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Abstract. Hummingbird is a novel ultra-lightweight cryptographic algorithm 
aiming at resource-constrained devices. In this work, an enhanced hardware 
implementation of the Hummingbird cryptographic algorithm for low-cost 
Spartan-3 FPGA family is described. The enhancement is due to the 

introduction of the coprocessor approach. Note that all Virtex and Spartan 
FPGAs consist of many embedded memory blocks and this work explores the 
use of these functional blocks. The intrinsic serialism of the algorithm is 
exploited so that each step performs just one operation on the data. We compare 
our performance results with other reported FPGA implementations of the 
lightweight cryptographic algorithms. As far as author’s knowledge, this work 
presents the smallest and the most efficient FPGA implementation of the 
Hummingbird cryptographic algorithm.  

Keywords: Lightweight cryptography, FPGA implementation, coprocessor 
approach. 

1   Introduction 

Low-cost smart devices like RFID tags and smart cards are rapidly becoming 

pervasive in our daily life. Well known applications include electronic passports, 

contactless payments, product tracking, access control and supply-chain management 

just to name a few. But the small programmable chips that passively respond to every 

reader have raised concerns among researchers about privacy and security breaches. 

A considerable body of research has been focused on providing RFID tags with 
cryptographic functionality, while scarce computational and storage capabilities of 

low-cost RFID tags make the problem challenging [1]. This emerging research area is 

usually referred to as lightweight cryptography which has to deal with the trade-off 

among security, cost, and performance [5].  

Recently, a novel ultra-lightweight cryptographic algorithm, referred to as 

Hummingbird, is proposed for resource-constrained devices [2,3,6]. The design of the 

Hummingbird cryptographic algorithm is motivated by the well-known Enigma 

machine taking into account both security and efficiency. Hummingbird has a hybrid 

structure of block cipher and stream cipher and it has been shown to be resistant to the 

most common attacks to block ciphers and stream ciphers including birthday attack, 

differential and linear cryptanalysis, algebraic attacks, etc. [2,3,6].  



The paper is outlined as follows: In Section 2, the Hummingbird encryption 

process is presented. In Section 3, the coprocessor approach to FPGA implementation 

of the Hummingbird cryptographic algorithm is introduced. Performance results and 

comparisons are given in Section 4. Finally, some conclusions are drawn in Section 5. 

2   The Hummingbird Encryption 

In this section, we present the encryption process for the Hummingbird cryptographic 

algorithm. Note that the information given in this section can be found in [2,3,6], they 

are included here simply for the sake of completeness.  

Hummingbird is neither a block cipher nor a stream cipher, but a rotor machine 

equipped with novel rotor-stepping rules [6]. It has a hybrid structure of block cipher 

and stream cipher with 16-bit block size, 256-bit key size, and 80-bit internal state. A 
top-level description of the Hummingbird encryption is given in Figure 1 which 

consists of four 16-bit block ciphers     
   

    
and    

four 16-bit internal state 

registers RS1, RS2, RS3 and RS4, and a 16-stage Linear Feedback Shift Register 

(LFSR). PTi represents the i-th plaintext block and CTi represents the corresponding i-
the ciphertext block. The 256-bit key K is divided into four 64-bit subkeys 

        and    which are used in the four block ciphers, respectively. For further 

details, see [2,3,6]. 

 
Figure 1. Hummingbird encryption [2] 



3   Efficient FPGA Implementation 

We use the coprocessor approach which takes advantage of the embedded memory 
blocks in FPGA to implement Hummingbird cryptographic algorithm. This approach 

reduces the area requirements in terms of slices since only the datapath and linear 

feedback shift register (LFSR) module are realized in slices. With this approach, 

efficiency (throughput/occupied slices) of the FPGA implementation of the 

Hummingbird cryptographic algorithm is increased considerably with respect to the 

previously reported FPGA implementations [6] of the algorithm, see Table 1. 

3.1   FPGA Specifics  

The Spartan-3 generation of FPGAs are specifically designed to meet the needs of 

high volume, cost-sensitive electronic applications [13]. They have a dedicated carry 

logic together with various arithmetic logic gates that support wide logic and 

arithmetic functions. 
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Figure 2. Simplified architecture of a Spartan-3 slice. 



 

Figure 2 shows the architecture of a Spartan-3 slice [11]. A slice includes two 4-

input Lookup Table (LUT) function generators (F-LUT and G-LUT), two storage 

elements (flip flops FFX and FFY), a carry logic (multiplexers CYSELF, CYMUXF, 

CYSELG, CYMUXG and gates FAND, GAND, XORF, and XORG) and two wide 

function multiplexers (F5MUX and FiMUX). Some slices also provide two 16x1 

distributed RAM and two 16-bit shift registers as an additional blocks. 

One of the primitives needed in the implementation of Hummingbird cryptographic 

algorithm is a modulo     addition of two 16-bit numbers. A 2-bit summation can be 

realized using one slice. Hence, 16-bit addition is implemented using eight slices. A 
2-bit full-adder calculates the sum of two bits x and y on the same level and carry 

input (cin), if any transferred from a previous bit level, yielding             

and carry out. 

         
                  
                       

   

A dedicated carry logic transfers the carry bit through CYSELF, CY0F and 

CYMUXF multiplexers. F-LUT function generator produces    . The output of F-

LUT and cin bit is XORed by the XORF gate. This provides the sum. The sum result 

is then stored in FFX flip flop. Carry out bit is produced by CYMUXF multiplexer 

where x and cin are the inputs and the F-LUT output is used as a selection line.  

Figure 3 shows a 1-bit addition of three different input sources using primitives of 

a Spartan-3 slice. Here, one of the sources is connected to the carry chain logic 

immediately. The other one is selected using the control signal in the LUT function 

generator. The LUT provides the result of XOR operation of two input signals     

or a    depending on the control signal. Carry out bit is transferred to upper slices 
so that to extend the 1-bit addition to 16-bit addition. The flip-flops store the sum 

value. 
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Figure 3. Three input adder architecture in one slice. 



 

Other primitives needed in the implementation of Hummingbird cryptographic 

algorithm are realized in LUT function generators. There is no need to use arithmetic 

gates or carry chain logic provided in a slice. As mentioned before, one slice includes 

two LUTs and two storage elements and all stages operate on 16-bit data since the 

datapath is 16-bit wide. So, the required slice count for each stage is eight. 

We emphasize the fact that all Virtex and Spartan FPGAs consist of many 

embedded memory blocks to store large amount of data compared to flip flops in the 
slices. They support various configuration options including RAM, ROM, FIFOs, 

large look-up tables, and shift registers as wells as various data widths and depths. We 

refer the reader [14] for further information. This work explores the use of these 

functional blocks, that is to say the coprocessor approach [4]. Specifically, the register 

file and instruction memory of coprocessor is implemented on such memory blocks 

yielding substantial reduction in the slice usage.  

3.2   Overall Architecture  

The overall architecture of the Hummingbird coprocessor is shown in Figure 4 which 

consists of a register file, datapath, LFSR module, instruction memory and control 

unit. 
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Figure 4. Hummingbird coprocessor. 

 

Hummingbird coprocessor performs a modulo     addition, XOR, and S-box layer 
operations required by the algorithm. It accelerates the main system performance by 

offloading processor intensive tasks. Essential operations are done by the coprocessor 
rather than implemented on a regular processor. This positively impacts the 



efficiency. Instructions are first preloaded to the instruction memory. They are then 

fetched to control the datapath. 

3.3   Register File, Instruction Memory, and Control Unit 

The register file stores 16-bit plaintext, 256-bit secret key, four 16-bit internal state 

registers RS1, RS2, RS3 and RS4, and other necessary registers such as zero and 

temporary registers. The internal states and initial vector for LFSR are first 

determined by the initialization process. They are then updated after each encryption. 

Note that the same key is usually used for successive encryption of plaintext blocks. 

Thus, the coprocessor only needs to load plaintext blocks from input to the register 

file. This results in a very efficient input interface for the coprocessor. 

The instruction memory provides necessary control signals for the datapath. It also 

determines which register is used at each step. Write enable field for port B, web, is 

used to write the data to the register file from the datapath. The instruction memory is 

realized via an embedded memory block. Figure 5 shows the adapted instruction 
format. Since all instructions have the same format, 16-bit fixed instructions are 

fetched without the need for decoding. A single 1Kx18 block RAM would be 

sufficient to store necessary instructions for initialization and processes. 
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Figure 5. Instruction format  

 

The control unit is actually formed by a program counter. When init signal is 

asserted, the program counter addresses the instruction memory so that the 

instructions for the initialization process are provided to the datapath. Similarly, if 

start signal is asserted, the program counter addresses the encryption process 

instructions. After the completion of the encryption, the ready signal is set; hence, the 

user can access the ciphertext from the register file via user interface. 

3.4   Datapath of the Coprocessor 

The goal is to serialize the Hummingbird cryptographic algorithm in the datapath. 

Figure 6 illustrates the proposed datapath for the coprocessor. The overall system is 

divided into four specific sections, namely stages. Each stage completes a small 



transaction on the data. Intrinsic properties of the Spartan-3 device are utilized to 

complete a transaction with a minimal path delay. 

The datapath consists of four functional units performing operations required by 

the Hummingbird cryptographic algorithm. These functional units are realized in four 

stages and the stages are connected via pipeline flip-flops. Each stage fits into eight 

slices. All stages except Stage 2 need control signals to determine the data flow path. 

The longest path in terms of logic and routing delay occurs in the addition of two 16-

bit numbers due to the carry chain. Note that this is an unavoidable operation. To 
decrease the path delay in one stage, we minimize the use of consecutive logic 

components by introducing flip flops as pipeline registers. 
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Figure 6. Datapath of the Coprocessor for Hummingbird. 

 

Stage 0 performs a modulo 
162  addition on data provided by the register file or 

LFSR. The output of this stage feeds the Stage 1 together with the output of the last 
stage. In Stage 1, control signal selects either one of the sources from the previous 

stage or from the linear transformation step, Stage 3.  Resulting data is XORed with 

the port A of the register file.  Stage 2 performs the substitution step on the 16-bit data 

coming from the previous stage. All four 4-bit S-boxes are realized in LUT function 

generators. The 16-bit data is passed through from these LUT primitives. The last 



stage, Stage 3, performs the linear transformation on the incoming data. At this stage, 

the control signal is necessary to select whether the linear transformation is applied to 

the output of the substitution step in Stage 2. Note that the rotation of bits at the last 

stage does not need any component. This can be done only with appropriate wiring. 

3.5   Scheduling of Instructions 

Instruction level serialism is applied to the Hummingbird coprocessor in order to 

complete the encryption process with a minimum instruction count. Figure 7 shows 

the designed instruction scheduling of the encryption process where first row 

indicates the instruction number and the other rows indicates the active stage.  
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Figure 7. Instruction scheduling. 



Generally, each instruction performs an operation on the data. However, a small 

amount of instructions do not perform any operation on the data. They rather provide 

necessary data to the next stage. This is the case when loading the internal state from 

the register file. Loading from the register file impairs the performance of the overall 

system. Such instructions cause performance degradation since additional instructions 

are to be stored in the memory. 

Our proposed datapath decreases the instruction count for the Hummingbird 

encryption in two ways. One is to manage the sequence of instructions so that every 
stage deals with an operation. The other one is to update the internal registers while 

other operations are being performed. Internal state updating is done via pipelined 

operation: appropriate instructions are selected to load the input data for the internal 

state registers without affecting the performed instruction at that time. Such pipelined 

instructions are colored with blue in Figure 7. 

In general, each instruction activates only one stage performing one operation. 

However, a few instructions process two operations at a time. This happens when 

updating the internal states. Note that state updating can be done after the encryption 

process is completed.  But, this would increase the total instruction count. Such 

operations can be combined with the other instructions. The use of inactive stages 

improves the overall system performance by reducing the instruction count. 

The similar approach is used in the Hummingbird initialization process. We remark 
that the initialization takes 312 clock cycles where the encryption takes 75 clock 

cycles which includes the state updates. 

4   Results and Comparisons 

We implemented the Hummingbird coprocessor on Xilinx Spartan-3 device which is 

low cost FPGA by means of VHDL language. The hardware performance of the 

Hummingbird cryptographic algorithm is studied in [6] where the lightweight 

architecture is based on loop unrolling of the inner 16-bit block ciphers. That 

implementation realizes all operations of the block cipher in one cycle consuming 

resources notably. On the other hand, the proposed method in this work significantly 

reduces (273/40) the area in terms of the slice count by introducing coprocessor 

approach. Table 1 summarizes  FPGA implementation results  of the Hummingbird 

cryptographic algorithm in both studies.  

 

Table 1. FPGA implementation results of the Hummingbird encryption. 
 

 

#LUTs #FFs 
Area 

(Slices) 

Memory 

Blocks 

Max. Freq. 

(MHz) 

# CLK cycles Throughput 

(Mbps) 

Efficiency 

(Mbps/#Slices) 
Init Enc 

This Work 80 80 40 2 260.8 312 75 55 1,38 

Fan et al. [6] 
473 120 273 0 40.1 20 4 160,4 0,59 

 

 



Our proposed method requires lower area in terms of slices. Even though the 

throughput may seem lower than that of in [6], the overall efficiency is increased 

substantially (1.38/0.59).  

Table 2 is given in order to see where our proposed method stands among other 

FPGA implementations of lightweight cryptographic algorithms. As seen from the 

table, our work has the smallest area requirement among all and also provides well 

enough efficiency. 

 
Table 2. Performance comparison of FPGA implementations of lightweight 

cryptographic algorithms 

 

 
Algorithm 

Key 

Size 

Block 

Size 
FPGA 

Area 

(Slices) 

Memory  

Blocks 

Frequncy  

(MHz) 

Throughput 

(Mbps) 

Efficiency 

(Mbps/ 

#Slices) 

This Work Hummingbird 256 16 Spartan-3 XC3S200-5 40 2 260.8 55.64 1.38 

Fan et al.[6] Hummingbird 256 16 Spartan-3 XC3S200-5 273 0 40.1 160.4 0.59 

Poschmann [7] 

PRESENT 80 64 

Spartan-3 XC3S400-5 

176 0 258 516 2.93 

PRESENT 128 64 202 0 254 508 2.51 

Guo et al.[8] PRESENT 80 64 Spartan-3E XC3S500 271 − − − − 

Kaps [9] XTEA 128 64 Spartan-3 XC3S50-5 254 0 62.6 36 0.14 

Bulens et al. [10] AES 128 128 Spartan-3 1800 0 150 1700 0.9 

Yalla et al. [11] 

PRESENT 128 64 Spartan-3 XC3S50-5 117 0 113.8 28.46 0.24 

HIGHT 128 64 Spartan-3 XC3S50-5 91 0 163.7 65.48 0.72 

Mace et al. [12] SEA 126 126 Virtex II XC2V4000 424 0 145 156 0.368 

5   Conclusions 

As far as author’s knowledge, this work presents the smallest and the most efficient 

FPGA implementation of the ultra-lightweight cryptographic algorithm Hummingbird 

thanks to the coprocessor approach. The coprocessor approach is enabled due to the 

fact that FPGAs have dedicated memory blocks. The algorithm is serialized so that 

each step performs just one operation on the data. The datapath of the Hummingbird 

coprocessor is implemented in four stages and the instruction count is reduced via 
pipelining technique.   

With the hardware implementation improvement provided by this work, the 

Hummingbird will continue to be a favorite among the lightweight cryptographic 

algorithms for resource constrained devices like RFID tags and smart cards. 
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