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Abstract. In this paper, we present a new algorithm, such that, for the
small integer solution (SIS) problem, if the solution is bounded ( by an
integer β in l∞ norm, which we call a bounded SIS (BSIS) problem, and
if the difference between the row dimension n and the column dimension
m of the corresponding matrix is relatively small with respect the row
dimension m, we can solve it easily with a complexity of polynomial in
m.
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1 Introduction

The Learning with Errors (LWE) problem, introduced by Regev in 2005 [5],
has attracted a lot of attentions in theory and applications due to its usage
in cryptographic constructions with some good provable secure properties. The
main claim is that it is hard as worst-case lattice problems and hence the related
cryptographic constructions.

In the first paper of this series[4], we present a new algorithm to solve a
subclass of the LWE problems, which, we call, the learning with bounded errors
(LWBE) problems, namely the errors from the queries do not span the whole
finite field but a fixed known subset of size D (D < q). We show that we can
solved this problem with a polynomial complexity.

In this paper, we will deal with a closely related problem, which is the SIS
problem, which was formulated by Ajtai.

SIS problem can be described as follows.

Let q be a prime number and A ∈ Zn×m
q , where A is chosen from a distribu-

tion negligibly close to uniform over Zn×m
q .

Λ⊥q (A) = {x ∈ Zm : Ax ≡ 0 ∈ Zn (mod q)} is an m-dimensional lattice.
The SIS problem is to find a vector v ∈ Λ⊥q (A) with ‖v‖p ≤ β.

Here, there are 5 key parameters n, m and q, p and β

We would remark here that our algorithm also works in the case the solution
are not small integers but integers in a fixed small subset of size like β.



Clearly here we exclude the case q = 2, just like our previous paper for the
case of LWE problem[4].

On the theory side, there are many arguments that the SIS problem is very
hard due to the connection of SIS problems with the worst-case lattice problems
such as SIVP (the shortest independent vectors problem).

In this paper, we present a new algorithm to solve a subclass of the SIS
problems, which, we call, the bounded SIS (BSIS) problems, namely

β = ∞,

where the small integer component of (x) are all bounded by the integer β, and
if

m > or ≈ Q(m− n, D),

where
D = 2β + 1,

Q(y) =
(

D

y + D

)
=

(y + D)!
D!(y − 1)!

.

Here Q(y) is the number of monomial ( including 1) in the polynomial ring
Fq[x1, ..., xy] when D is less than q. Therefore the number of monomials (exclud-
ing 1) is exactly Q(y)− 1.

We show that we can solved this problem with polynomial complexity in
O(m3).

The main motivation to consider this problem comes from the consideration
that often in the lattice related problems, the short vector ( or the ’error’) are
often select mainly from the small set {1,−1} like in NTRU, SWIFT and other
type of systems.

This paper is organized as follows. Section 2 presents the algorithm and
explains how it works with an example. Section 3 presents the basic analysis of
the algorithm and the complexity. The last section is devoted to conclusion and
discussions.

2 The new algorithm

Let us first define BSIS problem.

2.1 The BSIS

BSIS problem is given as follows.

There are 3 parameter n, m, a prime modulus q, and a fixed positive integer
β.



The BSIS problem is to find a vector v ∈ Λ⊥q (A) with ‖v‖∞ ≤ β, where A
∈ Zn×m

q , is chosen from a distribution negligibly close to uniform over Zn×m
q ,

and
Λ⊥q (A) = {x ∈ Zm : Ax ≡ 0 ∈ Zn (mod q)}

, which can be view as an (m-n)-dimensional lattice.

Here, let us add our first assumption, that the matrix A is row independent,
if not, we can always to a Gaussian to make the rows linearly independent.

From now on, let us assume that n < m.
Also for the simplicity, the problem we will look into is a subclass of the BSIS

problems, namely we require that n−m is relatively small which is defined as:

m > or ≈ Q(m− n, D).

Tn the case D = 2, this means that

m− n ≈ 2
√

m;

and in the case of D = 3,
m− n ≈ 6 3

√
m.

2.2 The new algorithm

Clearly the vector v is a short solution to the equation:

A(x) = 0.

where

x =


x1

x2

·
·
·

xn

 .

Since we know that v is bounded in the l∞ norm β. Then we immediately have
that

j=β∏
j=−β

(xi − j) = 0.

This is a set of m degree D equations with m
Then we also have a set of linear equations

AX = 0,

which is a set of linear equations.
For the set of linear equations, we can perform Gaussian elimination, and

then we substitute these equations into the set of m degree D equations.
Then we have a set of m degree D equations with only now m−n variables.



1. If m ≈ Q(m − n, D), then we can perform a partial enlargement as in [3],
to produce a large set of more that Q(m− n, D + 1) degree less or equal to
D + 1 equations, then we can solve it the complexity is roughly O(m3+3/d).

2. If m > Q(m−n, D), then we can perform a linearization as in the case of [4],
namely we treat each monomial as an independent variable and by solving a
set of linear equations, we should be able to find the solution we are looking
for, and the complexity is roughly O(m3). If it does not work , we will do as
in the case above.

3 Analysis of the Algorithm and Complexity

One can see easily that the success of the algorithm depends on if we can solve the
linear equation, which comes from the linearization of the set of m polynomial
equations of degree D with m− n variables.

Since the entries of follows certain almost uniformly distribution, it is not
unreasonable to assume that coefficients of the matrix that those m nonlinear
equations are quite generic and whose coefficients are somewhat randomly and
uniformly in this case, it is not at all difficult to deduce that we have a very good
probability to succeed at degree D or for sure we will succeed in degree D + 1
in the linearization solving step.

In all the extensive experiments ( with relative large q and D = 3 ), we
have never failed. Therefore the conclusion is that algorithm works nearly 100
percent.

Now let us look at the complexity. It is clear that the matrix size of the
linearization step is either m, if we solve at degree D or the size of roughly
m × D

√
m, if we solve at degree D + 1. Then the complexity should be either

O(m3) or O(m3+3/d).
therefore the complexity is for sure polynomial in m.
On the other hand, surely the biggest memory requirement is to store the

matrix associate with linearization, which is of the size roughly

O(m2)).

Then one may ask about the case when m−n is large, for example, in the case
of NTRU, where the associated SIS problem is the case m = 2n. In such a case,
we can use some of the polynomial solving algorithms such as Groebner basis or
MXL algorithms [3], the complexity is surely expected to be much higher and
we do not expect to solve such a problem easily using directly our algorithm.
The details will be discussed further a subsequent paper.

Another remark we have is that our algorithm is designed to solve a subclass
of the SIS problem, but we can easily transform it into an algorithm a short
vector problem, where the short vector is bounded by a l∞ norm of size β, the
conclusion, we can draw here that does not really depend on the distribution of
the errors on the error set. Similarly we can draw here is that if the dimension of
the lattice is relative small compared with the total dimension of the space and
it is l∞ bounded, then this is an easy problem just like the problem we solve in
this paper, since they are equivalent.



4 Conclusion

We present a new algorithm to solve a subclass of the small integer solution
(SIS) problem, if the solution is bounded ( by an integer β in l∞ norm, which
we call a bounded SIS (BSIS) problem, and and if the difference between the row
dimension and the column dimension of the corresponding matrix is relatively
small with respect the row dimension, the complexity is polynomial. in m, th
dimension of the solution vector.

This algorithm, we believe, present a new direction to look at the security of
the cryptographic algorithms that are related to the SIS problem, in particular
the NTRU cryptosystems and the SWIFT family of algorithms. We hope that
we can develop new attack tools along this line.
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