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Abstract

We provide a formalization of the emergent notion of “functional encryption,” as well as
introduce various security notions for it, and study relations among the latter. In particular, we
show that indistinguishability and semantic security based notions of security are inequivalent
for functional encryption in general; in fact, “adaptive” indistinguishability does not even imply
“non-adaptive” semantic security. This is alarming given the large body of work employing
(special cases of) the former. We go on to show, however, that in the “non-adaptive” case
an equivalence does hold between indistinguishability and semantic security for what we call
preimage sampleable schemes. We take this as evidence that for preimage sampleable schemes
an indistinguishability based notion may be acceptable in practice. We show that some common
functionalities considered in the literature satisfy this requirement.

1 Introduction

Functional encryption. In recent years, a notion of “functional encryption” (FE) has emerged
as a new paradigm for public-key encryption, wherein a receiver, given a ciphertext, is able to learn
certain functions of the underlying message based on its secret keys (not necessarily the decryption).
Special cases of FE include identity-based encryption [BF03], public-key encryption with keyword
search [BCOP04, ABC+08], attribute-based encryption [SW05, GPSW06, BSW07], and predicate
encryption [BW07, KSW08, LOS+10, OT10].1 However, a general study of FE and its security
seems not to have appeared. Here we initiate one, and in doing so we uncover some interesting
definitional issues that cause one to re-evaluate what exactly is being achieved by this body of
work.

Syntax and security notions. First we give a syntactic definition of FE, which extends that
for predicate encryption introduced by Boneh and Waters [BW07]. We then formulate an “indistin-
guishability based” notion of privacy (IND), which again extends the security notion for predicate
encryption introduced in [BW07]. Informally, the IND notion asks that it be hard for an adver-
sary to distinguish between the encryptions of any two messages that agree on all the functions
corresponding to the secret keys it requested. We go on to introduce a more complicated but more
natural “semantic security based” (SS) notion of privacy in the spirit of the classical notion for
public-key encryption [GM84], to capture the intuition that anything the adversary can compute
from a ciphertext it could as well compute from the evaluations of the functions corresponding to

∗University of Texas at Austin. Work done in part while the author was a Ph.D. student at Georgia Institute of
Technology.

1We do not mean here to claim credit for the general concept of functional encryption and its generalizing these
primitives; indeed, this view was present in prior work (e.g., [SW05, BW07, KSW08]) and in a talk by Waters [Wat].
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the secret keys it requested on underlying message. We note that a novel feature of our definitions,
which turns out to be important when considering relations among them, is that they distinguish
between adaptive and non-adaptive access to the secret-key derivation oracle to aid in the adver-
sary’s task (roughly, this distinction is analogous to that between access to the decryption oracle
in adaptive versus non-adaptive chosen-ciphertext attack, see e.g. [BDPR98]).

Relations among security notions. In the classical setting of public-key encryption, seman-
tic security and indistinguishability based formulations of security are well-known to be equiva-
lent [MRS88]. We ask whether the same is true for FE. Surprisingly, we show that IND under
adaptive access to the secret-key derivation oracle does not imply SS even under non-adaptive such
access. To see why, consider a functional encryption scheme for a single function f . But suppose
there is another function g that has the same “equality pattern” as f on the message space (i.e., two
messages have the same f -value just when they have the same g-value). Furthermore, suppose g(m)
is hard to compute given f(m). Now, if the functional encryption scheme is such that the secret
keys created by the scheme, which are supposed to allow computing f , also allow computing g, the
scheme is certainly not semantically secure. However, an IND adversary is “bound” to choosing
messages that agree on f , hence also on g, and so cannot use computing g to its advantage. Our
counter-example formalizes and generalizes this intuition. Another shortcoming of the IND notion
we observe is that it is essentially vacuous2 for some functions, such as a collision-resistant hash
function. Then, it is hard for the adversary to find two messages that agree on the function.

Achievability. Finally, we ask the question of whether the SS notion for FE is achievable. In
particular, we note that achieving SS under adaptive access to the key derivation oracle seems
difficult. In the proof, the simulator seemingly must choose a “dummy” ciphertext on which to run
the adversary before knowing what values the challenge message should have when evaluated under
the functions for which the adversary will later request secret keys. Intuitively, this means the
number of possible keys for a given function should at least be as large as the number of possible
outputs of the latter. This situation is reminiscent of that for (non-interactive) non-committing
encryption, for which impossiblity results are known [Nie02]. However, it is unclear to us how to
formalize this connection since there could be other proof techniques.

We do, however, obtain positive results in the case of non-adaptive SS. Here we identify a key
property of functional encryption schemes that we call preimage sampleability. Intuitively, this
means that, given the function values of some underlying message, it should always be possible
to efficiently find some message consistent with them. We show that for preimage sampleable FE
schemes, IND is equivalent to SS (both under non-adaptive access to the key-derivation oracle).
(Thus, for non-adaptive securiy our above-mentioned counter-example is tight.) One reason we
believe this is important is that non-adaptive SS suffices to rule out the “pathological” examples
of schemes we gave that meet IND but not SS.3 We take this as evidence that, for preimage
sampleable schemes, IND (under adaptive access to the key-derivation oracle) may be acceptable
in practice. We conclude by showing that some common function classes considered in the literature,
including the powerful inner-product predicates realized in [KSW08, LOS+10, OT10], are preimage
sampleable.

2At least, it is vacuous with respect to attacks that require the adversary to query its key derivation oracle; i.e.,
attacks where the adversary actually uses the secret keys. A functional encryption scheme may of course already not
be semantically secure in the classical sense.

3On the other hand, it is possible to extend them to even more extreme examples that violate SS only under
adaptive access to the key-derivation oracle, but these start to really stretch plausibility.
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Concurrent and independent work. Independently of our work, Boneh et al. [BSW11] also
undertake a general study of FE. In particular they give a syntactic definition as well as indistin-
guishability and semantic security based formulations of privacy. They also give a counter-example
showing that IND does not imply SS.4 They also formalize the connection between SS under adap-
tive access to the key derivation oracle (although they do not distinguish between adaptive versus
non-adaptive here) and non-committing encryption, showing via an argument in the style of [Nie02]
that the former is not achievable at all without (programmable) random oracles but is achievable
in the random oracle model. We feel this further highlights the importance of our results on the
(standard model) achievability of non-adaptive SS.

In another concurrent and independent work, Chase and Kamara [CK10] introduced and studied
a notion of “structural encryption,” which they observe is similar to FE except that it is in the
symmetric-key setting and secret keys “work” for only one specific ciphertext on which the former is
dependent. They employ a semantic security based definition of security and also note a connection
to non-committing encryption, namely that under their definition secret keys should be as long as
the number of possible outputs of the associated function. Note that the reason that Boneh et
al. [BSW11] obtain an impossibility result for FE is that a secret key must work for all ciphertexts.

2 Functional Encryption and its Security

We define the syntax of functional encryption and various security notions for it.

2.1 Syntax

A functional encryption scheme for the class of PT functions (aka. functionality) F on message-space
Σ (both of which implicitly depend on k) is a tuple of algorithms FE = (Setup,KDer,Enc,Eval)
such that:

• Setup on input 1k outputs a master public key pk and master secret key sk.

• KDer on input the master secret key sk and a (description of a) function f ∈ F outputs an
evaluation token (aka. secret key) skf for f .

• Enc on input a public key pk and a message (aka. attribute) m ∈ Σ outputs a ciphertext c.

• Eval on input an evaluation token skf and a ciphertext c outputs a string y or ⊥.
For correctness we require that for all k ∈ N, all f ∈ F , and all m ∈ Σ,

Eval(skf ,Enc(pk,m)) = f(m)

with probability 1 over (pk, sk)
$← Setup(1k) and skf

$← KDer(sk, f).
Note that this notion is in particular a generalization of identity-based encryption (IBE) [BF03],

public-key encryption with keyword search (PEKS) [BCOP04, ABC+08], attribute-based encryp-
tion (ABE) [SW05, GPSW06, BSW07], and predicate encryption (PE) [BW07, KSW08, LOS+10,
OT10]. For example, in the case of identity-based encryption, the “message” would consist of the
identity concatenated with the actual payload, and the secret key would be associated with the
function fID(ID

′∥x) = x if ID = ID′ and ⊥ otherwise.

4Our counter-example is slightly more general. In particular, we observe a separation even for schemes (such as
those proposed in the literature) where the adversary can find two messages that agree on the functions corresponding
to the secret keys it requested.
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2.2 Security Definitions

We present various formulations of privacy for functional encryption. Broadly, the definitions are
either indistinguishability based or semantic-security based. In each case we also define a token non-
adaptive (TNA) variant, where the adversary gets access to a token derivation oracle only before
it sees the challenge ciphertext.

Regarding special cases, we note that our security notions yield the anonymous (aka. attribute-
hiding) versions of IBE, ABE, and PE, where the identity or attribute is hidden by the ciphertext (or
their “predicate-only” counterparts following the terminology of [KSW08]). The contemporaneous
work of [BSW11] provides a more general and comprehensive treatment.

Indistinguishability based privacy. The indistinguishability-based formulation follows [BW07]
and tries to capture the intuition that the adversary is unable to distinguish between the en-
cryptions of two different messages that it cannot trivially distinguish using its tokens. Let
FE = (Setup,KDer,Enc,Eval) be a functional encryption scheme for the class of functions F over
message-space Σ and let A = (A1, A2) be an adversary. For mode ∈ {full, tna} 5 and k ∈ N we
associate to FE and A the experiments

Experiment Expind-mode
FE,A (k):

b
$← {0, 1}

(pk, sk)
$← Setup(1k)

(m0,m1, st)
$← A

KDer(sk,·)
1 (pk)

c
$← Enc(pk,mb)

b′
$← A

O(sk,·)
2 (pk, c, st)

If b = b′ return 1 else return 0

where if mode = full then O(sk, ·) = KDer(sk, ·) and if mode = tna then O(sk, ·) = ε (the empty
oracle). We require that |m0| = |m1| and every query f that A1 or A2 makes to its oracle satisfies
f(m0) = f(m1). Denote by Pr

[
Expind-mode

FE,A (k) = 1
]
the probability that the corresponding IND-

MODE experiment outputs 1, and define

Advind-mode
FE,A (k) = 2 · Pr

[
Expind-mode

FE,A (k) = 1
]
− 1 .

We say that FE is IND-MODE secure if Advind-mode
FE,A (·) is negligible for all PPT adversaries A.

Semantic-security based privacy. The semantic-security formulation is new and tries to
capture the intuition that anything the adversary can compute from a ciphertext and the tokens
it can compute from the tokens and the values of the corresponding functions on the underlying
message. Let FE = (Setup,KDer,Enc,Eval) be a functional encryption scheme for the class of
functions F over message-space Σ, let A = (A1, A2, A3) be an adversary, let S be a simulator. For
mode ∈ {full, tna} and k ∈ N we associate to FE , A, and S the experiments

5We stress that our use of the terminology “full” security differs from the literature in that it refers to adaptive
access to the key derivation oracle rather than adaptive choice of the challenge messages.
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Experiment Expss-real-mode
FE,A (k):

(pk, sk)
$← Setup(1k)

st
$← A

KDer(sk,·)
1 (pk)

(m, t)
$← A2(pk, st)

c
$← Enc(pk,m)

t′
$← A

O(sk,·)
3 (pk, c, st)

If t = t′ return 1 else return 0

Experiment Expss-ideal-mode
FE,A,S (k):

(pk, sk)
$← Setup(1k)

st
$← A

KDer(sk,·)
1 (pk)

(m, t)
$← A2(pk, st)

Let f1, . . . , fq be the queries made by A1

t′
$← SO′(sk,·)(pk, f1(m), . . . , fq(m), st)

If t = t′ return 1 else return 0

where if mode = full then O(sk, ·) = KDer(sk, ·) and for any f oracle O′(sk, f) returns (skf , f(m))
where skf

$← KDer(sk, f), and if mode = tna then O(sk, ·) = O′(sk, ·) = ε (the empty oracle). We
assume for simplicity that A1’s output (the state st) includes its oracle queries and the responses6

and that |m| in A2’s output depends only on k. Think of the string t ∈ {0, 1}∗ in the output of
A2 as partial information on m. Note that in the above formalization of semantic security, even in
the ideal experiment we run A1 and A2. A more standard formalization would have the simulator
also run at these stages. However, we want to “bind” the simulator to making the same key
derivation queries as the adversary.7 Denote by Pr

[
Expss-real-mode

FE,A (k) = 1
]
the probability that

the SS-REAL-MODE experiment outputs 1 and by Pr
[
Expss-ideal-mode

FE,A,S (k) = 1
]
the probability

that the SS-IDEAL-MODE experiment outputs 1. Define

Advss-mode
FE,A,S (k) = Pr

[
Expss-real-mode

FE,A (k) = 1
]
− Pr

[
Expss-ideal-mode

FE,A,S (k) = 1
]
.

We say that FE is SS-MODE secure if for every PPT adversary A there exists a PPT simulator S
such that Advss-mode

FE,A,S (·) is negligible.

3 Inequivalence of the Definitions in General

We investigate relations among the notions of security we introduced for FE. First, we note that
when giving the adversary adaptive access to the token derivation oracle (i.e., what we call FULL
security), one reason semantic security seems stronger than indistinguishability is that the simulator
apparently needs to commit to a “dummy” ciphertext on which to run the adversary before knowing
what values the challenge message should have when evaluated under the functions for which the
adversary will later request tokens.

But we show that there is actually a more subtle reason for inequivalence of the definitions. In
fact, we show that in general IND-FULL security does not even imply SS-TNA security. To show
the separation we start with a IND-FULL secure functional encryption scheme for any class of
functions F of a certain form. We then modify it to construct a new scheme that is still IND-FULL
secure for F but not SS-TNA secure. We show the latter by presenting a concrete attack. We first
describe a concept our counter-example scheme employs.

6We do not consider a notion of function hiding (cf. [SSW09]).
7On the other hand, in the case of FULL security this is not enforced by the definition. This was an oversight on

our part that was not noticed until after seeing [BSW11], so we do not correct it here (all our results anyway concern
the non-adaptive case). As in [BSW11] one could require that S and A3 have the same query distribution. Other
differences between the SS definition of [BSW11] and ours include: theirs considers only adaptive access to the key
derivation oracle whereas ours distinguishes between adaptive and non-adaptive, and theirs considers the encryption
of multiple messages whereas ours considers only a single message (in particular, the former is important for the proof
of impossibility they give for meeting their notion without random oracles).
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Hidden functions. Let G = {gk}k∈N and F = {fk}k∈N be families of functions on a common
domain D = D(k). We say G is hidden by F if any PPT adversary A on inputs fk, fk(x) where
x

$← D outputs gk(x) with only negligible probability in k. Note that such functions can be con-
structed under standard assumptions; for example, let fk be a one-way function applied to the first
half of the bits of the input and let gk just output these bits (that is, the first half of the bits of
the input).8 We say F and G are isomorphic if fk and gk are isomorphic for every k, meaning

fk(d1) = fk(d2)⇔ gk(d1) = gk(d2) .

for all d1, d2 ∈ D. In other words, fk and gk have the same equality pattern across the domain.
This is the case, for example, if fk in the example above is an injective one-way function on the first
half of the input bits. We supress dependence on k below for convenience, just talking of functions
rather than function families.

The counter-example scheme. Let AE∗ = (KDer∗,Enc∗,Dec∗) be a (standard) public-key
encryption scheme, and let FE ′ = (Setup′,KDer′,Enc′,Eval′) be a functional encryption scheme
over message-space Σ for a class of functions F = {f1, . . . , fn} satisfying the following: there is a
function g on Σ such that the pointwise concatenated function9 f = f1∥ . . . ∥fn is isomorphic to g
and moreover g is hidden by f . (For simplicity, we assume here that n is polynomial in k. The
counter-example can easily be extended to larger function sets by instead requiring the forgoing
condition on some fixed subset of the fi’s.) Then we define a new functional encryption scheme
FE = (Setup,KDer,Enc,Eval) over Σ for F as follows.

• Setup on input 1k first runs (pk′, sk′)
$← Setup′(1k), and (pk∗, sk∗)

$← KDer∗(1k). It then
selects w1, . . . , wn−1

$← {0, 1}|sk∗| and computes wn ← sk∗ ⊕ w1 ⊕ · · · ⊕ wn−1. Finally, it
returns master public key pk = pk′∥pk∗ and master secret key sk = sk′∥w1∥ . . . ∥wn.

• KDer on input the master secret key sk = sk′∥w1∥ . . . ∥wk and a (description of a) function
fi ∈ F first runs KDer′sk′(fi) to obtain sk′

fi
. Then, it outputs skfi = sk′

fi
∥wi.

• Enc on input the master public key pk = pk′∥pk∗ and a message m ∈ Σ first computes
c′

$← Enc′(pk′,m) and c∗
$← Enc∗(pk∗, g(m)). It returns c′∥c∗.

• Eval on input a secret key skfi = sk′
fi
∥wi and a ciphertext c = c′∥c∗ computes d ←

Eval′(sk′
fi
, c′), and outputs d.

Theorem 3.1 If AE∗ is IND-CPA secure and FE ′ is IND-FULL secure for F = {f1, . . . , fn} as
above (i.e., where g is hidden by f1∥ . . . ∥fn), then FE is also IND-FULL secure for F . However, it
is not SS-TNA secure.

Note that the assumptions of the theorem do not constitute any additional complexity assump-
tions beyond the (minimal) one of FE ′ being IND-FULL secure for F , meaning based on the latter
we can construct the other schemes and functions that are assumed.

We also remark that the separation also holds in the case of “selective-security,” where the
challenge messages are chosen up-front by the adversary, as considered in e.g. [BW07, KSW08]. It

8Indeed, a simpler example is to take fk to be a one-way function and gk to be the identity. However, in our
counter-example this will prevent the adversary from even being able to find two messages that agree on fk. We
believe this points to a separate shortcoming of the IND definition.

9By pointwise concatenation f∥g of functions f and g on a set D we mean that f∥g(x) = f(x)∥g(x) for all x ∈ D.
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also holds in the case of predicate encryption [BW07, KSW08], since we can take fi for 1 ≤ i ≤ n
to output the i-th bit of a function f such that g is hidden by f (i.e., a function can always be
decomposed bit-wise into predicates).

Proof: (Sketch.) To see FE is IND-FULL secure for F , first consider an adversary A that does
not request tokens for all of f1, . . . , fn. Then in addition to interacting with FE ′ in the IND-FULL
experiment, the adversary is just given additional random strings when it requests tokens, which
in particular are independent of b, so security of FE follows from that of FE ′. Now consider A that
requests tokens for all of f1, . . . , fn. In this case, in addition to interacting with FE ′ the adversary
obtains g(mb) where mb is the challenge message. But by the rules of the experiment we know that
f1(m0)∥ . . . ∥fn(m0) = f1(m1)∥ . . . ∥fn(m1) and thus by assumption g(m0) = g(m1), meaning again
this information is independent of b and so IND security of FE follows from that of FE ′.
To show that FE is not SS-TNA secure, we describe an SS-TNA adversary B = (B1, B2, B3) for
which there is no simulator with comparable probability of guessing t = t′. Namely, B1 requests
evaluation tokens for all of f1, . . . fn and passes them along as the state, and B2 chooses a random
challenge message m ∈ Σ, sets t← g(m), and outputs (m, t). Then, by construction B3 can always
output t = t′ by decrypting the part of the challenge ciphertext formed by AE∗ (note that B3

makes no queries itself as required). However, a simulator who outputs t = t′ with non-negligible
probability would contradict the fact that g is hidden by f since the simulator is not given any
ciphertext but just the value of f1(m)∥ . . . ∥fn(m) (also pk and the evaluation tokens for f1, . . . , fn,
but a hidden function adversary can generate these itself).

4 An Equivalence under Preimage Sampleability

We show that for token non-adaptive (TNA) security the counter-example in Section 3 is tight.
Namely, we show an equivalence between indistinguishability and semantic-security under TNA
security for what we call preimage sampleable (PS) schemes. Note that TNA security seems reason-
able in practical applications where what tokens a party receives does not depend on the encrypted
messages.

Preimage sampleability. Let FE = (Setup,KDer,Enc,Eval) be a functional encryption scheme
over message-space Σ for the class of functions F . We call FE preimage sampleable (PS) if there
is a PPT algorithm A such that, for every PPT algorithm B, the probability that the following
experiment returns 0 is negligible in k:

Experiment Expps
FE,A,B(k):

(m, f1, . . . , fℓ)
$← B(1k)

m′ $← A(1k, |m|, f1(m), . . . , fℓ(m))
If |m| = |m′| and fi(m

′) = fi(m) for all 1 ≤ i ≤ ℓ
Then return 1

Else return 0

Above, we require that m,m′ ∈ Σ and f1, . . . , fℓ ∈ F .
We make a few remarks about our definition of preimage sampleability. First, we note that

the inputs to A are always guaranteed to be consistent with some underlying m (and thus there
is always at least one possible m′ causing the PS experiment to return 1); on inputs that do
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not satisfy this requirement we do not need the output of A to be defined. We also note that
preimage sampleability as we have defined it is really a property of F and we sometimes refer to
it as such. Finally, requiring that the inputs to A be generated by another PPT algorithm (rather
than quantifying over all such inputs) is important to leave open the possibility of PS for some
functionalities, such as 3-CNF formulae. (The latter point was brought to our attention by De
Caro and Fiore [CF].)

In essence, we show that preimage sampleability provides a “test” of whether equivalence be-
tween the IND and SS definitions is maintained in the case of TNA security.

Theorem 4.1 Let FE be an PS functional encryption scheme. Then FE is SS-TNA secure if and
only if it is IND-TNA secure.

Proof: (Sketch.) (SS-TNA ⇒ IND-TNA) Suppose that FE is not IND-TNA secure, in particular
let A = (A1, A2) be a successful IND-TNA adversary against it. Consider SS-TNA adversary
B = (B1, B2, B3) that works as follows. B1 runs A1 on pk (answering key-derivation queries using
its own oracle) to receive (m0,m1). It then chooses b ∈ {0, 1} at random and returns (mb, b).
B3 runs A2 on its input and outputs the result. Note that no SS-TNA simulator can output b
with probability better than 1/2 in the SS-TNA-IDEAL experiment because the simulator gets no
information about b (since according to the rules of the IND-TNA experiment A may only makes
token-derivation queries whose responses are independent of b, and the simulator makes no queries).
So FE is not SS-TNA secure.

(IND-TNA ⇒ SS-TNA) Now suppose FE is IND-TNA secure. Let A = (A1, A2, A3) be any
SS-TNA adversary against FE . We construct a simulator S with comparable success probability
in the SS-IDEAL-TNA experiment to A in the SS-REAL-TNA experiment, which implies FE is
SS-TNA secure. Simulator S works as follows: given queries f1, . . . , fq made by A1 and their
values y1, . . . , yq on the challenge message m, S will sample a “dummy” message m′ ∈ Σ such that
f1(m

′) = y1, . . . , fq(m
′) = yq using the sampler A guaranteed by the definition of PS. (Here B in

the definition of PS can be viewed as the entire experiment up to this point.) It runs A3 on the
encryption of m′ and outputs the result. There are two cases:

• Case 1: m = m′ with overwhelming probability. Then A3’s success probability in the simulated
environment remains negligibly different from the SS-TNA-REAL experiment.

• Case 2: m ̸= m′ with non-negligible probability. Then if A3’s success probability also differs
noticeably, we can construct a successful IND-TNA adversary B = (B1, B2) against FE , as
follows. B1 first runs A1, A2 on the appropriate inputs to receive (m, t). Let f1, . . . , fq be
the queries made by A1. Using the sampler guaranteed by the definition of PS, B1 samples a
message m′ such that f1(m

′) = f1(m), . . . , fq(m
′) = fq(m), and returns (m,m′, t) (i.e., m and

m′ are the challenge messages and t is the state). B2 runs A3 on pk, c from its input to recieve
output t′; if t′ = t it returns 0, and otherwise 1. Note that for B to be successful it is important
that m ̸= m′, which holds with non-negligible probability in this case. This contradicts our
initial assumption that FE is IND-TNA secure.

Thus in either case the success probability of S is close to that of A.

It is interesting to note how the proof of the second implication accounts for the fact that IND-TNA
may be “vacuously” satisfied when the adversary is not able to find two messages that agree on the
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given functionality. Indeed, in this case, our simulator samples from the corresponding preimage
set of size 1, and thus the simulation trivially works.

5 On Preimage Sampleability of Some Functionalities

We examine whether specific functionalities considered in the literature satisfy our PS condi-
tion. For inner-product predicates [KSW08, LOS+10, OT10], IBE [BF03], and PEKS [BCOP04,
ABC+08], we show that the answer is “yes.” On the other hand, for ABE [SW05, GPSW06, BSW07]
it seems hard to show PS; we leave this as an open problem.

Inner-products. We first show that PS is satisfied by the important class of inner-product
predicates realized in prior work [KSW08, LOS+10, OT10]. Hence, by Theorem 4.1, schemes in
the literature for this functionality proven secure relative to the IND notion also meet SS, at least
under non-adaptive access to the token-derivation oracle. Namely, consider the evaluation of inner
products over ZN for a composite N (of which it assumed hard to find a non-trivial factor; here
N is generated by the PS experiment before being given to B,A). More formally, let n ∈ N be
given and let N be such a composite. Let Σ = Zn

N and define the associated class of inner-product
predicates Piprod = {px | x ∈ Zn

N} where px(y) = 1 if ⟨x,y⟩ =
∑n

i=1 xi · yi = 0 mod N , and 0
otherwise. (Note that in the terminology of [KSW08] we thus consider the “predicate-only” version
of the scheme for simplicity.)

Proposition 5.1 The class Piprod as defined above is PS if it is hard to find a non-trivial factor
of N .

Proof: (Sketch.) We construct a PPT algorithm A that on input (x1, y1 = px1(m)), . . . , (xr, yr =
pxr(m)) for any polynomial r = r(k) and any px1 , . . . , pxr ∈ Piprod and m ∈ Σ, outputs a vector
m′ causing the PS experiment to return 1 with overwhelming probability. (Here we just refer to
the probability over A’s own coins.) Let Ib denote the set {i ∈ [r] | yi = b} for b ∈ {0, 1}, and let
B be the |I1| × n matrix where each row is a unique element of {xi | i ∈ I1}.
Algorithm A works as follows. It first finds a basis W = {w1, . . . ,ws} for ker(B) in the space Zn

N .
This is done by solving the homogeneous system of equations Bx = 0 using Gaussian elimination
over ZN ; while ZN is not a field, if Gaussian elimination fails then A can find a non-trivial factor
of N . It outputs a random ZN -combination of the vectors in W . That is, it outputs m′ =
r1w1 + . . .+ rsws where each ri ∈ ZN for 1 ≤ j ≤ s is chosen independently at random.

For the analysis, we need to show that with overwhelming probability ⟨m′,xi⟩ = 0 mod N for all
i ∈ I1 and ⟨m′,xj⟩ ̸= 0 mod N for all j ∈ I0 . The first part is clear by construction. For the second
part, we first claim that for every fixed j ∈ I0, the probablity over the choice of r1, . . . , rs ∈ ZN that
⟨m′,xj⟩ = 0 mod N is negligible. To see this, observe that there must be some (not necessarily
unique) wi(j) ∈W such that ⟨xj ,w(j)⟩ ̸= 0 mod N , since otherwise there would be no m′ causing
the PS experiment to return 1. So, given any outcome of the ri for i ̸= i(j) and assuming ⟨xj ,w(j)⟩
is not a zero-divisor (otherwise A can find a non-trivial factor of N), there is exactly one possible
choice for ri(j) such that ⟨m′,xj⟩ = 0 mod N . Now, by a union bound, the probability that
⟨m′,xj⟩ = 0 mod N for any j ∈ I0 is negligible, which is what we needed to show.

IBE and PEKS. The functionalities for IBE [BF03] and PEKS [BCOP04, ABC+08] are also pre-
image sampleable. For example, in the case of IBE, given the functions and their values on the

9



underlying “message,” there are two cases: if we know that fID(ID
′∥x) = x then there is only one

possible preimage, namely ID∥x; otherwise, we can sample from the set of possible “messages” by
choosing an identity other than those for which the adversary has requested secret keys and any
payload (an analogous argument applies in the case of PEKS). We omit the formal statements. By
Theorem 4.1, we conclude that such schemes in the literature proven secure under an IND notion
also meet SS-TNA under this condition.

Attribute-based encryption. For the functionalities of ABE [SW05, GPSW06, BSW07], we do
not know if PS holds. For example, consider the case of (anonymous) Fuzzy IBE [SW05, KSW08].
Namely, let U be a finite set and let Σ be the power-set of U , i.e., Σ = {S | S ⊆ U}. For 1 ≤ d ≤ |U |
and S, T ⊆ U define pS,d(T ) = 1 if S ∩ T ≥ d and 0 otherwise. (As before, let us consider this
“predicate-only” counterpart to Fuzzy IBE for simplicity.) Typically, one considers an FE scheme
over Σ for the class Pd = {pS,d | S ⊆ U} where d is fixed. To show PS, we would basically need to
give an efficient algorithm that, given “good” sets G1, . . . Gn ⊆ U and “bad sets” B1 . . . , Bm ⊆ U
for polynomials n = n(k),m = m(k), as well as d such that 1 ≤ d ≤ |U |, outputs a set X ⊆ U such
that |X ∩Gi| ≥ d for all 1 ≤ i ≤ n and |X ∩Bj | < d for all 1 ≤ j ≤ m. We are not sure if such an
algorithm exists and leave this for future work.
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