
Cryptographic Randomness Testing of Block Ciphers
and Hash Functions
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Abstract. One of the most basic properties expected from block ciphers and
hash functions is passing statistical randomness testing, as they are expected to
behave like random mappings. Previously, testing of AES candidate block ciphers
was done by concatenating the outputs of the algorithms obtained from various
input types. In this work, a more convenient method, namely the cryptographic
randomness testing is introduced. A package of statistical tests are designed based
on certain cryptographic properties of block ciphers and hash functions to evalu-
ate their randomness. The package is applied to the AES finalists, and produced
more precise results than those obtained in similar applications.

1 Introduction

One of the basic properties of cryptographic primitives such as block ciphers
and hash functions is indistinguishability from a random mapping. Therefore,
the evaluation of the outputs of the algorithms by means of statistical random-
ness tests is of great importance. This process consists of two parts: taking a
sample sequence from the algorithm, and analyzing this sample by statistical
randomness tests.

During AES (Advanced Encryption Standard) competition, statistical test-
ing of the candidate block ciphers was done by J. Soto, using the NIST Test
Suite[1]. However, some of the tests in the suite require sequences of length at
least 106 bits, where the block size of the AES candidates were 128 bits. Soto
overcame this problem by performing statistical analysis to the concatenation
of the outputs of the candidate algorithms, which correspond to various input
types such as key avalanche, high weight, low weight, and the like[2].

In addition to the randomness of their outputs, block ciphers and hash func-
tions should satisfy certain cryptographic properties as well. When block ci-
phers are considered, diffusion and confusion are among the most important
properties, while for hash functions one of the basic design criteria is collision
resistance. The cryptographic properties mentioned in this paper are as follows:



– Whenever one input bit is changed, every output bit should change with
probability a half to achieve ideal diffusion. This criterion is called the strict
avalanche criterion (SAC).

– The distance of a boolean function to the set of all affine functions should be
large. This property is measured in terms of nonlinearity, and it is a concept
related to confusion.

– Finding two inputs that have the same output should be hard, which is called
the collision resistance property.

– Block ciphers with a fixed plaintext and hash functions are one way func-
tions and they are required to behave like a random mapping.

Corresponding to these four cryptographic criteria, four randomness tests
for block ciphers and hash functions are considered:

– The aim of the SAC Test is to measure if an algorithm satisfies the SAC
property.

– The Linear Span Test evaluates an algorithm by examining the linear depen-
dence of the outputs formed from a highly linearly dependent set of inputs.

– The subject of the Collision Test is the number of collisions in a portion of
the output corresponding to a random subset of the input set.

– Coverage Test takes a subset of the input set and examines the size of the
corresponding output set.

The structure of the work is as follows: in section 2, the details of cryptographic
randomness tests used in the work are given. In section 3, the cryptographic
randomness tests are applied to AES finalist algorithms and the results are com-
pared to the ones given in [3] by Soto and Bassham. In the last section, conclu-
sion and possible future work ideas are given.

2 Statistical and Cryptographic Randomness Tests

Statistical randomness tests are functions that take arbitrary length input and
produce a real number between 0 and 1 called the p-value, which is produced
by evaluating certain randomness properties of the given input. For example,
Frequency Test produces p-values depending on the number of ones in a bi-
nary sequence, where Overlapping Template Test evaluates the number of oc-
currences of a specific sequence of bits [1].

On the other hand, cryptographic randomness tests are a kind of statistical
test that evaluate a function through investigating its certain cryptographic prop-
erties. In this section SAC Test, Linear Span Test, Collision Test and Coverage
Test are defined in detail. In each subsection, the general idea, the mathemati-
cal background and application details of individual tests are given. For a better



understanding of the concepts, it is assumed that the function under test is a
function f : Fn

2 × Fm
2 7→ Fn

2 , where in the case of block cipher, n stands for the
block size, and m stands for the key size. Similarly for the case of hash func-
tion, m and n stand for the message block size and the chaining variable size
respectively.

2.1 SAC Test

The abbreviation SAC stands for strict avalanche criterion which was originally
proposed for s-boxes by Webster and Tavares in 1986 [4]. SAC states that for
a particular s-box, whenever one input bit is changed, every output bit must
change with probability 1

2 . Therefore, extending this idea to the round functions
of block ciphers (or the compression functions of hash functions) as previously
done for stream ciphers [5], this test evaluates the given function by examining
the effect of a single bit flip on the output bits. To achieve this, an m × n matrix
called the SAC Matrix is formed in the following way: first all entries of the SAC
Matrix are set to 0, a random input is taken and the output is computed. Then,
after flipping the ith bit of the input, the corresponding output is XORed to the
original output. Afterwards, for each non-zero bit j of the output, (i, j)th entry
of the SAC Matrix is incremented by 1. This is done for each input bit i, and the
whole process is repeated for 220 different random inputs1. Here, let K be the
number of hits that an entry get, then

Pr(K = k) =

(
n
k

)
2n .

Therefore the expected value of each entry of the matrix is 219, and the distribu-
tion of the values of the matrix should follow a binomial distribution.

Following the construction of the SAC Matrix, χ2 Goodness of Fit Test with
the probabilities derived from Table 1 is used to evaluate the distribution of the
values of the entire matrix. If a matrix produces a p-value less than 0.01, then it
is considered non-random [5].

This method may fail to catch the correlation between a particular input and
a particular output bit since the matrix is evaluated as a whole, therefore another
method is proposed to evaluate each entry in the matrix. The entries outside a
specific interval are flagged. The expected interval is taken as [219 − 5009, 219 +

5009], and is computed so that a 220-bit sequence with a weight out of this

1 This process should be repeated as many times as possible to detect small biases. If the per-
formance of the function under testing is not good, the process is repeated for a less number
of random inputs. Also, if the process is repeated more than 220 times, the probabilities should
be calculated with more than 6 digit precision.



Table 1. Ranges and probabilities of SAC Test for 220 trials

Bin Range Probability
1 0-523857 0.200224
2 523858-524158 0.199937
3 524159-524417 0.199677
4 524418-524718 0.199937
5 524719-1048576 0.200224

interval would be assigned a p-value less than 10−6 from the Frequency Test.
Since in the SAC Matrix, the number of entries is close to 106, it is not much
unexpected to observe a term smaller than 10−6. Therefore, the test is applied
once more to check whether such a case is coincidental or not. If a flagged
entry deviates from the expected value one more significantly, it is evident that
a specific input bit and a specific output bit are correlated, which is a major
cryptographic weakness, so the matrix is considered to be non-random.

2.2 Linear Span Test

Nonlinearity is one of the basic design criteria for cryptographic primitives. In
order to test block ciphers and hash functions for randomness based on non-
linearity, the outputs of a highly linearly dependent set of inputs are examined.
For this purpose, similar to the Linear Span Test proposed for stream ciphers[6],
linearly independent t plaintexts are chosen and an input set of size m = 2t is
obtained by computing all linear combinations of these plaintexts. An m × m
matrix is formed using the corresponding ciphertexts and the rank of this matrix
is compared to the rank of a random binary matrix. After determining the rank
of the output matrix, the corresponding bin value, which is initially set to 0, is
incremented by one. After the test is repeated as many times as possible, the
resulting bin values are put through a χ2 Goodness of Fit Test with the prob-
abilities given in Table 2 to produce the p-value. A p-value less than 0.01 is
considered to indicate a non-random mapping.

Table 2. Probabilities used in Linear Span Test (m > 19)

Rank ≤ m − 2 m − 1 m
Probability 0.133636 0.577576 0.288788



The computation of the probability of a random binary matrix to have rank R
for arbitrary R is not straightforward. However, an m ×m random binary matrix
has either rank m or m−1 over 85% of the time, therefore this test is applied with
only three bins for the χ2 Goodness of Fit Test and the probabilities for Pr(R =

m) and Pr(R = m − 1) cases are needed. In the case Pr(R = m), all ciphertexts
are linearly independent. There are 2m − 1 choices for the first plaintext, 2m − 2
choices for second plaintext, · · · , 2m−2i−1 choices for ith plaintext, · · · , 2m−2m−1

choices for the last plaintext, therefore

Pr(R = m) =

∏m
i=1(2m − 2i−1)

2m2

is obtained.
In the case Pr(R = m − 1), first m − 1 linearly independent ciphertexts are

chosen similar to the first case. The last ciphertext should be chosen so that, it
is linearly dependent with the previously selected set. If the linearly dependent
ciphertext is the ith one, there are 2i−1 choices, thus there are 1 + 2 + 22 + · · · +

2m−1 = 2m − 1 choices for it, therefore

Pr(R = m − 1) =

∏m−1
i=1 (2m − 2i−1)

2m2 · (2m − 1)

is obtained.

2.3 Collision Test

Collision resistance is an important design criterion for hash functions, which
means that it should be hard to find two messages with the same hash value,
and the Collision Test is designed to evaluate the randomness based on collision
resistance. The subject of this test is the number of collisions in specific bits of
the output, which can be considered as near collision. In other words, an input
set of size n is evaluated through f , and the number of collisions (C) in t bits of
the output is evaluated.

The same method with Knuth is used to calculate the probability that c col-
lisions occur when n distinct random inputs are mapped into an output set of
size m = 2t in [7]. The probability of c collisions occur is given as,

Pr(C = c) =
m(m − 1) . . . (m − n + c + 1)

mn

{ n
n − c

}
,

where
{ n

n − c

}
is the Stirling number of the second kind. This probability is used

to obtain the results given in Table 3. Here, as it affects directly the running time



of the test, the selection of the parameter n should be done carefully. If it is
chosen to be too large, it may not be possible to repeat the testing steps enough
times to be able to detect subtle evidences of non-randomness. Therefore, 212

and 214 is chosen for the values of n in the calculations to have reasonable run-
ning times for the tests. The parameter m is chosen depending on the parameter
n such that the probabilities are close enough to each other to be used in a 5-bin
χ2 Goodness of Fit Test.

Table 3. Ranges and probabilities of Collision Test for 16 and 20 bits

n = 212 , m = 216 n = 214 , m = 220

Bin Range Probability Range Probability
1 0-116 0.206246 0-117 0.190231
2 117-122 0.194005 118-124 0.215008
3 123-128 0.219834 125-130 0.211585
4 129-134 0.183968 131-137 0.202689
5 135-4096 0.195947 138-16384 0.180487

The test is applied as follows: first, a random input is taken and then an
input set of size 212 (or 214) is formed by assigning all possible values to its first
12-bits (or 14-bits respectively). After the outputs of these inputs are computed
through f , number of collisions is obtained with the help of an array or a hash
table. Afterwards, the corresponding bin value, is incremented. Above steps are
repeated for 220 random inputs and the resulting bin values are evaluated through
a χ2 Goodness of Fit Test with the expected values derived from Table 3 to
produce the p-value. A p-value less than 0.01 is considered to indicate a non-
random mapping.

2.4 Coverage Test

The Coverage Test evaluates a given function f through examining the size of
the output set (coverage) formed from a subset of its domain. For a random
mapping, the output set size is expected to be about 63% of the input set. Block
ciphers loaded with a fixed plaintext and hash functions are one-way functions
and required to behave like a random mapping. In the case of block ciphers, if
the key is fixed, the function f becomes a random permutation and this case
should be carefully investigated before moving on to the details of the test.

For a random permutation, the coverage is equal to the size of the input set,
when all output bits are considered. For example, assume that the function f



under test has block size n. Then, the coverage of an input set formed by 2l

distinct random values is obviously 2l if all output bits are taken as reference.
But, if n − k output bits are considered when forming the output set, the maxi-
mum possible number of hits that an (n−k)-bit output can have is 2k. Therefore,
whenever l > k, f is expected to behave like a random mapping.

Hence, when applying this test, functions used in both block ciphers and
hash functions are expected to behave like a random mapping, which implies
that the expected coverage is about 63% of the size of the input set.

The calculations for the intervals and their probabilities are the same with
the Coverage Test proposed by Turan et al. in [5] for stream ciphers. Let Ak be
the number of mappings from an n-element set to an n-element set. Here, Ak is
defined recursively as

Ak =

(
n
k

) kn −

k−1∑
i=1

(
k
i

)
Ak−i(

n
k−i

)  .
Therefore, the probability of the coverage being k is

Pr(C = k) =
Ak

nn ,

for k = 1, 2, . . . , n. The probabilities and intervals for the bins to be used for the
test are given in Table 4. This table is slightly different than the one given in
[5], since a typo is spotted and corrected when verifying the results given in that
paper.

Table 4. Ranges and probabilities of Coverage Test for 12 and 14 bits

12 - bits 14 - bits
Bin Range Probability Range Probability
1 1-2572 0.199176 1-10323 0.201674
2 2573-2584 0.204681 10324-10346 0.195976
3 2585-2594 0.197862 10347-10367 0.207530
4 2595-2606 0.203232 10368-10390 0.195266
5 2607-4096 0.195049 10391-16384 0.199554

The test is applied as follows: first, a random input is taken and then an input
set of size 212 (or 214) is formed by assigning all possible values to its first 12-
bits (or 14-bits respectively). After applying f to this input set, the coverage is
computed and the corresponding bin value is incremented.



The resulting bin values are evaluated through a χ2 Goodness of Fit Test
with the expected values derived from Table 4 to produce the p-value. A p-value
less than 0.01 is considered to indicate a non-random mapping.

3 Application

In this section, application of the cryptographic randomness tests defined in Sec-
tion 2 to the AES finalist algorithms and their results are given. Brief descrip-
tions are followed by the testing results of each algorithm. Finally, a comparison
with the previous work on the subject is stated.

3.1 MARS

The block cipher MARS[8] uses three main function when encrypting a block
of plaintext. First, an unkeyed mixing operation called the forward mixing is
applied following a key whitening operation. Then, the keyed transformation
called the cryptographic core is applied to the state. Finally, another unkeyed
mixing called the backward mixing is applied and the ciphertext is obtained af-
ter another key whitening operation. In this work, as it is desired to test the cryp-
tographic randomness properties of the selected block ciphers, only the crypto-
graphic core of the algorithm is tested. In other words, the forward and backward
mixing operations are excluded when applying the tests defined in Section 2.

As Table 5 suggests, the cryptographic core of the algorithm satisfies the
SAC property after 6 rounds. Since the cryptographic core has a type-3 Feistel
network structure, this result is not unexpected. On the other hand, the suggested
number of rounds for the cryptographic core is 16, which seems like a safe
enough security margin.

Table 5. Number of rounds which MARS achieve randomness

SAC Linear Span Collision Test Coverage Test
- - 16 20 12 14

6 2 3 3 3 3

3.2 RC6

RC6[9] is a 128 bit block cipher which uses 128,192 or 256 bit key sizes. The
algorithm can be parametrized for other word and key sizes. The encryption



process stars with a key whitening. Then, the round function is applied 20 times.
The round function consists of modular multiplication, modular addition, XOR
and rotations operations. 20 rounds is followed by another key whitening which
concludes the encryption process.

The individual test results show that at least 5 rounds of the round function
is enough to achieve randomness. The individual test results are given in Table
6.

Table 6. Number of rounds which RC6 achieve randomness

SAC Linear Span Collision Test Coverage Test
- - 16 20 12 14

5 2 5 5 5 5

3.3 Rijndael

Rijndael[10] consists of four main operations: SubBytes, ShiftRows, MixColumns
and AddRoundkey. The SubBytes operation is the confusion step, which uses
an 8 × 8 s-box with very good cryptographic properties. The ShiftRows and
MixColumns steps are mainly for satisfying the diffusion property. Finally, Ad-
dRoundkey is simply a key XOR at the end of each round. The MixColumn
operation is skipped in the final round of encryption.

The results given in Table 7 suggests that randomness is achieved after 3
rounds. Moreover, the SAC property is satisfied after 4 rounds when the Mix-
Columns operation is skipped in the last (fourth) round.

Table 7. Number of rounds which Rijndael achieve randomness

SAC Linear Span Collision Test Coverage Test
- - 16 20 12 14

4 2 3 3 3 3

3.4 Serpent

Serpent[11] is an SP-Network using 32 rounds of successive substitution and
permutation layers. Substitution layer consists of 32 4 × 4 s-boxes with good



cryptographic properties. Permutation layer consists of a linear transformation
using shift, rotation and XOR operations.

Serpent achieves randomness after 4 out of 32 rounds, which is a large
enough security margin for block ciphers. The results for the individual tests
are given in Table 8.

Table 8. Number of rounds which Serpent achieve randomness

SAC Linear Span Collision Test Coverage Test
- - 16 20 12 14

4 2 4 4 4 4

3.5 Twofish

Twofish[12] is a 128-bit block cipher that can handle variable-length key up
to 256 bits. The cipher is a 16-round Feistel network that uses key-dependent
8× 8 s-boxes, a 4× 4 maximum distance separable matrix, a pseudo-Hadamard
transform and rotations.

Due to the fact that the round function of the Twofish algorithm has a Feistel
network structure, only the even number of its rounds are tested. The results
given in Table 9 suggest that the algorithm produces random outputs after 4 out
of 16 rounds of its round function.

Table 9. Number of rounds which Twofish achieve randomness

SAC Linear Span Collision Test Coverage Test
- - 16 20 12 14

4 2 4 4 4 4

3.6 Comparison with the previous work

During the AES selection process, J. Soto proposed a method to test block ci-
phers for randomness using the NIST Test Suite[2]. However, as the tests de-
fined in that suite are more suitable to test long sequences, the block ciphers
are considered as PRNGs and the outputs obtained from various input types are
concatenated to form long sequences. After the sequences are generated, the



statistical randomness tests defined in the NIST Test Suite are applied to these
sequences. As a result for this testing process, a total of 189 p-values are pro-
duced from 16 tests for each input type.

Contrary to the above mentioned work on the subject, the tests proposed in
this work are defined solely for the purpose of testing the cryptographic proper-
ties of the algorithms. Four tests are applied to the algorithms and a total of six
p-values are produced. Although the number of p-values produced is relatively
small, the results obtained from the cryptographic randomness tests are more
precise than the results of the above mentioned work (see Table 10).

Table 10. Combined table stating the number of rounds which the algorithms
achieve randomness

SAC Linear Span Collision Test Coverage Test Previous Work[3]
Algorithms - - 16 20 12 14 -

MARS 6 2 3 3 3 3 4
RC6 5 2 5 5 5 5 4

Rijndael 4 2 3 3 3 3 3
Serpent 4 2 4 4 4 4 4
Twofish 4 2 4 4 4 4 2

4 Conclusion and Future Work

In this work, a package of randomness tests is proposed which evaluates block
ciphers and hash functions through investigating their certain cryptographic
properties. Throughout the work, SAC Test, Linear Span Test and Coverage
Test, which were previously proposed for stream ciphers, are adapted to test
the round functions of block ciphers and compression functions of hash func-
tions. Also, Collision Test, which was originally proposed by Knuth for testing
sequences, is adapted to test algorithms. Afterwards, the package is applied to
AES finalists and it is observed that the number of rounds where the random-
ness is achieved for MARS, RC6 and Rijndael is more precise than the previous
results.

As it can be derived from the results given in Table 10, SAC Test, Colli-
sion Test and Coverage Test dominate the results, since Linear Span Test results
show that most of the algorithms that are tested achieve randomness with a few
rounds. But the test is included in the work, as hiding the linear dependency of
its input is a nice and primitive property to have for a block cipher or a hash
function.



Finally, as a future work, more cryptographic randomness tests can be de-
fined to evaluate different properties expected from the round function of a block
cipher or the compression function of a hash function. Also, the package can be
applied to SHA-3 candidate algorithms.
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