
Timed Encryption and Its Application

Shaoquan Jiang

School of Computer Science and Engineering
University of Electronic Science and Technology of China

shaoquan.jiang@gmail.com

Abstract. In this paper, we propose a new notion of timed encryption, in which the encryption is
secure within time t while it is totally insecure after some time T > t. We are interested in the case
where t and T are both polynomial. We propose a concrete construction that is provably secure in
the random oracle model. We show that it can be generically (although inefficient) constructed from a
timed commitment of Boneh and Naor (CRYPTO’00). Finally, we apply this primitive to construct a
deniable secure key exchange protocol, where the deniability and secrecy both hold adaptively and the
adversary can conduct session state reveal attacks and eavesdropping attacks in the non-eraser model.
Our protocol is the first to achieve each of the following properties: adaptive deniability admitting
eavesdropping attacks and deniability admitting session state reveal attacks in the non-eraser model.
Our protocol is constructed using a timing restriction (inherited from the timed encryption). However,
the requirement is rather weak. It essentially asks a user to respond to a ciphertext as soon as possible
and hence does not artificially cause any delay. Our usage of timed encryption for the deniability is to
use the forceful decryption to obtain the plaintext and hence does not use any random oracle assumption
(even if the secrecy proof needs this).
Key Words. Public-key Encryption, Key Exchange, Deniability

1 Introduction

We propose a new notion of timed encryption. Intuitively, a sender can encrypt a message m using
a receiver’s public key pk such that the latter can normally decrypt using his private key d. It
further requires that any one without d can not decrypt the ciphertext within time t while after
time T , any person can decrypt it. In this primitive, neither encryption nor decryption needs a
trusted agent or needs any interaction. We are interested in the setting where both t and T are
polynomial. Practically, t might be a few seconds and T might be is one day. Simply speaking, a
timed encryption is a regular public-key encryption, except that it is secure only in time t while it
is completely insecure after time T > t. It has applications in auction, delayed message broadcast
and deniable authentication/key exchange. In auction, it is desired that during the bidding phase,
bidders can cast their bids such that no one can read it within time t while it is publicly readable
after time T > t. This can be realized using a timed encryption with a private key known to nobody.
A more interesting setting is deniable authentication where a sender authenticates a message to a
receiver while the latter can not prove to a third party the fact of the sender’s presence. To achieve
this, the receiver can first send a secret key using the sender’s timed encryption. The sender then
decrypts this key and uses it to authenticate the message back within time t. Since no one except
the sender can reply within time t, the authentication is guaranteed. Finally, after time T > t, since
anybody can decrypt the authentication key and create the authentication tag, the deniability is
achieved.

1.1 Related Works

Timed encryption is related to timed-release encryption [27], which can be intuitively interpreted as
“send a message into the future”. This notion is different from ours. Ours requires that within time

t the owner of the private key is the unique person that can decrypt the ciphertext while in their
notion no one can decrypt during this period. Due to this difference, none of the known timed-
release encryptions can be easily converted to a timed encryption in our notion. Timed-release
encryption has two types of approaches.
Time-lock puzzles. In schemes in [27, 29] and the follow-up [25], a sender generates a RSA scheme
and uses the factoring to compute 2t squarings efficiently in order to encrypt a secret while any
other person does not have this factoring and hence has to manually repeat 2t squarings in order
to decrypt it, due to which the decryption delay is achieved. Note this is different from a timed
encryption since it is the sender (instead of a receiver) that knows the factoring.
Trusted Agents. In this approach, the time-delay is achieved since the decryption requires a
secret from trusted agents who will release it after time t. The release can be done interactively or
non-interactively. See [7, 17, 10, 13, 11, 12, 28] for references.

Identity-based encryption (IBE) [4] can achieve the delay through a decryption key control,
where the identity includes a particular release-time and the decryption secret is available only
after this time. This essentially still assumes a trusted agent.

Our timed encryption is different from theirs in that we do not assume any trusted party.
A more related direction is timed-commitment by Boneh and Naor [8], where a committer can

commit to a message m and within time t the message m remains confidential while after time T the
de-commitment can be opened forcefully. They used the time-lock puzzle based on the sequential
nature of RSA modular squaring as in [29] to construct a timed commitment. They also applied this
commitment into construct a timed signature. Garay and Jakobsson [20] applied timed commitment
techniques to achieve the timed-release property for some standard signatures.

1.2 Contribution

In this paper, we propose a new notion of timed encryption, in which the encryption is secure within
time t while it is totally insecure after time T > t. We are interested in the case where t and T
can be both polynomial. We propose a concrete construction that is provably secure in the random
oracle model. We also propose a generic construction from a timed commitment of Boneh and Naor
[8]. Finally, we apply this primitive to construct a deniable secure key exchange protocol, where
the deniability and secrecy both holds adaptively and the adversary has the capability of issuing
session state reveal attacks and eavesdropping attacks. Our protocol is the first to achieve each
of the following properties: adaptive deniability admitting eavesdropping attacks and deniability
admitting session state reveal attacks both in the non-eraser model. Our protocol works in a timing
model (inherited from the timed encryption). However, our timing restriction only requires a user
to respond to a message as soon as possible and hence does not artificially cause any communication
delay. Pass [9] noticed that deniability in the random oracle model is not trustable. Our deniability
proof for the protocol only uses the forceful decryption algorithm of the timed encryption and
hence does not depend on a random oracle assumption (even though the secrecy property of the
encryption might use it) .

2 Definitions

Notations. For a set S, x ← S samples x from S randomly; A|B means A concatenating with
B. When the context is clear, we also use AB to denote the concatenation of A with B. We use
negl : N→ R to denote a negligible function: for any polynomial p(x), limn→∞ negl(n)p(n) = 0.

2

In this paper, we always use κ to denote the security parameter. PPT stands for probabilistic
polynomial time. Algorithm A (e.g., encryption or commitment) with input m and randomness r is
written as A(m; r). When r is unspecified, simply write it as A(m). x← A(m) denotes the random
output of A with input m and unspecified randomness.

2.1 Timed Encryption

Timed encryption essentially is a public-key cryptosystem, which, besides the normal encryption
and decryption, has a forceful decryption algorithm without a key but using longer time. In this
paper, we are interested in the case where both the forceful decryption and normal decryption (with
a key) run in a polynomial time. Here we need to be careful about the runtime as it depends on the
space model. Specifically, an algorithm implemented in the parallel model runs faster than one in a
non-parallel model. This problem has been noticed by Boneh and Naor [8] when they define timed
commitment. They used the parallel random access machine (PRAM) model for this purpose, where
an adversary can be implemented using any polynomial number of parallel processors. Practically,
due to the hardware cost, the degree of parallelism is a priori bounded. Hence, it is useful to consider
a bounded PRAM. For a fixed polynomial α, we call an adversary with α processors an adversary
in the α-PRAM model or simply an α-PRAM adversary.

Definition 1. A triple of algorithms (G,E,D) is a public key encryption. It is a secure (α, t, T)-
timed encryption if the following holds. Let (e, d)← G(1κ).

• Completeness. A ciphertext generated through the specification can always be correctly de-
crypted using d. In addition, there exists an algorithm T of time T such that T(C) = Dd(C)
holds for any string C, except for a negligible probability.

• Secrecy. Any PPT α-PRAM adversary A only has a negligible advantage in the chosen
ciphertext attack below.

- Challenge. A comes up with two messages m0,m1 of equal length as a challenge pair. In
turn, he will receive Cb = Ee(mb) for b← {0, 1}.

- Decryption. A can issue any decryption query C 6= Cb and receive Dd(C). Finally, he
outputs a guess bit b′ for b. He succeeds if b′ is computed within time t from receiving Cb

and b′ = b.

If (G,E,D) is a secure (α, t, T)-timed encryption for any polynomial α, then we call it a secure
(t, T)-timed encryption.

Note that conventionally a CCA2 adversary can issue decryption queries before a challenge
query. However, this is unnecessary for timed encryption since the runtime before a challenge is
unrestricted (other than PPT) and the attacker thus can run the forceful decryption himself.

2.2 Timed Commitment

Timed commitment is a special commitment whose secrecy is guaranteed only within a given time.
It was proposed by Boneh and Naor [8]. Our timed encryption is motivated by this. A timed
commitment consists of a committer S and a receiver R and proceeds in three phases.
Commit phase: To commit to a string w ∈ {0, 1}n, S and R execute a protocol Com and the final
output by R is a commitment c to w.

3

Open phase: In the open phase, S sends the string w to R. Then, they execute a protocol DCom,
at the end of which R obtains a proof that w is the committed value.

Forced open phase: If S refuses to execute the open phase, there exists an algorithm F-Open that
takes c as input and, within time T , outputs w and a proof that w is the commitment in c.

In the security definition, Boneh and Naor requires the commitment remains confidential against
any polynomial time PRAM adversary. As for the timed encryption, a α-PRAM model is also
practical. We relax Boneh and Naor’s definition to the following.

Definition 2. Algorithm TC = (TC.Com, TC.DCom, TC.FO) is (α, t, T)-secure timed commitment if it
satisfies:

Completeness: When R accepts in the commitment phase, his output c must be a valid commit-
ment for some w ∈ {0, 1}n such that TC.FO(c) = w.

Binding: If TC.Com(w) = c, then S can not convince R in the decommitment phase that c is a
commitment of w′ 6= w. This holds information theoretically.

Soundness: At the end of commitment phase, R is convinced that there exists a forced open
algorithm TC.FO(c) that outputs the committed string w in time T .

Privacy: For any α-PRAM adversary A of time t < T , |Pr[A(tr, w) = 1]− Pr[A(tr, w′) = 1]| is
negligible, where tr is the transcript in the commitment phase and the probability is over coins of
S and R.

If TC is (α, t, T)-secure for any polynomial α, then it is a (t, T)-secure timed commitment.

3 Timed Encryption in the Random Oracle Model

In this section, we construct a concrete timed encryption in the random oracle model. The idea
is to decompose a secret into many partial secrets. Each part is not long and is deterministically
encrypted. With a decryption key, the secret can be decrypted normally. However, without a de-
cryption key, one (including a PRAM adversary) has to spend a considerable amount of time on
determining all partial secrets. This prevents a PRAM adversary obtaining the secret in a short
time. On the other hand, if afforded more time, any one can forcefully decrypt all partial secrets
(and hence the secret).

Construction 1. Let E be a public key encryption with public key e and private key d and
H : {0, 1}∗ → {0, 1}ℓ is a hash function. κ is a security parameter and δ ∈ Z. β is a constant.
K : {0, 1}∗ ×{0, 1}ℓ → {0, 1}∗ is a symmetric key encryption, where ℓ is the key length. To encrypt
m, take r0 ← {0, 1}κ and ri ← {0, 1}β log κ, i = 1, · · · , δ, and compute ci = Ee[ri;H(c0r0r1 · · · ri)]
and c0 = K[m,H(r0r1 · · · rδ)]. Ciphertext C = r0c0 · · · cδ. To decrypt C using d, first decrypt {ri}i
and then check the consistency of {ci}i with {ri}i and c0. If inconsistent, reject; otherwise, decrypt
c0 using secret key H(r0 · · · rδ). The forceful decryption is to search for r1 that is consistent with
c0r0c1. After finding r1, try r2 from c2, r3 from c3, · · · . If any of ri’s is not found, reject; otherwise,
decrypt c0 using H(r0 · · · rδ). Denote this scheme by tE-RO.

Remark. One might think to simplify the ciphertext as r0c0c1 where the secret key for c0 is
H(r0r1). However, this is insecure since an attacker can simply guess r1 (hence decrypt c0) with a
non-negligible probability κ−β. Another simplification idea is to modify ci as ci = E[ri;H(c0r0ri)].
This is not good since {ci} can be decrypted in parallel. In our construction, any attacker (disre-
garding the degree of his parallelism) has to recover r1, · · · , rδ almost sequentially. So he can not
quickly finish a forceful decryption. The time analysis for a α-PRAM (or PRAM) adversary will

4

be given in the following theorem and the remark after it. Decryption using d is dominated by
δ + 1 hashes of input length at most βδ log κ and δ encryptions-and-decryptions of E. This does
not assume a parallel implementation. If Merkle tree hash structure (see [21] for details) is used,
then {H(c0r0 · · · ri)}δi=1 with input {ri}δi=1 can be computed efficiently with δ2 parallel processors
in log δ steps. In this case, the decryption using d can be parallelized. The cost is for each processor
is just one encryption and one decryption of E plus log δ evaluations of a basic compressor (in the
Merkle tree) with a short input.

Theorem 1. E is IND-CPA secure and K is semantically secure and one-time unforgeable (un-
forgeable when given access to one valid ciphertext). H is a random oracle. Then, tE-RO is a secure
(σ, t, µδkβ)-timed encryption, where µ is the time to compute one hash of an input length κ+βδ log κ
and one encryption of E,

√
σtδ−1κ−β/2 log κ ≤ 1/3 and δ ≥ log2+ǫ κ for some ǫ > 0.

Proof. Completeness. When a ciphertext is generated normally, it can be decrypted correctly
since by the completeness of E, r1, · · · , rδ can be correctly decrypted and hence the secret key for
c0 is uniquely determined and by the completeness of K, the message m is uniquely decrypted.
For any string C = r0|c0| · · · |cδ (if C is not in this form, it will be invalid and hence normally
rejected), (r1, · · · , rδ) (exist or not) can be unambiguously determined since we need to verify
ci = E[ri;H(c0r0r1 · · · ri)] and also the decryption of E is unique. ri can be either decrypted
using d or sequential search over space {0, 1}β log κ. Hence, the forceful decryption and the normal
decryption using d have an identical result. The cost for forceful decryption is dominated by δ
hashes of length κ+ βδ log κ and δ encryptions of E. So the completeness follows.
Secrecy. We claim that any σ-PRAM adversary A can only break the secrecy negligibly; otherwise,
an adversary D can use A to break the semantic security of K. D does the following. He generates
(e, d) for the public key encryption and invokes A with e.

- random oracle H. Upon any query x, maintain a list LH and first check whether x is recorded
in LH . If not, take y ← {0, 1}ℓ and add (x, y) into LH . In any case, return y for (x, y) ∈ LH to
the requester.

- Upon a challenge query m0,m1, D outputs it as his own challenge query. In turn, he will receive
K[mb] for b← {0, 1}, where the secret key is hidden. He then defines c∗0 = K[mb] and generates
r∗0, r

∗
i ← {0, 1}β log κ, c∗i , i = 1, · · · , δ normally. Finally, he outputs C∗

b = r∗0c
∗
0c

∗
1 · · · c∗δ to A.

- Upon decryption query C = r0c0c1 · · · cδ(6= C∗), D decrypts normally. That is, he uses d to
normally decrypt r1, · · · , rδ from c1 · · · cδ and then decrypts c0 normally.

Finally, when A outputs a guess bit b′ for b within time t from his receiving C∗
b , D does the

following: if r∗0 · · · r∗δ was queried toH oracle byA or D himself, he aborts with 0/1 randomly (denote
this event by Bad); otherwise, it outputs whatever A does. The view of A in the simulation of D is
according to the real distribution unless the following events occur: (1) when A issues a decryption
query C = r0c0c1 · · · cδ after receiving C∗

b , it happens that C 6= C∗
b but r0c1 · · · cδ decrypt to

r∗0r
∗
1 · · · r∗δ . In this case, c0 6= c∗0 (otherwise, C = C∗

b) and the decryption key H(r∗0 · · · r∗δ) is unknown
to D and hence can not answer. However, since c0 6= c∗0, a valid c0 implies a forgery of ciphertext
under the key of c∗0, contradiction to the one-time unforgeability of K. We ignore this forgery event
from now on. (2) when A issues the H-query (r∗0 · · · r∗δ) (i.e., Bad event occurs), the answer should
be the unknown key in c∗0 and so D can not answer. Since right before Bad event, the view of A is
identical to the real world. Hence, the probability of Bad event will not change if the abortion of D
is replaced by a real execution. Thus, Pr[Succ(D)] ≥ Pr[Succ(A)]− Pr[Bad]/2 + negl(κ). Finally,

5

since A has a polynomial time and polynomial parallel processors, so does D. Hence, to prove the
theorem, it is sufficient to prove that Pr[Bad] is negligible.

Lemma 1. Pr[Bad] is negligible.

Proof. We prove this lemma for a relaxed adversary A: A is any PPT adversary, except that
after receiving C∗

b , he can only issue parallel H-queries for t times and each time includes at most
σ H-queries. Here we implicitly assume one hash cost at least one time unit. We now show that
the decryption query is unnecessary. To see this, we revise D such that it does not issue a H-query
except in creating C∗

b and the decryption query can be answered only using the existing records for
H-queries from A. Let C = r0c0c1 · · · cδ be a decryption query. D acts as follows.

- If r0c0 6= r∗0c
∗
0, check whether r0c0r

′
1 for some r′1 was queried to H by A such that c∗1 =

E[r′1;H(r0c0r
′
1)]. If yes, define r1 = r′1 and continue similarly to determine r2, · · · , rδ; otherwise,

reject (this decision is correct by Lemma 2 (Appendix B) since H(c0r0r1) is undefined (thus
random)). When r1 · · · rδ are all determined, check whether r0 · · · rδ was queried to H. If yes,
use H(r0 · · · rδ) to decrypt c0; otherwise, reject (this decision is valid due to the unforgeability
of K). As a summary, D can decrypt C based on the records for H-queries from A only.

- If r0c0 = r∗0c
∗
0, D searches for r∗0r1 · · · rδ over all records of H-queries such that it is consistent

with c1 · · · cδ. Note such a result is unique if any. If it is found, decrypt c0 using the record
H(r∗0r1 · · · rδ); otherwise, reject (this decision is correct due to the unforgeability of K under
the undefined (thus random) key H(r∗0r1 · · · rδ)). Again, the decryption is answered only based
on records for H-queries from A.

Therefore, to prove the lemma, it suffices to prove that any PPT adversary A that receives C∗
b and

issues at most t times of parallel H-queries, can come up with H-query r∗0 · · · r∗δ (i.e., Bad event)
negligibly.

Use DisOrd to denote the event: there exists (i, j) with j ≥ i + log κ − 1 such that the first
H-query with prefix r∗0 · · · r∗i is a H-query with prefix r∗0r

∗
1 · · · r∗j . We first prove the following claim.

Claim 1. Pr[DisOrd] = negl(κ) holds for any PPT A in the PRAM model (not just σ-PRAM
model).

Proof. Otherwise, since there are at most δ2 possible (i, j) pairs, there exist (i∗, j∗) so that DisOrd
on (i∗, j∗) (or DisOrd(i∗, j∗) for short) occurs non-negligibly. We show that the semantic security
of (E,D) for the multiple ciphertexts can be violated by an adversary B. Note semantic secu-
rity in the multi ciphertexts and that for the single ciphertext are equivalent (e.g., see [21]). B
takes r∗0, r

∗
1, · · · , r∗δ ,m0,m1 and sets the challenge pair for a multi-encryption as (r∗i∗ , · · · , r∗δ) or

(0, 0, · · · , 0). In turn, he will receive αi∗ , · · · , αδ which is the encryption of either the first vec-
tor (corresponding to challenge bit u = 1) or all zeros (corresponding to challenge bit u = 0).
Upon this, he takes K ← {0, 1}ℓ, defines H(r∗0 · · · r∗δ) = K and computes c∗0 = K(mb,K). He
also defines H(c∗0r

∗
0 · · · r∗i∗) as the hidden randomness of αi for i ≥ i∗; for i < i∗, he computes

c∗i = E[ri;H(c∗0r
∗
0r

∗
1 · · · r∗i)], where B maintains H oracle to compute H(x). Finally, he gives

r∗0, c
∗
0 · · · , c∗i∗−1, and {αj}κj=i∗ to A and answers the H-query from the latter normally unless a H-

query q with prefix c∗0r
∗
0 · · · r∗i∗ occurs, which has two cases: if q in fact has a longer prefix c∗0r

∗
0 · · · r∗j∗ ,

then DisOrd(i∗, j∗) occurs; otherwise, DisOrd(i∗, j∗) will not occur. In the former case, B terminates
with output u′ = 1; otherwise, outputs u′ = 0. Note right before query q, the view of A for the case
u = 1, is according to the real distribution and hence Pr[B({αi}i) = 1] = Pr[DisOrd(i∗, j∗)]; when

6

u = 0, r∗0|E[r∗1 ;H(r∗0r
∗
1)]| · · · |E[r∗i∗−1;H(r∗0 · · · r∗i∗−1)]|E[0]| · · ·

|E[0] is the challenge tuple.
We show that DisOrd(i∗, j∗) in this case occurs negligibly. We show this by reducing to Lemma 5
(Appendix B). In fact, adversary C in Lemma 5 can carry out the simulation of B for case u = 0 as
follows. He prepares r∗0, · · · , r∗i∗−1, c

∗
0 as done by B, lets r∗i∗−1+v = x∗v(unknown), v = 1, · · · , δ− i∗+1

and defines the valuesH(c∗0r
∗
0 · · · r∗i), i = i∗, · · · , δ randomly without specifying its input. In addition,

n = j∗ − i∗. Finally, H-query r0 · · · ri is answered as follows. When i < i∗, the answer is normal as
r∗0 · · · ri∗−1 is known; when r0 · · · ri∗−1 6= r∗0 · · · r∗i∗ is answered with a random hash result; otherwise,
query whether ri∗ · · · ri equals x∗1 · · · xi−i∗+1 (i.e., ri∗ · · · ri). In case of no, answer the hash result
as a random number; in case of yes, RevN (in Lemma 5) occurs if and only if DisOrd(i∗, j∗) in C’s
simulation occurs. Hence, when A makes N times parallel queries,

Pr[DisOrd(i∗, j∗)] = Pr[RevN] ≤ N ·Poly(κ)

κ(j∗−i∗+1)β

≤ N ·Poly(κ)

2β log2 κ
,

negligible, where Poly(κ) is the degree of parallelism of A. When u = 1, Pr[DisOrd(i∗, j∗)] is non-
negligible. Hence, the advantage of B is non-negligible, contradicting the semantic security of E.
�

In the following, we assume DisOrd never occurs. Thus, for any i and j ≥ i + log κ − 1, the
H-query with prefix r∗0 · · · r∗i (but not prefix r∗0 · · · r∗j) always occurs prior to one with prefix r∗0 · · · r∗j .

Let ν be the number of times that A makes parallel H-queries. Let nu denote the number of
times A make parallel H-queries after a query with prefix r∗0r

∗
1r

∗
2 · · · r∗1+(u−1) log κ but till a query

with prefix
r∗0r

∗
1r

∗
2 · · · r∗1+u log κ (By Claim 1, nu ≥ 1).

We have that Pr[ν ≤ t] ≤ Pr[
∑δ/ log κ−1

u=0 nu ≤ t]. To bound this probability, we first show the
following.

Claim 2. Pr[n0 ≤ a0, · · · , nδ/ log κ−1 ≤ aδ/ logκ−1] ≤ (σ/κβ)δ/ log κ ·∏δ/ log κ−1
u=0 au ≤ (tσ log κ

δκβ)δ/ log κ.
Proof. Similar to the treatment for DisOrd, we can show that Pr[n0 ≤ a0] ≤ a0σ

κβ . By Lemma 4
(Appendix B), given the view (denoted by y0) of A till the first query q0 with prefix r∗0r

∗
1, string

r1+log κ · · · rδ remains uniformly random to him, where x∗i = r∗i and Ω is the set of queries prior to
query q0 and u0 is query q0 (x∗0x

∗
1x2 · · · xlogκ 6= x∗0x

∗
1x

∗
2 · · · x∗logκ is guaranteed by Claim 1). Hence,

we can use the approach for bounding Pr[DisOrd] to show that Pr[n1 ≤ a1|y0] ≤ a1σ
κβ , where y0 is

the adversary view till the query with prefix r∗0r
∗
1 occurs. Since DisOrd is assumed not to occur,

this inequality holds for all y0. Since n0 is deterministic in y0, by Lemma 3 (Appendix B), Pr[n1 ≤
a1|n0 ≤ a0] ≤ a1σ

κβ . Similarly, we can show that Pr[ni ≤ ai|n0 ≤ a0, n1 ≤ a1, · · · , ni−1 ≤ ai−1] ≤ aiσ
κβ .

The first inequality follows. The second one is from the geometry inequality. �

We come back to bound Pr[ν ≤ t] ≤ Pr[
∑δ/ log κ−1

u=0 nu ≤ t]. Since ni ≥ 1, if t < δ/ log κ,

Pr[ν ≤ t] = 0. If t ≥ δ/ log κ, since n0 + · · · + nδ/ log κ−1 ≤ t has
(t
δ/ log κ

)

≤ (3t logκδ)δ/ log κ solutions,
by Claim 2, we have that

Pr[
∑δ/ log κ−1

u=0 nu ≤ t] ≤ (
√
3t
√
σ log κ

δκβ/2)2δ/ log κ

< 3−δ/ log κ,

negligible. Hence, Pr[Bad] = negl(κ). �

7

Corollary 1. tE-RO is secure (δ/ log κ− 1, µκβδ)-timed encryption for any δ > log κ.

Proof. σ-PRAM condition in the proof of Theorem 1 is used only in Claim 2. If t < δ/ log κ,
Claim 2 is not used in the proof and Pr[ν ≤ t] = 0 (because ni ≥ 1), where some negligible events
are ignored. �

Efficiency. tE-RO can be setup according to the adversary type. For σ-PRAM adversary, we can
set β = log(t2σ) and δ = log2.5 κ, where t can be set according to the overall secrecy requirement.
Under this setting, our theorem guarantees that no PPT adversary in the σ-PRAM can break
the secrecy of the timed encryption with non-negligible advantage. On the other hand, the normal
encryption of E∗ is dominated by log2.5 κ encryptions of E and hashing of H; the normal decryption
is dominated by log2.5 κ encryptions and decryptions of E and hashing of H.

Forceful decryption is dominated by 1
2κ

β log2.5 κ encryptions of E and hashing of H. If E uses a
hybrid encryption, the cost for normal encryption/decryption of E∗ does not increase much with β
since the added cost are only from the hashing H and the (symmetric) data encryption part in E,
both of which are cheap. When necessary, E∗

e ()/D
∗
d() can also be implemented in the parallel model

for a speedup. t can be taken as large as κβ/2/
√
σ. Hence, the secrecy level can be conveniently set

without affecting the normal encryption/decryptions efficiency. For PRAM adversary (i.e., a PPT
adversary with any polynomial parallelism, instead of a fixed σ-PRAM we just discussed), we are
only guaranteed that the secrecy holds within time δ/ log κ− 1 where the time unit is one hash of
input size κ + β. In this case, the scheme is meaningful only if E∗

e ()/D
∗
d() is implemented in the

parallel model since otherwise the adversary is only given an attack time that is less than the time for
a normal encryption/decryption, which is unreasonable. As said before if H uses Merkle tree hash
structure, then E∗

e ()/D
∗
d() can be implemented in δ2 parallel-processor model. Each processor has

time independent of δ (specifically, one encryption and decryption of E and log δ basic compression
of small input). It should be noted that this parallel implementation is practical only if δ is small
(hence a small secrecy time bound t). In application of deniable key exchange at Section 5, the
encryption secrecy is required only to hold for a few seconds. Hence this type of setup is enough.
For applications requiring a large δ, our scheme is not suitable.

4 Timed Encryption without a Random Oracle

In the last section, we have constructed a timed encryption in the random oracle model. In the
following, we show that one can generically convert a timed commitment into a timed encryption.
Since Boneh and Naor [8] constructed a timed commitment without a random oracle, a random
oracle free timed encryption exists too. The idea is as follows. A timed commitment already has
a forceful opening. But it lacks an efficient way (using a secret) to decrypt. Hence, naturally
we can use a normal encryption to encrypt m and use a timed commitment to commit. With a
decryption key, one can obtain m from the normal encryption while, without a decryption key, one
can forcefully compute m from the timed commitment. To make sure the force commitments and
normal encryptions are consistent in m, a non-interactive zero-knowledge (NIZK) proof is used.
The formal description follows.

Construction 2. Let (e, d) be a public/private key pair for a public key encryption (E,D).
TCom is a timed commitment. P is a non-interactive zero knowledge using a common random

string σ for relation Re =
{

〈(Ee[m; r], TCom[m; r′]),m, r, r′〉 | m, r, r′ ∈ {0, 1}∗
}

. To encrypt m,

compute C = Ee[m; r], τ = TCom[m; r′] ,where r and r′ are the randomness for C and τ respectively.

8

π = Pσ[C, τ ;m, r, r′], where the input is (C, τ) and witness is (m, r, r′). The final ciphertext is
γ = (C, τ, π). Upon γ = (C, τ, π), the normal decryption with d is to first verify if π is valid. If yes,
decrypt m = Dd(C); otherwise, ⊥ . Forced decryption algorithm T for γ is to first verify π. If valid,
forcefully open τ ; reject otherwise. Denote this scheme by (E∗,D∗).

Theorem 2. If (E,D) is CCA2 secure, TCom is a secure (α, t, T)-timed commitment and P is a
one-time simulation sound adaptive NIZK (See Appendix A), then (E∗,D∗) is a secure (α, t, T)-
timed encryption.

The proof follows from the intuition presented before; see Appendix C for details.

Corollary 2. In Theorem 2, if TCom is a secure (t, T)-timed commitment, then (E∗,D∗) is a secure
(t, T)-timed encryption.

Proof. A secure (t, T)-timed commitment is a secure (α, t, T)-timed commitment for any polyno-
mial α. By Theorem 2, (E∗,D∗) is also a secure (α, t, T)-timed encryption. �

5 Application to Adaptive Deniable Key Exchange

Deniable key exchange is a protocol that allows two parties to securely establish a common secret
while neither of them can prove to a third party that the protocol execution between them has
actually occurred. Technically, this can be achieved by requiring that the interaction be simulatable
by each of them alone. This property prevents the communication record from being maliciously
used as an evidence (i.e., at the court) against an honest user. Deniable key exchange has recently
been actively studied in the literature [26, 16, 22]. We are especially interested in the deniability
advocated by Di Raimondo et al. [16], where the deniability remains valid even if the adversary
can eavesdrop some communication records between honest users. Eavesdropping could add to the
difficulty of deniability. Indeed, the eavesdropped transcript is usually linkable to an honest user
and its randomness is unknown to the attacker. If an adversary uses part of this transcript in an
attack session, this linkage might remain. Adaptivity for deniability is also important, where an
adversary can corrupt any user with the time going on. To our knowledge, no adaptive deniable
key exchange in the eavesdropping model has been proposed before. In this section, we will resolve
this question using a timed encryption (hence in the timing model). Our timing restriction is rather
weak. It essentially asks a user to process the ciphertext as soon as possible and hence does not
artificially cause any communication delay (unlike [19]). Our deniable security is proven in the
non-eraser model, where the intermediate data in the protocol execution can not be erased and,
when an instance is corrupted, it has to handled out the state faithfully.

The security model considered here is from Bellare-Rogaway [2] for session key security and
from [19, 22] for deniability. Assume there are n parties P1, · · · , Pn. Pi and Pj might jointly execute
a key exchange protocol Ξ to establish a common secret (called session key).

Notions. Πℓi
i denotes a protocol instance in Pi, which is a copy of Ξ in it and ℓi is its instance

id. sidℓii is a session identifier for Πℓi
i and will be specified when analyzing the protocol security.

Supposedly, two communicating instances should share the same session identifier. pidℓii is the

partner party of Πℓi
i that he presumably interacts with. statℓii is the internal state of Πℓi

i . We also

use stati to denote an internal state for an unspecified instance in Pi. sk
ℓi
i is the session key in Πℓi

i .

Πℓi
i and Π

ℓj
j are partnered if (1) pidℓii = Pj and pid

ℓj
j = Pi; (2) sidℓii = sid

ℓj
j . Intuitively, instances

are partnered if they are jointly executing Ξ.

9

Adversarial Model. Now we introduce the attack model. Essentially, we would like to capture
the concern that the adversary can fully control the network. In particular, he can inject, modify,
block and delete messages at will. He can also corrupt some users and obtain their secret keys and
internal states. He is also able to collect some selected session keys. Finally, Ξ is secure if the session
key of any adversarially chosen instance remains computationally random, where the adversary is
assumed not to compromise this session key in an obvious way (e.g., corruption or session key
request). The formal model is defined as a game between a challenger and an attacker A. The
challenger maintains a set of oracles that represent events during protocol executions. Adversarial
capabilities are modeled as queries to these oracles adaptively.
Send(i, ℓi,M). In this query, A can send any message M to Πℓi

i . The result is whatever the
latter returns according to the specification. This models Pi’s response to an incoming message.
Note Send(i, ℓi, F lowa) and Send(i, ℓi, F lowa+2z) for a, z ∈ Z must be consistent. Especially, the
latter will start from the internal state of the former. For instance, in our construction at the
next subsection, Pj requires that Flow3 be received within time t from receiving Flow1. Toward
this, upon Send(j, ℓj , F low1), a timer is set and as a part of the internal state it will be feeded to

Send(j, ℓj , F low3), as Π
ℓj
j does in the real execution.

Reveal(i, ℓi). In this query, A can ask for a session key skℓii in Πℓi
i . It models a session key loss

attack.

Corrupt(i, ℓi). In this query, A can ask to corrupt Πℓi
i . In turn, state statℓii is given. Note that

Pi’s long term secret key is not part of statℓii . This threat is also called session state reveal attack
[1, 6]. Security against such an attack essentially means that compromising one session does not
affect other sessions.
Corrupt(i). Upon this, A can corrupt Pi and obtains his long term secret and all internal states
{statℓii }ℓi . In addition, Pi’s future action is taken by A. This models the case where some users
become malicious.

Test(i, ℓi). This is the security test and is allowed to query it only once. The queried session
must be completed and accepted. Furthermore, this session should not be compromised (see the
definition below). When this oracle is called, it flips a fair coin b and provides a number αb to A,
where α0 = skℓii and α1 ← K and K is the space of skℓii . A then tries to output a guess bit b′. He
is informed success if b′ = b; otherwise, fail.

Πℓi
i is said compromised if Reveal or Corrupt query was issued to it or its partnered session,

or if Pi or pid
ℓi
i is Corrupted.

The security of the protocol is defined through correctness, secrecy, authentication and denia-
bility.

Correctness. If two partnered instances Πℓi
i and Π

ℓj
j successfully complete, then sklii = sk

ℓj
j .

Secrecy. Let Succ(A) denote the success event in the Test query. The secrecy requires that
Pr[Succ(A)] < 1

2 + negl(κ) (i.e., randomly guessing b is the best strategy).

Authentication. Essentially, authentication is to require that when one instanceΠℓi
i successfully

completes the execution of Ξ, indeed pidℓii attended this execution. Formally, let Πℓi
i be the test

session and Non-Auth be the event: either there does not exist any partnered instance for Πℓi
i or its

partnered instance is not unique. Then Ξ is said to be authenticated if Pr[Non-Auth(A)] is negligible.
Note that as mentioned in [22], defining Non-Auth on the test session is for simplicity only.

Deniability. Deniability essentially states that the adversary view in the interaction can be
simulated himself (i.e., using his knowledge only) and hence its view can not be used as evidences

10

against deniability of other users. Formally, the simulated interaction and the real interaction
should be statistically close. In our case, it suffices that the oracles can be maintained using all
users’ public keys and (adaptively) corrupted users’ secret keys (when corruption occurs), where a
corrupted user’s secret key will be provided to the simulator when adversary issues this corruption
query. Hence, we can define the deniability as the statistical closeness between the adversary view
when the oracles are maintained as specified and the adversary view when the oracles are simulated.
As mentioned in the beginning, the deniability should hold against eavesdropping attack. This can
be modeled by one more oracle below that is maintained by a trusted party.

- Execute(i, ℓi, j, ℓj). This oracle is maintained by a trusted party. When this oracle is called, a

complete protocol execution between Πℓi
i and Π

ℓj
j is carried out. Finally, A and the simulator

will be provided with a protocol transcript tr. This captures an eavesdropping attack, where A
(and the simulator) does not know the randomness for data in the transcript.

Definition 3. A key exchange protocol Ξ is deniable secure if for any PPT A, correctness, secrecy,
authentication and deniability are all satisfied.

Remark. In the next subsection, we will construct a key exchange protocol whose specification
requires a timing restriction (e.g., Pj requires that Flow3 must be received within time T after
he sends out Flow2). We remark that our deniability definition in the above is for a general key
exchange. It of course is suitable for our construction where the timing restriction is a part of the
protocol. Due to this restriction, the deniable security in the above definition can be easily shown.
In other words, this restriction is not an assumption for the protocol’s deniability. That is why our
definition of deniable security does not mention the timing restriction.

5.1 Construction

In the following, we use a timed encryption to construct a new key exchange protocol that is
adaptively deniable secure, where eavesdropping attacks and session state reveal attacks are both
allowed. Our protocol is presented as follows (also see Fig. 1).

Pi Pj

C1 = Ej [k1|g
x]

C1
//

C2 = Ei[k2|C1|g
y]

C2
oo

τ=MACk2 (Pi|Pj|C1|C2|0)
//

sk = gyx sk = gyx
σ=MACk1(Pi|Pj |C1|C2|1)

oo

Fig. 1. Our Timed Encryption-based Deniable Key Exchange tE-DKE(See details in the bodytext)

Initially, take (Ei,Di) ← G(1κ) as user Pi’s public/private key pair. p, q are large primes with
q | p−1. g ∈ Z

∗
p has an order of q. MAC: {0, 1}κ×{0, 1}∗ → {0, 1}κ is a message authentication code

with key space {0, 1}κ. When Pi and Pj want to establish a session key, they proceed as follows.

11

1. Pi takes x← Zq, k1 ← {0, 1}κ and sends C1 = Ej[k1|gx] to Pj .

2. Upon C1, Pj takes y ← Zq, k2 ← {0, 1}κ and sends C2 = Ei[k2|C1|gy] to Pi.

3. Upon C2, Pi checks whether Di(C2) = k2|C1|Y for some k2 ∈ {0, 1}κ and Y ∈ 〈g〉. If no, reject;
otherwise, send MACk2(Pi|Pj |C1|C2|0) to Pj .

4. Upon τ , if τ = MACk2(Pi|Pj |C1|C2|0) and τ is received within time t from sending out round
two message and if Dj(C1) = k1|X for some X ∈ 〈g〉 and k1 ∈ {0, 1}κ, set sk = Xy and then
compute and send σ = MACk1(Pi|Pj |C1|C2|1) to Pi; otherwise, reject.

5. Upon σ, If σ 6= MACk1(Pi|Pj |C1|C2|1) or σ is received more than time t from sending out round
one message, reject; otherwise, set sk = Y x.

Remark. To better understand our protocol, some remarks are necessary.

(1) One careful reader might realize that the final message flow seemingly can be moved to the
second round (i.e., put together with C2). If so, Pj needs to first derive k1 from C1 in order to
compute MACk1(∗) . We show that this variant suffers from a session state reveal attack. Assume

Πℓi
i sends C1 to P

ℓj
j . When Π

ℓj
j replies with C2 and σ, the attacker reveals the state of Π

ℓj
j and

obtains k1 in C1. With k1, the attacker forges a new C ′
2 and σ′ with a known y′. Now when P ℓi

i

successfully completes, it has no partner in Pj and in addition skℓii is known to the attacker. A
simple counter measure for this attack is to erase k1 after computing σ (noticing k1 will not be

used by P
ℓj
j anymore). However, this works only in the eraser model, which is not the interest of

this work. If τ is sent in the 4th flow as we do, this attack will not occur. Intuitively, this is true
since a party decrypts k1 or k2 only after C1 and C2 both are known to him. Hence, the attacker
can not compute a σ′ in order to authenticate his own X or Y .

(2) If C1 is not encrypted in C2, the protocol again will suffer from a session state reveal attack.
Indeed, when an attacker A sees Πℓi

i ’s message C1 = Ej [k1|gx], he changes it to C ′
1 = Ej [k

′
1|gx

′
]

and sends it to Π
ℓj
j . After seeing C2, he forwards to Πℓi

i . When Πℓi
i sends out τ , A corrupts Πℓi

i

and obtains k2, with which A computes τ ′ that matches C ′
1 and C2. Π

ℓj
j then will be deceptively

convinced. Our protocol will not suffer from this attack since C1 is encrypted in C2 and so A can
not mall C2 to C ′

2 that contains C ′
1 but does not change k2.

(3) If gx is not encrypted in C1 but it is included in the input for τ and σ, then it still suffers
from a session state reveal attack. The procedure is similar to the case in item (2).

(4) Deniability of our protocol is intuitively showed as follows. We are required to simulate the
oracle response without using an honest user’s decryption key. This is done due to the forceful
decryption for the timed encryption. Specifically, when receiving C2, the simulator can suspend
the adversary and forcefully decrypt it. Note that in order for a protocol to be deniable, it only
requires that based on public keys the simulator can simulate the adversary view in a polynomial
time (i.e., in the same complexity class with the adversary so that toward deniability the code of
the simulator can be run by the attacker himself). In timed encryption, the forceful decryption
runs in a polynomial time and hence the simulation lies in the complxity class of an adversary. The
suspension based simulation is used by Dwork, Naor and Sahai [19].

5.2 Security

In this section, we analyze the security of our protocol. We will show that it satisfies adaptive secrecy,
adaptive deniability and authentication. Our adaptive deniability holds even if the adversary can

12

launch an eavesdropping attack. This is the first protocol in the literature that achieves this. Our se-
crecy property holds even if the adversary can launch a session state reveal attack in the non-eraser
model, where all the intermediate data of an instance will not erased and (when revealed) will be
given to the adversary. Avoiding such an attack is meaningful as it essentially means that compro-
mising one session should not have a security effect on other non-partnered sessions. Before proceed-
ing, we define the session identifier. For an initiator instance Πℓi

i , let sidℓii = 〈Pi, Pj , Ej [k1|gx], C2〉.
Similarly, we define one for a responding instance.

Deniability intuitively follows from the forceful decryption of timed encryption and suspension
strategy of [19] as seen in the above remark. The secrecy is to say that an adversary in the secrecy
test can not have a success probability better than a näive guess. A routine proof strategy is to
use a sequence of game method to modify the oracles gradually such that the final game is easy
to analyze. But one pitfall here is that since E is a timed encryption, we can not modify the
encryption content; otherwise, the adversary will detect the modification as T is also a polynomial.
In our proof, we will only modify the test instance and in addition the simulation will end when
time t is elapsed since the modified ciphertext is sent. Hence, the adversary will not have enough
time to detect the modification. The authentication property will be showed when we prove the
secrecy property, where a test session provably has a unique partner instance.

Theorem 3. If (G,E,D) is a (α, t, T)-timed encryption and MAC is an existentially unforgeable
message authentication code, then tE-DKE is adaptively deniable secure against any PPT α-PRAM
suspendible adversary.

Proof. Assume Πℓi
i and Π

ℓj
j share an identical sid and also both accepts. Using the notion in the

protocol description,

〈Pi, Pj , Ej [k1|gx], C2〉 = 〈Pi, Pj , C1, Ei[k2|C1|gy]〉.

Then Πℓi
i is the initiator and Π

ℓj
j is the responder. Also C1 = Ej [k1|gx] and C2 = Ei[k2|C1|gy].

Hence, they have an identical view on (gx, gy). Since both accept, both compute sk = gxy. This
concludes the completeness.

We now consider the adaptive deniability. The oracle simulator is simple: it behaves normally
except when he needs to use Di to decrypt a ciphertext C. In this case, he suspends the adversary
A and uses forced decryption to obtain m = T(C). After that, he frees A and continues the
normal execution. Due to the completeness of (α, t, T)-timed encryption, the outcome of T differs
from Di(C) only negligibly. Note this holds regardless how C is computed (especially it could be
computed under the help of Execute oracle or even it is invalid). Hence, the simulation is statistically
close to the real one. Adaptive deniability follows1.

Now we consider the authentication property. If Πℓt
t is the test instance, we need to show that

there is a unique partnered instance Πℓs
s for it. We only need to prove the existence since the

probability in an instance to repeatedly sample the same x (or y) is negligible. First consider the
caseΠℓt

t is a responder instance and after receiving a round one message C∗
1 from a claimed party Ps,

he sends C∗
2 = Es[k

∗
2 |C∗

1 |gy
∗
] to Ps. Denote the event that Πℓt

t receives a valid third round message
τ∗ within time t from his sending out C∗

2 but no partnered instance in Ps exists for Π
ℓt
t , by Imp. We

1 Note that the secrecy of (G,E,D) can be proven in the random oracle model (e.g., tE-RO). It is pointed out in [9]
that the deniability in the random oracle model can not be trusted. In our deniability proof here, we only use the
property of E that it can be forcefully decrypted by an algorithm T in time T . Hence, no secrecy (hence random
oracle) is used or considered. Consequently our timed encryption tE-RO in Section 3 can be plugged here.

13

need to show that Pr[Imp] is negligible. Denote the real game by Γ . We modify Γ to Γ ′ such that the
game terminates after time t from the moment Πℓt

t sends out C∗
2 . Pr[Imp(Γ)] = Pr[Imp(Γ ′)] since

if Imp occurs, it must happen within time t since the moment Πℓt
t sends out C∗

2 . We further modify
Γ ′ to Γ ′′ such that Es[k

∗
2 |C∗

1 |gy
∗
] in Πℓt

t is replaced by Es[0|C∗
1 |gy

∗
]. To be consistent, whenever

Ps receives the same Es[0|C∗
1 |gx

∗
], it proceeds normally with assuming the decryption result being

(k∗2 |C∗
1 |gy

∗
) and so τ is computed using k∗2 . By reducing to the secrecy property of E under CCA2

attack, we show that Pr[Imp(Γ ′)] = Pr[Imp(Γ ′′)] + negl(κ). Otherwise, an α-PRAM attacker D
for E is described as follows. Assume there are at most µ responder instances. Given a challenge
public key E, D takes u ← {1, · · · , µ} and s ← {1, · · · , n}. He sets up the system normally with
A against it, except Es = E. He simulates Γ ′ normally, except when the uth responder instance
Πℓt

t is invoked. In this case, if pidℓtt 6= Ps or if Ps is corrupted, determinate with 0; otherwise, it
takes y∗, k∗2 randomly and outputs the challenge pair as (0|C∗

1 |gy
∗
, k∗2 |C∗

1 |gy
∗
). In turn, he receives

C∗
2 and sends to Ps. Later D simulates the game normally, except whenever (1) Ps receives C∗

2 , it
proceeds using k∗2 |C∗

1 |gy
∗
(e.g. session state statℓss also uses k∗2); (2) Ps receives C2 6= C∗

2 , he asks his
decryption oracle to compute k2|C1|gy. Finally, when P ℓt

t receives a valid round three message τ
within time t from the moment its sending C∗

2 while no partnered instance in Ps exists for P
ℓt
t , then

D outputs 1; otherwise 0. The probability that the uth instance Πℓt
t is the test instance and Ps is its

partner party is 1
nu . When the guess is correct, C∗

2 encoding 0|C∗
1 |gy

∗
(resp. k∗2 |C∗

1 |gy
∗
) corresponds

to the simulation of Γ ′′ (resp. Γ ′). Hence, the non-negligible gap of event in Imp between them
implies the non-negligible advantage of D. In addition, since A is in the α-PRAM model, so is D.
D does not add any delay in converting the challenge/answer of A to his own. Thus, D is a valid
attacker. This contradicts to the secrecy of E. Finally, Pr[Imp(Γ ′′)] is negligible as Imp event (non-
partnering) implies that C∗

1 in C∗
2 was never computed by Ps and hence message C2 will not be

accepted by any instance in Ps. Therefore, the usage of k
∗
2 in the simulation of Γ ′′ is only to evaluate

MACk∗2
(·) (especially recall P ℓt

t can not be issued a session state reveal) and hence the non-negligible
probability of Imp(Γ ′′) event can be reduced to break MAC, contradiction! This completes the case
Πℓt

t is a responder. When Πℓt
t is an initiator, the proof is similar that when Πℓt

t receives σ, there
must exist a unique partnered instance in Ps for it. As a summary, we conclude that Pr[Imp(Γ)] is
negligible and hence the authentication property holds.

We now consider the secrecy. We have showed that the test instance Πℓt
t must have a unique

partnered instance Πℓs
s . In addition, this Πℓs

s also only have Πℓt
t as its unique partnered instance

in Pt. This is so due to the fact that sampling a repeated x or y in Pt has a negligible probability
(we ignore it). Now we argue the adversary success in the test session is 1/2 + negl(κ); otherwise,
an attacker B can break DDH assumption as follows. Given a challenge tuple (α, β, γ), B sets
up Γ normally with A against it. It takes a distinct pair u < v randomly from {1, · · · , µ}. Then
it simulates Γ normally, except when the uth instance Πℓt

t or vth instance Πℓs
s is invoked. In

the former case directly define gx as α and in the latter case define gy as β. In this simulation,
x = logg α and y = logg β are unknown. Whenever Πℓt

t or Πℓs
s is compromised or if Πℓt

t and Πℓs
s are

not partnered instances or if neither of them is chosen as the test session, then aborts; otherwise,
define γ as the challenge session key for the test session (which is either Πℓt

t or Πℓs
s). Finally, output

whatever A does. First of all, we have showed that there is a unique pair of partnered instances,
one of which is the test session. If this pair of partnered instance are the uth and vth instances,
then the abortion event will not occur. Since prior to the abortion event adversary view is real, the
correct guess of (u, v) has a probability of 1

µ(µ−1) . Conditional on the correct guess of (u, v), the

14

adversary view is according to the real distribution in Γ . Hence, non-negligible advantage of A in
Γ implies a non-negligible advantage of B in his DDH game, contradiction! �

Corollary 3. In Theorem 3, if (E,D) is (t, T)-timed encryption, then tE-DKE is adaptively deni-
able secure against any PPT PRAM suspendible adversary.

Proof. For any polynomial α, (E,D) is (α, t, T)-timed encryption. By Theorem 3, tE-DKE is
deniable secure against any PPT α-PRAM suspendible adversary. The claim follows. �

References

1. M. Bellare, R. Canetti, and H. Krawczyk, a modular approach to the design and analysis of authentication and
key exchange protocols, Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, pp.
419-428, 1998, Dallas, Texas, USA.

2. M. Bellare, P. Rogaway, Entity Authentication and Key Distribution. CRYPTO 1993: 232-249.
3. M. Bellare and P. Rogaway, Random Oracle is Practical: A Paradigm for Designing Efficient Protocols, ACM

CCS’93, pp. 62-73.
4. Dan Boneh, Matthew K. Franklin: Identity-Based Encryption from the Weil Pairing. SIAM J. Comput. 32(3):

586-615 (2003).
5. R. Canetti and H. Krawczyk, Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels,

Eurocrypt 2001: 453-474.
6. K. Choo, C. Boyd and Y. Hitchcock, Errors in Computational Complexity Proofs for Protocols, Advances in

Cryptology-ASIACRYPT’05, B. Roy (Ed.), LNCS 3788, Springer-Verlag, pp. 624-643, 2005.
7. I. F. Blake and A. C.-F. Chan, Scalable, Server-Passive, User- Anonymous Timed Release Public Key Encryption

from Bilinear Pairing, in ICDS 2005: Proceedings of the 25th International Conference on Distributed Computing

Systems, Jun. 2005, pp. 504-513.
8. Dan Boneh and Moni Naor, Timed Commitments and Applications, CRYPTO’00.
9. R. Pass, On the deniability in the common reference string and random oracle model, CRYPTO’03, pp. 316-337,

2003.
10. J. Cathalo, B. Libert, and J.-J. Quisquater, Efficient and Non-interactive Timed-Release Encryption, in ICICS

2005: Proceedings of the 7th International Conference on Information and Communications Security, Dec. 2005,
pp. 291-303.

11. Jung Hee Cheon, Nicholas Hopper, Yongdae Kim and Ivan Osipkov, Timed-Release and Key-Insulated Public
Key Encryption, Financial Cryptography 2006.

12. Jung Hee Cheon, Nicholas Hopper, Yongdae Kim and Ivan Osipkov, Provably Secure Timed-Release Public Key
Encryption, ACM Trans. Inf. Syst. Secur. 11, 2, Article 8 (May 2008), 44 pages.

13. Giovanni Di Crescenzo, Rafail Ostrovsky, and S. Rajagopalan, Conditional Oblivious Transfer and Timed-Release
Encryption, EUROCRYPT’99.

14. M. Di Raimondo, R. Gennaro, New Approaches for Deniable Authentication, ACM CCS’05.
15. M. Di Raimondo, R. Gennaro, New Approaches for Deniable Authentication, J. Cryptology (2009) 22: 572-615.
16. M. Di Raimondo, R. Gennaro and H. Krawczyk, Deniable Authentication and Key Exchange, ACM CCS’06.
17. Y. Dodis, D.-H. Yum, Time Capsule Signatures, Proc. of Financial Cryptography 2005, 2005.
18. Y. Dodis, J. Katz, A. Smith and S. Walfish, Composability and On-line Deniability of Authentication, TCC’09.
19. C. Dwork, M. Naor and A. Sahai, Concurrent Zero-Knowledge, STOC’98,pp. 409-418, 1998.
20. J. A. Garay and M. Jakobsson, Timed Release of Standard Digital Signatures, in FC 2002: Proceedings of the

6th International Conference on Financial Cryptography, Mar. 2003, pp. 168-182.
21. O. Goldreich, Foundations of Cryptography: Applications, Cambridge University Press, 2004.
22. S. Jiang and R. Safavi-Naini, An Efficient Deniable Key Exchange Protocol, FC’08, 2008.
23. H. Krawczyk, SKEME, a versatile secure key exchange mechanism for Internet, NDSS’96, pp. 114-127.
24. Y. Lindell, A Simpler Construction of CCA2-secure Public-key Encryption under General Assumptions, EURO-

CRYPT’03, pp. 241-254.
25. W. Mao, Timed-Release Cryptography, in SAC 2001: Proceedings of the 8th Annual International Workshop on

Selected Areas in Cryptography, Aug. 2001, pp. 342-357.
26. W. Mao and K. Paterson, On the Plausible Deniability Feature of Internet Protocols, Manuscript.

15

27. T. May, Timed-release crypto, 1993. Available at http://www.cyphernet.org/cyphernomicon/chapter14/
14.5.html

28. Kenneth G. Paterson and Elizabeth A. Quaglia, Time-Specific Encryption, IACR eprint 2010.
29. R. Rivest, A. Shamir and D. Wagner, Time-lock puzzles and time-release crypto, unpublished manuscript, 1996.

Appendix A. One-time Simulation Sound Non-Interactive Zero Knowledge (NIZK)

One-time simulation sound NIZK essentially means that except the usual adaptive NIZK prop-
erty, the adversary can not prove a false theorem even if the adversary sees a simulated proof for
a false theorem. The formulation below essentially follows from [21, 24].

Definition 4. A pair of probabilistic polynomial time machines (P, V) with a common random
string σ is an adaptive non-interactive zero-knowledge (Adaptive NIZK) proof system for an NP-
language L with NP-relation RL if the following holds.

- Completeness. For any (x,w) ∈ RL, it holds that Pr[V (x, σ, P (x,w, σ)) = 1] = 1 − negl(κ),
where σ is uniformly random over {0, 1}poly(κ) and the probability is over the choices of σ and
coins of P .

- Adaptive Soundness. For σ ← {0, 1}κ, the probability that there exists x 6∈ L and a proof π
such that (σ, x, π) is accepting, is negligible, where the probability is over the choices of σ.

- Adaptive Zero Knowledge. For any non uniform PPT adversary A, there exists a simulator
SIM such that (σ, x, π) generated in the following two processes are indistinguishable.
⋄ Take σ ← {0, 1}ℓ; (x,w)← A(σ) s.t. (x,w) ∈ RL; π = P (x,w, σ).
⋄ SIM simulates σ with a trapdoor τ ; (x,w) ← A(σ) s.t. (x,w) ∈ RL; SIM computes π

from (x, σ, τ).

Adatpive NIZK is one-time simulation sound if there exists adaptive NIZK simulator SIM such
that for any PPT adversary A the following holds negligibly.

• SIM outputs (σ, τ) and gives σ to A; A(σ) computes statement x and gives it to SIM; SIM
generates a proof π for x using σ and τ and gives it to A; A generates a statement x′ and its
proof π′) using (x, σ, π). A succeeds if V (x′, σ, π′) = 1, (x′, π′) 6= (x, π) and x′ 6∈ L.

Appendix B. Some Useful Lemmas.

Lemma 2. Let (G,E,D) be an IND-CPA secure public key encryption. Let (e, d) ← G(1κ) be a
public/private key pair. Then for any c, Pr[Ee(Dd(c)) = c] = negl(κ), where the probability is over
the randomness of Ee(·) and G(1κ).

Proof. Otherwise, assume the claim is violated by a (valid!) ciphertext α. Recall that IND-CPA
security states that for any m0,m1 of the same length,

Pr[A(E(mb)) = b] = 1/2 + negl(κ).

Especially, consider m0 = Dd(α) and m1 = 0 of the same length. An adversary A incorporating
(m0,m1) can break IND-CPA of (E,D) as follows. When receiving cb = Ee(mb), A computes
c ← Ee(m0). If c = cb, then he outputs 0; otherwise, output 0/1 randomly. Note c = cb implies
b = 0 since the decryption of E is unique. Hence, Pr[A(cb) = b] = 1/2 + Pr[c = cb]/2. On the other
hand, Pr[c = cb] = Pr[b = 0] ·∑u∈Ee(m0)

Pr2[Ee(m0) = u] ≥ Pr2[Ee(m0) = α]/2, non-negligible. So
Pr[A(cb) = b]− 1/2 is non-negligible, contradiction! �

16

Lemma 3. Let X and Y be random variables over sets X ,Y respectively and f : Y → Z is a
deterministic function, where Z is an arbitrary set and X ⊆ R. If Pr[X ≤ x|Y = y] ≤ λ for all
x ∈ X and y ∈ Y, then Pr[X ≤ x|f(Y) = f(y)] ≤ λ for all x ∈ X and y ∈ Y.

Proof. Pr[X ≤ x, f(Y) = f(y)]
=

∑

y′∈f−1(f(y)) Pr[X ≤ x, Y = y′]
≤∑

y′∈f−1(f(y)) λPr[Y = y′]
= λPr[f(Y) = f(y)]. The lemma follows. �

Lemma 4. Let x∗0 ∈ {0, 1}∗ and x∗i ← {0, 1}a, i = 1, · · · , n. H : {0, 1}∗ → {0, 1}ℓ is a random
oracle. Consider a set Ω ⊆ {x∗0x1s | s ∈ {0, 1}∗, x1 ∈ {0, 1}a, x1 6= x∗1} and 1 ≤ j < j′ ≤ n. Fix u0 =
x∗0x

∗
1x2 · · · xj′ for some xi ∈ {0, 1}a ∪ {empty string} but x2x3 · · · xj 6= x∗2x

∗
3 · · · x∗j . Then, x∗j+1 · · · x∗n

is uniformly distributed over {0, 1}a(n−j), given x∗1x
∗
2 · · · x∗j , Ω, u0, {H(u) | u ∈ Ω}, {H(x∗0x

∗
1 · · · x∗i) |

i = 1, · · · , n} and {H(u0)}.

Proof. We now fix x∗0x
∗
1 · · · x∗j . For any possible value of x∗j+1 · · · x∗n, the conditions in the lemma

will be valid and sets Ω, {u0} and {x∗0x∗1, · · · , x∗0x∗1 · · · x∗n} are mutually disjoint. By the random
oracle definition, the randomness of H values {H(u) | u ∈ Ω}, {H(x∗0x

∗
1 · · · x∗i) | i = 1, · · · , n} and

{H(u0)} are all jointly independent. Hence, they are jointly independent of the randomness for
x∗j+1 · · · x∗n (more specifically, for any value x∗j+1 · · · x∗n ∈ {0, 1}ℓ(n−j), the randomness for these H
values are unchanged). �

Lemma 5. Consider the following game. Take x∗i ← {0, 1}a, i = 1, · · · ,m. An adversary A can
adaptively query whether any string x1x2 · · · xi equals x∗1x

∗
2 · · · x∗i for any i = 1, · · · ,m. Let n < m.

RevN (m,n) denotes the event that, within N queries, a query x∗1x
∗
2 · · · x∗i for some i > n occurs

prior to any query x∗1x
∗
2 · · · x∗i for i ≤ n. Then, Pr[RevN (m,n)] ≤ N

2a(n+1) .

Proof. First of all, Pr[RevN (m,n)] ≤ Pr[RevN (n + 1, n)] since an adversary A in the game for
case m = n + 1 can simulate an environment for the case m > n + 1 by taking x∗n+2, · · · , x∗m
normally. In the simulated environment, any query x1 · · · xi for i ≤ n+1 is answered by forwarding
to A’s challenger; any wuery x1 · · · xi for i > n + 1 is handled by querying his own challenger
whether x1 · · · xn+1 is correct. In case of yes and xn+2 · · · xi = x∗n+2 · · · x∗i holds as well, return ‘=’;
otherwise, return ‘6=’. The simulation is perfect. Thus, RevN (m,n) for the case m > n+ 1 implies
RevN (n + 1, n). We concentrate on Pr[RevN (n + 1, n)]. RevN (n + 1, n) occurs if and only if query
x∗1x

∗
2 · · · x∗n+1 occurs before any query x∗1x

∗
2 · · · x∗i for i ≤ n. Let pt be the probability of event that

query x∗1x
∗
2 · · · x∗n+1 occurs at query t while, before this, no query x∗1x

∗
2 · · · x∗i occurs for any i ≤ n.

Then Pr[RevN (n + 1, n)] =
∑N

t=1 pt. Now we compute pt. We consider the candidate set Sℓ for
x∗1 · · · x∗n+1 in view of A after query ℓ. Initially, no query is issued and S0 = {0, 1}a(n+1) . At query
ℓ < t, observe that when a query x1x2 · · · xi is answered with ‘6=’, then x1x2 · · · xi∗∗∗ 6= x∗1x

∗
2 · · · x∗n+1

and hence this pattern can be removed from Sℓ−1 and any sequence in Sℓ satisfies queries issued

so far by A and is a candidate for x∗1 · · · x∗n+1. So pt =
|S1|
|S0| ·

|S2|
|S1| · · ·

|St−1|
|St−2| ·

1
|St−1| =

1
|S0| = 2−a(n+1).

The lemma follows. �

Appendix C. Proof of Theorem 2

Proof. Completeness. Any normally generated ciphertext in E∗ can be correctly decrypted from
both the completeness of E and P. For any string γ = (C, τ, π), if π is invalid, both T and D∗

rejects γ. If (C, τ) 6∈ Re (i.e., no (m, r, r′) exists for the consistency of (C, τ)), then by soundness

17

of P, π is invalid. Hence, both T and D∗ rejects. If (C, τ) ∈ Re and π are valid, then T uses the
forceful open algorithm for TCom to obtain m which is identical to Dd(C). Ignoring the time to
verify π, T runs in time T . T he completeness follows.
Secrecy. Denote the probability of adversary A outputting 0 in the CCA2 game of (E∗,D∗) by pbb
when the challenge bit is b. We also consider the same event in a modified CCA2 game, where the
common random string σ is simulated together with a trapdoor η, by p∗bb. Use p∗bb′ to denote the
same event in the further modified CCA2 game where in the challenge ciphertext (C∗

b , τ
∗, π∗), C∗

b

encrypts mb while τ
∗ commits to mb′ . (remark: in this case, π∗ is simulated using the trapdoor η as

normally such a proof does not exist by soundness of P.) The secrecy requires |p00−p11| = negl(κ).
It suffices to show that |p00 − p∗00|, |p∗00 − p∗10|, |p∗10 − p∗11|, |p∗11 − p11| are all negligible. |pbb − p∗bb| is
negligible simply due to the adaptive zero knowledge of P. We now prove the other two. Denote
the CCA2 game corresponding to pbb′ by Γbb′ and to p∗bb′ by Γ ∗

bb′ .
|p∗00 − p∗10| = negl(κ). We show that if this is not true, then (E,D) is not CCA2 secure. Let A∗

be an attacker for (E∗,D∗). The attacker A for (E,D) can be constructed as follows. Given e, A
simulates σ with trapdoor η and give (e, σ) to A∗. Upon a challenge query (m0,m1), he forwards
to his own challenger. In turn, it receives Cb. Then he computes τ = TCom(m0) and π∗ for (Cb, τ

∗)
using η. Finally, give γb = (Cb, τ

∗, π∗) to A∗. A decryption query (C, τ, π) after the challenge query
is handled as follows. By query restriction, (C, τ, π) 6= (Cb, τ

∗, π∗). If (C, τ, π) 6= (Cb, τ
∗, π∗) but π is

invalid, reject normally. If (C, τ, π) 6= (Cb, τ
∗, π∗) but π is valid, by one-time simulation soundness

of P, it there must exist (m, r, r′) such that ((C, τ), (m, r, r′)) ∈ Re. In this case, if C 6= Cb, then
C is decrypted using the decryption oracle of A normally; otherwise, we suspend A∗ and then
use the forced-open algorithm in TCom to compute the de-commitment m in τ (which is mb by
consistency of C and τ , the validity of π and the one-time simulation soundness of P) and hence b
is obtained. Finally, A outputs whatever A∗ does (the valid output of A∗ must be within time t from
receiving his challenge). Note ignoring the negligible decryption error, the view of A∗ is identical
to Γ ∗

b0. Hence, non-negligible gap between p∗00 and p∗10 implies the non-negligible advantage of A,
contradiction to the security of (E.D).
|p∗10 − p∗11| = negl(κ). If this is not true, we show that TCom is not secrecy against a α-PRAM
adversary B. B does the following. He takes (e, d) normally, generates σ with trapdoor η and
simulates Γ ∗

10: upon challenge query (m0,m1), he provides (m0,m1) to his own challenger and
receives τb = TCom(mb). Then, the challenge for A is (Ee(m0), τb, π

∗), where π∗ is simulated using
η. Upon a decryption query (c, τ, π), he answers it normally using d. Finally, when A outputs 0
within time t, B outputs 0; 1 otherwise. Note the adversary view in the simulation is according to
Γ ∗
1b. In addition, if A is in the α-PRAM model and outputs b in time t, then B is in a α-PRAM

model and returns b in time t from receiving τb (here we ignore the small time to compute Ee(m0)
and π∗). �

18

