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Abstract

A (2, n)-Visual Cryptography Scheme (VCS) is a kind of secret sharing scheme, where n
participants share a secret image, and any two of them can recover the secret image visually
without any cryptographic knowledge and computation devices, but any one of them cannot
get any information about the secret image other than the size of the secret image. This paper
studies the (2, n)−V CSXOR, and shows the smallest (optimal) pixel expansion of such schemes,
and the largest possible contrast for the (2, n) − V CSXOR given its optimal pixel expansion.
It also shows the largest (optimal) contrast of the (2, n)− V CSXOR, and the smallest possible
pixel expansion of such schemes given their optimal contrast. The results of this paper show
that the (2, n) − V CSXOR can achieve smaller pixel expansion and larger contrast than that
of (2, n)− V CSOR. It also shows that the construction of the basis matrix of optimal contrast
(2, n)−V CSXOR is equivalent to the construction of binary codes when they reach the maximum
capability, and the construction of a specific class of optimal contrast (2, n) − V CSXOR for
n = 2k − 1 is given.
Keywords: Secret sharing, Visual cryptography scheme, Coding theory

1 Introduction

The basic principle of Visual Cryptography Scheme (VCS) was first introduced by Naor and
Shamir. The idea of the visual cryptography model proposed in [22] is to split an image into
two random shares (printed on transparencies) which separately reveal no information about the
original secret image other than the size of the secret image. The image is composed of black and
white pixels. The original image can be reconstructed visually by superimposing the two shares.
The underlying operation of such scheme is OR. Similar model of visual cryptography with different
underlying operation has been proposed. Such as the XOR operation studied in [3, 16, 18, 30, 31],
examples of the visual cryptography system under the XOR operation can be found in [16, 32, 36].
Besides, the XOR based VCS can be applied on some state of the art displays, such as multi-layer
display [23]. In this paper, we denote V CSXOR and V CSOR as VCS under XOR and OR operations
respectively. A simple 2 out of 2 V CSXOR is shown in Figure 1: denote ⊕ as the XOR operation,
we have (d) = (b)⊕ (c) in Figure 1.

VCS seems quite primitive, however some of its properties make VCS quite useful. From a
practical viewpoint, first, complex encryption techniques may not convince the users for better
security, instead the users may feel more worries about those complex techniques they do not un-
derstand. For many users, seeing is believing. Second, traditional cryptography highly relies on
complex computations, the attackers can not recover the plaintexts in a reasonable time without
knowing the key. Hence, for the traditional cryptography, computation devices are necessary for
decrypting ciphertexts. However, the computation devices are usually vulnerable to trojan horses
and virus. Another possibility of leaking secrets comes from users’ incorrect operations. To avoid
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Figure 1: A 2 out of 2 V CSXOR where (a) is the original image, (b) and (c) are the shares, (d) is
the recovered image from (b) and (c).

this, it is usually required that the users know some professional cryptographic knowledge, which
is not realistic for ordinary people in many circumstances. As we have already mentioned, VCS
outputs a secret image on decrypting, and the users can see the decrypted image directly. Fur-
thermore, the decryption of VCS does not rely on any computation devices and does not require
the users to know any cryptographic knowledge. From the above viewpoint, VCS shows some
advantages against the traditional cryptography. Many applications of VCS have been proposed
by now [12, 14, 21, 25, 29, 38]. Besides, recently, many copyright protection schemes which take
VCS as building blocks are proposed, for example [5, 6, 13, 17, 19, 35]. Although some of these
copyright protection schemes take the OR based VCS as building blocks, it is clear that, if we
change the OR based VCS to the XOR based ones, then the copyright schemes are still valid and
can be significantly simplified.

VCS’s are mainly characterized by two parameters: the pixel expansion, which is the number of
sub-pixels each pixel of the original secret image is encoded into, and the contrast, which measures
the clearness of the recovered image. To improve the quality of the recovered image, many schemes
have been proposed in [2, 9, 22], but the drawbacks of those schemes are the large value of pixel
expansion and that the participants have to take many shares with them. Recent studies show that
V CSXOR often has advantages on pixel expansion and contrast properties compared with V CSOR,
see examples in [18, 31]. In this paper, we focus on optimization of pixel expansion and contrast
for V CSXOR.

So far three ways have been found to realize the XOR based visual cryptography scheme. The
first was proposed in [3, 30, 31], which realized the XOR operation by making use of the polarization
property of light where two liquid crystal displays are needed. The second was proposed in [16],
which realized the XOR operation by using a Mach-Zehnder Interferometer. And the third method,
proposed in [33], needs a copy machine with the reversing function. By investigating the above
three ways of realizing XOR based VCS, it is easy to find, that the decoding method of these three
ways becomes more complicated when decoding more shares. Particularly, the first and the second
methods need k Mach-Zehnder Interferometers or liquid crystal displays to decode the secret image
for the (k, n)−V CSXOR, and will inevitably make the cryptography system complicated and cause
many difficulties, such as aligning the pixels and signal attenuation. For the third method, it will
need many reversing copies to decode the secret image, see examples in [7, 33]. In other words,
the XOR based VCS is most practical for the (2, n) case. In this paper, we only consider the
(2, n)− V CSXOR.

Many studies in the literature also focused on (2, n) − V CS. Blundo et al. [2, 4] studies the
contrast and pixel expansion bounds for the (2, n)−V CS only under the OR operation. Santis [27]
considers the contrast and pixel expansion bounds for (2, n)−V CS under the combination function
f , however, their pixel expansion bound n <

(
m
⌊m/2⌋

)
can be improved, and they do not give any

explicit constructions for the (2, n) − V CS with regard to the optimal pixel expansion and the
optimal contrast. Biham [3] gives a simple construction of the (2, n) − V CSXOR and Tuyls et
al. [30, 31] presents an simple equivalence relationship between the construction of the (2, n) −
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V CSXOR and the binary code. However neither of them has given deep discussions on how to
construct optimal (2, n)− V CSXOR with regard to the pixel expansion or contrast.

The construction of schemes with both optimal contrast and optimal pixel expansion seems
impossible. So, in this paper we construct VCS with optimal pixel expansion and optimal contrast
respectively. Without confusion, we sometimes refer to the largest contrast as the optimal contrast,
and smallest pixel expansion as the optimal pixel expansion. Compared to the studies in the
literature, the contributions of this paper can be reflected from the following three aspects:

∙ We construct the (2, n)−V CSXOR with the optimal pixel expansion ⌈log2 n⌉. We also study
the contrast property of such schemes, and prove that, the largest possible contrast of the
optimal pixel expansion (2, n)− V CSXOR is 1

⌈log2 n⌉
, and the largest average contrast of such

schemes is 2⌊n/2⌋⌈n/2⌉
n(n−1) .

∙ We prove that the optimal contrast of (2, n)− V CSXOR is 2⌊n/2⌋⌈n/2⌉
n(n−1) , which is twice better

than the optimal contrast for the (2, n)−V CSOR. Furthermore we show the smallest possible
pixel expansion of the optimal contrast scheme that can be achieved and show how to construct
such schemes. The pixel expansion bound of our scheme is proved to be optimal while the
bound in [27] is not optimal.

∙ We further study the relationship between the optimal contrast (2, n) − V CSXOR and the
binary code. We find, that for odd n, the rows of the basis matrix of the optimal contrast
(2, n + 1) − V CSXOR are equivalent to the (m, n+1

2n m) binary code which reaches its max-
imum capacity, and the rows of the basis matrix of the optimal contrast (2, n) − V CSXOR
are equivalent to the (m, (n+1)m

2n , (n±1)m
2n ) constant weight code which reaches its maximum

capacity, hence this result enables us to use the known construction of maximum capacity
binary codes to construct the optimal contrast (2, n)− V CSXOR. In addition, we also give a
construction of optimal contrast (2, n)− V CSXOR for n = 2k − 1, by using the technique of
m-sequences.

The rest of this paper is organized as follows: Sec. 2 gives some definitions of VCS, and in Sec. 3,
we study the schemes with smallest (optimal) pixel expansion, in Sec. 4, we study the schemes with
largest (optimal) contrast, in Sec. 5, we study the relationship between the construction of optimal
contrast VCS and that of binary codes with maximum capacity. The paper is then concluded in
Sec. 6.

2 Preliminaries

In this section, we will give some definitions about visual cryptography under the operation ∙,
which can be the OR operation as discussed in [22] or the XOR operation as discussed in [3, 16,
30, 31]. We will restrict ourselves to images only consisting of black and white pixels and encode
one pixel at a time, where we denote by 1 for a black pixel and 0 for a white pixel. In order to
share a complete image, the scheme has to be applied to all the pixels in the image.

The (2, n)−V CSXOR is a special case of the (k, n)−V CSXOR. By a (k, n)−V CSXOR we mean
a scheme in which a secret pixel (black or white) is divided into n shares which are distributed to
the n participants. Any subgroup of k out of these n participants, can reconstruct the secret but
any subgroup consisting of less than k participants does not have any information other than the
size about the secret image.

For a vector v ∈ GFm(2), we denote by w(v) the number of 1’s in the vector v (i.e. w(v) is
the Hamming weight of v). A (k, n)-VCS, denoted by (C0, C1), consists of two collections of n×m
binary share matrices C0 and C1. To share a white (resp. black) pixel, a dealer (the one who sets
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up the system) randomly chooses one of the matrices in C0 (resp. C1) and distributes its rows
(shares) to the n participants of the scheme. For convenience, we call a column (resp. row) of a
boolean matrix with an even number of 1’s even column (resp. row) and otherwise odd column
(resp. row).

More precisely, we give a formal definition of (k, n)-VCS as follows.

Definition 1 ([31]) Let k, n, m, l and ℎ be nonnegative integers satisfying 2 ≤ k ≤ n and
0 ≤ l < ℎ ≤ m. The two collections of n×m share matrices (C0, C1) constitute a threshold Visual
Cryptography scheme (k, n)− V CS if the following conditions are satisfied:

1. (Contrast) For any s ∈ C0, the “∙” operation of any k out of n rows of s satisfies w(v) ≤ l.

2. (Contrast) For any s ∈ C1, the “∙” operation of any k out of n rows of s satisfies w(v) ≥ ℎ.

3. (Security) For any i1 < i2 < ⋅ ⋅ ⋅ < it in {1, 2, ⋅ ⋅ ⋅ , n} with t < k, the two collections of
t ×m matrices Dj for j ∈ {0, 1}, obtained by restricting each n ×m matrix in Cj to rows
i1, i2, ⋅ ⋅ ⋅ it, they are indistinguishable in the sense that they contain the same matrices with
the same frequencies.

In the above definition,

1. v is the resulting vector of the “∙” operation over the restricted k out of the n rows.

2. ℎ and l are the thresholds of the scheme, ℎ is called darkness level and l is called the
wℎiteness level.

3. m is called the pixel expansion of the scheme.

4. Define � = ℎ−l
m as the contrast of VCS. For underlying operations OR and XOR we use the

notations �OR and �XOR respectively, if necessary.

We notice that the definitions of VCS under OR and XOR operation are quite similar. Actually
when we do the summation of vectors we mean OR and XOR operation on them respectively, unless
we point out explicitly.

The definition of the average contrast was already given in [3, 15, 24]. Here we adopt the same

definition, i.e. �̄ = ℎ̄−l̄
m , where ℎ̄ is the average value of darkness level in collection C1 and l̄ is the

average value of the whiteness level in collection C0. For the (2, n) − V CS, we can calculate the
average contrast as follows: Formally, denote ri, rj as two rows of an n ×m binary matrix M in
C1 (resp. C0), and ℎ̄M (resp. l̄M ) be the average value of darkness level (resp. whiteness level)

of M , defined as: ℎ̄M =
∑

1≤i<j≤n w(ri⊕rj)

(n2)
and ℎ̄ =

∑
M∈C1

ℎ̄M

∣C1∣ (resp, l̄M =
∑

1≤i<j≤n w(ri⊕rj)

(n2)
and

l̄ =

∑
M∈C0

l̄M

∣C0∣ ). Note that, the difference between ℎ̄M and l̄M is that, they are computed from the
different collections C1 or C0 respectively. At this time, we can calculate the average contrast by
using the formula �̄ = ℎ̄−l̄

m .

The average contrast is used to evaluate the clearness of the recovered secret image in an overall
viewpoint. But it has the disadvantage in reflecting the clearness of the details in the recovered
secret image, i.e. the average contrast is suitable as a criterion of the clearness for the secret images
drawn with fairly thick lines (see discussions in [37]). The average contrast is important for the
VCS’s, especially when their share matrices have different values of w(ri⊕ rj) where 1 ≤ i < j ≤ n.
For such share matrices, the traditional definition of contrast only reflect the smallest (resp. largest)
value of the w(ri⊕ rj) in the collections C1 (resp. C0), while the average contrast reflect the values
of w(ri ⊕ rj) from an overall viewpoint. So for the scheme in Example 1 of Section 3, when the
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secret image is drawn with fairly thick lines, the recovered secret image will look like an image with
contrast 2

3 , rather than 1
2 .

Note that the pixel expansion satisfies m ≥ 1 and the contrast and average contrast satisfy
0 < �, �̄ ≤ 1. In general, we are interested in schemes with m being as small as possible and with
the contrast � and the average contrast �̄ being as large as possible.

As stated in Definition 1, the first two conditions ensure that the participants will be able to
distinguish the black and white pixels, and the third condition ensures the security of the scheme.
In fact, for a VCS with � = 0 and �̄ > 0, the participants can still see the decrypted secret image.
However, we do not consider this case in this paper.

To simplify the discussion, all of our constructions in this paper will be based on basis matrix
as defined in Definition 2. And since we only consider the (2, n) − V CSXOR in this paper, the
following definition of basis matrix is only for (2, n) − V CSXOR, and hence has a few differences
from the general one of Definition 1. One will find that the Definition 2 will simplifies the discussions
significantly on analyzing and constructing optimal (2, n)− V CSXOR.

Definition 2 (Basis matrix of (2, n)− V CSXOR) Let n, m and ℎ be positive integers satisfying
0 < ℎ ≤ m. An n × m binary matrix M is called a basis matrix for a (2, n) − V CSXOR, if it
satisfies the following contrast condition: the weight of the XOR (denoted by ⊕) of any 2 of n rows
in M satisfies: w(ji1 ⊕ ji2) ≥ ℎ, where ji (i = 1, ⋅ ⋅ ⋅ , n) is a row of M and ℎ ≥ 1.

By using the basis matrix M presented in Definition 2, one can realize an (2, n) − V CSXOR
construction under the Definition 1 as follows: Define M(i) be the n×m matrix obtained by a cyclic
shift on the rows of M over i positions, denote by C1 the collection C1 = {M(0),M(1), ⋅ ⋅ ⋅ ,M(n−
1)}. Define A(r) be the n×m matrix for which each row equals r, and denote by C0 the collection
C0 = {A(j1), A(j2), ⋅ ⋅ ⋅ , A(jn)}, where j1, j2, ⋅ ⋅ ⋅ , jn are the n rows of M .

Note that in the above definition, the value of the whiteness level l = 0, and the contrast
�XOR = ℎ/m. This approach of the construction of (2, n) − V CSXOR will have small memory
requirements (it keeps only a basis matrix) and it is efficient (to choose a matrix in C1 or C0) as
it only needs to cyclicly shift the rows of the basis matrix, or choose a row from M and generate
A(r)).

We note that some kinds of sub-matrices always exist in the basis matrix of V CSXOR. For

example, the sub-matrices

[
0
1

]
or

[
1
0

]
(i.e. the sub-matrix which consists of a 1 and a 0) always

exist in any basis matrix of the (2, n)−V CSXOR since they cause of the contrast of the V CSXOR,

because the ⊕ of the two rows of them is 1, recall that the other patterns

[
0
0

]
and

[
1
1

]
do not

contribute to the value of w(v) in the Definition 1. In this paper, these kinds of sub-matrices are
called unavoidable patterns. Note that, the definition of the unavoidable pattern under the XOR

operation is different to the definition in [2, 4], where the two patterns

[
0
1

]
and

[
1
0

]
are called

unavoidable patterns respectively, but, here and hereafter, we call the two patterns together as the
unavoidable patterns under the XOR operation. i.e. the basis matrix of the Definition 2 contains
at least one of the two patterns. For an example of the unavoidable patterns, see in Example 1.

Furthermore, it is easy to verify that any share matrix in the collection C1 of Definition 1 for
a (2, n) − V CSXOR can be a basis matrix of Definition 2 (i.e. given any collections (C0, C1) of
a (2, n) − V CSXOR of Definition 1, we can construct a basis matrix (2, n) − V CSXOR under the
Definition 2, which have the same pixel expansion and an equal or larger contrast), which implies
there does not exist a (2, n) − V CSXOR under Definition 1 that has smaller pixel expansion or
larger contrast. And because we study the optimal schemes (smallest pixel expansion and largest
contrast) of (2, n)− V CSXOR, so in this paper, we can study the (2, n)− V CSXOR only based on
the basis matrix defined in the Definition 2.
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3 (2, n)− V CSXOR with optimal pixel expansion

In this section, we show that the optimal pixel expansion of (2, n) − V CSXOR is ⌈log2 n⌉. We
also study the contrast property of such schemes, and prove that, the largest possible contrast of
the optimal pixel expansion (2, n) − V CSXOR is 1

⌈log2 n⌉
, and the largest average contrast of such

a scheme is 2⌊n/2⌋⌈n/2⌉
n(n−1) . And give a concrete construction of (2, n) − V CSXOR that has largest

possible contrast and average contrast given the optimal pixel expansion. It can be easily verified
that the bounds here are far better than the one in [27], and the constructions are better than the
ones in [31] with regard to the pixel expansion.

3.1 Optimal pixel expansion of (2, n)− V CSXOR

The following theorem shows the optimal pixel expansion of (2, n) − V CSXOR. Here and
hereafter, we denote ⌈x⌉ as the smallest integer larger than or equal to x, and denote m∗ as the
optimal pixel expansion of (2, n)− V CSXOR.

Theorem 1 The optimal pixel expansion of (2, n)− V CSXOR is m∗ = ⌈log2 n⌉.

Proof: Assume that there exists a (2, n) − V CSXOR with pixel expansion m < ⌈log2 n⌉, and
denote M as the basis matrix for a black secret pixel, then there must exist two identical rows in
the basis matrix. And the weight of the vector of the sum of the two identical rows is 0, which is
in contradiction with the contrast condition of M . Hence we must have that m∗ ≥ ⌈log2 n⌉.

Let the n rows of M be arbitrary n different vectors of length ⌈log2 n⌉, then the Hamming weight
of any two of the n rows will be no less than 1, according to the Definition 2, we get to know that
M is a basis matrix of the (2, n)−V CSXOR with ℎ = 1, hence the contrast �XOR = ℎ/m ≥ 1

⌈log2 n⌉
.

□

To make thing clearer, we give the following example:

Example 1 A basis matrix of a (2, 3)− V CSXOR can be:

M =

⎡⎣ 00
01
11

⎤⎦
and hence:

C1 =

⎧⎨⎩
⎡⎣ 00

01
11

⎤⎦ ,
⎡⎣ 01

11
00

⎤⎦ ,
⎡⎣ 11

00
01

⎤⎦⎫⎬⎭ and C0 =

⎧⎨⎩
⎡⎣ 00

00
00

⎤⎦ ,
⎡⎣ 01

01
01

⎤⎦ ,
⎡⎣ 11

11
11

⎤⎦⎫⎬⎭
the contrast of this scheme is �XOR = 1/2 and the average contrast of this scheme is �XOR = 2/3.

3.2 Largest possible contrast of (2, n) − V CSXOR given optimal pixel expansion
and constructions

Given a (2, n) − V CSXOR with optimal pixel expansion, its largest possible contrast should
be no larger than the optimal contrast of (2, n) − V CSXOR without the optimal pixel expansion
constraint. The following theorem shows the largest possible contrast of the optimal pixel expansion
(2, n)− V CSXOR.

Theorem 2 The largest possible contrast of the (2, n)−V CSXOR given the optimal pixel expansion
is �∗p = 1

⌈log2 n⌉
.
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Proof: Denote m∗ = ⌈log2 n⌉ as the smallest pixel expansion of the (2, n) − V CSXOR. We
have that log2 n ≤ m∗ < log2 n + 1, i.e. 2m

∗−1 < n ≤ 2m
∗
. Assuming that there exists a

(2, n) − V CSXOR with optimal pixel expansion that has contrast �∗p ≥ 2
m∗ , i.e. �∗p ⋅ m∗ ≥ 2,

this means that at least 2 positions are different for any pair of rows of the share matrix in the
collection C1 of a (2, n) − V CSXOR. Hence, such pair of rows which have only 1 position being
different can not both appear as rows of the share matrix. For the collection of all the vectors of
length m, by adding the vector 0 ⋅ ⋅ ⋅ 0︸ ︷︷ ︸

m−1

1 to them, we have that each vector corresponds to a vector

which has only 1 position being different from it. Hence the 2m
∗

vectors are divided into 2m
∗−1

groups of vectors with each group contains two vectors. In order to form a share matrix in the
collection C1 of a (2, n) − V CSXOR, only one of the two vectors can be chosen in each group,
hence, there are only 2m

∗−1 vectors at most to form the share matrix. Because the number of
rows of a (2, n) − V CSXOR satisfies: 2m

∗−1 < n ≤ 2m
∗
, i.e. there are not enough vectors, say n

vectors, to form a (2, n) − V CSXOR. Hence, we reach a contradiction. This contradiction means
�∗p <

2
m∗ (i.e. �∗p ⋅m∗ < 2), because �∗p ⋅m∗ is integer and �∗p ≥ 1

m∗ (recall that the Definition 2
requires ℎ ≥ 1), hence the largest possible contrast of the (2, n)−V CSXOR given the optimal pixel
expansion m∗ = ⌈log2 n⌉ is �∗p = 1

⌈log2 n⌉
. □

The following Example 2 will make the above proof clearer.

Example 2 Take the (2, 3)− V CSXOR as an example, we have m∗ = 2. Assume that there exists
a share matrix M in the collection C1 of a (2, 3) − V CSXOR with contrast �XOR > 1/2, i.e. the
hamming distance of arbitrary two rows of M is at least 2. Because (00)⊕(01) = (01), (01)⊕(01) =
(00), (10) ⊕ (01) = (11), (11) ⊕ (01) = (10), we know that the four vectors {(00), (01), (10), (11)}
can be divided into two groups {(00), (01)}, {(10), (11)}, and the vectors (00) and (01) can not both
appear in M . Similarly, we have the vector (10) and (11) can not both appear in M either, so we
have only 22−1 = 2 vectors to form M which is not enough since at least n = 3 vectors are needed.
Hence such share matrix M does not exist, and hence such VCS does not exist.

The largest possible contrast of a (2, n)−V CSXOR is affected by its pixel expansion constraint.
However the average contrast is not. We show below that even a (2, n) − V CSXOR has optimal
pixel expansion, its average contrast can reach its maximum value.

Theorem 3 There exists a (2, n)− V CSXOR with the optimal pixel expansion m∗ = ⌈log2 n⌉ and

the largest average contrast �̄XOR = 2⌊n/2⌋⌈n/2⌉
n(n−1) , and it is achieved if and only if all the rows of

the basis matrix are different vectors and all the columns of the basis matrix have Hamming weight
⌊n/2⌋ or ⌈n/2⌉.

Proof: Firstly, we prove the sufficiency: denote M as a matrix satisfies, all the rows are different
vectors and all the columns have weight ⌊n/2⌋ or ⌈n/2⌉. According to the Definition 2, we get to
know that M is a basis matrix of the (2, n)− V CSXOR. And because all the columns have weight

⌊n/2⌋ or ⌈n/2⌉, we get to know that, the total number of the patterns

[
0
1

]
and

[
1
0

]
in M is

⌊n/2⌋⌈n/2⌉ ⋅m∗, hence the average contrast is �̄XOR = ⌊n/2⌋⌈n/2⌉⋅m∗

(n2)⋅m∗
= 2⌊n/2⌋⌈n/2⌉

n(n−1) . Assume that

there are t 1’s in one column of M , then the number of the patterns

[
0
1

]
or

[
1
0

]
reaches its

maximum when t = ⌊n/2⌋ or ⌈n/2⌉, and hence the value 2⌊n/2⌋⌈n/2⌉
n(n−1) is the largest possible average

contrast. And it is not affected by the pixel expansion.

Then we prove the necessity: denote M as a share matrix of the (2, n) − V CSXOR with the

optimal pixel expansion m∗ = ⌈log2 n⌉ and the largest average contrast �̄XOR = 2⌊n/2⌋⌈n/2⌉
n(n−1) . Ac-

cording to the Definition 2, we get to know that all the rows of M are different vectors. Denote
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the total number of the patterns

[
0
1

]
or

[
1
0

]
in M as s, hence the average contrast will be

�̄XOR = s

(n2)m∗
, obviously, the average contrast �̄XOR reach its maximum when s reach its maxi-

mum, since s reaches its maximum when if all the columns have Hamming weight ⌊n/2⌋ or ⌈n/2⌉,
the necessity follows. □

At this point, we give a concrete construction of (2, n) − V CSXOR that has largest possible
contrast and average contrast given the optimal pixel expansion.

Construction 1 Let M ′ be the 2⌈log2 n⌉ × ⌈log2 n⌉ matrix that its rows contain all the vectors of
length ⌈log2 n⌉. Denote a row vector of M ′ as r = (l1, l2, ⋅ ⋅ ⋅ , l⌈log2 n⌉) where l1, l2, ⋅ ⋅ ⋅ , l⌈log2 n⌉ ∈
{0, 1}, and denote its complementary row vector as r̄ = (1 − l1, 1 − l2, ⋅ ⋅ ⋅ , 1 − l⌈log2 n⌉). r and r̄

are called a complementary row vector pair. For an even n, choose (2⌈log2 n⌉−n)/2 complementary
row vector pairs randomly, and for an odd n, choose (2⌈log2 n⌉ − (n + 1))/2 complementary row
vector pairs and another row vector randomly. Remove these rows from M ′, then the resulting
n×⌈log2 n⌉ matrix, denoted by M , is a basis matrix of (2, n)−V CSXOR with optimal pixel expansion

m∗ = ⌈log2 n⌉, optimal contrast �∗p = 1
⌈log2 n⌉

and largest average contrast �̄XOR = 2⌊n/2⌋⌈n/2⌉
n(n−1) .

Proof: The pixel expansion and contrast properties are easy to be verified. We only prove the
average contrast property.

Note that since M ′ only contains all the row vectors of length ⌈log2 n⌉, then each column of M ′

contains 2⌈log2 n⌉−1 1’s. And each column of a complementary row vector pair contains a 1. Hence
after removing columns, for an even n, each column of M has 2⌈log2 n⌉−1 − (2⌈log2 n⌉ − n)/2 = n/2
1’s left. And for an odd n, note that we remove (2⌈log2 n⌉ − (n − 1))/2 complementary row vector
pairs and another row vector. Hence, the number of 1’s in a column of M should be either
2⌈log2 n⌉−1 − (2⌈log2 n⌉ − (n+ 1))/2 = (n+ 1)/2 = ⌈n/2⌉ or 2⌈log2 n⌉−1 − (2⌈log2 n⌉ − (n+ 1))/2− 1 =
(n− 1)/2 = ⌊n/2⌋. Then we have that all the rows of M are different vectors and all the columns
of M have Hamming weight ⌊n/2⌋ or ⌈n/2⌉. According to Theorem 3, we have the scheme has

largest average contrast �̄XOR = 2⌊n/2⌋⌈n/2⌉
n(n−1) . □

The Example 1 makes the above discussions clearer.

4 (2, n)− V CSXOR with optimal contrast

In this section, we will discuss the (2, n) − V CSXOR with the optimal contrast (not average
contrast any more). We will first construct (2, n) − V CSXOR with optimal contrast �∗XOR =
2⌊n/2⌋⌈n/2⌉
n(n−1) , which is twice of that of (2, n)−V CSOR. And then we show the smallest possible pixel

expansion of the (2, n)−V CSXOR given the optimal contrast, we will give explicit constructions for
such schemes. The result of Theorem 7 shows the smallest possible pixel expansion of the optimal
contrast (2, n)− V CSXOR is smaller than that of (2, n)− V CSOR in some cases.

4.1 Optimal contrast of (2, n)− V CSXOR and some structural properties

The following theorem shows the optimal contrast of the (2, n)− V CSXOR.

Theorem 4 The contrast for a (2, n)− V CSXOR satisfies �XOR ≤ 2⌊n/2⌋⌈n/2⌉
n(n−1) , and equality holds

if and only if all the columns have weight ⌊n/2⌋ or ⌈n/2⌉ and the Hamming weight of the sum of

any two rows of the basis matrix is exactly 2⌊n/2⌋⌈n/2⌉
n(n−1) ⋅m, where m is the pixel expansion of the

scheme.
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Proof: Denote M as the basis matrix of the (2, n)− V CSXOR, and �XOR as the contrast, the

contrast of M is caused by the unavoidable patterns

[
0
1

]
or

[
1
0

]
in matrix M , because there are

at most ⌊n/2⌋ ⋅ ⌈n/2⌉ unavoidable patterns

[
0
1

]
or

[
1
0

]
in each column of M , hence there are at

mostm⋅⌊n/2⌋⋅⌈n/2⌉ unavoidable patterns inM . Therefore we have:
(
n
2

)
⋅�XOR⋅m ≤ m⋅⌊n/2⌋⋅⌈n/2⌉,

i.e. �XOR ≤ 2⌊n/2⌋⌈n/2⌉
n(n−1) , and the equality holds if all the columns have weight ⌊n/2⌋ or ⌈n/2⌉.

And when the contrast of M is the largest contrast 2⌊n/2⌋⌈n/2⌉
n(n−1) , then the Hamming weight of the

sum of any two rows of M is at least 2⌊n/2⌋⌈n/2⌉
n(n−1) ⋅m. Hence we get to know the Hamming weight

of the sum of any two rows of the share basis matrix is exactly 2⌊n/2⌋⌈n/2⌉
n(n−1) ⋅m, otherwise, the total

number of the unavoidable patterns

[
0
1

]
or

[
1
0

]
in matrix M will be more than m ⋅⌊n/2⌋⋅⌈n/2⌉,

which is impossible. On the other hand, when the Hamming weight of the sum of any two rows of
the share basis matrix is exactly 2⌊n/2⌋⌈n/2⌉

n(n−1) ⋅m the contrast of the scheme is 2⌊n/2⌋⌈n/2⌉
n(n−1) .

Such schemes always exist, a simple construction can be: taking all the different vectors with
⌊n/2⌋ 1’s as the columns of the basis matrix M of the (2, n)−V CSXOR, then this scheme will have

the largest contrast �XOR = 2⌊n/2⌋⌈n/2⌉
n(n−1) and pixel expansion m =

(
n
⌊n/2⌋

)
. □

The optimal contrast (2, n) − V CSOR has already been studied in [4]. The following lemma
shows the optimal contrast of (2, n)− V CSOR and a structural property of such scheme.

Lemma 1 (Property 2 of Lemma 4.3 in [4]) For any pair of distinct rows of the basis matrix
M of the (2, n) − V CSOR with optimal contrast for the black secret pixel, the unavoidable pattern[

0
1

]
(resp.

[
1
0

]
) appears exactly �∗OR ⋅m times, where �∗OR = ⌊n/2⌋⌈n/2⌉

n(n−1) .

From Lemma 1, it is clear that the optimal contrasts of (2, n)− V CSXOR and (2, n)− V CSOR
satisfy �∗XOR = 2�∗OR, the reason is that the unavoidable patterns

[
0
1

]
and

[
1
0

]
both contribute

to the contrast in (2, n) − V CSXOR, but only one of them contributes to the contrast in (2, n) −
V CSOR. Furthermore, we have the following theorem which reveals the relationship between the
optimal contrast of (2, n)− V CSXOR and (2, n)− V CSOR.

Theorem 5 The basis matrix of a optimal contrast (2, n) − V CSOR for the black secret pixel is
also a basis matrix of a optimal contrast (2, n)− V CSXOR. Hence the smallest pixel expansion for
the optimal contrast (2, n)− V CSXOR is no larger than that of optimal contrast (2, n)− V CSOR.

Proof: Denote M as the basis matrix of the (2, n)−V CSOR with the smallest pixel expansion

and contrast �∗OR = ⌊n/2⌋⌈n/2⌉
n(n−1) . By Lemma 1, we know that the pattern

[
0
1

]
(resp.

[
1
0

]
)

appears exactly �∗OR ⋅ m times, hence the contrast of M under the XOR operation is �∗XOR =

2�∗OR = 2⌊n/2⌋⌈n/2⌉
n(n−1) . Hence M is the basis matrix of a optimal contrast (2, n)− V CSXOR. And the

smallest possible pixel expansion for the optimal contrast (2, n)− V CSXOR is no larger than that
of the optimal contrast (2, n)− V CSOR. □

We then turn to discuss the lower bounds of the pixel expansion of (2, n)− V CSXOR given the
optimal contrast, and such bounds for the (2, n)− V CSOR has been studied in [4] by the following
lemma.

Lemma 2 (Theorem 4.9 in [4]) Denote m as the pixel expansion of (2, n)−V CSOR with optimal
contrast, then the following equations hold:
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m ≥

⎧⎨⎩
2n− 2 if n is even
n if n ≡ 3 mod 4
2n if n ≡ 1 mod 4

the equality holds if the Hadamard Matrix Conjecture is true. (The Hadamard Matrix Conjecture
says that Hadamard matrices exist for all orders divisible by four.)

By Theorem 5 and Lemma 2, and assuming the Hadamard Matrix Conjecture holds, we have
the following corollary:

Corollary 1 Assuming the Hadamard Matrix Conjecture holds, the smallest possible pixel expan-
sion m∗c of the (2, n) − V CSXOR given the optimal contrast are smaller than that of the optimal
contrast (2, n)− V CSOR, i.e.

m∗c ≤

⎧⎨⎩
2n− 2 if n is even
n if n ≡ 3 mod 4
2n if n ≡ 1 mod 4

The following structural properties are satisfied by a (2, n)− V CSXOR.

Lemma 3 (Structural properties) Denote M as the basis matrix of a (2, n) − V CSXOR with
contrast �XOR.

1. Let s be a column vector of M , and s̄ be the complementary vector of s. Denote M
′

as the
matrix in which we replace the column s by s̄, then M

′
is also a basis matrix of a (2, n) −

V CSXOR with contrast �XOR. Hence if there exists a basis matrix of (2, n)− V CSXOR with
optimal contrast �∗XOR, then there must exist a basis matrix of (2, n)− V CSXOR with all the
columns have constant weight ⌊n/2⌋(resp. ⌈n/2⌉) and optimal contrast �∗XOR.

2. Denote r1, r2, ⋅ ⋅ ⋅ , rn as the row vectors of M , then the matrix M
′

formed by the row vectors
r1 + r, r2 + r, ⋅ ⋅ ⋅ , rn+ r, where r is an arbitrary vector of length m, is also a basis matrix of a
(2, n)−V CSXOR with contrast �XOR. Hence there exist a basis matrix of a (2, n)−V CSXOR
with one of its rows is the zero vector.

Proof: Property 1: denote a and b as the itℎ and jtℎ entries of s, denote l1, ⋅ ⋅ ⋅ , ln as the row
vectors of the basis matrix M , and l

′
1, ⋅ ⋅ ⋅ , l

′
n as the row vectors of the matrix M

′
, and because

a⊕b = ā⊕b̄, we get to know that by replacing some columns of M with their complementary vectors
does not affect the Hamming weight of the “⊕” operation of the two rows of M , i.e. li⊕ lj = l

′
i⊕ l

′
j

where i, j ∈ {1, 2, ⋅ ⋅ ⋅n}, hence the matrix M
′

is also a basis matrix of a (2, n) − V CSXOR with
contrast �XOR. And for the optimal contrast (2, n) − V CSXOR, replace all the column vectors
with hamming weight ⌊n/2⌋(resp. ⌈n/2⌉, but not simultaneously) by its complementary vectors,
the lemma follows.

Property 2: denote r
′
1, ⋅ ⋅ ⋅ , r

′
n as the row vectors of the matrix M

′
, where r

′
k = rk ⊕ r and

r
′
s = rs ⊕ r, k, s ∈ {1, 2, ⋅ ⋅ ⋅n}, hence we have r

′
k ⊕ r

′
s = (rk ⊕ r) ⊕ (rs ⊕ r) = rk ⊕ rs. The lemma

follows.

The relationship of the two properties are as follows: by adding the m length vector r =
(0 ⋅ ⋅ ⋅ 010 ⋅ ⋅ ⋅ 0), where 1 is at the itℎ entry of r, is equivalent to replace the itℎ column of basis
matrix with its complementary vector. □

Example 3 The basis matrix M of a (2, 3)− V CSXOR with contrast 2/3 is

10



M =

⎡⎣ 001
010
100

⎤⎦
Let s be the third column vector of M , i.e. s = (100)T , and s̄ = (011)T , replace the third column s
of M by s̄, we get:

M
′

=

⎡⎣ 000
011
101

⎤⎦
it is easy to verify that M

′
is a basis matrix of another (2, 3) − V CSXOR with the same contrast

2/3. Actually by adding the first row r = (001) of M to the second and the third rows of M , we
can also get the matrix M

′
, And the first row of M

′
is the zero vector.

4.2 Smallest possible pixel expansion of the (2, n)− V CSXOR given optimal con-
trast and constructions

When a (2, n) − V CSXOR has the optimal contrast, it may have different pixel expansion
properties. In this case, the smallest possible pixel expansion may be larger than in the general
case without the optimal contrast constraint. In this section we show the smallest possible pixel
expansion of the (2, n)− V CSXOR given its optimal contrast.

First we consider the case when the number of rows of the basis matrix is odd, i.e. the number
of participants is odd.

Lemma 4 For an odd n (≥ 3), if there exist a (2, n)−V CSXOR with optimal contrast �∗XOR, and
denote its pixel expansion as m, then we have n∣m.

Proof: Since n is odd, we have the optimal contrast �∗XOR = 2⌊n/2⌋⌈n/2⌉
n(n−1) = n+1

2n , because

�∗XOR ⋅m is an integer (See Theorem 4), so we get n∣m. □

Lemma 4 implies that m ≥ n.

Lemma 5 For a (2, n)− V CSXOR with n ≡ 1 mod 4 and optimal contrast �∗XOR = n+1
2n , the pixel

expansion of such scheme satisfies m ∕= n.

Proof: For the case n ≡ 1 mod 4, since n ∕= 1, we have n ≥ 5. Assuming that there exists a
matrix M , where M is the basis matrix of the (2, n)−V CSXOR with optimal contrast �∗XOR = n+1

2n
and pixel expansion m = n. Then we know that, there must exist two odd or two even rows in M
since n ≥ 5.

We consider stacking two shares (rows). Denote lk and ls as two odd rows(resp. even rows),
then the weight of the sum of them will be w(lk ⊕ ls) = w(lk) + w(ls)− 2t, where t is the number
of the entries at which both lk and ls have value 1, hence w(lk ⊕ ls) is even. Because the weight of

the sum of any pair of rows in M is �∗XOR ⋅m = (n+1)
2n ⋅ n = n+1

2 , which is odd, this results in a
contradiction. This contradiction means that the Lemma 5 holds. □

Then we get the smallest pixel expansion for the case n ≡ 1 mod 4 as follows.

Corollary 2 For n ≡ 1 mod 4, the smallest pixel expansion m∗c of a (2, n) − V CSXOR given
optimal contrast is 2n.
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Proof: Lemma 4 and Lemma 5 states that m∗c ≥ 2n and by combining the result of Corollary 1
we get to know m∗c = 2n. □

In order to describe the construction of the (2, n)−V CS more clearly, we introduce some basic
results of the from the combinatorial mathematics. A (v, k, �)-BIBD (Balanced Incomplete Block
Design [8]) is a pair (X,ℬ), where X is a set of v elements (called points) and ℬ is a collection of
subsets of X (called blocks), such that each block contains exactly k points and each pair of points
is a subset of exactly � blocks. In a (v, k, �)-BIBD, each point occurs in exactly r = �(v−1)/(k−1)
blocks, and the total number of blocks is b = vr/k = �(v2 − v)/(k2 − k). The number r is called
the replication number of the BIBD.

The following Lemma 6 provides the constructions for optimal contrast (2, n)−V CSOR by using
BIBD.

Lemma 6

1. (Theorem 4.7 of [4]) Assuming that n ≡ 3 mod 4 and there exists a (2, n)−V CSOR with pixel

expansion m and contrast �∗OR = ⌊n/2⌋⌈n/2⌉
n(n−1) . Then m ≥ n and m = n if and only if there

exists a (n, n−1
2 , n−3

4 )-BIBD (or, equivalently, a Hadamard matrix of order n+1).

2. (Theorem 4.8 of [4]) Assuming that n ≡ 1 mod 4 and there exists a (2, n)−V CSOR with pixel

expansion m and contrast �∗OR = ⌊n/2⌋⌈n/2⌉
n(n−1) . Then m ≥ 2n and m = 2n if and only if there

exists a (n, n−1
2 , n−3

2 )-BIBD or an (n+ 1, n+1
2 , n−1

2 )-BIBD.

By combining the Theorem 5 and the Lemma 6, for an odd n, it is clear that there exist (2, n)−
V CSXOR with optimal contrast �∗XOR = 2⌊n/2⌋⌈n/2⌉

n(n−1) = n+1
2n if the Hadamard Matrix Conjecture

holds. And the construction of the (2, n) − V CSXOR can be converted to the construction of the
point-block incidence matrix of the corresponding BIBD, more details of such construction can be
found in [4].

Second we consider the case when the number of rows of the basis matrix is even, i.e. there are
even number of participants n+ 1 where n is odd.

Lemma 7 Denote by m∗c the smallest possible pixel expansion for a (2, n)− V CSXOR with odd n

given the optimal contrast �∗XOR = 2⌊n/2⌋⌈n/2⌉
n(n−1) = n+1

2n , then the smallest possible pixel expansion for

a (2, n+ 1)−V CSXOR given the optimal contrast �∗XOR = 2⌊(n+1)/2⌋⌈(n+1)/2⌉
n(n+1) = n+1

2n is at least m∗c .

Proof: Reduction to absurdity.

Assuming that there exist a (2, n + 1) − V CSXOR with optimal contrast �∗XOR = n+1
2n and

pixel expansion m∗
′
c (< m∗c), and denote the basis matrix of this scheme is M

′
, then the first n

rows of M
′

constitute a (2, n)− V CSXOR with the same optimal contrast �∗XOR = n+1
2n and pixel

expansion m∗
′
c , which is in contradiction with that m∗c is the smallest possible pixel expansion for

the (2, n)− V CSXOR. □

The following lemma is the most important lemma of this paper which is required in our
following discussions.

Lemma 8 Denote M as an n×m binary matrix which satisfies:

1. n is odd

2. the minimum Hamming distance of any two rows of M is (n+1)m
2n
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3. each column of M has the same hamming weight n−1
2 (or respectively n+1

2 )

then the rows of M all have the same hamming weight (n−1)m
2n (or respectively (n+1)m

2n )

Proof: First we consider the equidistant binary code, assume that the rows of M are equidistant
binary code with parameters: code length m, cardinality n, distance d, and the number k of 1’s in
each column. If a row has the Hamming weight w, then by counting the sum of distances to the
remaining n− 1 rows we have:

d(n− 1) = w(n− k) + (m− w)k (1)

hence we have:
d(n− 1)−mk = (n− 2k)w (2)

Since n is odd, i.e. n− 2k ∕= 0, the parameter w is determined uniquely from the equation (2).

Then we consider the general binary code (not limited to equidistant binary code) with the
minimum Hamming distance d, then the equation (1) should be:

d(n− 1) ≤ w(n− k) + (m− w)k (3)

Since d = (n+1)m
2n and k = n−1

2 (for k = n+1
2 we reach the same conclusion), substitute for the d

and k in inequality (3), then we have:

w ≥ d(n− 1)−mk
(n− 2k)

=
(n− 1)m

2n
(4)

Denote wi as the Hamming weight of the itℎ row of M , i = 0, 1, ⋅ ⋅ ⋅ , n− 1, then, the total number
of 1’s in M is: (calculated by adding the rows)

n−1∑
i=0

wi ≥
(n− 1)m

2
(5)

and (calculated by adding the columns)

km =
(n− 1)m

2
(6)

combine the inequalities (4), (5) and equation (6), we have that w = (n−1)m
2n , hence the lemma

follows. □

Theorem 6 For an odd n, there exists a (2, n)−V CSXOR with the optimal contrast �∗XOR = (n+1)
2n

and pixel expansion m if and only if there exists a (2, n+1)−V CSXOR with optimal contrast same

as �∗XOR = (n+1)
2n and the same pixel expansion m.

Proof: Because 2⌊n/2⌋⌈n/2⌉
n(n−1) = n+1

2n = 2⌊(n+1)/2⌋⌈(n+1)/2⌉
n(n+1) we get to know that the optimal contrast

of the (2, n)− V CSXOR and the (2, n+ 1)− V CSXOR are the same. So one just takes the first n
rows of the basis matrix of the (2, n+ 1)− V CSXOR as the basis matrix of the (2, n)− V CSXOR,
the sufficiency of Theorem 6 follows.

According to property 1 of Lemma 3, we transform the basis matrix M into M ′ satisfying all
the columns of M ′ have the same Hamming weight. Then according to Lemma 8, we have that
the rows of M ′ have constant Hamming weight (n−1)m

2n (or (n+1)m
2n ), by adding an all 1 row if the

Hamming weight of the rows of M ′ is (n−1)m
2n (or adding an all 0 row if the Hamming weight of the

rows of M ′ is (n+1)m
2n ), one gets a (2, n+ 1)− V CSXOR with optimal contrast. □

Note that in the above discussions, it has been assumed that the Hadamard Matrix Conjecture
holds. By making the same assumption, we further have:
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Theorem 7 The smallest possible pixel expansion m∗c of (2, n)− V CSXOR given the optimal con-

trast �∗XOR = 2⌊n/2⌋⌈n/2⌉
n(n−1) is as follows:

m∗c =

⎧⎨⎩
1 if n = 2
n if n ≡ 3 mod 4

n− 1 ifn ≡ 0 mod 4
2n if n ≡ 1 mod 4

2n− 2 if n ≡ 2 mod 4 and n ∕= 2

Proof: The smallest pixel expansion for the case n = 2 can be shown as the basis matrix of

the (2, n) − V CSXOR: M =

[
0
1

]
, which has the pixel expansion m∗c = 1 and optimal contrast

�∗XOR = 1.

The smallest possible pixel expansion for the case n ≡ 3 mod 4 and n ≡ 0 mod 4 can be
concluded from the Theorem 5, Corollary 1, Lemma 4, 6 and Theorem 6.

The smallest possible pixel expansion for the case n ≡ 1 mod 4 and n ≡ 2 mod 4 can be
concluded from the Corollary 2, Lemma 6 and Theorem 6. □

Theorem 7 shows the smallest possible pixel expansion of the scheme given the optimal contrast,
which are much smaller than the ones under the OR operation for the cases n = 2 and n ≡ 0 mod 4.
One can find a more clear comparison in Table 1.

OR XOR

n = 2 2 1

n ≡ 3 mod 4 n n

n ≡ 0 mod 4 2n− 2 n-1

n ≡ 1 mod 4 2n 2n

n ≡ 2 mod 4 2n− 2 2n− 2

Table 1: Comparison on the smallest pixel expansions of (2, n) − V CSXOR and (2, n) − V CSOR
given optimal contrasts.

At this point, we summarize the constructions of optimal contrast (2, n)−V CSXOR with smallest
pixel expansion as follows.

Construction 2 For n = 2, let the basis matrix M =

[
0
1

]
, it is clear that its contrast is optimal

and its pixel expansion is 1.

We omit the constructions for the cases of n ≡ 3 mod 4, n ≡ 1 mod 4 and n ≡ 2 mod 4 as they
are the same as that in [4].

For the case n ≡ 0 mod 4, we first apply Blundo’s construction in [4] to generate the basis
matrix, denoted by M ′, of the black secret pixels for the case n − 1 ≡ 3 mod 4. We have the
pixel expansion of M ′ is n− 1. Then we apply properties 1 of Lemma 3 to transform M ′ into M ′′

that satisfies all the columns of M ′′ has constant Hamming weight. We have each row of M ′′ has
constant Hamming weight (n−2)/2 or n/2. By adding an all 1 row if the Hamming weight of M ′′ is
(n−2)/2, or adding an all 0 row if the Hamming weight of M ′′ is n/2. Denote the resulting matrix
as M , then M is the basis matrix of (2, n) − V CSXOR with optimal contrast and pixel expansion
n− 1 for the case n ≡ 0 mod 4.

To make the Construction 2 more clear, we give an example for the case n ≡ 0 mod 4.
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Example 4 Let n = 4. By applying Blundo’s construction in [4] for (2, 3)−V CSOR, we get a basis

matrix for the black secret pixel M ′ =

⎡⎣ 100
010
001

⎤⎦, then by adding an all 1 row, we have M =

⎡⎢⎢⎣
111
100
010
001

⎤⎥⎥⎦,

which is a basis matrix for (2, 4)− V CSXOR with optimal contrast 2/3 and pixel expansion 3.

We also can transform M ′ =

⎡⎣ 100
010
001

⎤⎦ into a matrix

⎡⎣ 011
101
110

⎤⎦, and by adding an all 0 row, we

have M =

⎡⎢⎢⎣
000
011
101
110

⎤⎥⎥⎦, which is also a basis matrix for (2, 4) − V CSXOR with optimal contrast 2/3

and pixel expansion 3.

5 Relationship with the constructions of optimal contrast (2, n)−
V CSXOR and binary codes with maximum capacity

Tuyls et al. [31] present a simple equivalence relationship between the (2, n) − V CSXOR and
the binary code. In this section, we further study the relationship between them, especially when
the VCS has optimal contrast. And find that for odd n, the rows of the basis matrix of the optimal
contrast (2, n+1)−V CSXOR is equivalent to the (m, n+1

2n m) binary code which reaches its maximum
capacity, and the rows of the basis matrix of the optimal contrast (2, n)−V CSXOR is equivalent to

the (m, (n+1)m
2n , (n±1)m

2n ) constant weight code which reaches its maximum capacity, hence we can
use the known constructions of maximum capacity binary codes to construct the optimal contrast
(2, n) − V CSXOR. In addition, we give a construction of optimal contrast (2, n) − V CSXOR for
n = 2k − 1 is given, by using the technique of m-sequence.

Denote an n×m binary matrix M as the basis matrix of a (2, n)− V CSXOR with contrast �
and the pixel expansion m. According to the first condition of Definition 1, the rows of M comprise
an (m,m�) binary code, where m is the length of the codes and m� is the minimum Hamming
distance. Hence by constructing an (m,m�) binary code with n codewords (if exists), we can
construct a (2, n)− V CSXOR with contrast � and the pixel expansion m.

Denote A(m, d) as the maximum number of codewords in any (linear or nonlinear) binary
code of length m and minimum Hamming distance d. and A(m, d,w) as the maximum number of
codewords in any binary code of length m, constant weight w and minimum Hamming distance d.
The two notations A(m, d) and A(m, d,w) are widely used in coding theory [1, 20, 26, 28, 34].

In order to make use of some results from coding theory, we hereby interpret some of the
previous results in this paper with respect to A(m, d) and A(m, d,w).

First, we consider (2, n)−V CSXOR with smallest pixel expansion: The following two equations
are from [26],

A(m, 1) = 2m and A(m, 2) = 2m−1

And it is obvious that if d1 ≤ d2, then A(m, d1) ≥ A(m, d2), simply because the codewords of
(m, d2) can be the codewords of (m, d1). Therefore, alternative proofs of two of the theorems in
section 3 (Theorems 1 and 2) can be as follows:

Proof of Theorem 1: For the binary code of length m, in order to form the basis matrix of
a (2, n) − V CSXOR, it should have at least n codewords, and the Hamming distance of any pair
of the codewords should be at least 1 according to Definition 2, i.e. A(m, 1) ≥ n, which implies:
2m ≥ n, i.e. m ≥ log2 n. Since m is an integer, we have m ≥ ⌈log2 n⌉. Because all the m-length
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binary codewords comprise a (m, 1) binary code with 2m (≥ n) codewords, hence the smallest pixel
expansion of a (2, n)− V CSXOR is ⌈log2 n⌉. □

Proof of Theorem 2: In order to prove that there does not exist such a (2, n)− V CSXOR that
has smallest pixel expansion and the contrast is larger than � = 1

⌈log2 n⌉
, we only need to show

that there are not enough codewords to form the basis matrix with any two rows having Hamming
distance larger than 1 and with the codeword length being ⌈log2 n⌉, i.e. we need to show that
A(⌈log2 n⌉, 2) < n. This holds true, because A(⌈log2 n⌉, 2) = 2⌈log2 n⌉−1 < 21+log2 n−1 = n, and
hence the theorem follows. □

Second, we discuss the (2, n) − V CSXOR with optimal contrast: We call that a (m, d) binary
code reaches its maximum capacity if it has A(m, d) codewords, and for binary constant weight
code (m, d,w), it reaches its maximum capacity if it has A(m, d,w) codewords. The construction
of binary code with maximum capacity has been widely studied and one can find some of the
constructions in [1, 20, 26, 28, 34]. The following lemmas will be needed in the proof of Theorems 8
and 9 as introduced below:

Lemma 9 (Plotkin’s Bound [20, 34]) Provided certain Hadamard matrices of order n
′

or less exist,
then

A(n
′
, 2�) = 2⌊ 2�

4�−n′ ⌋ if 2� ≤ n′ < 4�

A(4�, 2�) = 8�

A(n
′
, 2�) = 1 if n

′
< 2�

Where here and hereafter ⌊x⌋ denotes the largest integer no larger than x.

Lemma 10 (Johnson’s Bound [28])define d=2u, if n
′
u > w(n

′ − w) then

A(n
′
, d, w) ≤ ⌊ n

′
u

n′u−w(n′−w)
⌋

The following Theorem 8 shows that, for an odd n, the rows of the basis matrices of the
(2, n+ 1)− V CSXOR with optimal contrast form a special binary code with maximum capacity.

Theorem 8 For an odd n, there exists a basis matrix for the (2, n + 1) − V CSXOR with optimal
contrast � = n+1

2n if and only if there exists a (m,�m) binary code which reaches its maximum
capacity, where m is the pixel expansion of the (2, n+ 1)− V CSXOR.

Proof: First, for the necessity. Since the n rows of the basis matrices of the (2, n+1)−V CSXOR
with optimal contrast � are a (m,�m) binary code, we only need to prove that it reaches its
maximum capacity. Because � = n+1

2n < 1 and 2� = n+1
n > 1, we have �m ≤ m < 2�m, According

to Theorem 7, we have that, �m is always even, hence:

A(m,�m) = 2⌊ �m

2�m−m
⌋ = 2⌊

(n+1)m
2n

(n+1)m
n −m

⌋ = n+ 1

Hence, the n+ 1 rows of the basis matrix of the (2, n+ 1)− V CSXOR with optimal contrast are a
(m,�m) binary code which reaches its maximum capacity.

And the sufficiency is trivial, since A(m, n+1
2n m) = n+ 1. □

At this point, to construct a (2, n+ 1)−V CSXOR, we only need to construct a (m,�m) binary
code which reaches its maximum capacity, and such construction with m ≤ 28 can be found in [1].

According to Lemma 3, given the n+ 1 rows of the basis matrix of the (2, n+ 1)− V CSXOR,
and by adding the first row to all the n+1 rows, one gets that, the newly generated 2-nd,3-rd,⋅ ⋅ ⋅ ,n-
th,(n + 1)-th rows are all have constant weight (n+1)m

2n and the Hamming distance between them
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is (n+1)m
2n , meanwhile, the complement of the 2-nd,3-rd,⋅ ⋅ ⋅ ,n-th,(n + 1)-th rows all have constant

weight (n−1)m
2n and the Hamming distance between them is (n+1)m

2n too. We give the following

theorem to show the relationship between the (m, (n+1)m
2n , (n±1)m

2n ) constant weight code and the
rows of the basis matrix of the optimal contrast (2, n)− V CSXOR:

Theorem 9 For odd n, there exist basis matrices for the (2, n)− V CSXOR with optimal contrast

� = n+1
2n if and only if there exists a (m, (n+1)m

2n , (n±1)m
2n ) binary constant weight code which reaches

its maximum capacity, where m is the pixel expansion of the (2, n)− V CSXOR.

Proof: First, for the necessity. According to property 1 of Lemma 3, we transform the basis
matrix, denoted as M , of the optimal contrast (2, n)−V CSXOR into M ′ satisfying all the columns of
M ′ have the same Hamming weight. Then according to Lemma 8, we have that the rows of M ′ have
constant Hamming weight (n−1)m

2n (or (n+1)m
2n ). Hence the rows of M ′ comprise a (m, (n+1)m

2n , (n±1)m
2n )

binary constant weight code, and we only have to prove that it reaches its maximum capacity.

Let n
′

= m, u = (n+1)m
4n ,w = (n±1)m

2n , then n
′
u−w(n

′ −w) = m (n+1)m
4n − (n±1)m

2n (m− (n±1)m
2n ) =

(n+1)m2

4n2 > 0, i.e. n
′
u > w(n

′ − w), so according to Johnson’s Bound, we have A(n
′
, d, w) ≤

n
′
u

n′u−w(n′−w)
, hence, A(m, (n+1)m

2n , (n±1)m
2n ) ≤ m

(n+1)m
4n

m
(n+1)m

4n
− (n±1)m

2n
(m− (n±1)m

2n
)

= n, hence the theorem

follows.

And the sufficiency is trivial, since A(m, (n+1)m
2n , (n±1)m

2n ) = n. □

At this point, we get to know that, for an odd n, the construction of a (2, n)− V CSXOR with

optimal contrast � = n+1
2n can be converted into the construction of an (m, (n+1)m

2n , (n±1)m
2n ) binary

constant weight code which reaches its maximum capacity, and the construction of such binary
constant weight codes have been studied in [1, 10, 28].

Particularly, for n = 2k − 1, where k is a positive integer, the construction of (2, n)− V CSXOR
and (2, n + 1) − V CSXOR can be realized via m-sequence (maximum length sequence), which is
a kind of periodic bit sequences generated using linear feedback shift registers and has maximum
length [11]. For any of such n, there exists an m-sequence which has period n and in each period,
there are 2k−1 1’s. Any cyclic shift of such a sequence is also an m-sequence, and the XOR of an
m-sequence and its shift is also an m-sequence (Theorem 15.3.11 in [39]). So let M be the matrix
where all its rows are all the possible cyclic shifts of an m-sequence in one period. Then the rows
of M form a binary constant weight code which is also linear. Moreover, M is an n × n matrix
with each rows (as well as columns) having 2k−1 1’s. By adding the all-zero vector as a new row
to the matrix M , it makes a new (2, n+ 1)− V CSXOR basis matrix. Hence we have the following
theorem:

Theorem 10 For n = 2k − 1, there exists an m-sequence r which has period n, and the n m-
sequences ri, where i = 0, 1, ⋅ ⋅ ⋅ , n− 1 are generated by cyclic shift i bits of r, form a basis matrix
of (2, n)− V CSXOR, and this VCS has optimal contrast � = n+1

2n , where k is a positive integer.

Proof: Since any m-sequence has Hamming weight w(ri) = 2k−1, and the XOR of any two
m-sequences is also an m-sequence, so the Hamming distance between any two m-sequences is
2k−1. Because in such a VCS with the optimal contrast, the Hamming distance between any two
rows is � ⋅ n = n+1

2 = 2k−1, hence the n m-sequences ri i = 0, 1, ⋅ ⋅ ⋅ , n− 1 form a basis matrix of
(2, n)− V CSXOR with optimal contrast. □
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6 Conclusions

In this paper, we studied the optimal (2, n)−V CSXOR, and have given some new results about
the optimal pixel expansion of such schemes and the largest possible contrast for schemes given the
optimal pixel expansion. We also studied the optimal contrast of the (2, n) − V CSXOR, and the
smallest possible pixel expansion of such schemes given the optimal contrast. The results of this
paper show the properties of the (2, n)−V CSXOR have some advantages over the (2, n)−V CSOR
in the sense of larger contrast and smaller pixel expansion.

It is noted that in the construction of the (2, n) − V CSXOR with the largest contrast and the
smallest possible pixel expansion, the Hadamard Matrix Conjecture is assumed to hold. The same
assumption was made in [4] as well.

We have shown that, the construction of the basis matrix of optimal contrast (2, n)−V CSXOR is
equivalent to the construction of binary codes with specific parameters, which reaches its maximum
capacity, hence we can use the known constructions of maximum capacity binary code (constant
weight or not constant weight) to construct optimal contrast (2, n)−V CSXOR, meanwhile we also
give a construction of (2, n)−V CSXOR with optimal contrast for n = 2k−1, by using the technique
of the m-sequence.
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