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Abstract. Blind signatures provide a mechanism for achieving privacy
and anonymity whereby a user gets the signer to sign a message of his
choice without the signer learning the content of the message, nor linking
message/signature request pairs when he sees the final signature. In this
paper, we construct a blind signature that requires minimal interaction
(two moves) between the user and the signer, and which results in a sig-
nature which is a signature with respect to a standard (i.e. non-blind)
signature scheme. The signature request protocol is akin to the classic,
blind-unblind methodology used for RSA blind signatures in the ran-
dom oracle model; whilst the output signature is a standard Camenisch-
Lysyanskaya signature in bilinear groups. The scheme is secure in the
common reference string model, assuming a discrete logarithm related
assumption in bilinear groups; namely a new variant of the LRSW as-
sumption. We provide evidence for the hardness of our new variant of
the LRSW by showing it is intractable in the generic group model.

1 Introduction

Background: Since their introduction by Chaum [11], blind signatures
have been used in a number of cryptographic applications that require one
party (a signer) to authenticate a message for another party (the user),
whilst maintaining privacy of the user’s message. The classic example of
their use is in e-cash protocols [11] where a bank acts as the signer, and
the message is a representation of digital cash; the privacy requirement
comes from the non-traceability requirement of cash.

A blind signature must satisfy two security requirements [20, 27], blind-
ness and unforgeability. By blindness we mean that the signer does not
learn what message he has signed and in addition, when he later sees the
message at the verification process, he cannot link it to its corresponding



signature request. Unforgeability on the other hand guarantees that the
user cannot output any new signatures that he has not asked the signer
to sign for him, or in other words, the number of signatures the user can
compute is equal to the number of completed interactions he was involved
in with the signer.

Since their introduction, a number of authors have presented blind sig-
nature algorithms based on different assumptions and in different models.
For example, schemes based on factoring related assumptions have been
given in the Random Oracle Model (ROM) [3], and in the Common Refer-
ence String (CRS) model [9]; schemes based on discrete logarithm related
assumptions have been given in the ROM [1, 5, 27] and in the CRS model
[2, 14, 25]; schemes based on a combination of discrete logarithm and fac-
toring based assumptions have been given in the CRS model [21]; finally,
in [13, 20] schemes in the CRS model are given under general assumptions.

A blind signature consists of two distinct phases. In the first phase,
which we shall call the signature request phase, the user obtains from the
signer the signature on the message he requires. In the second phase, the
signature and message are made public and anyone can apply the public
verification algorithm to verify the message/signature pair. The signature
request phase is the most complex of all phases. One could consider such
a phase as a general secure two-party computation, where the user has
the message as his private input, whereas the signer has a secret key as
his private input. After such a secure computation, the user outputs a
valid blind signature on his secret message.

The “classic” blind signature schemes are in the ROM and are essen-
tially Full-Domain-Hash (FDH) style signature schemes. In these schemes,
the hash function is applied to the message, the result is then blinded and
sent to the signer. The signer signs the blinded message as he would sign
a normal message. On receiving the output from the signer the user then
unblinds the signature using a homomorphic property of the underlying
signature scheme. Such a mechanism is the basis of the original RSA
based scheme of Chaum [11], which was proved secure in [3]; Chaum’s
scheme outputs standard RSA-FDH signatures [4]. It also forms a basis
of the BLS signature [7] based blind signature scheme of Boldyreva [5].
The advantage of such schemes is that the output signature corresponds
to a standard signature scheme; in these two cases RSA-FDH and BLS
respectively. Our construction has a similar flavour in that the signature
generation protocol is of the blind/unblind variant and that the output
signature is a “standard” signature, namely a Camensich–Lysyanskaya



(CL) signature [10]. However, we dispense with the need for random or-
acles and instead work in the CRS model.

Prior work in the CRS model: Due to the round-optimal nature of
a two-move signature request phase, and the desire to avoid the use of
the random oracle, much recent work has focused on developing round-
optimal blind signatures in the CRS model.

In [13], Fischlin presented a scheme in the CRS model which has a
two-move signature request protocol. The scheme is a generic construc-
tion from basic primitives, namely schemes for commitment, encryption
and signatures as well as generic non-interactive zero knowledge (NIZK)
proofs for NP-languages. The signature request protocol consists of the
user sending a commitment to the message to the signer, who responds
with a signature on the commitment. The user then uses this signature
on the commitment to construct the blind signature, by first encrypt-
ing the commitment and the signature, and then adding a NIZK proof
that the encrypted signature is a valid signature on the encrypted com-
mitment, and that the encrypted commitment is a commitment to the
specific message.

Using the notion of automorphic signatures, Fuchsbauer [14] (see also
[2]) presented a variant of the construction of Fischlin, using specific effi-
cient components. In particular, he made use of the efficient NIZK proofs
of Groth and Sahai [18, 17] which hold for only specific NP-statements
in bilinear groups. In Fuchsbauer’s scheme, the blind signature is con-
structed by providing a Groth–Sahai proof of knowledge of a signature
on a message (as opposed to a signature on a commitment as in Fischlin’s
generic construction). This makes the underlying NIZK proofs simpler,
but makes use of a different signature request phase. The resulting blind
signature consists of around 30 group elements, and is the most efficient
round-optimal blind signature scheme in the CRS model known to date.

Fuchsbauer’s scheme is based on a new intractibility assumption called
the ADH-SDH assumption, which he shows holds in the Generic Group
Model (GGM) [29, 23]. This is a falsifiable assumption, in the sense of
Naor [24], which is closely related to the q-SDH problem lying behind the
Boneh–Boyen signature scheme [6]. However, the resulting blind signature
is not a standard signature, e.g. it is not a true Boneh–Boyen signature.

In this paper, we present a round-optimal blind signature scheme in
the CRS model which is significantly more efficient than Fuchsbauer’s
scheme; a signature only consists of three group elements. Indeed the re-
sulting signature is a standard CL signature on the message m. We note
that our required hardness assumption, being interactive, is not falsifi-



able. However, this property is inherited from the underlying CL signa-
ture where the underlying hardness assumption is the LRSW assumption,
which is itself interactive.

In [16], the authors present a generic round-optimal blind signature
scheme in the standard model, which results in blind signatures from any
standard signature scheme. However, their construction is not as efficient
as our construction in the CRS model for the CL signature scheme. In
particular, the generic construction of [16] requires the use of ZAPs and
two-party secure function evaluation protocols.

Our Scheme: The scheme we present has a number of similarities to
previous work, yet a number of distinct advantages. As already remarked
it results in standard CL signatures, is optimal in the number of moves
in the signing protocol, and dispenses with the need for using the ROM.

Recall that security of the RSA-FDH based blind signature is not
based on the same assumption as the original RSA-FDH signature, in-
deed it is based on a stronger one, the same holds true for the BLS-based
blind signature. In our construction the same property re assumptions
holds; whilst security of the standard CL signature scheme is based on
the LRSW assumption [22], the security of our scheme relies on a stronger
assumption, which we call the Extended-LRSW (E-LRSW) assumption,
which is itself related to the Blind-LRSW (B-LRSW) assumption previ-
ously proposed in [12]. We justify the hardness of this new assumption
by presenting a proof in the GGM. We note, our proof can be modified
to also justify the B-LRSW assumption in the GGM.

We note that the CRS-based scheme in [21] also outputs standard CL
signatures, however, the signature request protocol requires factoring-
based assumptions to provide security. Our signature request protocol is
significantly simpler.

We now state some disadvantages of our scheme. Firstly, to obtain a
highly efficient protocol, we work in the honestly-generated keys model;
security can easily be obtained in the adversarially-generated keys model
with either the addition of an extra round of communication, the addition
of NIZK proofs of knowledge, or a more complex setup phase. Secondly,
our scheme reduces to an interactive assumption rather than a standard
cryptographic assumption. However, this is relatively standard in the con-
struction of efficient blind signature schemes, e.g. [11, 5]. It remains an
open problem to derive a (truly) efficient round-optimal blind signature
scheme in the CRS model which allows adversarially-generated keys, and
which reduces to a non-interactive assumption.



Paper Organization: The rest of the paper is organized as follows;
In Section 2 we recap on the syntax and security definitions for blind
signatures. In Section 3 we recap on the basic properties of bilinear groups
that we shall need, and we will present the underlying hard problems on
which the security of our scheme rests. We present our scheme in Section 4,
with the security proof provided in Section 5. Finally, we provide evidence
for the hardness of our new intractability assumption in the GGM in
Appendix A.

2 Syntax and Security of Blind Signatures

In this section we define the syntax of blind signatures that we shall use,
as well as recap on the standard security model. Since we are focusing
on signature request phases which are two-move, we specialise the syntax
for this case. This is purely to make the description of the security model
and our scheme more transparent.
Syntax: A blind signature scheme BS (with a two-move signature request
phase) in the CRS model consists of six probabilistic polynomial time
algorithms

BS = (SetupBS,KeyGenBS,RequestBS, IssueBS,UnblindBS,VerifyBS).

The syntax of these algorithms is defined as follows; where to aid notation
all algorithms (bar SetupBS) are assumed to take as implicit input CRSBS

as output by SetupBS;

– SetupBS(1λ): Takes as input a security parameter λ and outputs a
common string CRSBS. We assume CRSBS contains a description of
the key and message spaces for the scheme.

– KeyGenBS(1λ): Takes as input the security parameter and outputs a
pair of public/secret keys (pkBS, skBS) for the signer.

– RequestBS(m, pkBS): This algorithm, run by the user, takes a message
m in the space of messagesM and the public key pkBS, and produces
a signature request ρ, plus some state St (which is assumed to contain
m).

– IssueBS(ρ, skBS): This algorithm, run by the signer, takes the signature
request ρ and the secret key skBS, and produces a pre-signature β.

– UnblindBS(β,St, pkBS): On input of β, St and the public key pkBS, this
algorithm produces a blind signature σ on m, or it outputs ⊥.

– VerifyBS(m,σ, pkBS): This is the public signature verification algo-
rithm. This should output 1 if σ is a valid signature on m and 0
otherwise.



Correctness of the blind signature algorithm is that if both parties behave
honestly then signatures should verify, i.e. for all CRS’s output by SetupBS

we have,

Pr [(pkBS, skBS)← KeyGenBS(1λ),m←M, (ρ, St)← RequestBS(m, pkBS),
β ← IssueBS(ρ, skBS), σ ← UnblindBS(β,St, pkBS) :
VerifyBS(m,σ, pkBS) = 1 ] = 1.

Security: The standard security model for blind signatures [20, 27] con-
sists of two properties, blindness and unforgeability. Intuitively, blindness
says that an adversarial signer who chooses two messages m0 and m1

and then interacts with an honest user who requests signatures on those
messages (in an order unknown to the signer), is unable to tell the order
in which the messages were signed upon being presented with the final
unblinded signatures. On the other hand, unforgeability deals with an
adversarial user whose goal is to obtain k + 1 distinct message/signature
pairs given only k interactions with the honest signer.

Experiment: ExpBlindBS,A (λ)
– CRSBS ← SetupBS(1λ).
– (pkBS, skBS)← KeyGenBS(1λ).
– (m0,m1,Stfind)← A(find, pkBS, skBS,CRSBS).
– b← {0, 1}.
– (ρb, Stb)← RequestBS(m0, pkBS):
– (ρ1−b, St1−b)← RequestBS(m1, pkBS):
– (β0, β1,Stissue)← A(issue, ρ0, ρ1, Stfind).
– σ0 ← UnblindBS(βb, Stb, pkBS).
– σ1 ← UnblindBS(β1−b,St1−b, pkBS).
– If σ0 =⊥ or σ1 =⊥ then set σ0 ←⊥ and σ1 ←⊥.
– b∗ ← A(guess, σ0, σ1, Stissue).
– Return 1 if b = b∗ else return 0.

Fig. 1. The blindness experiment

To define blindness, we consider an adversary A which has three
modes find, issue and guess, running in an experiment as in Figure 1.
Note that the experiment is defined for honestly-chosen keys. Our secu-
rity results will hold, re blindness, for adversarially-chosen keys as long
as the challenger in the blindness game is given access to the secret key
as well.

We can obtain full security against adversarially-chosen keys by simply
requesting a secret key holder to prove, in zero-knowledge, knowledge of



the underlying secret key for a given public key, and then using, within
our proof for blindness, a knowledge extractor for the zero-knowledge
proof to extract the witness (i.e. the secret key). The additional security
obtained from adversarially-chosen keys comes however at the expense
of the zero-knowledge proof. To obtain the same number of rounds, we
will require such a proof to be non-interactive, and hence costly with
currently known techniques; or it can be efficient and interactive, and
hence cost more rounds. Another alternative would be in the setup phase
for the signer to prove knowledge of their secret keys via an (interative or
non-interactive) zero-knowledge proof. In the interactive case, we would
however require the ability to rewind the signer to the start of the set up
phase in order to extract the secret within our proof.

Our focus is on a protocol which is efficient in the honestly-generated
keys model, but extending our results (admittedly with a loss of efficiency)
to the adversarially-generated keys model in one of the ways described
above is trivial. We define AdvBlindBS,A (λ) =

∣∣2 · Pr[ExpBlindBS,A (λ) = 1]− 1
∣∣ and

we say that the scheme is blind if AdvBlindBS,A (λ) is a negligible function of
λ for any polynomial time adversary A.

To define unforgeability, we consider an adversary A, having oracle
access to the function IssueBS(·, skBS), for adversarially chosen first param-
eter, running in an experiment as in Figure 2. We define AdvUnforgeBS,A (λ) =

Pr[ExpUnforgeBS,A (λ) = 1] and we say that the scheme is unforgeable if AdvUnforgeBS,A (λ)
is a negligible function of λ for any polynomial time adversary A.

Experiment: ExpUnforgeBS,A (λ)
– CRSBS ← SetupBS(1λ).
– (pkBS, skBS)← KeyGenBS(1λ).
– ((m1, σ1), . . . , (mk+1, σk+1))← AIssueBS(·,skBS)(pkBS,CRSBS).
– If A called its oracle more than k times then return 0.
– If ∃i, j ∈ {1, . . . , k + 1}, with i 6= j, such that mi = mj then return 0.
– If ∃i ∈ {1, . . . , k + 1} such that VerifyBS(mi, σi, pkBS) = 0 then return 0.
– Return 1.

Fig. 2. The Unforgeability experiment

Note that our definition of forgery is not that of strong unforgeability;
we do not require the adversary to not be able to output a new signature
on an old message. This is because the final signature in our scheme
will be a CL signature, which is always randomizable. Hence, our blind



signature scheme may not be suitable in applications which require the
strong unforgeability definition.

3 Bilinear Groups and Associated Hard Problems

In this section, we introduce the basic mathematical constructs needed to
present our scheme. Namely abelian groups admitting a bilinear pairing
and the associated hard problems.
Bilinear Groups: Bilinear groups are a set of three groups G1, G2

and GT , of prime order p, along with a bilinear map (a deterministic
function) t̂ which takes as input one element in G1 and one element in
G2 and outputs an element in GT . We shall write G1 and G2 additively
(with identity element 0), and GT multiplicatively (with identity element
1), and write G1 = 〈P1〉,G2 = 〈P2〉, for two explicitly given generators
P1 and P2. Multiplication by an integer x in the group G1 (resp. G2) will
be denote by [x]P1 (resp. [x]P2). We define P = (p,G1,G2,GT , t̂, P1, P2)
to be the set of pairing group parameters.

The function t̂ must have the following three properties:

1. Bilinearity: ∀Q1 ∈ G1, ∀Q2 ∈ G2, ∀x, y ∈ Z, we have

t̂([x]Q1, [y]Q2) = t̂(Q1, Q2)xy.

2. Non-Degeneracy: The value t̂(P1, P2) generates GT .
3. The function t̂ is efficiently computable.

In practice, there are a number of different types of bilinear groups one
can take, each giving rise to different algorithmic properties and different
hard problems. Following [15] we categorize pairings into three distinct
types (other types are possible, but the following three are the main ones
utilized in practical protocols).

– Type-1: This is the symmetric pairing setting in which G1 = G2.
– Type-2: Here we have G1 6= G2, but there is an efficiently computable

isomorphism ψ : G2 −→ G1 where ψ(P2) = P1.
– Type-3: Again G1 6= G2, but now there is no known efficiently com-

putable isomorphism.

In this paper, we shall always consider Type-3 pairings. Such pairings can
be efficiently realised; by taking G1 to be the set of points of order p of
an elliptic curve over Fq with a “small” embedding degree k; by taking
G2 to be the set of points of order p on a twist of the same elliptic curve



over Fqe , for some divisor e of k; and GT to be the subgroup of order p
in the finite field Fqk .

For a security parameter λ, we let SetupGrp(1λ) denote an algorithm
which produces a pairing group instance P of Type-3.
Hard Problems: The security of our scheme rests on a variant of the
following assumption, introduced in [22] in the case of Type-1 pairings;
we present this problem in it generality for all pairings,

Definition 1 (LRSW Assumption). If A is an algorithm which is
given access to an oracle O[x]P2,[y]P2

(·) that on input of m ∈ Fp outputs
(A,B,C) = (A, [y]A, [x+m · x · y]A), for some random A ∈ G1 \ {0}, we
let Q denote the set of queries made by A to O[x]P2,[y]P2

(·).
The LRSW assumption is said to hold for the output of SetupGrp if

for all probabilistic polynomial time adversaries A, and all outputs of
SetupGrp, the following probability is negligible in the security parameter
λ,

Pr [x← Fp, y ← Fp, X ← [x]P2, Y ← [y]P2,

(Q,m,A,B,C)← AOX,Y (·)(P, X, Y ) :
m /∈ Q ∧ m ∈ Fp \ {0} ∧
A ∈ G1 \ {0} ∧ B = [y]A ∧ C = [x+m · x · y]A ]

In [22], it was shown that the LRSW assumption holds in the GGM
and is independent of the DDH assumption. The LRSW assumption is
the underlying hard problem behind the Camenisch–Lysyanskaya (CL)
signature scheme.

Definition 2 (Camenisch–Lysyanskaya Signature Scheme). The
CL signature scheme is given by the following triple of algorithms given
an output P of SetupGrp(1λ).

– KeyGen(P): Set skCL ← (x, y) ∈ F2
p and pkCL ← (X,Y ) = ([x]P2, [y]P2).

– Sign(m, skCL): Select A ← G1 \ {0}, and then set B ← [y]A, C =
[x+m · x · y]A. Output (A,B,C).

– Verify(m, (A,B,C), pkCL): Output true if and only if t̂(B,P2) = t̂(A, Y )
and t̂(C,P2) = t̂(A,X) · t̂(B,X)m.

Indeed, the LRSW problem and the EF-CMA security of the CL sig-
nature scheme are equivalent since the oracle in the LRSW assumption
produces CL signatures, and the output of the adversary against the
LRSW assumption corresponds precisely to a forger who can construct



one more CL signature. This is mirrored below in the relationship be-
tween the hardness of our E-LRSW assumption and the unforgeability of
our scheme.

We shall require a strengthening of the LRSW assumption, a vari-
ant of which was first proposed by Chen et. al [12]. We first present the
strengthening of Chen et. al, called the Blind-LRSW assumption, and
then we present our modification which we call the Extended-LRSW as-
sumption (E-LRSW).

In the B-LRSW problem the oracle provided to the adversary does
not take as input an element m ∈ Fp, but instead takes as input an
element M ∈ G1. The output of the oracle is a CL signature on the
discrete logarithm m of M with respect to P1. The output of the adversary
against this modified LRSW assumption is still a valid CL signature on a
new element m. Following [12] we call this the Blind-LRSW (B-LRSW)
assumption, since the adversary is given access to an oracle which can
produce what are in effect blinded signatures. Formally we define

Definition 3 (B-LRSW Assumption). If A is an algorithm which
is given access to an oracle, denoted by OB[x]P2,[y]P2

(·), that on input of
M = [m]P1 ∈ G1 outputs (A,B,C) = (A, [y]A, [x+m · x · y]A), for some
random A ∈ G1 \ {0}, we let Q denote the set of queries made by A to
OB[x]P2,[y]P2

(·).
The B-LRSW assumption is said to hold for the output of SetupGrp

if for all probabilistic polynomial time adversaries A, and all outputs of
SetupGrp, the following probability is negligible in the security parameter
λ,

Pr [x← Fp, y ← Fp, X ← [x]P2, Y ← [y]P2,

(Q,m,A,B,C)← AO
B
X,Y (·)(P, X, Y ) :

[m]P1 /∈ Q ∧ m ∈ Fp \ {0} ∧
A ∈ G1 \ {0} ∧ B = [y]A ∧ C = [x+m · x · y]A ]

Note that the oracle in the B-LRSW assumption, given access to x and
y, can compute its response by choosing a ∈ Fp at random and outputing
the triple ([a]P1, [a · y]P1, [a · x]P1 + [a · x · y]M), i.e. the oracle does not
need to be able to solve discrete logarithms if it has access to x and y.

Also note, since an oracle query to OX,Y (·) can be simulated with
an oracle query to OBX,Y (·), and the output of the adversaries in the two
problems is essentially identical, that an adversary AB against the LRSW
assumption can be turned into an adversary against the B-LRSW as-



sumption (but it appears not vice-versa). Thus, the B-LRSW assumption
is stronger than the LRSW assumption.

In our hard problem, shown to hold in the GGM in Appendix A, we
extend the oracle in the B-LRSW assumption to provide some additional
data about the values A, x and y, with respect to a new public key
element Z = [z]P1. The output of the adversary still being a Camenisch–
Lysyanskaya signature.

Definition 4 (E-LRSW Assumption). If A is an algorithm which is
given access to an oracle, denoted by OE[x]P2,[y]P2,[z]P1

(·), that on input of
M = [m]P1 ∈ G1 (for some unknown value of m) outputs (A,B,C,D) =
(A, [y]A, [x + m · x · y]A, [x · y · z]A), for some random A ∈ G1 \ {0}, we
let q denote the number of queries made by A to OE[x]P2,[y]P2,[z]P1

(·).
The E-LRSW assumption is said to hold for the output of SetupGrp,

if for all probabilistic polynomial time adversaries A, and all outputs of
SetupGrp, the following probability is negligible in the security parameter
λ,

AdvE−LRSW,A(λ) = Pr [x← Fp, y ← Fp, z ← Fp,
X ← [x]P2, Y ← [y]P2, Z ← [z]P1

({mi, Ai, Bi, Ci}q+1
i=1 )← AO

E
X,Y,Z(·)(P, X, Y, Z) :

For all 1 ≤ i ≤ q + 1 we have mi ∈ Fp \ {0} ∧
Ai ∈ G1 \ {0} ∧ Bi = [y]Ai ∧ Ci = [x+mi · x · y]Ai
∧ (if i 6= j then mi 6= mj) ]

Note we present this assumption in terms of a one-more problem rather
than in the form of the B-LRSW assumption. This is because the extra
item D allows the adversary to “open” the signature in one of a number
of ways, if he can recover z by solving the underlying discrete logarithm
problem. However, the intuition is that he needs to commit to how he
is going to open the signature before he sends the request to the oracle.
We formalise this intuition when we present a proof in the GGM of the
difficulty of the E-LRSW problem.

We note that our E-LRSW assumption is in some sense to the LRSW
assumption, as the HSDH assumption from [8] is to the SDH assump-
tion. In that the “queries” ([1/(x+ ci)]P1, ci) in the SDH assumption are
replaced by “blinded queries” ([1/(x+ ci)]P1, [ci]Q1, [ci]P2) in the HSDH
assumption, and the output value ([1/(x+c∗)]P1, c

∗) in the SDH assump-
tion is replaced by the blinded output value ([1/(x+c∗)]P1, [c∗]Q1, [c∗]P2)
in the HSDH assumption, where P1 ∈ G1, P2 ∈ G2, Q1 ← G1, x, ci ← Z∗p
and some c∗ ∈ Z∗p where c∗ /∈ {ci}.



Recall the blind signature scheme below is akin to the blind-unblind
schemes in the ROM, such as those based on RSA. It should therefore
not be surprising that we need to strengthen the security assumption of
the underling signature scheme so as to cope with blindness properties.
This is exactly what is required for the ROM-based RSA and discrete
logarithm based schemes [3, 5]

4 Our Scheme

SetupBS(1λ):

– P ← SetupGrp(1λ).
– z ← Fp.
– Z ← [z]P1.
– M := Fp \ {0}.
– CRSBS ← (P, Z,M).
– Output CRSBS.

RequestBS(m, pkBS):

– r ← Fp.
– Co← [m]P1 + [r]Z.
– ρ← Co, St← (m, r).
– Output (ρ, St).

UnblindBS(β, St, pkBS):

– Parse β as (A,B,C,D).
– Parse St as (m, r).
– C ← C − [r]D.
– If VerifyBS(m, (A,B,C), pkBS) = 0
• Return ⊥.

– t← Fp \ {0}.
– A← [t]A, B ← [t]B, C ← [t]C.
– σ ← (A,B,C).
– Output σ.

KeyGenBS(1λ):

– x, y ← Fp.
– X ← [x]P2.
– Y ← [y]P2.
– skBS ← (x, y), pkBS ← (X,Y ).
– Output (pkBS, skBS).

IssueBS(ρ, skBS):

– Parse ρ as Co.
– a← Fp \ {0}.
– A← [a]P1.
– B ← [a · y]P1.
– C ← [a · x]P1 + [a · x · y]Co.
– D ← [a · x · y]Z.
– β ← (A,B,C,D).
– Output β.

VerifyBS(m,σ, pkBS):

– Parse σ as (A,B,C).
– If A = 0 or t̂(A, Y ) 6= t̂(B,P2)

or t̂(C,P2) 6= t̂(A,X) · t̂(B,X)m

• Return 0.
– Return 1.

Fig. 3. Our blind signature scheme

In Figure 3, we define the algorithms which make up our blind sig-
nature scheme. Notice, that β contains a CL signature on the “hidden”
message m+ z · r, but no party knows the value of z. The signer is sign-
ing a message he does not know. Indeed, the user also does not know
the message (unless he picks r = 0), but he is able to unblind this sig-
nature to produce a valid CL signature on m using his value r. To see



that the unblinded signature is valid, notice that the value of C (before
multiplication by t) is equal to

C = ([a · x]P1 + [a · x · y]Co)− [r]D,
= [x]A+ [a · x · y] · ([m]P1 + [r]Z)− [r]D,
= [x+m · x · y]A+ [a · x · y · r]Z − [r]D,
= [x+m · x · y]A.

Then notice, that even the revealed signature provides no linkage with
the values signed, due to the fact that CL signatures for Type-3 pairings
are unlinkable once randomized. In our security proof we will confirm this
intuition.

5 Proof of Security

First we prove that the scheme is blind, then we show that it is unforge-
able.

Theorem 1. The above blind signature scheme is perfectly blind. In par-
ticular, if A is an adversary against the blindness of the above blind sig-
nature scheme, then

AdvBlindBS,A (λ) = 0.

Proof. We reduce blindness to the hiding property of Pedersen commit-
ments [26], which is defined by the following experiment:

Experiment: ExpHidingPedersen,C(λ)
– sk← Fp, b← {0, 1}, r0, r1 ← Fp.
– pk← [sk]P1.
– (m0,m1,St)← C1(pk), with mi ∈ Fp.
– C0 ← [mb]P1 + [r0]pk.
– C1 ← [m1−b]P1 + [r1]pk.
– b′ ← C2(C0, C1,St).
– If b = b′ then return 1, else return 0.

If C is an adversary in the above experiment then we define

AdvHidingPedersen,C(λ) = |2 · Pr[ExpHidingPedersen,C(λ) = 1]− 1|.

That Pedersen commitments are perfectly hiding is a classic result. Thus,
we have AdvHidingPedersen,C(λ) = 0, i.e. Pr[ExpHidingPedersen,C(λ) = 1] = 1/2.

We now turn to the security game for blindness for our blind signature
scheme. We let G0 denote the experiment played by the adversary A



against the blindness property of the scheme, see Figure 4. We let E
denote the event that the guess stage of the adversary is passed the pair
(σ0, σ1) = (⊥,⊥). We clearly have

Pr[ExpBlindBS,A (λ) = 1] ≤Pr[E] · Pr[ExpBlindBS,A (λ) = 1|E]

+ Pr[¬E] · Pr[ExpBlindBS,A (λ) = 1|¬E].

It is clear that in the case that the event E happens, then the adversary
A can be turned into an adversary against the Pedersen commitments
Co0 and Co1. We hence have that

Pr[ExpBlindBS,A (λ) = 1|E] = Pr[ExpHidingPedersen,C(λ)] = 1/2.

In the following, we will show that we also have

Pr[ExpBlindBS,A (λ) = 1|¬E] = Pr[ExpHidingPedersen,C(λ)] = 1/2,

and so
Pr[ExpBlindBS,A (λ) = 1] ≤ (Pr[E] + Pr[¬E])/2 = 1/2,

from which our result will follow.
So from now on assume that the event ¬E happens. In which case

there is no need for the challenger to check the returned pre-signatures
are valid. Thus, the challenger can obtain valid signatures by ignoring the
values returned by the adversary and simply generating the signatures
himself; since he knows the secret key. Hence, from game G0 we can make
a hop to game G1, also presented in Figure 4.

If we let S0(m) denote the distribution of signatures returned to the
final stage of the adversary in game G0 on message m assuming event ¬E
happens, and S1(m) the distribution in game G1, we see that S0(m) is
identically distributed to S1(m). This is because in G0 we randomize a
specific CL signature, whereas in G1 we produce a new independent CL
signature. It is easy to see that these two operations have the same effect
on the distribution of the final signature passed to the final stage of the
adversary. If we let Pr[Gi] denote the probability of the adversary winning
in game Gi, we have Pr[G0|¬E] = Pr[G1].

We now show that an adversary playing G1, must have zero advantage.
To see this note that the value Co returned by RequestBS is a Pedersen
commitment to the value m, hence an adversary in game G1 can be turned
into an adversary against the hiding property of Pedersen commitments.
That we have Pr[G1] = Pr[ExpHidingPedersen,C(λ)] follows immediately; we simply
translate the (m0,m1) output by the first stage of adversary A in game



Game G0:

– z ← Fp, Z ← [z]P1.
– x, y ← Fp, (X,Y )← ([x]P2, [y]P2).
– (m0,m1, Stfind)← A(find, (X,Y ), (x, y), Z).
– b← {0, 1}.
– r0, r1 ← Fp \ {0}.
– Cob ← [m0]P1 + [r0]Z.
– Co1−b ← [m1]P1 + [r1]Z.
– (β0, β1, Stissue)← A(issue,Co0,Co1, Stfind).
– Parse β0 as (Ab, Bb, Cb, Db).
– Parse β1 as (A1−b, B1−b, C1−b, D1−b).
– C0 ← C0 − [r0]D0, C1 ← C1 − [r1]D1.
– t0, t1 ← Fp \ {0}.
– σ0 ← ([t0]A0, [t0]B0, [t0]C0).
– σ1 ← ([t1]A1, [t1]B1, [t1]C1).
– If either VerifyBS(m0, σb, pkBS) = 0

or VerifyBS(m1, σ1−b, pkBS) = 0
• σ0 ←⊥ and σ1 ←⊥.

– b∗ ← A(guess, σ0, σ1, Stissue).
– Return 1 if b = b∗ else return 0.

Game G1:

– z ← Fp, Z ← [z]P1.
– x, y ← Fp, (X,Y )← ([x]P2, [y]P2).
– (m0,m1, Stfind)← A(find, (X,Y ), (x, y), Z).
– b← {0, 1}.
– r0, r1 ← Fp \ {0}.
– Cob ← [m0]P1 + [r0]Z.
– Co1−b ← [m1]P1 + [r1]Z.
– (β0, β1, Stissue)← A(issue,Co0,Co1, Stfind).
– a0, a1 ← Fp \ {0}.
– σ0 ← ([a0]P1, [a0·y]P1, [a0·x+a0·x·y·m0]P1).
– σ1 ← ([a1]P1, [a1·y]P1, [a1·x+a1·x·y·m1]P1).
– b∗ ← A(guess, σ0, σ1, Stissue).
– Return 1 if b = b∗ else return 0.

Fig. 4. The two games G0 and G1.

G1, into the challenge for the Pedersen hiding game; this provides the
input into the second stage of adversary A; the input to the third stage
of adversary A is then independent of the values returned by our first
game hop.

Note that the above proof holds even if the adversary can select the value
of the secret key skBS, as long as the challenger is able to extract it so as
to answer the queries for game G1.

We now turn to show that our scheme is unforgeable.

Theorem 2. If the E-LRSW assumption holds then the above blind sig-
nature scheme is unforgeable. In particular, if A is an adversary against
the unforgeability of the above blind signature scheme, then there is an
adversary B which solves the E-LRSW problem such that

AdvUnforgeBS,A (λ) = AdvE−LRSW,B(λ).

Proof. Let A denote an adversary against the unforgeability experiment
of the blind signature scheme. We shall use A to construct an algorithm
which solves the E-LRSW problem. Let (P, X, Y, Z) denote the input
to the E-LRSW problem instance. Algorithm B sets up the CRS and the



public keys for the blind signature scheme by setting CRSBS ← (P, Z,Fp\
{0}) and pkBS ← (X,Y ).

Algorithm B now calls adversary A. At some point A will make one
of q queries to its IssueBS oracle. Algorithm B responds to a query on Co
as follows: It passes the value Co to its E-LRSW oracle OEX,Y,Z so as to
obtain a tuple

(A,B,C,D) = (A, [y]A, [x+ t · x · y]A, [x · y · z]A),

where Co = [t]P1. Notice that if t = m+ r · z then (A,B,C,D) is a valid
response for the commitment to the message m. The tuple (A,B,C,D)
is now passed back to algorithm A.

Eventually, A will terminate by outputting a set of q + 1 tuples
(mi, Ai, Bi, Ci) where (Ai, Bi, Ci) is a valid CL signature on mi. By re-
turning this list to its challenger, the adversary thereby solves the E-
LRSW assumption.

Note that if we have modified the protocol such that the signer appends
a NIZK proof of correctness of its response, then the above proof can be
applied in the case where the adversary generates his own secret keys; as
long as one adds an additional game-hop to enable the extraction of the
witness underlying the NIZK proof system. This is a standard technique
so we leave it to the reader.
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A E-LRSW in the Generic Group Model

We now show that the E-LRSW assumption holds in the GGM. Whilst
not providing complete evidence that a given problem is hard, a GGM
proof can be used to gain confidence in an underlying assumption. For
more details of the GGM and its application to other problems, see [29,
23]. One could also examine the problem in terms of the semi-generic
group model of [19], however we feel this would not add anything as the
problem in GT one would reduce security to would be almost identical to
the initial input problem.

Our model used below models the groups G1,G2 and GT as generic
groups, and in addition gives the adversary access to an oracle which
simulates the pairing operation.

Theorem 3. Let A denote an adversary in the generic group model
against the E-LRSW assumption. Assume A makes qG queries to the
group operations, qP queries to the pairing and qO queries to the E-LRSW
oracle OE. If we set n = 5 + qG + 4qO + qP then the probability of the ad-
versary winning the E-LRSW game is O(n2 ·qO/p), where p is the (prime)
order of the generic group.

Proof. A GGM adversary against E-LRSW works by interacting with
the group operations, pairing and OE oracles via group handles. We first
present how the adversary uses these handles to provide access to these
operations. Different authors use slightly different notions as to how this



is done, but all are essentially equivalent. The challenger keeps three lists
G1,G2,GT of pairs (σ, P ) where σ is a “random” encoding of the group el-
ement chosen from some set S with #S > 3 ·p, and P is some polynomial
in Fp[X,Y, Z,A1, . . . , AqO ]. We take the simplified GGM model in which
adversaries are unable to generate completely random elements indepen-
dently, i.e. new elements can only be produced using the algorithms below.
This is purely for exposition, one can modify our following argument to
cope with this additional ability, but at the expense of introducing an
increase in the number of indeterminants.

To each list we associate an Update operation, that takes as input the
specific list G, and a polynomial P . The function Update(G, P ) searches
the list for a pair whose second component is equal to P , if it finds one
then it returns the first component as a result. Otherwise a new element σ
is pulled from S, distinct from all other elements in S used so far, and the
pair (σ,P) is added to the list. The value σ is then returned. The values
σ are the handles used by the adversary to represent the group elements;
note the adversary at no point gets access to the second element in the
pairs.

The lists are first initialized by executing the following five operations:

Update(G1, 1), Update(G1, Z),
Update(G2, 1), Update(G2, X), Update(G2, Y ).

The adversary now interacts with these lists via the following operations.
Group Operations: The adversary has access to three oraclesO1,O2,OT
which allow him access to the group operations, via a subtraction opera-
tion. On a call to Oi(σ1, σ2) the challenger searches list Gi for pairs of the
form (σ1, P1) and (σ2, P2). If two such pairs do not exist then the chal-
lenger returns ⊥. Otherwise, the challenger returns to the adversary the
output of Update(Gi, P1−P2). Given a subtraction operation we can define
the identity OGi of the group via Oi(σ, σ), negation −σ via Oi(OGi , σ),
and hence addition via Oi(σ1,−σ2).
Pairing Operation: The adversary has access to an oracle OP . When
called with OP (σ1, σ2) the challenger searches the list G1 for a pair of the
form (σ1, P1), and the list G2 for a pair of the form (σ2, P2). Again, if no
such pairs are found to exist then the challenger returns ⊥. Otherwise,
the challenger returns to the adversary the output of Update(GT , P1 ·P2).
E-LRSW Oracle: The adversary may make up to qO queries of the
oracle OE(σ). We let i denote the ith such query. Upon receiving such a
request, the challenger searches the G1 list for a pair (σ, P ). If no such pair



exists then the challenger returns ⊥. Otherwise, the challenger executes
the operations, where Ai, X, Y and Z are the indeterminants introduced
above,

σA ← Update(G1, Ai), σB ← Update(G1, Ai · Y ),
σC ← Update(G1, Ai ·X · (1 + Y · P )), σD ← Update(G1, Ai ·X · Y · Z).

Returning the tuple (σA, σB, σC , σD) to the adversary.

Using these oracles we can simulate the entire run of the adversary in
the GGM, i.e. the adversary may make no decision which depends on the
particular encoding of group elements used. Notice after executing these
operations the total number of non-constant polynomials contained in the
three lists G1,G2 and GT is bounded from above by m = 5+qG+4qO+qP .

We wish to show that the probability of such an adversary being
successful is negligibly small. Thus, assume the adversary is successful in
solving the E-LRSW problem. It will therefore eventually output a set of
qO + 1 tuples {

mi, σ
(i)
A , σ

(i)
B , σ

(i)
C

}qO+1

i=1

where mi ∈ Fp \ {0} are distinct and σ
(i)
A , σ

(i)
B , σ

(i)
C are handles on group

elements in G1. We let P (i)
A , P

(i)
B , P

(i)
C denote the associated polynomials

related to these handles in the list G1.
As the output is supposed to correspond to a solution to the E-LRSW

problem, these output polynomials can be assumed to satisfy, for some as-
signment (x, y, z, a1, . . . , aqO) ∈ F3+qO

p to the variables (X,Y, Z,A1, . . . , AqO),
the two equations

(Y · P (i)
A − P

(i)
B )(x, y, z, a1, . . . , aqO) = 0,

(X · P (i)
A +X ·mi · P (i)

B − P
(i)
C )(x, y, z, a1, . . . , aqO) = 0.

From this we wish to derive a contradiction, i.e. conclude that the adver-
sary cannot solve the E-LRSW assumption in the GGM.

Typically, a proof in the GGM proceeds by showing that the prob-
ability of an assignment to the variables resulting in either the output
equations being satisfied, or two polynomials on the lists being equal at
this assignment, is negligible. In most proofs it is obvious that the output
polynomials do not result in the checking equations which are identically
zero, however in our situation this is not obvious. In other words, it is not
obvious that we do not have, for all i, that

Y · P (i)
A − P

(i)
B ≡ X · P

(i)
A +X ·mi · P (i)

B − P
(i)
C ≡ 0.



Thus, we divide the proof into demonstrating three properties:

– Firstly, that the above set of equations is not identically zero. If this
holds then we will be able to apply the standard Schwartz-Zippel
lemma [28].

– Secondly, that the adversary does not learn, for a specific assignment
to the variables, that it is not interacting with genuine group oracles.
In other words, we apply the Schwartz-Zippel lemma to pairs of the
resulting equations in the adversary’s lists.

– Thirdly, that the chance of a specific assignment to the variables, sat-
isfying the above set of (non-trivial) equalities is negligible. In this
case, we apply the Schwartz-Zippel lemma to the output set of equa-
tions, having already determined by the first step that they are not
identically zero.

Before examining these properties, we notice that the degree of the poly-
nomials in G1,G2 and GT can only be raised by application of the OP and
OE oracles. Indeed, if qO is the total number of queries to OE made by
the adversary, then the total degree of all polynomials is bounded from
above by dmax = 9 · qO + 1.

Property One: The first of these properties is often not addressed in
GGM proofs since it is usually obvious that the required equation cannot
hold for all assignments; consider, for example, the proof of difficulty
of CDH in the GGM the output equation is a quadratic equation yet
only linear operations on linear equations are allowed. Our situation is
different, the oracle OE allows us to obtain solutions which hold for all
assignments.

We first observe that if we are trying to construct polynomials P (i)
A

such that P (i)
B = Y ·P (i)

A , for polynomials P (i)
A , P

(i)
B in G1, then neither P (i)

A

nor P (i)
B can involve any terms in X. This fact follows from the nature

of the oracle queries available to the adversary. To see this we proceed
by induction, assume no such polynomial P (i)

A exists which has positive
degree in X at the point where A makes its jth query to the OE oracle.
Clearly, this property holds when j = 0, so assume the property holds
when at an arbitrary j. At the point of making the (j + 1)-th query, the
adversary has been able to produce linear combinations of the polyomials
available before the jth query, and those obtained from the jth query.
This is because only the OE oracle allows the adversary to produce non-
linear operations on polynomials in the G1 list. But it is clear that the
jth query (followed by linear operations) cannot result in two polynomial



with degX(P (i)
A ) ≥ 1 and P

(i)
B = Y · P (i)

A . Similarly we can conclude that
degZ(P (i)

A ) = 0.
From this, we conclude that we must have

P
(i)
A =

q∑
j=1

ri,j ·Aj and P
(i)
B =

q∑
j=1

ri,j · Y ·Aj ,

for some integer values ri,j . From which it follows that

P
(i)
C =

q∑
j=1

ri,j ·Aj ·X · (1 +mi · Y ) . (1)

But the only way to produce a polynomial P (i)
C in the list G1, using our

provided operations, which is divisible by a single power of X, would be
to add together multiples of the polynomials associated with the σC and
σD values output by the OE oracle. In addition, the queries to this oracle
would have been associated to polynomials of the form fj+gj ·Z, otherwise
they could not then be used in constructing the output signatures. This
means we have values si,j , ti,j , fj , gj ∈ Zp such that

P
(i)
C =

q∑
j=1

(si,j ·Aj ·X · (1 + fj · Y + gj · Y · Z) + ti,j ·Aj ·X · Y · Z) .

(2)
Equating coefficients in equations (1) and (2) we find that we must have

ri,j = si,j , ri,j ·mi = si,j · fj , and 0 = si,j · gj + ti,j ,

for all values 1 ≤ i ≤ qO + 1 and 1 ≤ j ≤ qO. If, for any specific value
of i, we have si,j = 0 for all values of j, then the ith output signature is
of the form (A,B,C) where A = 0, which is disallowed. Hence, we must
have, for each i, an index ji such that si,ji 6= 0. But this implies, by the
above equations, that mi = fji , which itself implies that we must have
two values i0 and i1 such that mi0 = mi1 . This contradicts the fact that
all the messages should be distinct.

We conclude that the output of the adversary cannot correspond to
a set of polynomial equations which hold for all possible variable assign-
ments. Thus, the adversary must win, or tell it is in a simulation, via a
specific assignment to the variables.
Property Two: If the adversary learned it was interacting in a simu-
lated game, there would exist two different polynomials P1 and P2 on one



of the lists such that P1 = P2 for a specific assignment of values to the
variables. We note, that P1 cannot equal P2 identically by construction of
the oracles. Since deg(P1), deg(P2) ≤ dmax we find that the probability of
an assignment being such that P1 = P2 is bounded by dmax/p [29][Lemma
1]. Thus, the probability that this happens is bounded by O(n2 · dmax/p),
since the size of the lists are bounded by n.
Property Three: In a similar way, we need to bound the probability
of the adversary outputing a set of elements, whose associated polyno-
mials satisfy the required equations, for a specific assignment of values
to the variables. We have that the total degree of the set of equations is
bounded by 9qO + 2 = dmax + 1, and we have 2 · (qO + 1) such equations
to satisfy. Thus, the probability of Property Three holding is bounded by
O((qO/p)qO), i.e. vanishingly small.

In conclusion, the probability that an adversary breaks the E-LRSW
assumption in the GGM is bounded by O(n2 · qO/p).


