
Enhanced FPGA Implementation of the Hummingbird

Cryptographic Algorithm

İsmail San1 and Nuray At1

1 Department of Electrical and Electronics Engineering, Anadolu University, Turkey

{isan, nat}@anadolu.edu.tr

Abstract. Hummingbird is a novel ultra-lightweight cryptographic algorithm
aiming at resource-constrained devices. In this work, an enhanced hardware
implementation of the Hummingbird cryptographic algorithm for low-cost
Spartan-3 FPGA family is described. The enhancement is due to the

introduction of the coprocessor approach. Note that all Virtex and Spartan
FPGAs consist of many embedded memory blocks and this work explores the
use of these functional blocks. The intrinsic serialism of the algorithm is
exploited so that each step performs just one operation on the data. We compare
our performance results with other reported FPGA implementations of the
lightweight cryptographic algorithms. As far as author’s knowledge, this work
presents the smallest and the most efficient FPGA implementation of the
Hummingbird cryptographic algorithm.

Keywords: Lightweight cryptography, FPGA implementation, coprocessor
approach.

1 Introduction

Low-cost smart devices like RFID tags and smart cards are rapidly becoming

pervasive in our daily life. Well known applications include electronic passports,

contactless payments, product tracking, access control and supply-chain management

just to name a few. But the small programmable chips that passively respond to every

reader have raised concerns among researchers about privacy and security breaches.

A considerable body of research has been focused on providing RFID tags with
cryptographic functionality, while scarce computational and storage capabilities of

low-cost RFID tags make the problem challenging [1]. This emerging research area is

usually referred to as lightweight cryptography which has to deal with the trade-off

among security, cost, and performance [5].

Recently, a novel ultra-lightweight cryptographic algorithm, referred to as

Hummingbird, is proposed for resource-constrained devices [2,3,6]. The design of the

Hummingbird cryptographic algorithm is motivated by the well-known Enigma

machine taking into account both security and efficiency. Hummingbird has a hybrid

structure of block cipher and stream cipher and it has been shown to be resistant to the

most common attacks to block ciphers and stream ciphers including birthday attack,

differential and linear cryptanalysis, algebraic attacks, etc. [2,3,6].

The paper is outlined as follows: In Section 2, the Hummingbird encryption

process is presented. In Section 3, the coprocessor approach to FPGA implementation

of the Hummingbird cryptographic algorithm is introduced. Performance results and

comparisons are given in Section 4. Finally, some conclusions are drawn in Section 5.

2 The Hummingbird Encryption

In this section, we present the encryption process for the Hummingbird cryptographic

algorithm. Note that the information given in this section can be found in [2,3,6], they

are included here simply for the sake of completeness.

Hummingbird is neither a block cipher nor a stream cipher, but a rotor machine

equipped with novel rotor-stepping rules [6]. It has a hybrid structure of block cipher

and stream cipher with 16-bit block size, 256-bit key size, and 80-bit internal state. A
top-level description of the Hummingbird encryption is given in Figure 1 which

consists of four 16-bit block ciphers

and

four 16-bit internal state

registers RS1, RS2, RS3 and RS4, and a 16-stage Linear Feedback Shift Register

(LFSR). PTi represents the i-th plaintext block and CTi represents the corresponding i-
the ciphertext block. The 256-bit key K is divided into four 64-bit subkeys

 and which are used in the four block ciphers, respectively. For further

details, see [2,3,6].

Figure 1. Hummingbird encryption [2]

3 Efficient FPGA Implementation

We use the coprocessor approach which takes advantage of the embedded memory
blocks in FPGA to implement Hummingbird cryptographic algorithm. This approach

reduces the area requirements in terms of slices since only the datapath and linear

feedback shift register (LFSR) module are realized in slices. With this approach,

efficiency (throughput/occupied slices) of the FPGA implementation of the

Hummingbird cryptographic algorithm is increased considerably with respect to the

previously reported FPGA implementations [6] of the algorithm, see Table 1.

3.1 FPGA Specifics

The Spartan-3 generation of FPGAs are specifically designed to meet the needs of

high volume, cost-sensitive electronic applications [13]. They have a dedicated carry

logic together with various arithmetic logic gates that support wide logic and

arithmetic functions.

4

F-LUT

A[4:1] DF[4:1]

F1 F2

FAND
0
1

CY0F

0 1
1

CYSELF
CYMUXF

XORF

F5MUX

FXMUX

FFX

D Q XQ

BX

CIN

X

F5

BXOUT
Bottom Portion

4

G-LUT

A[4:1] DF[4:1]

G1 G2

GAND
0
1

CY0G

0 1
1

CYSELG
CYMUXG

XORG

FiMUX

GYMUX

FFY

D Q YQ

BY

Y

Fi

BYOUT
Top Portion

FXINB

FXINA

COUT

Figure 2. Simplified architecture of a Spartan-3 slice.

Figure 2 shows the architecture of a Spartan-3 slice [11]. A slice includes two 4-

input Lookup Table (LUT) function generators (F-LUT and G-LUT), two storage

elements (flip flops FFX and FFY), a carry logic (multiplexers CYSELF, CYMUXF,

CYSELG, CYMUXG and gates FAND, GAND, XORF, and XORG) and two wide

function multiplexers (F5MUX and FiMUX). Some slices also provide two 16x1

distributed RAM and two 16-bit shift registers as an additional blocks.

One of the primitives needed in the implementation of Hummingbird cryptographic

algorithm is a modulo addition of two 16-bit numbers. A 2-bit summation can be

realized using one slice. Hence, 16-bit addition is implemented using eight slices. A
2-bit full-adder calculates the sum of two bits x and y on the same level and carry

input (cin), if any transferred from a previous bit level, yielding

and carry out.

A dedicated carry logic transfers the carry bit through CYSELF, CY0F and

CYMUXF multiplexers. F-LUT function generator produces . The output of F-

LUT and cin bit is XORed by the XORF gate. This provides the sum. The sum result

is then stored in FFX flip flop. Carry out bit is produced by CYMUXF multiplexer

where x and cin are the inputs and the F-LUT output is used as a selection line.

Figure 3 shows a 1-bit addition of three different input sources using primitives of

a Spartan-3 slice. Here, one of the sources is connected to the carry chain logic

immediately. The other one is selected using the control signal in the LUT function

generator. The LUT provides the result of XOR operation of two input signals

or a depending on the control signal. Carry out bit is transferred to upper slices
so that to extend the 1-bit addition to 16-bit addition. The flip-flops store the sum

value.

0 1

CYMUXF

XORF

FFX

D Q XQ

cin0

Bottom Portion

ctrl

0

1

F-LUT
cout0

a0

b0

c0

0 1

CYMUXG

XORG

FFY

D Q YQ

cin1 Top Portion

ctrl

0

1

G-LUT

cout1

a1

b1

c1

Figure 3. Three input adder architecture in one slice.

Other primitives needed in the implementation of Hummingbird cryptographic

algorithm are realized in LUT function generators. There is no need to use arithmetic

gates or carry chain logic provided in a slice. As mentioned before, one slice includes

two LUTs and two storage elements and all stages operate on 16-bit data since the

datapath is 16-bit wide. So, the required slice count for each stage is eight.

We emphasize the fact that all Virtex and Spartan FPGAs consist of many

embedded memory blocks to store large amount of data compared to flip flops in the
slices. They support various configuration options including RAM, ROM, FIFOs,

large look-up tables, and shift registers as wells as various data widths and depths. We

refer the reader [14] for further information. This work explores the use of these

functional blocks, that is to say the coprocessor approach [4]. Specifically, the register

file and instruction memory of coprocessor is implemented on such memory blocks

yielding substantial reduction in the slice usage.

3.2 Overall Architecture

The overall architecture of the Hummingbird coprocessor is shown in Figure 4 which

consists of a register file, datapath, LFSR module, instruction memory and control

unit.

Register File

P
o
rt

A

addrA

dinA

weA

P
o
rt

B

addrB

weB Datapath

LFSR

PortAPortB LFSR

Data out

Intruction

Memory

dinB

ctrl
3

16-bit

1-bit

0

1

User

Interface

8Control

Unit addr

start

init

ready

we

data in

address

select

Hummingbird Coprocessor

Figure 4. Hummingbird coprocessor.

Hummingbird coprocessor performs a modulo addition, XOR, and S-box layer
operations required by the algorithm. It accelerates the main system performance by

offloading processor intensive tasks. Essential operations are done by the coprocessor
rather than implemented on a regular processor. This positively impacts the

efficiency. Instructions are first preloaded to the instruction memory. They are then

fetched to control the datapath.

3.3 Register File, Instruction Memory, and Control Unit

The register file stores 16-bit plaintext, 256-bit secret key, four 16-bit internal state

registers RS1, RS2, RS3 and RS4, and other necessary registers such as zero and

temporary registers. The internal states and initial vector for LFSR are first

determined by the initialization process. They are then updated after each encryption.

Note that the same key is usually used for successive encryption of plaintext blocks.

Thus, the coprocessor only needs to load plaintext blocks from input to the register

file. This results in a very efficient input interface for the coprocessor.

The instruction memory provides necessary control signals for the datapath. It also

determines which register is used at each step. Write enable field for port B, web, is

used to write the data to the register file from the datapath. The instruction memory is

realized via an embedded memory block. Figure 5 shows the adapted instruction
format. Since all instructions have the same format, 16-bit fixed instructions are

fetched without the need for decoding. A single 1Kx18 block RAM would be

sufficient to store necessary instructions for initialization and processes.

Intruction

Memory

web ctrl2addra addrb ctrl0 ctrl1

1-bit 5-bit 5-bit 1-bit 1-bit 1-bit

14

8
address

instructions

Figure 5. Instruction format

The control unit is actually formed by a program counter. When init signal is

asserted, the program counter addresses the instruction memory so that the

instructions for the initialization process are provided to the datapath. Similarly, if

start signal is asserted, the program counter addresses the encryption process

instructions. After the completion of the encryption, the ready signal is set; hence, the

user can access the ciphertext from the register file via user interface.

3.4 Datapath of the Coprocessor

The goal is to serialize the Hummingbird cryptographic algorithm in the datapath.

Figure 6 illustrates the proposed datapath for the coprocessor. The overall system is

divided into four specific sections, namely stages. Each stage completes a small

transaction on the data. Intrinsic properties of the Spartan-3 device are utilized to

complete a transaction with a minimal path delay.

The datapath consists of four functional units performing operations required by

the Hummingbird cryptographic algorithm. These functional units are realized in four

stages and the stages are connected via pipeline flip-flops. Each stage fits into eight

slices. All stages except Stage 2 need control signals to determine the data flow path.

The longest path in terms of logic and routing delay occurs in the addition of two 16-

bit numbers due to the carry chain. Note that this is an unavoidable operation. To
decrease the path delay in one stage, we minimize the use of consecutive logic

components by introducing flip flops as pipeline registers.

10ctrl0

10ctrl1

S-Box

10ctrl2

<< 10<< 6

PortA PortB

Stage0

Stage1

Stage2

Stage3

LFSR

Register

File

Figure 6. Datapath of the Coprocessor for Hummingbird.

Stage 0 performs a modulo
162 addition on data provided by the register file or

LFSR. The output of this stage feeds the Stage 1 together with the output of the last
stage. In Stage 1, control signal selects either one of the sources from the previous

stage or from the linear transformation step, Stage 3. Resulting data is XORed with

the port A of the register file. Stage 2 performs the substitution step on the 16-bit data

coming from the previous stage. All four 4-bit S-boxes are realized in LUT function

generators. The 16-bit data is passed through from these LUT primitives. The last

stage, Stage 3, performs the linear transformation on the incoming data. At this stage,

the control signal is necessary to select whether the linear transformation is applied to

the output of the substitution step in Stage 2. Note that the rotation of bits at the last

stage does not need any component. This can be done only with appropriate wiring.

3.5 Scheduling of Instructions

Instruction level serialism is applied to the Hummingbird coprocessor in order to

complete the encryption process with a minimum instruction count. Figure 7 shows

the designed instruction scheduling of the encryption process where first row

indicates the instruction number and the other rows indicates the active stage.

1

PT

Instr. No :

Stage 0

Stage 1

Stage 2

Stage 3

Port A

RS1Port B

2

K1

3 4

Zero

5

K2

6 7

Zero

8

K3

9 10

Zero

11

K4

12 13

K1

14

K3

15 16

K2

17

K4

18

RS2

RS4

in

19

Zero

20

Zero

Instr. No :

Stage 0

Stage 1

Stage 2

Stage 3

Port A

RS2

in
Port B

21

K5

22 23

Zero

24

K6

25 26

Zero

27

K7

28 29

Zero

30

K8

31 32

K5

33

K7

34 35

K6

36

K8

37

RS3

T

38

Zero

39

Zero

Instr. No :

Stage 0

Stage 1

Stage 2

Stage 3

Port A

RS3

in
Port B

40

K9

41

LF

SR

RS3

in

42

Zero

43

K10

44 45

Zero

46

K11

47 48

Zero

49

K12

50 51

K9

52

K11

53 54

K10

55

K12

56

RS4

RS1

in

57

K13

58

RS1

Instr. No :

Stage 0

Stage 1

Stage 2

Stage 3

Port A

RS1

in
Port B

59

Zero

60

K14

61

RS4

RS4

in

62

Zero

63

K15

64

RS1

RS4

65

Zero

66

K16

67 68

K13

69

K15

70 71

K14

72

K16

73

RS4

RS2

in

74

Zero

75 76

New Encryption Start Point

Figure 7. Instruction scheduling.

Generally, each instruction performs an operation on the data. However, a small

amount of instructions do not perform any operation on the data. They rather provide

necessary data to the next stage. This is the case when loading the internal state from

the register file. Loading from the register file impairs the performance of the overall

system. Such instructions cause performance degradation since additional instructions

are to be stored in the memory.

Our proposed datapath decreases the instruction count for the Hummingbird

encryption in two ways. One is to manage the sequence of instructions so that every
stage deals with an operation. The other one is to update the internal registers while

other operations are being performed. Internal state updating is done via pipelined

operation: appropriate instructions are selected to load the input data for the internal

state registers without affecting the performed instruction at that time. Such pipelined

instructions are colored with blue in Figure 7.

In general, each instruction activates only one stage performing one operation.

However, a few instructions process two operations at a time. This happens when

updating the internal states. Note that state updating can be done after the encryption

process is completed. But, this would increase the total instruction count. Such

operations can be combined with the other instructions. The use of inactive stages

improves the overall system performance by reducing the instruction count.

The similar approach is used in the Hummingbird initialization process. We remark
that the initialization takes 312 clock cycles where the encryption takes 75 clock

cycles which includes the state updates.

4 Results and Comparisons

We implemented the Hummingbird coprocessor on Xilinx Spartan-3 device which is

low cost FPGA by means of VHDL language. The hardware performance of the

Hummingbird cryptographic algorithm is studied in [6] where the lightweight

architecture is based on loop unrolling of the inner 16-bit block ciphers. That

implementation realizes all operations of the block cipher in one cycle consuming

resources notably. On the other hand, the proposed method in this work significantly

reduces (273/40) the area in terms of the slice count by introducing coprocessor

approach. Table 1 summarizes FPGA implementation results of the Hummingbird

cryptographic algorithm in both studies.

Table 1. FPGA implementation results of the Hummingbird encryption.

#LUTs #FFs
Area

(Slices)

Memory

Blocks

Max. Freq.

(MHz)

CLK cycles Throughput

(Mbps)

Efficiency

(Mbps/#Slices)
Init Enc

This Work 80 80 40 2 260.8 312 75 55 1,38

Fan et al. [6]
473 120 273 0 40.1 20 4 160,4 0,59

Our proposed method requires lower area in terms of slices. Even though the

throughput may seem lower than that of in [6], the overall efficiency is increased

substantially (1.38/0.59).

Table 2 is given in order to see where our proposed method stands among other

FPGA implementations of lightweight cryptographic algorithms. As seen from the

table, our work has the smallest area requirement among all and also provides well

enough efficiency.

Table 2. Performance comparison of FPGA implementations of lightweight

cryptographic algorithms

Algorithm

Key

Size

Block

Size
FPGA

Area

(Slices)

Memory

Blocks

Frequncy

(MHz)

Throughput

(Mbps)

Efficiency

(Mbps/

#Slices)

This Work Hummingbird 256 16 Spartan-3 XC3S200-5 40 2 260.8 55.64 1.38

Fan et al.[6] Hummingbird 256 16 Spartan-3 XC3S200-5 273 0 40.1 160.4 0.59

Poschmann [7]

PRESENT 80 64

Spartan-3 XC3S400-5

176 0 258 516 2.93

PRESENT 128 64 202 0 254 508 2.51

Guo et al.[8] PRESENT 80 64 Spartan-3E XC3S500 271 − − − −

Kaps [9] XTEA 128 64 Spartan-3 XC3S50-5 254 0 62.6 36 0.14

Bulens et al. [10] AES 128 128 Spartan-3 1800 0 150 1700 0.9

Yalla et al. [11]

PRESENT 128 64 Spartan-3 XC3S50-5 117 0 113.8 28.46 0.24

HIGHT 128 64 Spartan-3 XC3S50-5 91 0 163.7 65.48 0.72

Mace et al. [12] SEA 126 126 Virtex II XC2V4000 424 0 145 156 0.368

5 Conclusions

As far as author’s knowledge, this work presents the smallest and the most efficient

FPGA implementation of the ultra-lightweight cryptographic algorithm Hummingbird

thanks to the coprocessor approach. The coprocessor approach is enabled due to the

fact that FPGAs have dedicated memory blocks. The algorithm is serialized so that

each step performs just one operation on the data. The datapath of the Hummingbird

coprocessor is implemented in four stages and the instruction count is reduced via
pipelining technique.

With the hardware implementation improvement provided by this work, the

Hummingbird will continue to be a favorite among the lightweight cryptographic

algorithms for resource constrained devices like RFID tags and smart cards.

References

1. J. Lee and Y. Yeom, “Efficient RFID authentication protocols based on pseudorandom
sequence generators”, Des. Codes Cryptogr. 51:195–210, 2009

2. X. Fan, “Efficient Cryptographic Algorithms and Protocols for Mobile Ad Hoc Networks”
Ph.D thesis, Department of Electrical and Computer Engineering, University of Waterloo,
2010.

3. D. Engels, X. Fan, G. Gong, H. Hu, and E. M. Smith, “Hummingbird: Ultra-Lightweight
Cryptography for Resource-Constrained Devices”, to appear in the proceedings of the 14th
International Conference on Financial Cryptography and Data Security - FC 2010, 2010.

4. J.-L. Beuchat, E. Okamoto, and T. Yamazaki, “Compact implementations of BLAKE-32 and
BLAKE-64 on FPGA,” 2010, cryptology ePrint Archive, Report 2010/173.

5. Thomas Eisenbarth, Sandeep Kumar, Christof Paar, Axel Poschmann and Leif Uhsadel, A
Survey of Lightweight-Cryptography Implementations, IEEE Design & Test of Computers,
vol. 24, no. 6, November 2007, pp. 522-533.

6. X. Fan, G. Gong, K. Lauffenburger, and T. Hicks, “FPGA Implementations of the
Hummingbird Cryptographic Algorithm”, IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), 2010.

7. A. Poschmann, “Lightweight Cryptography - Cryptographic Engineering for a Pervasive
World”, Ph.D. Thesis, Department of Electrical Engineering and Information Sciences,
Ruhr-Universit ̈aet Bochum, Bochum, Germany, 2009.

8. X. Guo, Z. Chen, and P. Schaumont, “Energy and Performance Evaluation of an FPGA-
Based SoC Platform with AES and PRESENT Coprocessors”, Embedded Computer

Systems: Architectures, Modeling, and Simulation - SAMOS’2008, LNCS 5114, pp. 106-
115, 2008.

9. J.-P. Kaps, “Chai-tea, cryptographic hardware implementations of xTEA,” in INDOCRYPT
2008, ser. LNCS, D. Chowdhury, V. Rijmen, and A. Das, Eds., vol. 5365. Springer, Dec
2008, pp. 363–375.

10. P. Bulens, F.-X. Standaert, J.-J. Quisquater, and P. Pellegrin, “Implementation of the AES-
128 on Virtex-5 FPGAs”, Progress in Cryptology AFRICACRYPT 2008, LNCS 5023, pp.
16-26, 2008.

11. Panasayya Yalla and Jens-Peter Kaps, “Lightweight Cryptography for FPGAs”,
International Conference on ReConFigurable Computing and FPGAs ReConFig'09, 2009.

12. Mace F, Standaert FX, Quisquater JJ (2007). FPGA implementation(s) of a Scalable
Encryption Algorithm, IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 16(2): 212-
216.

13. Xilinx Inc, Spartan-3 Generation FPGA User Guide, August, 2010. Available online at:
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf

14. Xilinx, XAPP463 Using Block RAM in Spartan-3 Generation FPGAs, March 2005.
Available at: http://www.xilinx.com/support/documentation/application_notes/xapp463.pdf

