenVRF(1k) and (pk ′1, sk ′1), . . . , (pk ′n, sk ′n)← GenVRF′(1k).

5. Choose random (n − 1)-degree polynomials G ∈ F2` [x] and H ∈ F2k [x] such that G(0) = s̃ and
H(0) = 0. Note that G(j) and H(j) are random `-bit and k-bit strings, respectively.

6. Send sk i, sk ′i to Pi, and send the following values to all parties:

• F
• (pk j , pk ′j) for 1 ≤ j ≤ n
• gj = G(j)⊕ Evalskj

(r∗) for 1 ≤ j ≤ n
• hj = H(j)⊕ Eval′sk ′

j
(r∗ + 1) for 1 ≤ j ≤ n

Reconstruction phase: Each player Pi (for 1 ≤ i ≤ n) chooses s(0)i uniformly from {0, 1}`. In each round
r = 1, . . ., the players do the following:

1. Except in the first round, Pi checks for messages y(r)
j , z

(r)
j , π

(r)
j , π

(r)
j from each other player Pj . If Pi

has not received these messages from any other player Pj by the beginning of this round, or if for any
Pj , Vrfypkj

(r, y(r)
j , π

(r)
j) = 0, or Vrfy′pk ′

j
(r, z(r)

j , π
(r)′

j) = 0, then Pi aborts and goes to postprocessing.
If not, Pi does the following:

(a) Pi sets h(r)
j = hj ⊕ z(r)

j for 1 ≤ j ≤ n, and interpolates a degree-(n− 1) polynomial H(r) through

the n points h(r)
1 , . . . , h

(r)
n . If H(r)(0) = 0 then player Pi goes to postproccessing immediately

after sending its current-iteration message.

(b) Otherwise, player Pi computes s(r)i as follows: set g(r)
j ← gj ⊕ y

(r)
j for each other player j.

Interpolate a degree-(n − 1) polynomial G(r) through the points g(r)
1 , . . . , g

(r)
n and set s(r)i ←

G(r)(0).

2. Each player Pi sends the following to all players:

(y(r)
i = Evalski

(r), z(r)
i = Eval′sk ′

i
(r), π(r)

i = Proveski
(r), π(r)′

i = Prove′sk ′
i
(r))

Postprocessing: Each player i runs postprocessing on the computed s(r−1)
i , where r is the round in which

player i terminates, as follows:

1. Interpret s(r−1)
i as the tuple (ci, K̃i).

2. Compute Ki ← UnsealF (K̃i) and output DecKi
(ci).

Figure 2: Secret Sharing Protocol

3.3 Analysis

The crucial observation for our analysis (following in the footsteps of Fuchsbauer et al., who in turn
follow Kol and Naor) is that with all but negligible probability, the set of messages that Pi sends

19

to other players in every round is unique, and Pi cannot undetectably send a different message to
any Pj . Thus the only choices Pi faces at every round is simply whether to send out all of his
messages (so the resulting strategy yields equivalent play with respect to the original protocol Π),
some of them (perhaps probabilistically, for example by sending a message essentially too late for a
particular round), or none of them. For the purposes of our analysis, let us discard exact message
timing information; all that matters is whether messages arrived on time for a given round.

Suppose all players Pj , j 6= i, are following the protocol Π. Suppose that Pi has also been
following some strategy that yields equivalent play with respect to Π, up to the beginning of round
r. If Pi chooses not to send his round r message to Pj , he will cause Pj to abort (and go to
postprocessing) in round r + 1, so Pi will not hear from Pj from round r + 1 on. Thus, unless Pi
already has sufficient information to compute s by the end of round r, if he chooses not to send
one of his round r messages, he will never be able to compute s, and the best he can do is guess.

Let us consider all the information that is available to Pi in round r at the deadline when he
needs to either send his round r message or not. There are two cases: (1) Pi already received all the
round r messages from all the other players — this corresponds to Pi being similar to a ”rushing”
adversary in the standard synchronous MPC model; (2) Pi has not received all of the other round
r messages.

Suppose we have case (1). Then Pi can compute si(r) = G(r)(0) and H(r)(0). By the properties
of time-delayed encryption and VRFs, and because Pi does not have time to execute 2h memory
reads in this round, for r < r∗ + 1 these values are indistinguishable from a random string that is
independent of the secret, even with access to auxiliary string aux i and side information oracle Ois.
Therefore, computationally, whether r∗ is equal to r is independent of his view (an algorithm for
Pi that deviates based on whether r∗ = r can be used in a straightforward way in a reduction to
break the security of either the VRF or the time-delayed encryption), so from Pi’s point of view,
Pi’s expected utility if it continues playing equivalently to Π is at least U (everyone else is following
Π, so if Pi does as well, everyone will learn s and get utility U), while if Pi does not send out at
least one of its messages, Pi’s expected utility is βU+ + (1 − β)U guess

i < U for our choice of β.
Now suppose that r = r∗ + 1. In that case Pi learns that H(r)(0) = 0, and so si(r − 1) = s̃ is a
time-delayed encryption of s. Then even if Pi chooses not to send some of his round r messages,
this makes no difference to his utility: everyone will run the postprocessing phase and output s.

Suppose we have case (2). Then Pi has even less information than in case (1), and so the
same argument we made in case (1) for r < r∗ + 1 also applies here. In case r = r∗ + 1, with
the information Pi has it cannot tell whether H(r)(0) = 0 (in fact this value is computationally
independent of his view), and so his interests are best served by sending out all of his round r
messages. Thus, Π is a computational strict Nash equilibrium with side information.

The protocol Π is also stable with respect to trembles. Suppose player Pi believes that, with
non-negligible probability δ, players P−i will not follow the protocol (instead following some other
strategies, σ′−i). Consider a strategy σ′i 6≈(AUX ,O) σi for Pi, and consider the case when every other
player P−i is following σ−i with probability (1 − δ) and σ′−i with probability δ; let ui(σ) be the
utility of Pi from following strategy σ under these conditions. If no player visibly deviates from the
protocol Π before round r∗+1, then other players will learn s, and ui(σ′i) ≤ ui(σi) = U . If σ′i is such
that Pi will not deviate until after another player has done so, then σi and σ′i yield equivalent play
with respect to Π, since such a σ′i will not cause Pi to deviate if no other player does. Therefore,
we are only interested in the case when σ′i deviates first with some non-negligible probability.

Define p = Pr[Pi deviates before any other player]. We have ui(σ′i) − ui(σi) ≤ U+ − U−, and

20

this may be achievable when the alternative set of strategies σ′−i are chosen appropriately, with
probability δp. With probability (1 − δ)p, Pi deviates before any other player, and gets U+ if he
happened to abort in round r∗, and U guess

i otherwise. Finally, with probability (1− p), Pi does not
deviate, and gets the same utility whether he was playing σi or σ′i. Putting this all together, we
get the following for the expected value of the extra utility Pi gets from following σ′i:

E[ui(σ′i)− ui(σi)] ≤ (U+ − U−)δp+ (βU+ + (1− β)U guess
i − U)(1− δ)p

Recall that the term (βU+ + (1− β)U guess
i −U) is negative (or else Pi is not interested in the pub-

lication of the secret). Therefore, there exists δ > 0 such that Pi’s expected utility from deviating
is negative (for large enough k), even when other players may deviate with some probability δ; this
gives us that the protocol is stable with respect to trembles.

We remark that, as proven in [AL09], the protocol cannot be utility independent; that is, a
player’s utilities for learning the secret must be known in order to properly set β. We also note
that the protocol is not resilient to backward induction, since the reconstruction round r∗ is less then
exponential in k with all but negligible probability (and if it is not, the security of the underlying
primitives can be broken).

References

[ABMW05] Martin Abadi, Mike Burrows, Mark Manasse, and Ted Wobber. Moderately hard,
memory-bound functions. ACM Trans. Internet Technol., 5(2):299–327, 2005.

[ADGH06] Ittai Abraham, Danny Dolev, Rica Gonen, and Joe Halpern. Distributed computing
meets game theory: robust mechanisms for rational secret sharing and multiparty
computation. In PODC ’06: Proceedings of the twenty-fifth annual ACM symposium
on Principles of distributed computing, pages 53–62, New York, NY, USA, 2006. ACM.

[AL09] Gilad Asharov and Yehuda Lindell. Utility dependence in correct and fair rational
secret sharing. In CRYPTO ’09: Proceedings of the 29th Annual International Cryp-
tology Conference on Advances in Cryptology, pages 559–576, Berlin, Heidelberg, 2009.
Springer-Verlag.

[BCHVS08] Foteini Baldimtsi, Konstantinos Chalkias, Dimitrios Hristu-Varsakelis, and George
Stephanides. Mathematical problems and algorithms for timed-release encryption.
Bulletin of the Transilvania University of Brasov, 15(50):1–4, 2008. Series B.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In
Joe Kilian, editor, Advances in Cryptology CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 213–229. Springer Berlin / Heidelberg, 2001.

[CHKO06] Jung Cheon, Nicholas Hopper, Yongdae Kim, and Ivan Osipkov. Timed-release and
key-insulated public key encryption. In Giovanni Di Crescenzo and Avi Rubin, editors,
Financial Cryptography and Data Security, volume 4107 of Lecture Notes in Computer
Science, pages 191–205. Springer Berlin / Heidelberg, 2006.

[DGN03] Cynthia Dwork, Andrew Goldberg, and Moni Naor. On memory-bound functions for
fighting spam. In Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 426–444. Springer Berlin / Heidelberg, 2003.

21

[DHR00] Yevgeniy Dodis, Shai Halevi, and Tal Rabin. A cryptographic solution to a game
theoretic problem. In Mihir Bellare, editor, Advances in Cryptology CRYPTO 2000,
volume 1880 of Lecture Notes in Computer Science, pages 112–130. Springer Berlin /
Heidelberg, 2000.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. J. ACM,
51(6):851–898, 2004.

[Dod03] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. In
PKC ’03: Proceedings of the 6th International Workshop on Theory and Practice in
Public Key Cryptography, pages 1–17, London, UK, 2003. Springer-Verlag.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short
proofs and keys. In Serge Vaudenay, editor, Public Key Cryptography - PKC 2005,
volume 3386 of Lecture Notes in Computer Science, pages 416–431. Springer Berlin /
Heidelberg, 2005.

[FKN10] Georg Fuchsbauer, Jonathan Katz, and David Naccache. Efficient rational secret
sharing in standard communication networks. In Daniele Micciancio, editor, Theory
of Cryptography, volume 5978 of Lecture Notes in Computer Science, pages 419–436.
Springer Berlin / Heidelberg, 2010.

[GK06] S. Gordon and Jonathan Katz. Rational secret sharing, revisited. In Roberto De Prisco
and Moti Yung, editors, Security and Cryptography for Networks, volume 4116 of
Lecture Notes in Computer Science, pages 229–241. Springer Berlin / Heidelberg, 2006.

[HT04] Joseph Halpern and Vanessa Teague. Rational secret sharing and multiparty compu-
tation: extended abstract. In STOC ’04: Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 623–632, New York, NY, USA, 2004. ACM.

[Kat08] Jonathan Katz. Ruminations on defining rational mpc, 2008. Talk given at
Summer School on Rational Cryptography, Bertinoro, Italy. Slides available at
http://www.daimi.au.dk/ jbn/SSoRC2008/program .

[KN08a] Gillat Kol and Moni Naor. Cryptography and game theory: Designing protocols for
exchanging information. In Ran Canetti, editor, Theory of Cryptography, volume 4948
of Lecture Notes in Computer Science, pages 320–339. Springer Berlin / Heidelberg,
2008.

[KN08b] Gillat Kol and Moni Naor. Games for exchanging information. In STOC ’08: Pro-
ceedings of the 40th annual ACM symposium on Theory of computing, pages 423–432,
New York, NY, USA, 2008. ACM.

[LT06] Anna Lysyanskaya and Nikos Triandopoulos. Rationality and adversarial behavior
in multi-party computation. In Cynthia Dwork, editor, Advances in Cryptology -
CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages 180–197.
Springer Berlin / Heidelberg, 2006.

22

[MNT09] Peter Miltersen, Jesper Nielsen, and Nikos Triandopoulos. Privacy-enhancing auctions
using rational cryptography. In Shai Halevi, editor, Advances in Cryptology - CRYPTO
2009, volume 5677 of Lecture Notes in Computer Science, pages 541–558. Springer
Berlin / Heidelberg, 2009.

[MVR99] Silvio Micali, Salil Vadhan, and Michael Rabin. Verifiable random functions. Founda-
tions of Computer Science, Annual IEEE Symposium on, 0:120, 1999.

[PTV10] Rafael Pass, Wei-Lung Tseng, and Muthuramakrishnan Venkitasubramaniam. Eye for
an eye: Efficient concurrent zero-knowledge in the timing model. In Daniele Micciancio,
editor, Theory of Cryptography, volume 5978 of Lecture Notes in Computer Science,
pages 518–534. Springer Berlin / Heidelberg, 2010.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, Cambridge, MA, USA, 1996.

A Standard Architecture

The following definition of a “standard architecture” is verbatim from [DGN03]. We assume the
adversary is limited to a “standard architecture” as follows:

1. There is a large memory, partitioned into m blocks (also called cache lines) of b bits each;

2. The adversary’s cache is small compared to the memory. The cache contains at most s (for
“space”) words; a cache line typically contains a small number (for example, 16) of words;

3. Although the memory is large compared to the cache, we assume that m is still only polyno-
mial in the largest feasible cache size s;

4. Each word contains w bits (commonly, w = 32);

5. To access a location in the memory, if a copy is not already in the cache (a cache miss), the
contents of the block containing that location must be brought into the cache – a fetch;

6. We charge one unit for each fetch of a memory block. Thus, if two adjacent blocks are brought
into cache, we charge two units (there is no discount for proximity at the block level).

7. Computation on data in the cache is essentially free. By not (significantly) charging the
adversary for this computation, we are increasing the power of the adversary; this strengthens
the lower bound.

23

