
Group Message Authentication∗

Bartosz Przydatek Douglas Wikström
Google Switzerland KTH Stockholm

przydatek@google.com dog@csc.kth.se

November 18, 2010

Abstract

Group signatures is a powerful primitive with many practical applications, al-
lowing a group of parties to share a signature functionality, while protecting the
anonymity of the signer. However, despite intensive research in the past years,
there is still no fully satisfactory implementation of group signatures in the plain
model. The schemes proposed so far are either too inefficient to be used in practice,
or their security is based on rather strong, non-standard assumptions.

We observe that for some applications the full power of group signatures is
not necessary. For example, a group signature can be verified by any third party,
while in many applications such a universal verifiability is not needed or even not
desired. Motivated by this observation, we propose a notion of group message
authentication, which can be viewed as a relaxation of group signatures. Group
message authentication enjoys the group-oriented features of group signatures, while
dropping some of the features which are not needed in many real-life scenarios. An
example application of group message authentication is an implementation of an
anonymous credit card.

We present a generic implementation of group message authentication, and
also propose an efficient concrete implementation based on standard assumptions,
namely strong RSA and DDH.

∗Work done in part at ETH Zurich. This paper was presented at Conference on Security and Cryp-
tography for Networks 2010.

1

Contents

1 Introduction 3
1.1 Contributions . 4
1.2 Related Work . 5
1.3 Outline of Paper . 5

2 Notation 5

3 Group Message Authentication Schemes 6
3.1 Definition of Security . 7

3.1.1 Anonymity . 7
3.1.2 Traceability . 7

4 Tools 9
4.1 Bounded Signature Schemes . 9
4.2 Cryptosystems With Labels . 9
4.3 Cramer-Shoup Cryptosystems In Groups of Composite Orders 10
4.4 A Relaxed Notion of Computational Soundness 14
4.5 A Relaxed Notion of Computational Zero-Knowledge 14
4.6 Sequential Composition Lemma . 16

5 A Generic Construction 17
5.1 Details of the Construction . 17
5.2 Proof of Security (Proposition 23) . 18

5.2.1 Anonymity . 18
5.2.2 Traceability . 20

6 An Efficient Instantiation 24
6.1 A Bounded Signature Scheme . 24
6.2 A Cramer-Shoup Cryptosystem . 25
6.3 An Efficient Authentication Protocol . 26
6.4 Proof of Proposition 35 . 28
6.5 Efficiency of the Concrete Scheme . 32

7 Conclusion 33

A Proof of Proposition 31 36

B Assumptions 37
B.1 Strong RSA-Assumption . 37
B.2 Decision Diffie-Hellman Assumption . 37

C Program Used To Estimate the Complexity 37

2

1 Introduction

A typical sequence of events in an offline credit card purchase is the following. The
card holder authenticates himself using his card and leaves a receipt of purchase to the
merchant. The merchant then gives the receipt to the bank and the bank transfers
money from the card holder’s account to the merchant’s account.

A natural way to improve the security of this scheme is to use smartcards and let a
smartcard digitally authenticate each purchase transaction on behalf of the card holder.
Message authentication can be achieved using a digital signature scheme. A drawback
of this approach, and also of the original scheme, is that it reveals the identity of the
card holder to the merchant.

Chaum and van Heyst [11] introduced group signatures to resolve this, and other
similar privacy problems. When using a group signature scheme the signatures computed
by different signers are indistinguishable, i.e., they provide unlinkability and anonymity
within the group of signers. On the other hand a special party, called the group manager,
has the ability to open any valid signature and identify the signer. In the application
described above, the bank would play the role of the group manager and each credit card
would use a unique signing key. This solution still reveals the correspondence between
purchases and card holders to the bank, but in practice this is not a serious problem.
Not only would customers leave a bank if it did not treat customer information carefully,
but in most countries banks are required to do so by law and they are typically under
supervision of some authority.

In principle, group signatures can be constructed under general assumptions [4], but
these constructions are prohibitively inefficient for practical purposes. There are efficient
schemes, e.g., Ateniese et al. [1] or Boyen and Waters [6], but the security of these
schemes rests on non-standard pairing-based assumptions, which are still controversial
in the cryptographic community. There are also efficient and provably secure realizations
of group signatures in the random oracle model, e.g., the scheme given by Camenisch
and Groth [7], but the random oracle model is not sound [9]. Thus, a proof of security
in this model does not necessarily imply that the scheme is secure when the random
oracle is instantiated by an efficiently computable function.

To summarize, despite intensive research there is still no efficient group signature
scheme provably secure in the plain model under standard assumptions. This motivates
the study of relaxed notions for special applications of group signatures that allows for
a simpler solution.

A closer look at our motivating anonymous credit cards problem reveals that group
signatures provide several features that are not essential to solve this problem:

• Signatures are publicly verifiable, while in our setting only the merchant and the
bank must be able to verify the authenticity of a transaction, as no other party
even receives a signature.

• Group signatures are non-interactive. This is crucial for the bank, since it may re-
ceive a large number of transactions from the numerous senders. However, in many
applications it is not essential that the merchant is able to verify the authenticity
of a transaction without interacting with the sender.

3

• Although there are exceptions, it is typically required from a group signature
scheme that the group manager is unable to frame signers, i.e., he cannot compute
signatures on their behalf. This property is not essential in a credit card system,
since the bank is trusted to manage all the transactions properly anyway, and
would quickly lose all customers if it framed a few of them.

1.1 Contributions

Our main contribution is threefold:

• Motivated by our observation that in some classical applications of group signa-
tures a fully blown group signature scheme is not really needed, we formalize a
relaxed notion that we call group message authentication.

• We give a generic construction of a group message authentication scheme that
satisfies our relaxed security definitions.

• We instantiate the generic construction efficiently and in a provably secure way
in the plain model under the decision Diffie-Hellman assumption and the strong
RSA assumption.

Thus, for an important special case of the original motivating application of group
signatures we give the first fully satisfactory solution. We also give the first reduction
of the security of the Cramer-Shoup cryptosystem with labels over a cyclic group of
composite order to its security over each subgroup. A direct proof can be achieved by
adapting the original proof due to Cramer and Shoup (cf. [29]), but we think our analysis
is of independent interest.

In group signatures in the random oracle model (cf. [7]), the signer encrypts a token
and gives a non-interactive Fiat-Shamir [18] proof, with the message as a prefix to the
hashfunction, that the ciphertext was formed in this way. It is tempting to conclude
that if we skip the Fiat-Shamir transform, we get a secure group message authentication
scheme, but this does not work, since the random oracle is used for three purposes: (a)
to embed the message and provide unforgeability, (b) to prove that a ciphertext contains
a token, and (c) to prove knowledge of an encrypted valid token and thereby provide
the CCA2-like security needed in group signature schemes. One can use a CCA2-secure
cryptosystem to avoid (c), but without the Fiat-Shamir proof there is nowhere to embed
the message. We could (along the lines of [4]) encrypt a standard signature of the message
along with the signer’s public key and a certificate thereof, but no efficient proof that
a plaintext has this form is known. We instead use a CCA2-secure cryptosystem with
labels and embed the message in the label.

Even taken as a group signature scheme (using Fiat-Shamir to eliminate interaction),
our construction is novel and, interestingly, its security holds in the plain model when
the group manager plays the role of the verifier, i.e., signatures forged due to the Fiat-
Shamir heuristic failing can be detected by the group manager.

4

1.2 Related Work

In addition to the intensive work on group signatures mentioned above, there has been
substantial interest in other aspects of group-oriented cryptography.1 In particular,
many researchers have explored numerous variations of group signatures with additional
properties such as: traceable signatures [24], multi-group and subgroup signatures [2, 27],
or hierarchical group signatures [35]. In contrast to these various extensions of group
signatures, group message authentication is actually a relaxation of group signatures, as
pointed out above.

Another related primitive is identity escrow [26], which applies key-escrow ideas to
the problem of user identification. In contrast to group signatures or group message
authentication, identity escrow does not allow any form of signing a message. More
precisely, identity escrow employs an identity token allows the holder to anonymously
authenticate itself as a member of a group, but it does not allow the holder to sign
any messages. Furthermore, identity escrow introduces an additional party, escrow
agent, and requires separability: the agent remains dormant during normal operation
of the identification system, and is “woken up” only when there is a request to revoke
anonymity. This feature and the requirement of resistance to impersonation imply that
not every group signature scheme can be used as an identity escrow scheme.

Other notions related to group message authentication include designated verifier
signatures [23] and designated confirmer signatures [10]. Recently, Kiayias et al. [25]
and Qin et al. [32] proposed a group-oriented notion of cryptosystems.

1.3 Outline of Paper

We first give notation in Section 2. Then we define the notion of group message authen-
tication and capture its security in Section 3. In Section 4 we recall the definitions of
standard notions and provide definitions of relaxed notions that are used in the remain-
der of the paper, and give the new proof of security of the Cramer-Shoup cryptosystem.
In Section 5 we present and prove the security of a generic construction of a group
message authentication scheme. We then give a detailed description of an efficient in-
stantiation of the generic scheme in Section 6.

2 Notation

We denote the set {j, j+1, j+2, . . . , k} of integers by [j, k]. We write: ZN for the integers
modulo N , Z∗N for its multiplicative group, and SQN for the subgroup of squares in
Z∗N . We say that a prime q is safe if (q − 1)/2 is prime. We use n as our main
security parameter and say that a function ε(n) is negligible if for every constant c,
ε(n) < n−c for every sufficiently large n. We say that the probability of an event is
overwhelming if it is at least 1− ε(n), where ε(n) is negligible. Given a public key cpk of
a cryptosystem we denote the plaintext space byMcpk , the ciphertext space by Ccpk , and
the randomizer space by Rcpk . We use PT to denote the set of deterministic polynomial

1In independent work, Laur and Pasini [28] use the term “group message authentication” in a different
context.

5

time algorithms, PPT the set of probabilistic polynomial time algorithms, and IPPT
the set of interactive, probabilistic polynomial time algorithms (sometimes with oracles).
Given P, V ∈ IPPT, we denote by 〈P (w), V (z)〉(x) the output of V when executed on
input (z, x) and interacting with P on input (w, x). We write V [[(Pi(wi))i∈[1,k]]] when V
interacts over separate communication tapes with k copies of Pi(wi) running on inputs
w1, . . . , wk respectively, i.e., it has “oracle access” to these machines.

3 Group Message Authentication Schemes

To avoid confusion with group signatures and related notions we refer to the parties in a
group message authentication (GMA) scheme as the receiver, proxies, and senders, and
we say that a sender computes an authentication tag. Compared to a group signature
scheme the role of the receiver is similar to the group manager. It can verify and open an
authentication tag, but in a GMA scheme it may need its secret key also to verify a tag.
Thus, we combine these two operations into a single checking algorithm that outputs
an identity if the authentication tag is valid, and outputs ⊥ otherwise. The role of a
sender is similar to a signer, except that when it hands an authentication tag to a proxy,
it also executes an interactive authentication protocol that convinces the proxy that the
receiver will accept it. The role of a proxy corresponds to the holder of a signature,
except that it can not hand the signature to anybody but the receiver. We introduce
the following formal definition.

Definition 1 (Group Message Authentication Scheme). A group message authentication
scheme consists of four algorithms (RKg,AKg,Aut,Check) and a protocol πa, associated
with a polynomial `(·):

1. A receiver key generation algorithm RKg ∈ PPT, that on input 1n outputs a public
key pk and a secret key sk .

2. An authentication key generation algorithm AKg ∈ PPT, that on input 1n, a
receiver key sk , and an integer i ∈ [1, `(n)] outputs an authentication key ak i.

3. An authentication algorithm Aut ∈ PPT, that on input a public receiver key pk ,
an authentication key ak i, and a message m ∈ {0, 1}∗ outputs an authentication
tag σ.

4. A checking algorithm Check ∈ PT, that on input the secret receiver key sk , a
message m ∈ {0, 1}∗, and a candidate authentication tag σ, outputs an integer
i ∈ [1, `(n)] or ⊥.

5. An interactive 2-party authentication protocol πa = (Pa, Va) ∈ IPPT2, such that
the output of the verifier Va is a bit.

For every n ∈ N, every (pk , sk) ∈ RKg(1n), every integer i ∈ [1, `(n)], every authen-
tication key ak i ∈ AKgsk (1n, i), every message m ∈ {0, 1}∗, and every r ∈ {0, 1}∗: if
σ = Autak i,r(pk ,m), then Checksk (m,σ) = i and Pr [〈Pa(ak i, r), Va〉(pk ,m, σ) = 1] is
overwhelming.

6

3.1 Definition of Security

Conceptually, the security requirements of a GMA scheme must guarantee: that au-
thentication tags are indistinguishable, that it is infeasible to forge an authentication
tag, that the receiver can always trace the sender, and that the proxy is never con-
vinced that an invalid authentication tag is valid. We formalize these properties with
two experiments similarly as is done in [4] for group signatures.

3.1.1 Anonymity

We define one experiment for each value of b ∈ {0, 1} and then require that the distri-
butions of the two experiments are close. The adversary is given the receiver’s public
key and all authentication keys. Then it chooses two identities of senders and a mes-
sage, and hands these to the experiment. The bth experiment chooses the bth of the
identities and computes an authentication tag of the given message using the authen-
tication key of this identity. Then it hands the authentication tag to the adversary
and executes the authentication protocol on behalf of the chosen identity. Finally, the
adversary must guess which of the two authentication keys was used to authenticate the
message and execute the authentication protocol. During the experiment the adversary
also has access to a checking oracle to which it may send any query, except the challenge
message-and-authentication tag pair.2

Experiment 2 (Anonymity, Expanon−bGMA,A(n)).

(pk , sk)← RKg(1n) // Receiver key

ak i ← AKgsk (1n, i) for i ∈ [1, `(n)] // Auth. keys

(m, i0, i1, state)← AChecksk (·,·)(pk , ak1, . . . , ak `(n)) // Choose ids

σ ← Autak ib ,r(pk ,m) , where r ∈ {0, 1}∗ is random // Challenge

d← 〈Pa(ak ib , r), A
Checksk (·,·)(state)〉(pk , σ,m) // Guess

If the Checksk (·, ·)-oracle was never queried with (m,σ), then output d, otherwise
output 0.

Definition 3 (Anonymity). A group message authentication scheme GMA is anonymous
if for every adversary A ∈ IPPT:

∣∣Pr
[
Expanon−0

GMA,A(n) = 1
]
− Pr

[
Expanon−1

GMA,A(n) = 1
]∣∣ is

negligible.

3.1.2 Traceability

The adversary is given the receiver’s public key, and during the experiment it has ac-
cess to a checking oracle, it may interact with honest senders, and it may corrupt any

2No oracle for authentication or running the authentication protocol is needed, since the adversary
can simulate these using the authentication keys ak1, . . . , ak `(n). A standard hybrid argument then
shows that it suffices to consider a single invokation of the authentication protocol as in the definition.

7

sender to acquire its authentication key. To succeed, the adversary must either forge
an authentication tag that checks to the identity of an uncorrupted sender, or it must
output an authentication tag that checks to ⊥ and convince the honest verifier of the
authentication protocol that the tag checks to an identity.3

Denote by P+
a ∈ IPPT the machine that accepts (pk , ak i) as input and repeatedly

waits for messages on its communication tape. Given an input (Aut,m) on its com-
munication tape P+

a computes and outputs σ = Autak i,r(pk ,m), and then executes Pa
on common input (pk ,m, σ) and private input (ak i, r). In the traceability experiment
the adversary has “oracle access” to several copies of P+

a . We stress that although the
“oracle access” to each copy P+

a running on some input (pk , ak i) is sequential by the
definition of P+

a , the adversary may interact concurrently with different copies.4 This
is essential for the definition to be realistic, as we can not assume that different senders
are aware of each other.

Experiment 4 (Traceability, ExptraceGMA,A(n)).

(pk , sk)← RKg(1n) // Receiver key

ak i ← AKgsk (1n, i) for i ∈ [1, `(n)] // Auth. keys

Define ak(i) =

{
ak i if i ∈ [1, `(n)]
⊥ otherwise

// Auth. key oracle

(m,σ, state)← Aak(·),Checksk (·,·)[[(P+
a (pk , ak i))i∈[1,`(n)]]](pk) // Forge auth. tag, or

d← 〈Aak(·),Checksk (·,·)(state), Va〉(pk ,m, σ) // auth. invalid tag

Let C be the set of queries asked by A to the ak(·)-oracle. If Checksk (m,σ) ∈ [1, `(n)]\C
and P+

a has never output σ, or if Checksk (m,σ) = ⊥ and d = 1, then output 1,
otherwise output 0.

Definition 5 (Traceability). A group message authentication scheme GMA is traceable
if for for every adversary A ∈ IPPT: Pr

[
ExptraceGMA,A(n) = 1

]
is negligible.

Definition 6 (Security). A group message authentication scheme GMA is secure if it is
anonymous and traceable.

We stress, that while the new notion is related to variants of group signatures, it
is essentially different from previous work. In particular, in contrast to various en-
hancements of group signatures, like traceable signatures [24] or identity escrow [26]
(cf. Section 1.2), group message authentication it is a relaxation of group signatures,
aiming at typical applications, and improved efficiency and security.

3Traceability could alternatively be formalized by two separate experiments, where each experiment
captures one type of attack, but we think this is less natural.

4This is a benign form of concurrency, since each copy of P+
a executes using its own independently

generated private input (only the public inputs are dependent). Thus, our setting is the sequential
setting in disguise.

8

4 Tools

To construct the algorithms of the group message authentication scheme we use two basic
primitives: a bounded signature scheme secure against chosen message attacks and a
CCA2-secure cryptosystem with labels. The authentication protocol is loosely speaking
a “zero-knowledge proof”, but we use relaxed notions that allows efficient instantiation.

4.1 Bounded Signature Schemes

Each sender in a GMA scheme is given a unique authentication key that it later uses
to authenticate messages. In our construction an authentication key is a signature of
the identity of the holder, but a fully blown signature scheme is not needed. Note that
standard signature schemes can be used to sign any message from an exponentially large
space of strings, but in our setting we only need to sign a polynomial number of different
integers. We call a signature scheme with this restriction bounded.

Definition 7 (Bounded Signature Scheme). A bounded signature scheme consists of
three algorithms (SKg, Sig,Vf) associated with a polynomial `(n):

1. A key generation algorithm SKg ∈ PPT, that on input 1n outputs a public key
spk and a secret key ssk .

2. A signature algorithm Sig ∈ PPT, that on input a secret key ssk and a message
m ∈ [1, `(n)] outputs a signature s.

3. A verification algorithm Vf ∈ PT, that on input a public key spk , a message
m ∈ [1, `(n)], and a candidate signature s, outputs a bit.

For every n ∈ N, every (spk , ssk) ∈ SKg(1n), every message m ∈ [1, `(n)], and every
s ∈ Sigssk (m), it must hold that Vfspk (m, s) = 1.

The standard definition of security against chosen message attacks (CMA) [22] is
then directly applicable. The existence of an ordinary signature scheme clearly implies
the existence of a bounded one.

4.2 Cryptosystems With Labels

Cryptosystems with labels were introduced by Shoup and Gennaro [33]. The idea of this
notion is to associate a label with a ciphertext without providing any secrecy for the
label. One simple way of constructing such cryptosystems is to append to the plaintext
before encryption a collision-free hash digest of the label, but there are simpler construc-
tions in practice. As a result, the input to the cryptosystem is not only a message, but
also a label, and similarly for the decryption algorithm. Below we recall the definition,
with a small modification — in the standard definition the decryption algorithm outputs
only the message, without the label. Clearly, this is a minor modification, but we need
it to allow certain joint encodings of the label and message in the analysis.

Definition 8 (Public Key Cryptosystem With Labels [33]). A public key cryptosystem
with labels consists of three algorithms (CKg,Enc,Dec):

9

1. A key generation algorithm CKg ∈ PPT, that on input 1n outputs a public key
cpk and a secret key csk .

2. An encryption algorithm Enc ∈ PPT, that on input a public key cpk , a label l,
and a message m ∈Mcpk outputs a ciphertext c.

3. A decryption algorithm Dec ∈ PT, that on input a secret key csk , a label l, and a
ciphertext c outputs the label and a message, (l,m) ∈ {0, 1}∗ ×Mcpk , or ⊥.

For every n ∈ N, every (csk , cpk) = CKg(1n), every label l ∈ {0, 1}∗, and every m ∈
Mcpk it must hold that Deccsk (l,Enccpk (l,m)) = (l,m).

Security against chosen ciphertext attacks is then defined as for standard cryptosys-
tems except for some minor changes. In addition to the challenge messages, the adver-
sary outputs a label to be used in the construction of the challenge ciphertext c. The
adversary may also ask any query except the pair (l, c).

Experiment 9 (CCA2-Security With Labels [33], Expcca2−bCSL,A (n)).

(cpk , csk) ← CKg(1n)

(l,m0,m1, state) ← ADeccsk (·,·)(choose, cpk)

c ← Enccpk (l,mb)

d ← ADeccsk (·,·)(guess, state, c)

If Deccsk (·, ·) was queried on (l, c), then output 0, otherwise output d.

Definition 10 (CCA2-Security). Let CSL denote a public key cryptosystem with labels.
We say that the cryptosystem CSL is CCA2-secure if for every adversary A ∈ PPT:∣∣Pr

[
Expcca2−0

CSL,A (n) = 1
]
− Pr

[
Expcca2−1

CSL,A (n) = 1
]∣∣ is negligible.

4.3 Cramer-Shoup Cryptosystems In Groups of Composite Orders

It not hard to prove, using the techniques in [13, 15, 8], that the Cramer-Shoup cryp-
tosystem is secure in cyclic groups of composite order, but we use a different approach.

We reduce the security of a Cramer-Shoup cryptosystem over a cyclic group G of
composite order to the security of Cramer-Shoup cryptosystems over the subgroups of
G. More precisely, we show that a Cramer-Shoup cryptosystem with labels over a cyclic
group G can be decomposed into cryptosystems with labels in its cyclic subgroups and
that the original cryptosystem is secure if all parts in its decomposition are secure. To
the best of our knowledge this approach is novel and of independent interest, since it
says something about the structure of the Cramer-Shoup cryptosystem.

Before we start, we point out that although we consider the Cramer-Shoup cryp-
tosystem over a group of unknown order, its security does not rely on the hardness of
determining this order. Thus, in the reduction we assume that the factorization of the
order is known.

We now define what we mean by a Cramer-Shoup scheme over a group of composite
order for an arbitrary collision-free family of hash functions with appropriate range.

10

Construction 11 (Cramer-Shoup with labels). Let G be a cyclic group of order q with
minimal prime divisor qmin and let H be a family of hash functions such that if H is
sampled from H (1n), then H : {0, 1}∗ → [0, qmin − 1].

Key Generation. Choose generators g1 and g2 of G, and z, x1, x2, y1, y2 ∈ [0, q − 1]
randomly, and compute h = gz1 , c = gx1

1 gx2
2 , and d = gy1

1 g
y2
2 . Sample H from H

and output the keys

(cpk , csk) = ((H, g1, g2, h, c, d), (z, x1, x2, y1, y2)) .

Encryption. On input a public key cpk , a label l ∈ {0, 1}∗ and a message m ∈ G,
choose r ∈ [0, q − 1] randomly and output

(u1, u2, e, v) = (gr1, g
r
2, h

rm, crdrH(l,u1,u2,e)) .

Decryption. On input a secret key csk , a label l ∈ {0, 1}∗ and a ciphertext (u1, u2, e, v)
check if ux1

1 u
x2
2 (uy1

1 u
y2
2)H(l,u1,u2,e) = v holds. If so, output (l, eu−z1), and otherwise

output ⊥.

Our starting point is the following theorem from [13], where we have taken the liberty
to add labels as input to the hash function, since it is easy to see from their proof that
the theorem remains true also in this case.

Theorem 12. If H is collision-free, the decision Diffie-Hellman assumption holds in
G, and G has prime order, then Construction 11 is CCA2-secure.

We use the following obvious lemma to prove our main composition theorem below.

Lemma 13. If H is a collision-free family of hash functions and we define a family of
hash functions H̄ by sampling H from H and outputting H ◦ B̄, where B̄ : {0, 1}∗ →
{0, 1}∗ is an efficiently computable bijection, then H̄ is collision-free.

Theorem 14. Let G, Ḡ, and G̃ be cyclic groups with efficiently computable isomor-
phisms G → Ḡ × G̃ and G ← Ḡ × G̃. If Construction 11 is CCA2-secure over Ḡ and
over G̃ for every collision-free families of hash functions H̄ and H̃ respectively, then
it is CCA2-secure over G for every collision-free family of hash functions H .

The following is an immediate corollary of Theorem 12 and Theorem 14.

Corollary 15. Let G be a cyclic group. If H is collision-free and the decision Diffie-
Hellman assumption holds in G, then Construction 11 is CCA2-secure.

Proof of Theorem 14. In the proof we use the fact that every element x ∈ G can be
represented as (x̄, x̃) ∈ Ḡ × G̃. By assumption the conversion between representations
can be computed efficiently: given x ∈ G we denote by x → (x̄, x̃) the conversion of x
to the representation in Ḡ × G̃, and given (x̄, x̃) ∈ Ḡ × G̃ we denote by x ← (x̄, x̃) the
conversion to the representation in G.

11

Let C denote an instantiation of Construction 11 over the group G using a particular
collision-free family of hash functions H and assume that an adversary A breaks the
CCA2-security of C . This means that∣∣∣Pr

[
Expcca2−0

C ,A (n) = 1
]
− Pr

[
Expcca2−1

C ,A (n) = 1
]∣∣∣

is not negligible. Denote by T the experiment Expcca2−0
C ,A (n) except for the following

modification. When the adversary A outputs a challenge label and messages (l,m0,m1)
the experiment computes m0 → (m̄0, m̃0), m1 → (m̄1, m̃1), and m′ ← (m̄1, m̃0) and
returns a ciphertext (u1, u2, e, v) of m′. The triangle inequality implies that one of∣∣∣Pr

[
Expcca2−0

C ,A (n) = 1
]
− Pr [T = 1]

∣∣∣
and ∣∣∣Pr [T = 1]− Pr

[
Expcca2−1

C ,A (n) = 1
]∣∣∣

is not negligible. In the remainder of the proof we show that the former case leads to a
contradiction. The latter case then follows by symmetry.

Using A we construct an attacker Ā breaking the CCA2-security of an instantiation
C̄ of Construction 11 over the group Ḡ using a collision-free family of hash functions
H̄ related to H . To sample a hash function H̄ from the family H̄ , a random sample
H of H is generated and then the hash function H̄ = H ◦ B̄ is output, where B̄ is a
bijection. We represent the hash function H̄ by a pair (H, B̄) and define B̄ below. From
Lemma 13 we conclude that the resulting family of hash functions H̄ is collision-free.

The bijection B̄ takes as input (l̄, ū1, ū2, ē), where l̄ = (l, ũ1, ũ2, ẽ), ū1, ū2, ē ∈ Ḡ,
l is an arbitrary label, and ũ1, ũ2, ẽ ∈ G̃. On such an input B̄ outputs (l, u1, u2, e),
where the values u1, u2, e ∈ G are computed from the corresponding components in
Ḡ × G̃, i.e., u1 ← (ū1, ũ1), u2 ← (ū2, ũ2) and e ← (ē, ẽ). We define a corresponding
bijection B̃ for the group G̃. It takes as input (l̃, ũ1, ũ2, ẽ), with l̃ = (l, ū1, ū2, ē), and
outputs (l, u1, u2, e), where the values u1, u2, e ∈ G are computed from the corresponding
components in Ḡ× G̃. Note that B̄(l̄, ū1, ū2, ē) = B̃(l̃, ũ1, ũ2, ẽ) holds. This implies that

H̄(l̄, ū1, ū2, ē) = H̃(l̃, ũ1, ũ2, ẽ) = H(l, u1, u2, e)

for a given hash function H of H , which plays a crucial role in the reduction.
The attacker Ā takes as input a public key cp̄k = (H̄, ḡ1, ḡ2, h̄, c̄, d̄), and starts a

simulation of the experiment Expcca2−0
C ,A (n) except for the following modifications.

Key Generation. The attacker Ā computes a public key cpk = (H, g1, g2, h, c, d) of
C and gives it as input to A, where cpk is computed as follows.

1. The hash function H is taken without modification from the pair (H, B̄) repre-
senting H̄.

2. Generators g̃1 and g̃2 of G̃, and x̃1, x̃2, ỹ1, ỹ2, z̃ ∈ [0, q̃ − 1] are chosen randomly,
and c̃ = g̃x̃1

1 g̃x̃2
2 , d̃ = g̃ỹ1

1 g̃
ỹ2
2 , and h̃ = g̃z̃1 computed.

12

3. The public key of C is defined by: g1 ← (ḡ1, g̃1), g2 ← (ḡ2, g̃2), h ← (h̄, h̃),
c← (c̄, c̃), and d← (d̄, d̃).

Note that the resulting public key is identically distributed to a public key output
by the key generator of C . Note also that this defines a related public key cp̃k =
(H̃, g̃1, g̃2, h̃, c̃, d̃) and secret key (x̃1, x̃2, ỹ1, ỹ2, z̃) of a Cramer-Shoup cryptosystem C̃
over G̃ with related hash function H̃ = H ◦ B̃. We stress that the hash functions of the
public keys cpk , cp̄k , and cp̃k are not sampled independently.

Decryption Oracle. The decryption oracle is simulated by Ā using the decryption or-
acle of the CCA2-experiment it is attacking. Given a query (l, (u1, u2, e, v)) it computes
the reply as follows.

1. The representations u1 → (ū1, ũ1), u2 → (ū2, ũ2), e → (ē, ẽ), and v → (v̄, ṽ) are
computed. This gives two ciphertexts: (ū1, ū2, ē, v̄) with label l̄ = (l, ũ1, ũ2, ẽ) cor-
responding to the public key cp̄k , and (ũ1, ũ2, ẽ, ṽ) of C̃ with label l̃ = (l, ū1, ū2, ē)
corresponding to the public key cp̃k .

2. Using cs̃k = (x̃1, x̃2, ỹ1, ỹ2, z̃), the ciphertext (ũ1, ũ2, ẽ, ṽ) with label l̃ is decrypted
to obtain the corresponding plaintext m̃ ∈ G̃ ∪ {⊥}. The decryption oracle is
queried on the ciphertext (ū1, ū2, ē, v̄) with label l̄, to obtain m̄ ∈ Ḡ ∪ {⊥}.

3. If m̄ = ⊥ or m̃ = ⊥, then the simulated decryption oracle replies ⊥, and otherwise
it computes m← (m̄, m̃) and replies m.

Note that this is a perfect simulation of the decryption oracle.

The Challenge Ciphertext. When A outputs a tuple (l,m0,m1) consisting of a
challenge label and messages, Ā proceeds as follows.

1. The representations m0 → (m̄0, m̃0) and m1 → (m̄1, m̃1) of the challenge plain-
texts are computed.

2. The encryption process of m̃0 is started, but not completed. More precisely, r̃ ∈
[0, q̃ − 1] is chosen randomly, (ũ1, ũ2, ẽ) = (g̃r̃1, g̃

r̃
2, h̃

r̃m̃0) is computed, and a label
l̄ = (l, ũ1, ũ2, ẽ) defined.

3. The label and messages (l̄, m̄0, m̄1) are output and execution is interrupted until
the CCA2-experiment returns a challenge ciphertext (ū1, ū2, ē, v̄).

4. The challenge ciphertext is then combined with the partial ciphertext (ũ1, ũ2, ẽ)
to form a ciphertext (u1, u2, e, v). More precisely, (l, u1, u2, e) = B̄(l̄, ū1, ū2, ē),
ṽ = c̃r̃d̃r̃H(l,u1,u2,e), and v ← (v̄, ṽ), are computed and (u1, u2, e, v) is given to A.

Note that by the definition of the dependent public keys cpk , cp̄k and cp̃k , the resulting
ciphertext (u1, u2, e, v) is a randomly distributed encryption of m0 whenever (ū1, ū2, ē, v̄)
is an encryption of m̄0, and otherwise it is an encryption of m′, where m′ ← (m̄1, m̃0).

13

By construction, the random variables Expcca2−0
C̄ ,Ā

(n) and Expcca2−0
C ,A (n) representing

experiments are identically distributed, and also Expcca2−1
C̄ ,Ā

(n) and T are identically

distributed. This implies that∣∣∣Pr
[
Expcca2−0

C̄ ,Ā
(1n) = 1

]
− Pr

[
Expcca2−1

C̄ ,Ā
(1n) = 1

]∣∣∣
is not negligible. Therefore C̄ is not CCA2-secure, which contradicts Theorem 12.

4.4 A Relaxed Notion of Computational Soundness

Another tool used in our constructions, allowing for more efficient protocols, is a relaxed
notion of soundness. In contrast to the standard (computational) soundness [21, 31],
we do not require that the protocol is sound for all inputs, but only when a part of the
input is chosen according to a specific distribution, and the rest of the input is chosen
by the adversary. Such a relaxation allows to capture scenarios where it is safe to
assume that some parameters are chosen according to some prescribed distribution. For
example, a bank will usually pick faithfully the keys guarding its transactions. A similar
notion (without the oracle) has been used implicitly in several papers and is sometimes
called a “computationally convincing proof”, see e.g., [16]. In fact, non-interactive
computationally sound proofs may be viewed as an instance of this notion.

Definition 16 ((T,O)-Soundness). Let T ∈ PPT and let O ∈ PT be an oracle. Define
a random variable (t1, t2, t3) = T (1n).

A 2-party protocol (P, V) ∈ IPPT × IPPT is (T,O)-sound for language L if for
every instance chooser I ∈ PT and prover P ∗ ∈ PT the following holds: If (y, z) =
IO(t3,·)(t1, t2) and x = (t1, y), then

Pr
[
x 6∈ L ∧ 〈PO(t3,·)∗(z), V 〉(x) = 1

]
is negligible.

In the above definition we use generic names T, I,O and t1, t2, t3, y, z to denote ab-
stractly the involved algorithms and the information exchanged between them. The
actual meaning and function of these parameters depends on a concrete scenario. For
example, in the context of group message authentication algorithm T generates keys for
both a signature scheme and a public-key encryption scheme, algorithm O computes
signatures, and the parameters t1, t2, t3 correspond to public and secret keys generated
faithfully by the receiver (bank) using algorithm T : t1 denotes (signature and encryp-
tion) public keys, t2 denotes encryption secret key, and t3 denotes signature secret key
(cf. Construction 22). Obviously, if a protocol is sound in the standard sense, it is
(T,O)-sound for any T,O. In a slight abuse of notation, we write (X,O)-sound also
when X is a polynomially samplable random variable.

4.5 A Relaxed Notion of Computational Zero-Knowledge

Recall that a protocol is zero-knowledge if it can be simulated for every instance. Gol-
dreich [20] introduced the notion of uniform zero-knowledge to capture the fact that

14

for uniform adversaries it is sufficient to require that no instance for which the pro-
tocol leaks knowledge can be found. Wikström [38] generalized this idea to capture
settings where the choice of instance is somehow restricted by an instance compiler F
and randomized by some sampling algorithm T out of control of the adversary. We
generalize Wikström’s definition. As in the case of relaxed computational soundness,
we use generic names T, I,O, F and t1, t2, y, z to denote the involved algorithms and
the information exchanged between them. In the concrete context of group message
authentication these names gain concrete meaning, e.g., T is a key generation algorithm
of a public-key cryptosystem, O is a decryption oracle, and t1, t2 denote the public and
secret keys, respectively, generated faithfully by the receiver using algorithm T (cf. Con-
struction 22).

A sampling algorithm T outputs a sample t = (t1, t2). The first part, t1, is given
to an instance chooser I which outputs a tuple (y, z), where y influences the choice of
instance x, and z is an auxiliary input. An instance compiler F takes (t1, y) as input
and forms an instance (x,w) according to some predefined rule. A protocol is said to
be (T, F,O)-zero-knowledge, for some oracle O, if for every malicious verifier V ∗ and
every constant c > 0 there is a simulator M such that for every instance chooser I as
above no distinguisher D can distinguish a real view of V ∗ from the view simulated by
M with advantage better than n−c, when all of these machines have access to the oracle
O(t2, ·). Thus, the algorithms T , F , and O represent a class of environments in which
the protocol remains zero-knowledge in the ε-zero-knowledge sense of Dwork, Naor, and
Sahai [17]. We use the following experiment to define our notion formally.

Experiment 17 (Zero-Knowledge, Exp
(T,F,O)−zk−b
π,R,I,V ∗,M,D(n)).

(t1, t2) ← T (1n)

(y, z) ← IO(t2,·)(1n, t1)

(x,w) ← F (t1, y)

d ←
{
DO(t2,·)(x, z, 〈P (w), V ∗O(t2,·)(z)〉(x)) if b=0

DO(t2,·)(x, z,MO(t2,·)(z, x)) if b=1

If R(x,w) = 0 or if the output of V ∗a or M respectively does not contain the list of
oracle queries as a postfix, then output 0, otherwise output d.

The requirement that the list of queries made is output is quite natural. It captures that
the simulator should not be able to ask more queries, or more powerful queries than the
real verifier.

Definition 18 ((T, F,O)-Zero-Knowledge). Let π = (P, V) be an interactive protocol,
let T ∈ PPT be a sampling algorithm, let F ∈ PT be an instance compiler, let O ∈ PT
be an oracle, and let R be a relation.

We say that π is (T, F,O)-zero-knowledge for R if for every verifier V ∗ ∈ PPT and
every constant c > 0 there exists a simulator M ∈ PPT such that for every instance
chooser I ∈ PPT and every distinguisher D ∈ PPT:∣∣∣Pr

[
Exp

(T,F,O)−zk−0
π,R,I,V ∗,M,D(n) = 1

]
− Pr

[
Exp

(T,F,O)−zk−1
π,R,I,V ∗,M,D(n) = 1

]∣∣∣ < n−c .

15

4.6 Sequential Composition Lemma

In our security proof we exploit that a protocol that satisfies the definition can be
simulated polynomially many times sequentially, where the instance chooser chooses a
new common and private input for each execution. The following lemma establishes
such a result.

Experiment 19 (Sequential Composition, Exp
µ(n)−(T,F,O)−zk−b
π,R,I,V ∗,M,D (n)).

(t1, t2) ← T (1n) z′0 ← t1

(yj , zj) ← IO(t2,·)(1n, z′j−1)

(xj , wj) ← F (t1, yj)

z′j ←
{
〈P (wj), V

∗O(t2,·)(zj)〉(xj) if b=0

MO(t2,·)(zj , xj) if b=1

d ← DO(t2,·)(z′µ(n))

Return 0 if R(xj , wj) = 0 and d otherwise.

Lemma 20 (Sequential Composition). Let π = (P, V) be an interactive protocol, let
T ∈ PPT be a sampling algorithm, let F ∈ PT be an instance compiler, let O ∈ PT be
an oracle, and let R be a relation.

Then for every verifier V ∗ ∈ PPT and every constant c > 0 the simulator M ∈ PPT
guaranteed to exist by the definition of (T, F,O)-zero-knowledge satisfies that for every
instance chooser I ∈ PPT and every distinguisher D ∈ PPT:∣∣∣Pr

[
Exp

µ(n)−(T,F,O)−zk−0
π,R,I,V ∗,M,D (n) = 1

]
− Pr

[
Exp

µ(n)−(T,F,O)−zk−1
π,R,I,V ∗,M,D (n) = 1

]∣∣∣ < µ(n)n−c .

Proof. Consider a verifier V ∗ and a constant c > 0, the corresponding simulator M
guaranteed by the zero-knowledge property, an instance chooser I, and a distinguisher

D, and write Hb for the algorithm that simulates the experiment Exp
µ(n)−(T,F)−zk−b
π,R,I,V ∗,M,D (n).

Denote by H0
l the machine H0, except that if j ≤ l, then the simulator behaves as

H1. Thus, H0
0 is identical to H0 and H0

µ is identical to H1. Denote by Il the instance
chooser that simulates H0

l−1 until (yl, zl) is output in the simulation. Denote by Dl the
distinguisher that takes z′l+1 as input and computes zµ exactly as is done in the simula-
tion H0, by simulating the honest prover. It follows that H0

l−1 is identically distributed

to Exp
(T,F)−zk−0
π,R,Il,V ∗,M,Dl

(n). and H0
l is identically distributed to Exp

(T,F)−zk−1
π,R,Il,V ∗,M,Dl

(n).
Suppose that the lemma is false. Then there is a verifier V ∗, an instance chooser I,

and a distinguisher D such that |Pr
[
H0 = 1

]
− Pr

[
H1 = 1

]
| ≥ µ(n)n−c. A hybrid

argument shows that there exists a fixed l such that |Pr
[
H0
l−1 = 1

]
− Pr

[
H0
l = 1

]
| ≥

n−c, but this contradicts the (T, F,O)-zero-knowledge property and the lemma must be
true.

Remark 21. Although the proof of the lemma is straightforward, there are seemingly
reasonable definitions of (T, F,O)-zero-knowledge for which it is false. For example, it

16

is false if the simulator M is given the secret part t2 of the sample from T in cleartext.
Thus, the lemma may be viewed as a sanity check of our definition.

5 A Generic Construction

The idea of our GMA scheme is simple. The group manager generates a key pair
(spk , ssk) of a bounded signature scheme BSS = (SKg,Sig,Vf), and a key pair (cpk , csk)
of a CCA2-secure cryptosystem with labels CSL = (CKg,Enc,Dec). The ith user is
given the authentication key ak i = Sigssk (i). To compute an authentication tag σ of a
message m, the user simply encrypts its secret key using the message m as a label, i.e.,
he computes σ = Enccpk (m, ak i).

5.1 Details of the Construction

We assume that SKg is implemented in two steps SKg1 and SKg2: on input 1n the
algorithm SKg1 outputs a string spk1, that is given as input to SKg2, which in turn
outputs a key pair (spk , ssk), where spk = (spk1, spk2). We also assume that CKg can be
divided into CKg1, and CKg2 in a similar way and that CKg1(1n) is identically distributed
to SKg1(1n). Note that any pair of a signature scheme and a cryptosystem can be viewed
in this way by letting SKg1(1n) = CKg1(1n) = 1n. This allows the signature scheme and
the cryptosystem to generate dependent keys which share algebraic structure.

Construction 22 (Group Message Authentication Scheme GMA). Given a polynomial
`(n), a bounded signature scheme BSS = ((SKg1, SKg2),Sig,Vf) associated with `(n),
and a cryptosystem with labels CSL = ((CKg1,CKg2),Enc,Dec), the group message
authentication scheme GMA = (RKg,AKg,Aut,Check, πa) is constructed as follows:

Receiver Key Generation. On input 1n the algorithm RKg computes spk1 = SKg1(1n),
(spk , ssk) = SKg2(spk1), and (cpk , csk) = CKg2(spk1), where spk1 is a prefix of
both spk and cpk , and outputs (pk , sk) = ((cpk , spk), (csk , ssk)).

Authentication Key Generation. On input (1n, sk , i) the algorithm AKg outputs an
authentication key ak i = Sigssk (i).

Authentication Algorithm. On input (pk , ak i,m) the algorithm Aut outputs the au-
thentication tag σ = Enccpk (m, ak i).

Checking Algorithm. On input (sk ,m, σ) the algorithm Check returns the smallest5

i ∈ [1, `(n)] such that Vfspk (i,Deccsk (m,σ)) = 1 or ⊥ if no such i exists.

Authentication Protocol. Let Ra denote the relation consisting of pairs of the form
((pk ,m, σ), (ak i, r)) such that Vfspk (i, ak i) = 1 and σ = Enccpk (m, ak i, r), and let
La be the language corresponding to Ra, i.e., La = {x : ∃y s.t. (x, y) ∈ Ra}
is the honestly encrypted valid tags. Let FEnc ∈ PT take as input a tuple
(cpk , (s,m, i, s′, r)).

5In our concrete instantiation at most one index i has this property.

17

First FEnc computes (spk , ssk) = SKg2(cpk , s) and ak i = Sigssk (i, s′), where s
resp. s′ specify the randomness to be used by SKg2 resp. Sigssk . Note that requiring
explicit randomness as input ensures that the signature public key spk and the
signature ak i are correctly formed. If i ∈ [1, `(n)] holds, then the oracle FEnc

outputs (((cpk , spk),m,Enccpk (m, ak i, r)), (ak i, r)), and otherwise it outputs ⊥.

The authentication protocol πa must be overwhelmingly complete, (CKg, FEnc,Dec)-
zero-knowledge for the relation Ra, and (((cpk , spk), csk , ssk), Sig)-sound for the
language La.

Proposition 23. The construction GMA associated with a polynomial `(n) is a group
message authentication scheme. If CSL is CCA2-secure, and if BSS associated with `(n)
is CMA-secure, then GMA is secure.

5.2 Proof of Security (Proposition 23)

The functionality of GMA can be easily verified. To prove the security of GMA, we prove
its anonymity and traceability.

5.2.1 Anonymity

The idea of the proof is to turn a successful adversary A in the anonymity experiment
into a successful adversary A′ against the CCA2-security of the cryptosystem CSL. We
do this in two steps:

1. We replace the invokation of the authentication protocol πa in the anonymity
experiment by a simulation. Due to its (CKg, FEnc,Dec)-zero-knowledge prop-
erty this changes the success probability of the adversary by an arbitrarily small
amount. This allows simulation of the experiment without using the secret key of
the cryptosystem.

2. We construct a new adversary A′ that simulates the modified experiment and
breaks the CCA2-security of the cryptosystem. When A outputs (m, i0, i1), A′

hands (m, ak i0 , ak i1) to its CCA2-experiment and forwards the challenge cipher-
text σ it receives as a challenge authentication tag to A. All checking queries
are computed by A′ using its decryption oracle, and A′ outputs the result of the
simulated modified experiment. Thus, when A guesses correctly in the anonymity
experiment, A′ guesses correctly in the CCA2-experiment.

Step 1. Given adversary A, we construct an instance chooser I and a malicious veri-
fier V ∗a . Then we describe a distinguisher D that will later be considered in the context
of the (CKg, FEnc,Dec)-zero-knowledge experiment.

Denote by I the algorithm that given (cpk , csk) chooses s ∈ {0, 1}∗ randomly and
computes (spk , ssk) = SKg2,s(spk1), where spk1 is the first part of cpk , and simulates the

experiment Expanon−bGMA,A(n) up to and including the challenge step. The machine I expects
access to a Deccsk (·, ·)-oracle, where csk is the secret key corresponding to the public
key cpk . Given such an oracle it can internally simulate a Checksk (·, ·)-oracle as follows.

18

The jth query (mj , σj) is simply forwarded to the Deccsk (·, ·)-oracle and it is verified that
the reply sj satisfies Vfspk (i, sj) = 1 for some index i ∈ [1, `(n)]. The Checksk (·, ·)-oracle
returns i in that case, and ⊥ otherwise. When the challenge step in the simulation is
reached, I outputs ((s,m, ib, s

′, r), z), where z is the state of I concatenated with the
list of queries it made and s′ ∈ {0, 1}∗. Recall that by the definition of FEnc this results
in an instance on the form (

(pk ,m, σ), (ak ib , r)
)
,

where

pk = (cpk , spk) ,

(spk , ssk) = SKg2,s(spk1) ,

ak ib = Sigssk ,s′(ib) , and

σ = Enccpk (m, ak ib , r) .

Denote by V ∗a the verifier that takes z as private input and (pk , σ,m) as common input,
and continues the simulation except that instead of running the prover Pa it expects to
interact externally with this prover. The simulation continues until Pa outputs its last
message at which point V ∗a outputs the concatenation z′ of z, (pk , σ,m), its state, and
the list of queries it made. The verifier V ∗a simulates the Checksk (·, ·)-oracle exactly as I.

Denote by M the simulator guaranteed by the (CKg, FEnc,Dec)-zero-knowledge prop-
erty of πa to exist for a constant c > 0 (to be determined below) and denote by T b(c)
the simulation of the experiment Expanon−bGMA,A(n) where the interaction between A and
the prover Pa in the guessing step is replaced by invoking the (CKg, FEnc,Dec)-zero-
knowledge simulator M . More precisely, z′ is defined as the output of M((pk ,m, σ), z).
Recall that M has access to a decryption oracle and that its output contains the list of
queries it asked as a postfix.

Denote by D the distinguisher that takes z′ as input and completes the execution
of one of the two experiments (with or without simulation) except that it outputs 0 if
the challenge pair (m,σ) was handed to the Deccsk (·, ·)-oracle by V ∗a or the simulator
M respectively. Note that this can be determined by D from z′, since it contains lists
of all queries asked.

Then Exp
(CKg,FEnc,Dec)−zk−0
π,R,I,V ∗,M,D (n) is identically distributed to Expanon−bGMA,A(n), T b(c) is

identically distributed to Exp
(CKg,FEnc,Dec)−zk−1
π,R,I,V ∗,M,D (n), and the claim below follows immedi-

ately from the (CKg, FEnc,Dec)-zero-knowledge of πa.

Claim 24. For every constant c > 0 there exists n0 ∈ N, such that for every n > n0:∣∣∣Pr
[
Expanon−bGMA,A(n) = 1

]
− Pr

[
T b(c) = 1

]∣∣∣ < n−c .

Step 2. Suppose that the GMA scheme is not anonymous, i.e., there is an adversary
A ∈ PT such that

∣∣Pr
[
Expanon−0

GMA,A(n) = 1
]
− Pr

[
Expanon−1

GMA,A(n) = 1
]∣∣ is not negligible.

Then from the claim above we know that for a suitable choice of c > 0,
∣∣Pr

[
T 0(c) = 1

]
−

Pr
[
T 1(c) = 1

] ∣∣ is not negligible as well.

19

We construct an adversary A′ that breaks the CCA2-security of CSL. It accepts
cpk as input and computes (spk , ssk) = SKg2(spk1), where spk1 is the first part of cpk .
Then it simulates the experiment T 0(c) to A except that whenever a ciphertext must
be decrypted it is instead handed to the Decsk (·, ·)-oracle of the CCA2-experiment from
which A′ received cpk . At some point A outputs (m, i0, i1, state). Then A′ forwards
(m, ak i0 , ak i1) to its CCA2-experiment, and receives a challenge σ = Enccpk (m, ak ib)
which it hands to A in the simulated experiment. The result of the simulated experiment
is finally given as output by A′.

By construction, T b(c) is identically distributed to Expcca2−bCSL,A (n), which implies that∣∣Pr
[
Expcca2−0

CSL,A (n) = 1
]
− Pr

[
Expcca2−1

CSL,A (n) = 1
]∣∣ is not negligible. This contradicts the

CCA2-security of CSL and we conclude that our group message authentication scheme
is anonymous.

5.2.2 Traceability

The idea of the proof is to turn a successful attacker A against the traceability of GMA
into a successful attacker A′ against the CMA-security of the bounded signature scheme
BSS. We do this in five steps:

1. We pick a fixed index i of an authentication key randomly and argue that with
good probability this is the index of the attacked authentication key ak i.

2. We replace each invokation of Pa using ak i by a simulation. Due to the (CKg, FEnc,Dec)-
zero-knowledge of πa and the sequential composition lemma (Lemma 20) this
changes the view of the adversary by an arbitrarily small amount.

3. We replace the authentication tags computed by P+
a using ak i by encryptions of 0.

This only reduces the advantage of A negligibly, since CSL is CCA2-secure. The
CCA2-security is essential for this argument, since we must be able to simulate
the Checksk (·, ·)-oracle to A without the secret decryption key csk .

4. We use the (((cpk , spk), csk , ssk), Sig)-soundness of πa to argue that the probability
that A convinces the honest verifier Va that an invalid authentication tag is valid is
negligible. Thus, assuming that it is never valid changes the view of the adversary
only negligibly.

5. We show that the adversary in the modified traceability experiment can be used
to break the CMA security of the bounded signature scheme. Note that in the
modified experiment, we may postpone the computation of the authentication key
ak i until the adversary requests it, and to be successful in the modified experiment,
A must produce an authentication tag that checks to an uncorrupted sender, i.e.,
A must produce an encrypted forged bounded signature of a sender’s identity,
and the simulator holds the secret decryption key needed to extract it from the
ciphertext.

For completeness we recall the definition of security against chosen message attacks
(CMA) for signature schemes adapted to bounded signature schemes.

20

Experiment 25 (CMA-Security, Expcma
BSS,A(n)).

(spk , ssk) ← SKg(1n)

(m, s) ← ASigssk (·)(guess, spk)

If Vfspk (m, s) = 1 and A did not ask for a signature of m return 1, else return 0.

Definition 26 (CMA-Security). A signature scheme BSS is secure against chosen mes-
sage attacks (CMA) if for every adversary A ∈ PPT: Pr

[
Expcma

BSS,A(n) = 1
]

is negligible.

Step 1. Consider an execution of Experiment 4 with output 1. If in this execution
Checksk (m,σ) ∈ [1, `(n)] \ C and P+

a has never output σ, then due to our random (and
independent) choice of i we have Checksk (m,σ) = i with probability at least 1/`(n).
Thus, without loss of generality, we assume from now on that Checksk (m,σ) = {i,⊥} in
any execution of Experiment 4 with output 1 (formally, we define a modified experiment
with this requirement).

Step 2. Denote the original experiment ExptraceGMA,A(n) by T0. Denote the ith copy of

P+
a , which runs on input (pk , ak i) by P+

a,i, and recall that each such copy only invokes

Pa sequentially. We replace all invocations of Pa made by P+
a,i by simulations and apply

Lemma 20 as follows.
Denote by Ii the algorithm that given z′0 = cpk chooses s ∈ {0, 1}∗ randomly and

computes (spk , ssk) = SKg2,s(spk1), where spk1 is the first part of cpk , and simulates
the experiment except that the simulation is interrupted before the first invocation
of Pa made by P+

a,i. As in the proof of anonymity, the machine Ii expects access to
a Deccsk (·, ·)-oracle, where csk is the secret key corresponding to the public key cpk .
Given such an oracle it internally simulates a Checksk (·, ·)-oracle as follows. The jth
query (mj , σj) is simply forwarded to the Deccsk (·, ·)-oracle and it is verified that the
result sj satisfies Vfspk (i, sj) = 1 for some index i ∈ [1, `(n)]. When the simulation is
interrupted Ii outputs ((s,m1, i, aj , r1), z1), where aj ∈ {0, 1}∗ is random. Recall from
the definition of FEnc that this gives an instance(

(pk ,m1, σ1), (ak i, r1)
)
,

where

pk = (cpk , spk) ,

(spk , ssk) = SKg2,s(spk1) ,

ak i = Sigssk ,aj (i) ,

σ1 = Enccpk (m1, ak i, r1) ,

and z1 is the concatenation of z′0, (pk ,m1, σ1), its state, and the the list of queries it
made to its decryption oracle. This defines how Ii chooses the instance on which P+

a,i

first invokes Pa.

21

Below we define how Ii takes z′j−1 as input and outputs ((s,mj , ak i, rj), zj), but
before we complete the description of how this is done we must define the malicious
verifier. Denote by V ∗i the verifier that on secret input zj and common input (pk ,mj , σj)
(this is output by the instance compiler FEnc), continues the simulation except that P+

a,i

instead of running Pa, expects to interact externally with this prover. The verifier has
access to a Deccsk (·, ·)-oracle and simulates its Checksk (·, ·)-oracle exactly as Ii does. The
simulation continues until the current invocation of Pa of P+

a,i outputs its last message
at which point V ∗i outputs the concatenation z′j of zj , (pk ,mj , σj), its state, and the the
list of queries it made to its decryption oracle.

We now define Ii such that it on input z′j−1 continues the simulation. The simulation

is interrupted before the jth invocation of Pa by P+
a,i and ((s,mj , i, aj , rj), zj) is output,

where zj is the state of Ii.
Denote by Mi the (CKg, FEnc,Dec)-zero-knowledge simulator for V ∗i and some con-

stant c > 0 (to be determined later) of the protocol πa. The distinguisher D is defined
to output the result of the experiment, i.e., a single bit.

We then define T1(c) as the simulation, where the output z′j of V ∗i with secret input
zj−1 from an interaction with Pa with secret input (ak i, rj) on common input (pk ,mj , σj)
are replaced by the output of Mi((pk ,mj , σj), zj) for all j. Then the first step in the
outline corresponds to the following claim.

Claim 27. For every constant c > 0: |Pr [T0 = 1] − Pr [T1(c) = 1] | < µ(n)n−c, where
µ(n) is the number of invokations of the authentication protocol that are simulated.

Proof. The execution performed by the instance chooser, the verifier, and the simu-
lator above corresponds directly to the sequential composition of the zero-knowledge
experiment formalized in Lemma 20. More precisely, Tb is identically distributed to

Exp
µ(n)−(CKg,FEnc,Dec)−zk−b
π,R,Ii,V ∗i ,Mi,D

(n), where this experiment is defined in Section 4.6. The claim

now follows from the (CKg, FEnc,Dec)-zero-knowledge of πa and the sequential compo-
sition lemma.

Step 3. We now consider a simulation where the authentication tags computed by
P+
a,i are replaced by encryptions of 0. We begin with a conceptual modification of T1(c).

When P+
a,i computes an authentication tag σ as a result of a request (Aut,m), the triple

(m,σ, i) is stored. Furthermore, when the simulated Checksk (·, ·)-oracle is queried on a
pair (m,σ), either by A or by one of the simulators, the oracle first checks if (m,σ, i) is
stored. If so, it returns i, and otherwise it computes the result as before. We stress that
this does not change the distribution of the output of the simulation.

Consider now the following actual modification. We denote by T2(c) the simulation
T1(c) except that when P+

a,i computes an authentication tag σ as a result of a request
(Aut,m), it is defined by σ = Enccpk (m, 0, r). Thus, the authentication tags computed
by the experiment no longer contain any signature ak i of i of the bounded signature
scheme BSS.

Claim 28. |Pr [T1(c) = 1]− Pr [T2(c) = 1] | is negligible.

22

Proof. This follows from the CCA2-security of CSL. If the claim is false then define

hybrid simulations T
(l)
1 for l = 1, . . . , QA, where QA is the total number of requests A

makes to the modified P+
a,i (it is modified since each invocation of the protocol πa is

simulated). We let T
(l)
1 be identical to T1(c) except that for the jth request with j < l

it behaves as T2(c). It follows that T
(0)
1 is identical to T1(c) and T

(QA)
1 is identical to

T2(c). A hybrid argument then implies that |Pr
[
T

(j−1)
1 = 1

]
− Pr

[
T

(j)
1 = 1

]
| is not

negligible for some fixed 1 ≤ j ≤ QA, since QA is polynomially bounded.
We now define A′ as the CCA2-adversary that given input cpk computes (spk , ssk) =

SKg2(spk1), where spk1 is the first part of cpk , and simulates T
(j−1)
1 until the jth request

(Aut,mj) to P+
a,i. Whenever a ciphertext must be decrypted, it is instead forwarded

to the external Deccsk (·, ·)-oracle in the CCA2-experiment. When the simulation is
interrupted, it outputs (mj , 0, ak i) to the CCA2-experiment and uses the reply σj in the
continued simulation.

Note that by the construction of T1(c), the adversary A′ never queries the Deccsk (·, ·)-
oracle on (mj , σj). This means that Expcca2−bCSL,A′(n) and T

(j−1+b)
1 are identically distributed.

This implies that ∣∣∣Pr
[
Expcca2−0

CSL,A′ (n) = 1
]
− Pr

[
Expcca2−1

CSL,A′ (n) = 1
]∣∣∣

is not negligible and the CCA2-security of CSL is broken. This is a contradiction and
the claim must be true.

Step 4. We change the experiment such that the adversary no longer can win by
convincing the honest verifier Va that an invalid authentication tag is valid. Denote by
T3(c) the simulation T2(c) except that it outputs 0 if Vfspk (i,Deccsk (m,σ)) = 0 for all
i ∈ [1, `(n)] regardless of if the honest verifier Va is convinced of the validity of σ or not.
Then the third step of the outline corresponds to the following claim.

Claim 29. |Pr [T2(c) = 1]− Pr [T3(c) = 1] | is negligible.

Proof. This follows from (((cpk , spk), csk , ssk),Sig)-soundness. Denote by I the instance
chooser that on input ((cpk , spk), csk) simulates T2(c) except that before the last step
of experiment T2(c) it halts and outputs ((m,σ), z), where (m,σ) is the instance chosen
by A and z is the complete state of I. Denote by P ∗a the prover that takes z as auxiliary
input and (m,σ) as common input and completes the simulation of the experiment
except that instead of simulating the honest verifier Va it simply forwards messages to
and from the external verifier of the (((cpk , spk), csk , ssk),Sig)-soundness experiment.
Both I and P ∗a forward all requests for authentication keys to the Sigssk (·)-oracle of the
soundness experiment. The (((cpk , spk), csk , ssk),Sig)-soundness of πa implies that the
probability that P ∗a convinces the honest verifier when Checksk (m,σ) = ⊥ is negligible.
The union bound then gives our claim.

Step 5. We begin with a conceptual modification. We assume that the authentica-
tion key ak i is not generated at the beginning of the simulation T3(c), but only when

23

requested by A. Note that this does not change the distribution of T3(c), since an
authentication key no longer influence the distribution of T3(c) until requested by A.

Assume now that there is an adversary A ∈ PT such that Pr
[
ExptraceGMA,A(n) = 1

]
is

not negligible. It follows from the claims above that Pr [T3(c) = 1] is not negligible for
a suitable choice of c > 0. Let us recall our modifications: (1) we only consider an
execution of Experiment 4 to be successful if Checksk (m,σ) = {i,⊥}, (2) all invocations
of P+

a,i of πa are simulated, (3) P+
a,i never uses its authentication key ak i to compute

an authentication tag, (4), we only consider an execution of (the already modified)
Experiment 4 to be successful if Checkcsk (m,σ) ∈ {1, . . . , `(n)} \ C, and (5) ak i is only
computed if ak i is requested by A.

We construct an adversary A′ against the CMA-security of the bounded signature
scheme. It accepts spk as input, computes (cpk , csk) = CKg2(spk1), where spk1 is the
first part of spk , and then simulates T3(c) except that when A corrupts i and requests
its authentication key ak i, it computes this by querying its Sigssk (·)-oracle on i. Finally,
when A outputs (m,σ) it computes s = Deccsk (m,σ) and if possible it identifies i
such that Vfspk (i, s) = 1 and outputs (i, s). It follows that the advantage of A′ in the
CMA-experiment is not negligible. This contradicts the CMA-security of the bounded
signature scheme BSS and our group message authentication scheme is traceable. �

6 An Efficient Instantiation

We give an efficient instantiation of the above generic scheme and prove its security under
the strong RSA assumption and the decision Diffie-Hellman assumption. The strong
RSA assumption says that given a modulus N = pq, where p and q are random safe
primes of the same bit-size, and a random g ∈ SQN , it is infeasible to compute (g′, e) such
that (g′)e = g mod N and e 6= ±1. Let Gq be a prime order q subgroup of Z∗N generated
by g such that log q = Ω(logN), i.e., the subgroup has “large order”. The decision
Diffie-Hellman (DDH) assumption for Gq says that if a, b, c ∈ Zq are randomly chosen,
then it is infeasible to distinguish the distributions of (g, ga, gb, gab) and (g, ga, gb, gc),
where we compute modulo N (cf. Appendix B for formal definitions).

6.1 A Bounded Signature Scheme

We construct a bounded signature scheme BSSrsa = (SKgrsa,Sigrsa,Vfrsa, `(n)) for every
polynomial `(n), that some readers may recognize as a component of several crypto-
graphic constructions based on the strong RSA-assumption. Denote by np an additional
security parameter, whose value is determined by the authentication protocol.

Construction 30 (Bounded Signature Scheme BSSrsa).

Key Generation. On input 1n the algorithm SKgrsa
1 , i.e., the first step of the key

generator, picks two random n/2-bit safe primes p and q, then defines and outputs
spk1 = N = pq. The key generator SKgrsa

2 on input spk1 picks a random g′ ∈ SQN ,

and defines g = (g′)2
∏`(n)
i=1 ρi , where ρi is the ith positive prime integer larger than

2np with ρi = 3 mod 8. This allows for computing roots of g, as required for the

24

computation of signatures (see next step). Finally SKgrsa
2 outputs the key pair

(spk , ssk) = ((N, g), g′).

Signature Algorithm. On input a secret key ssk and a message m ∈ [1, `(n)], the
signature algorithm Sigrsa computes ω = g1/(2ρm) mod N and outputs ω. More

precisely, ω is computed as (g′)
∏`(n)
i=1,i 6=m ρi mod N .

Verification Algorithm. On input a public key spk , a message m ∈ [1, `(n)], and a
candidate signature ω, the verification algorithm Vfrsa verifies that |ρm| > 2 and
ω2ρm = g mod N or ω−2ρm = g mod N .

Equivalently, we could define the keys of BSSrsa directly as (spk , ssk) = ((N, g), (p, q)),
where g ∈ SQN is picked at random. Then to compute a signature on a message m we
would just compute the 2ρm-th root of g modulo N directly6, using the factorization
of N . This would give exactly the same functionality and the same distribution of the
signatures, but would not fit our framework with the two-step key generation, which is
why we present the above variant. A simple proof of the proposition below, following
older work [14, 19], is given in Appendix A.

Proposition 31. For every polynomial `(n), the scheme BSSrsa is a CMA-secure bounded
signature scheme under the strong RSA assumption.

6.2 A Cramer-Shoup Cryptosystem

The original cryptosystem of Cramer and Shoup [13] was given over a group of prime
order, but this is not essential. We may view the key generation as consisting of first
choosing a group with a generator and then running the key generation of the cryptosys-
tem as described in [13] using these parameters. Denote by nr an additional security
parameter such that 2−nr is negligible.

Construction 32 (Cramer-Shoup Cryptosystem CSLcs in SQN).

Key Generation. On input 1n, the first key generator CKgcs1 runs exactly as SKgrsa(1n),
and outputs N , i.e., a product of two random safe primes. The group is defined as
the group SQN of squares modulo N . The second key generator CKgcs2 is the origi-
nal key generator of Cramer and Shoup with some minor modifications. It chooses
g1, g2 ∈ SQN and z, x1, x2, y1, y2 ∈ [0, N2nr] randomly, and computes h = gz1 ,
c = gx1

1 gx2
2 , and d = gy1

1 g
y2
2 . Then a collision-free hash function H : {0, 1}∗ →

[0,
√
N/2] is generated and (cpk , csk) = ((N,H, g1, g2, h, c, d), (z, x1, x2, y1, y2)) is

output.

Encryption. On input a public key cpk , a label l ∈ {0, 1}∗, and a message m ∈
SQN , the encryption algorithm Enccs chooses a random r ∈ [0, N2nr] and outputs
(u1, u2, e, v) = (gr1, g

r
2, h

2rm, crdrH(l,u1,u2,e)).

6If the reader is worried about large gaps between primes in the definition of the ρi, note that we can
define ρi to be the ith “random” prime with the above properties derived from a pseudorandom source
based on a seed output as part of the public key. The important property is that we can compute ρi
deterministically from i.

25

Decryption. On input a secret key csk , a label l ∈ {0, 1}∗, and a ciphertext (u1, u2, e, v),
the decryption algorithm Deccs checks if u2x1

1 u2x2
2 (uy1

1 u
y2
2)2H(l,u1,u2,e) = v2. If so,

it outputs eu−2z
1 and otherwise it outputs ⊥.

We view (u1, u2, e, v) and (u′1, u
′
2, e
′, v′) as encodings of the same ciphertext if (u1, u2, e) =

(u′1, u
′
2, e
′) and v2 = (v′)2. A maliciously constructed, but valid, ciphertext may have

u1, u2, e 6∈ SQN , but this is not a problem as explained in the proof of the proposition
below.

Proposition 33. The cryptosystem CSLcs is CCA2-secure under the decision Diffie-
Hellman assumption.

Proof. We must show that the security of our particular cryptosystem CSLcs follows
from Theorem 14.

First note that choosing the exponents in the key generation and encryption algo-
rithm in Z|SQN | instead of in [0, N2nr] only changes the distributions negligibly. Recall
that u1 and u2 are squared before doing the validity check. Let us write ū1 and ū2 for
the squared values. Thus, if the validity check holds, then ū1, ū1, and v are squares. It
is tempting to conclude that the scheme is secure from Theorem 14 and the structure
of the group SQN , but unfortunately e ∈ ZN may not be a square.

However, we may write Z∗N = SQN × V , for a group V of order 4 in which each
element has order at most 2, and given the factorization of N , the corresponding isomor-
phisms are easily computed. We now apply a labeling trick similar to the one used in the
proof of Theorem 14. Any element m ∈ Z∗N can be represented as a pair (mSQ ,mV),
where mSQ ∈ SQN and mV ∈ V . We simply view m as one particular way to con-
catenate the label mV with the message mSQ . Note that a collision-free hash function
may take any representation of the pair (mSQ ,mV) as input, so the factorization is not
needed to satisfy the functional properties of a cryptosystem with labels if we accept
the slightly modified definition we use in this paper. Thus, we may conclude that our
variation of the Cramer-Shoup cryptosystem with labels CSLcs is CCA2-secure.

6.3 An Efficient Authentication Protocol

Given our implementations of a bounded signature scheme and of a cryptosystem with
labels, the authentication protocol boils down to convincing the proxy that the plaintext
of a Cramer-Shoup ciphertext is a non-trivial root. The basic idea is to first show
that the ciphertext is valid, i.e., that the ciphertext (u1, u2, e, v) satisfies the inequality
u2x1

1 u2x2
2 (uy1

1 u
y2
2)2H(m,u1,u2,e) = v2, and then show that (u1, e) is on the form (gr1, h

2rω)

for some 2ρth root ω. The latter is equivalent to showing that (u2ρ
1 , e2ρ/g) is on the

form (gs1, h
2s), for some |ρ| ≥ 3. Standard methods for proofs of logarithms over groups

of unknown order, e.g. [5], could be used to construct a protocol for the above, but
that would give an unnecessarily costly solution, involving an additional independently
generated RSA-modulus and generators. We exploit the relaxed notions of soundness
and zero-knowledge to significantly reduce this cost. We use a joint RSA-modulus of the
cryptosystem and signature scheme to avoid the need for additional RSA-parameters,
i.e., soundness holds even given a signature oracle. Our simulation of an interaction is

26

indistinguishable from a real interaction only over the randomness of the public keys
of the cryptosystem, but even given a decryption oracle. We identify which exponents
need to be extracted to prove soundness and settle for existence of the other exponents,
i.e., the witness is only partly extractable using standard rewinding techniques. Finally,
we use special tricks, e.g., we use exponents of the form (ρ− 3)/8 to avoid proving that
|ρ| ≥ 3 using an interval proof [5].

Below we give an explicit protocol and state its security properties. Let nr and nb
be additional security parameters such that 2−nr and 2−nb are negligible, and 2nb <√
N/2. Choose some np such that np > nb + nr. Denote by GQ a subgroup of Z∗P with

generator G of prime order Q for some prime P , where logQ = n.

Protocol 34 (Authentication Protocol).
Common Input. cpk = (N,H, g1, g2, h, c, d), g ∈ SQN , m ∈ {0, 1}∗, u1, u2, e, v ∈ Z∗N .
Private Input. ρ > 2np such that ρ = 3 mod 8, ω, and r ∈ [0, N2nr] such that
ω2ρ = g mod N and (u1, u2, e, v) = Enccscpk (m,ω, r).

Set û1 = u2
1, ê = e2, û2 = u2

2, v̂ = v2, and f = (cdH(m,u1,u2,e))2.

1. Va picks a random X ∈ ZQ, hands Y = GX to the Pa, and proves the knowledge
of X using the zero-knowledge proof of knowledge of a logarithm from [12].

2. Pa chooses bPa ∈ [0, 2nb − 1], R ∈ ZQ, s, k ∈ [0, 2n+nr − 1], lr, ls, lk ∈
[
0, 2n+nb+2nr − 1

]
,

lρ ∈ [0, 2np+nb+nr − 1], and lt ∈
[
0, 2n+2nb+3nr − 1

]
randomly and hands to Va:

C = GbPaY R ,

(α1, α2, β) = (glr1 , g
lr
2 , f

lr) ,

(γ1, γρ , γ) = (gls1 û
2lρ
1 , hls êlρ , glk1 g

lρ
2) ,

(ν1, νρ , ν) = (gs1û
(ρ−3)/8
1 , hse(ρ−3)/8, gk1g

(ρ−3)/8
2) , and

(δ1, δρ) = (glt1 , h
lt) .

3. Va chooses bVa ∈ [0, 2nb − 1] randomly and hands it to Pa.

4. Pa sets b = bPa ⊕ bVa , and hands (bPa , R, ar, as, ak, aρ , at) to the verifier, where

ar = 2rb+ lr aρ = ((ρ − 3)/8)b+ lρ

(as, ak) = (2sb+ ls, kb+ lk) at = (16s+ 4rρ)b+ lt .

5. Va first checks that C
?
= GbPaY R, bPa ∈ [0, 2nb − 1], and aρ ∈ [0, 2np+nb+nr − 1].

Then it sets ν̂1 = ν2
1 and ν̂ρ = ν2

ρ , ν̃1 = ν̂8
1 û

6
1, ν̃ρ = ν̂8

ρ ê
3, and b = bPa ⊕ bVa , and

checks that

(ûb1α1, û
b
2α2, v̂

bβ)
?
= (gar1 , gar2 , far) ,

(ν̂b1γ1, ν̂
b
ργρ , ν

bγ)
?
= (gas1 û

2aρ
1 , has êaρ , gak1 g

aρ
2) , and(

ν̃b1δ1, (ν̃ρ/g)bδρ
) ?

= (gat1 , h
at) .

27

Proposition 35. Protocol 34 is overwhelmingly complete and (CKgcs, FEnccs ,Dec
cs)-

zero-knowledge for the relation Ra, and (((cpk , spk), csk , ssk), Sig)-sound for the lan-
guage La, under the strong RSA assumption and the DDH assumption.

Proposition 35 is proved below. It seems impossible to prove that the protocol is
zero-knowledge, since the pair (ν1, νρ) may be viewed as an El Gamal ciphertext of part

of the witness, namely g
1
8
− 3

8ρ , using a public key h which is part of the common input.
Hence it is conceivable that the auxiliary input contains sufficient information to check if
this is the case, without allowing any simulator to produce a correct view. The protocol
is only sound as long as no adversary can reduce modulo the order of the group SQN .

6.4 Proof of Proposition 35

Overwhelming completeness follows by inspection. We concentrate on proving the
soundness and zero-knowledge properties of the protocol.

(((cpk , spk), csk , ssk),Sig)-Soundness. Suppose that the proposition is false, i.e., the
authentication protocol is not sound in the sense of (((cpk , spk), csk , ssk),Sig)-soundness.
Then there exists an instance chooser I and a prover P ∗a such that when the tuple
((cpk , spk), csk) consists of randomly chosen keys and

((m, (u1, u2, v, e)), ζ) = ISigssk (·)((cpk , spk), csk) ,

then

Pr [(pk ,m, (u1, u2, v, e)) 6∈ Ra ∧ 〈P ∗a (ζ), Va〉(pk ,m, (u1, u2, v, e)) = 1] ≥ n−ψ

with pk = (cpk , spk), for some constant ψ and n in an infinite index set N . Denote by

Λ = ((pk ,m, (u1, u2, v, e)),Γ, C, α1, α2, β, ν1, νρ , ν, γ1, γρ , γ, δ1, δρ)

the view of the verifier after the second step of the protocol, where Γ is the view of the
subprotocol that is executed in the first step, and (C,α1, α2, β, ν1, νρ , ν, γ1, γρ , γ, δ1, δρ)
is the message of the prover in the second step of the main protocol. Denote by Eacc the
event that the chosen instance does not belong to the relation and the verifier accepts,
i.e., the event

(pk ,m, (u1, u2, v, e)) 6∈ Ra ∧ 〈P ∗a (ζ), Va〉(pk ,m, (u1, u2, v, e)) = 1 .

Then define Sgood as the set of (csk ,Λ) such that

Pr [Eacc | (csk ,Λ) ∈ Sgood] ≥ n−ψ/2 ,

and denote the event (csk ,Λ) ∈ Sgood by Egood. Then the following claim follows by a
simple averaging argument.

Claim 36. Pr [Egood] ≥ n−ψ/2.

28

Denote by Ext the extraction algorithm, that given ((cpk , spk), csk , ssk) simply runs
the soundness experiment with P ∗a to get a view (Λ, bVa , (bPa , R, ar, as, ak, aρ , at)). Then
Ext rewinds to the challenge step and completes the experiment again using an indepen-
dently chosen challenge b′Va , to produce another view (Λ, b′Va , (b

′
Pa
, R′, a′r, a

′
s, a
′
k, a
′
ρ , a
′
t))

with identical beginning Λ. Finally, Ext outputs these views. Denote by Efork the event
that Ext outputs two accepting transcripts.

Claim 37. Pr [Efork ∧ b 6= b′] ≥ n−3ψ/8 − ε(n) for some negligible function ε(n) under
the DDH assumption.

Proof. The quantity Pr
[
Efork ∧ bVa 6= b′Va

]
can be bounded by

Pr [Eacc | Egood]2 Pr [Egood]− Pr
[
bVa = b′Va

]
≥ n−3ψ/8− ε(n)

for some negligible function ε(n) using independence and the union bound, since clearly
Pr
[
bVa = b′Va

]
is negligible. Since b 6= b′ whenever bVa 6= b′Va and bPa = b′Pa , it suffices to

show that Pr
[
Efork ∧ bPa 6= b′Pa

]
is negligible.

Suppose it is not. Then denote by A′ the discrete logarithm algorithm that accepts
(G, Y) as input and simulates Ext, except that it uses (G, Y) instead of generating these
parameters, and it invokes the perfect zero-knowledge simulator instead of executing
the proof of knowledge of the logarithm logG Y . By assumption, Ext outputs accepting
transcripts such that bPa 6= b′Pa with probability that is not negligible. This implies that

GbPaY R = C = Gb
′
PaY R′ , from which the discrete logarithm logG Y = (b′Pa − bPa)/(R−

R′) can be extracted and output by A′. The claim follows, since this contradicts the
DDH-assumption.

Recall that |SQN | is of the form p′q′, where p = 2p′ + 1 and q = 2q′ + 1 are the
two safe prime divisors in the modulus N . Consider now two transcripts corresponding
to the event Eacc ∧ b 6= b′. From the choice of the challenge length nb we know that
|b− b′| < p′, q′, so b− b′ is invertible modulo |SQN |. Define ρ∗ = (b− b′)−1(aρ − a′ρ) and
ρ = 8ρ∗ + 3.

Claim 38. Pr
[
Efork ∧ b 6= b′ ∧ (b− b′) | (aρ − a′ρ) ∧ gcd(ρ, p′q′) = 1

]
≥ n−3ψ/8 − ε′(n),

where ε′(n) is a negligible function, under the DDH assumption and the strong RSA
assumption.

Proof. Consider two accepting transcripts as above. We have νb−b
′

= g
ak−a′k
1 g

aρ−a′ρ
2 . If

b − b′ does not divide both ak − a′k and aρ − a′ρ , then we conclude from Lemma 41 in
Appendix B that the strong RSA assumption is broken. The reader may object that
we need to implement the signature oracle, but this is easily even given (N, g1, g2) as

input. Simply define g = g
2
∏
i∈[1,`(n)] ρi

1 , and note this allows us to compute a signature

g1/(2ρm) of m as g = g

∏
i∈[1,`(n)]\{m} ρi

1 . Thus, Lemma 41 is applicable and the event
Efork ∧ b 6= b′ ∧ (b− b′) - (aρ − a′ρ) occurs with negligible probability.

Then note that if ρ is not invertible modulo p′q′, then neither is (b− b′)ρ. Consider
the machine A′ that given (N, g) uses these values to compute (cpk , csk) and execute

29

Ext. If Ext outputs two accepting transcripts with b 6= b′, then A′ outputs (b − b′)ρ =
8(aρ − a′ρ) + 3(b− b′).

If the claim is false, then A′ outputs an integer k with gcd(k, p′q′) 6= 1 with probabil-
ity that is not not negligible. If p′q′ divides k, then gk+1

1 = g1 and we have a non-trivial
root of g1. If only one of the primes, say p′, divides k, then gk1 = 1 mod p holds, and
gcd(gk1 − 1, N) = p allows us to factor N . Therefore, the strong RSA assumption is
broken, so the claim must hold.

We now consider an output of Ext conditioned on the event

Efork ∧ b 6= b′ ∧ (b− b′)|(aρ − a′ρ) ∧ gcd(ρ,N) = 1 .

In this case, we can define ρ∗ = (aρ − a′ρ)/(b − b′) by integer division and set
ρ = 8ρ∗+3. By construction aρ , a

′
ρ ∈ [0, 2np+nb+nr − 1] and np > nb+nr, i.e., ρ∗ < ρiρj

for all 1 ≤ i, j ≤ `. In other words, the values ρ∗ and ρ not only exists, but we extract
them explicitly.

We have (ûb−b
′

1 , ûb−b
′

2 , v̂b−b
′
) = (g

ar−a′r
1 , g

ar−a′r
2 , far−a

′
r), Since û1, û2 and v̂ are squares,

we can define r = (b− b′)−1(ar − a′r), and conclude that

(û1, û2, v̂) = (gr1, g
r
2, f

r) . (1)

This implies that the input ciphertext is valid and does not decrypt to ⊥.
By construction, ê, ν̂1, ν̂ρ , ν̃1 and ν̃ρ are squares, which also implies that (ν̂ρ/g) is

a square. We have (ν̂b−b
′

1 , ν̂b−b
′

ρ) = (g
as−a′s
1 û

2(aρ−a′ρ)

1 , has−a
′
s êaρ−a

′
ρ). Therefore, we can

define s = (b− b′)−1(as − a′s) and conclude that

(ν̂1, ν̂ρ) = (gs1û
2ρ∗

1 , hsêρ
∗
) , (2)

where we defined ρ∗ = (aρ−a′ρ)/(b−b′) above. Finally, we know that (ν̃b−b
′

1 , (ν̃ρ/g)b−b
′
) =

(g
at−a′t
1 , hat−a

′
t). We define t = (b− b′)−1(at − a′t) and conclude that

(ν̃1, ν̃ρ/g) = (gt1, h
t) . (3)

Recall that we defined ρ = 8ρ∗ + 3. Then if we combine Equations (1)-(3) we have(
û2ρ

1 , êρ/g
)

=
(
û

16ρ∗+6
1 , ê8ρ∗+3/g

)
=
(
(û

2ρ∗

1)8û6
1, (ê

ρ∗)8ê3/g
)

=
(
(ν̂1g

−s
1)8û6

1, (ν̂ρh
−s)8ê3/g

)
= (g−8s

1 ν̃1, h
−8sν̃ρ/g)

= (g−8s
1 gt1, h

−8sht) = (gr
′′

1 , hr
′′
) ,

for some r′′, or differently written: (û2ρ
1 , êρ) = (gr

′′
1 , hr

′′
g). We define ω = eu−2z

1 , which
can be computed using csk , and note that ω2ρ = g. Recall that ρiρj > |ρ| ≥ 3 for all
1 ≤ i, j ≤ `.

To summarize, given the instance chooser I and the prover P ∗a assumed to exist at
the beginning of the proof, we can construct a PPT algorithm B that given (N, g) and

(g1/(2ρ1), 2ρ1), . . . , (g1/(2ρ`), 2ρ`)

30

as input, outputs with probability that is not negligible, a pair (ω, 2ρ), where ω2ρ = g,
ρ = 3 mod 8, and ρiρj > |ρ| ≥ 3 for all 1 ≤ i, j ≤ `. By assumption we also have ρ 6= ±ρi.
Without loss of generality we may assume that ρ 6= ±1 and gcd(ρ, 2

∏`
i=1 ρi) = 1,

since we can always strip off any ρi-factors of ρ and modify the non-trivial root ω
correspondingly.

We conclude the proof of soundness by showing how this contradicts the strong
RSA assumption. Given an instance (N, g′) of the strong RSA problem we run B
on input (N, g) and the list of non-trivial roots (g1/(2ρ1), 2ρ1), . . . , (g1/(2ρ`), 2ρ`), where

g = (g′)2
∏`
i=1 ρi . When B outputs (ω, 2ρ) such that ω2ρ = g and gcd(ρ, 2

∏`
i=1 ρi) = 1,

we compute integers a and b such that a·2
∏`
i=1 ρi+bρ = 1, and then output (ω2a(g′)b, ρ)

which is a non-trivial root of g′. More precisely,

(ω2a(g′)b)ρ = ga(g′)bρ = (g′)a2
∏`
i=1 ρi+bρ = g′ .

This concludes the proof of soundness, since it contradicts the strong RSA assumption.

(CKgcs, FEnccs ,Dec
cs)-Zero-Knowledge. The simulator is defined as follows. First it

starts the execution of the verifier. If the simulator accepts the proof of knowledge of the
logarithm logG Y by the verifier, then the simulator invokes the knowledge extractor of
this proof of knowledge. Let X ∈ ZQ be the extracted value such that Y = GX . Strictly
speaking we can for every fixed c > 0 turn the expected polynomial time extractor into
a strict polynomial time extractor with advantage bounded by n−c/2 by bounding the
running time of the expected time extractor. This follows immediately from Markov’s
inequality.

Given X such that Y = GX , the simulator continues the simulation except that it
chooses s, k ∈ [0, 2n+nr − 1] randomly and defines

(ν1, νρ , ν) = (gs1, h
s, gk1) .

Then it chooses random b ∈ [0, 2nb − 1], ar, as, ak ∈
[
0, 2n+nb+2nr

]
, aρ ∈ [0, 2np+nb+nr],

and at ∈
[
0, 2n+2nb+3nr

]
, and defines

(α1, α2, β) = (gar1 /ûb1, g
ar
2 /ûb2, f

ar/v̂b)

(γ1, γρ , γ) = (gas1 û
aρ
1 /ν̂b1, h

as êaρ/ν̂bρ , h
akg

aρ
1 /νb)

(δ1, δρ) = (gat1 /ν̃
b
1, h

at/(ν̃ρ/g)b) .

Finally, it defines b′Pa = b ⊕ bVa and R′ = (bPa + XR − b′Pa)/X and continues the
simulation using the above values except that (bPa , R) is replaced by (b′Pa , R

′).
A standard honest verifier zero-knowledge argument gives that if we could use cor-

rectly distributed (ν1, νρ), then the resulting simulated view would be statistically close
to the view of the verifier in the protocol. It remains to show that it is infeasible to
distinguish the distribution of our simulated (ν1, νρ) from the correct distribution, but
this follows readily from the CCA2-security of the cryptosystem CSLcs.

Suppose that the protocol is not (CKgcs, FEnccs ,Dec
cs)-zero-knowledge. Then there

exists a verifier V ∗a ∈ PT a constant c > 0, an instance chooser I ∈ PPT, and a

31

distinguisher D ∈ PPT such that∣∣∣Pr
[
Exp

(CKgcs,FEnccs ,Deccs)−zk−0
πa,Ra,I,V ∗a ,M,D (n) = 1

]
− Pr

[
Exp

(CKgcs,FEnccs ,Deccs)−zk−1
πa,Ra,I,V ∗a ,M,D (n) = 1

]∣∣∣ ≥ δ(n)

for some δ(n) ≥ n−c, where M is the simulator described above.
Denote by A′ an adversary to the CCA2-security of CSLcs defined as follows. It

accepts as input a public key cpk and starts a simulation of the (CKgcs, FEnccs ,Dec
cs)-

zero-knowledge experiment Exp
(CKgcs,FEnccs ,Deccs)−zk−1
πa,Ra,I,V ∗a ,M,D (n) using the verifier V ∗a , the in-

stance chooser I, the distinguisher D, and the simulator M described above. When the
instance compiler outputs ((pk ,m, (u1, u2, e, v)), (ω, r)), A′ hands (ω(ρ−3)/8, 1) to the
CCA2-experiment and waits for a Cramer-Shoup ciphertext (u∗1, u

∗
2, e
∗, v∗) in return,

where ρ is the prime ρi such that ω2ρi = g. Then it replaces (ν1, νρ) by ((u∗1)2, e∗),
continues the simulation and outputs its result. Note that by definition of FEnccs we
necessarily have ω2ρ = g for some such prime, and this also implies that ω ∈ SQN .
Note that∣∣∣Pr

[
Expcca2−bCSLcs,A′(n) = 1

]
− Pr

[
Exp

(CKgcs,FEnccs ,Deccs)−zk−b
πa,Ra,I,V ∗a ,M,D (n) = 1

]∣∣∣ < 3

4
n−c ,

since the difference is bounded by the sum of n−c/2 (due to the knowledge error of the
extractor) and some negligible quantity (due to the statistically small error in our honest
verifier simulation).

Thus, for a suitable choice of c > 0, A′ breaks the CCA2-security of CSLcs. This is
a contradiction and the protocol must be (CKgcs, FEnccs ,Dec

cs)-zero-knowledge.

6.5 Efficiency of the Concrete Scheme

An authentication tag requires 5 exponentiations to compute and 6 exponentiations to
verify. Unique prefixes of authentication keys can be tabulated to speed up identification.
The authentication protocol requires 7 rounds, since the subprotocol from [12] requires
4 rounds, but this can be reduced to 5 rounds by interlacing the last two rounds of
the subprotocol with the first rounds of the main protocol. For practical parameters,
n = 1024 and nr = 30, nb = 50, and np = 85 the complexity of the prover and verifier in
the authentication protocol corresponds to 19 and 17 exponentiations (see Appendix C
for how we estimate this).

Furthermore, the complexity of our scheme can be reduced by using standard tech-
niques such as simultaneous exponentiation and fixed-base exponentiation [30], but for
typical applications this is not practical for the sender. A simpler way to reduce com-
plexity of a sender is to pre-compute most exponentiations in an offline phase. It is
immediate that this reduces the complexity in the online phase to less than one expo-
nentiation. This approach is feasible even on weak computational devices.

The protocol can also be simplified in an other direction by letting the receiver choose
the commitment parameters G and Y to be used by all parties. This reduces the number
of rounds to 3, and also decreases the number of exponentiations by 6 for the prover
and 7 for the verifier. However, it seems hard to abstract this version in a natural way
and keep the description of the generic scheme reasonably modular. Hence, to keep the
exposition clear we have chosen not to present the most efficient solution.

32

7 Conclusion

We remind the reader that performing an exponentiation in a bilinear group used for
the provably secure group signature schemes corresponds to roughly 6-8 modular expo-
nentiations for comparable security levels. Thus, our scheme is in fact competitive with
these schemes, but under a better understood assumption. The standard group signa-
ture schemes, analyzed in the random oracle model, clearly out-perform our scheme,
but the random oracle model is not sound [9]. This is sometimes considered a purely
theoretical nuisance, but we think that the recent attacks on hashfunctions, e.g., the
collision-attacks on SHA-1 of Wang [36], show that even in practice it is prudent not to
model a hashfunction as a random function.

Furthermore, the strong RSA assumption is arguably the most trusted assumption
under which a provably secure ordinary signature scheme is known to exist with suffi-
ciently low complexity for practical use, and the decision Diffie-Hellman assumption is
the most studied assumption used in practice for public key cryptography.

In this work we have formalized the new notion of group message authentication,
which relaxes some of the requirements of group signatures and has applications to
anonymous credit cards, and we have constructed a provably secure scheme under the
above two assumptions.

References

[1] G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros. Practical group
signatures without random oracles. Cryptology ePrint Archive, Report 2005/385,
2005. http://eprint.iacr.org/.

[2] G. Ateniese and G. Tsudik. Some open issues and directions in group signatures. In
Financial Cryptography ’99, volume 1648 of LNCS, pages 196–211. Springer Verlag,
1999.

[3] N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature
scheme. In Advances in Cryptology – Eurocrypt ’97, volume 1233 of LNCS, pages
480–494. Springer Verlag, 1997.

[4] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In Advances in Cryptology – Eurocrypt 2003, volume 2656 of LNCS,
pages 614–629. Springer Verlag, 2003.

[5] F. Boudot. Efficient proofs that a committed number lies in an interval. In Advances
in Cryptology – Eurocrypt 2000, volume 1807 of LNCS, pages 431–444. Springer
Verlag, 2000.

[6] X. Boyen and B. Waters. Compact group signatures without random oracles. In
Advances in Cryptology – Eurocrypt 2006, volume 4004 of LNCS, pages 427–444.
Springer Verlag, 2006.

33

[7] J. Camenisch and J. Groth. Group signatures: Better efficiency and new theoretical
aspects. In Security in Communication Networks 2004, volume 3352 of LNCS.
Springer Verlag, 2005.

[8] J. Camensisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Advances in Cryptology – Crypto 2003, volume 2729 of
LNCS, pages 126–144. Springer Verlag, 2003.

[9] R. Canetti, O. Goldreich, and S. Halevi. The random oracle model revisited. In
30th ACM Symposium on the Theory of Computing (STOC), pages 209–218. ACM
Press, 1998.

[10] D. Chaum. Designated confirmer signatures. In Advances in Cryptology – Eurocrypt
’94, volume 950 of LNCS, pages 86–91. Springer Verlag, 1994.

[11] D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology –
Eurocrypt ’91, volume 547 of LNCS, pages 257–265. Springer Verlag, 1991.

[12] R. Cramer, I. Damg̊ard, and P. D. MacKenzie. Efficient zero-knowledge proofs of
knowledge without intractability assumptions. In Public Key Cryptography – PKC
2000, volume 1751, pages 354–372. Springer Verlag, 2000.

[13] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Advances in Cryptology – Crypto ’98,
volume 1462 of LNCS, pages 13–25. Springer Verlag, 1998.

[14] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
In 6th ACM Conference on Computer and Communications Security (CCS), pages
46–51. ACM Press, 1999.

[15] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Advances in Cryptology – Eurocrypt ’02,
volume 2332 of LNCS, pages 45–64. Springer Verlag, 2002.

[16] I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment scheme
based on groups with hidden order. In Advances in Cryptology – Asiacrypt 2002,
volume 2501 of LNCS, pages 125–142. Springer Verlag, 2002.

[17] C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. In 30th ACM
Symposium on the Theory of Computing (STOC), pages 409–418. ACM Press, 1998.

[18] A. Fiat and A. Shamir. How to prove yourself. practical solutions to identification
and signature problems. In Advances in Cryptology – Crypto ’86, volume 263 of
LNCS, pages 186–189. Springer Verlag, 1986.

[19] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the
random oracle. In Advances in Cryptology – Eurocrypt ’99, volume 1592 of LNCS,
pages 123–139. Springer Verlag, 1999.

34

[20] O. Goldreich. A uniform-complexity treatment of encryption and zeroknowledge.
Journal of Cryptology, 6(1):21–53, 1993.

[21] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[22] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
1988.

[23] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their
applications. In Advances in Cryptology – Eurocrypt ’96, volume 1070 of LNCS,
pages 143–154. Springer Verlag, 1996.

[24] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In Advances in
Cryptology – Eurocrypt 2004, volume 3027 of LNCS. Springer Verlag, 2004.

[25] A. Kiayias, Y. Tsiounis, and M. Yung. Group encryption. Cryptology ePrint
Archive, Report 2007/015, 2007. http://eprint.iacr.org/2007/015.

[26] J. Kilian and E. Petrank. Identity escrow. In Advances in Cryptology – Crypto ’98,
pages 169–185, 1998.

[27] S. Kim, S. Park, and D. Won. Group signatures for hierarchical multigroups. In
Information Security Workshop – ISW ’97, volume 1396 of LNCS, pages 273–281.
Springer Verlag, 1998.

[28] S. Laur and S. Pasini. Sas-based group authentication and key agreement protocols.
In Public Key Cryptography – PKC 2008, volume 4939 of LNCS, pages 197–213.
Springer Verlag, 2008.

[29] S. Lucks. A variant of the cramer-shoup cryptosystem for groups of unknown order.
In Advances in Cryptology – Asiacrypt ’02, pages 27–45, 2002.

[30] A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

[31] S. Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000.

[32] B. Qin, Q. Wu, W. Susilo, and Y. Mu. Group decryption. Cryptology ePrint
Archive, Report 2007/017, 2007. http://eprint.iacr.org/2007/017.

[33] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ci-
phertext attack. In Advances in Cryptology – Eurocrypt ’98, volume 1403 of LNCS,
pages 1–16. Springer Verlag, 1998.

[34] M. Trolin and D. Wikström. Hierarchical group signatures. Cryptology ePrint
Archive, Report 2004/311, 2004. http://eprint.iacr.org/.

35

[35] M. Trolin and D. Wikström. Hierarchical group signatures. In 32nd International
Colloquium on Automata, Languages and Programming (ICALP), volume 3580 of
LNCS, pages 446–458. Springer Verlag, 2005. (Full version [34]).

[36] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full sha-1. In Advances
in Cryptology – Crypto 2005, volume 3621 of LNCS, pages 17–36. Springer Verlag,
2005.

[37] D. Wikström. Designated confirmer signatures revisited. Cryptology ePrint
Archive, Report 2006/123, 2006. http://eprint.iacr.org/2006/123.

[38] D. Wikström. Designated confirmer signatures revisited. In 4th Theory of Cryptog-
raphy Conference (TCC), volume 4392 of LNCS, pages 342–361. Springer Verlag,
2007. Full version [37].

A Proof of Proposition 31

Suppose that there is a forger A with a success probability in the CMA-experiment that
is not negligible. Denote by m1, . . . ,mt(n) the queries A hands to the signature oracle
Sigrsa

ssk (·), and let (m,ω) be the output of A. Denote by E the event that A outputs a
pair (m,ω) such that Vfrsaspk (m,ω) = 1 and ∀i : m 6= mi. By assumption Pr [E] is not
negligible. Since `(n) is polynomial, an averaging argument implies that there exists a
fixed m̄ ∈ [1, `(n)] such that Pr [E ∧m = m̄] is not negligible.

Denote by A′ the adversary defined as follows. It chooses m̄ ∈ [1, `(n)] randomly
and defines S = [1, `(n)]\{m̄} as the set of messages distinct from m̄. The adver-
sary A′ takes a random strong RSA problem instance (N,h) as input and computes
g = h2

∏
m∈S ρm mod N . Note that g is identically distributed to h, since 2

∏
m∈S ρm is

relatively prime to the order of SQN . Then it simulates the CMA-experiment to A.
For all queries ml 6= m̄ the Sigrsa

ssk (·)-oracle is easily simulated without using the secret

key ssk , since g1/(2ρml) = h
∏
m∈S\{ml}

ρm mod N . If A asks for a signature of m̄, then
A′ outputs ⊥. Otherwise A eventually outputs (m,ω). If m 6= m̄, then A′ outputs ⊥.
If m = m̄ then A′ computes a and b such that 1 = a2

∏
m∈S ρm + bρm̄, and outputs

(ω2ahb, ρm̄). The integers a and b exist since 2
∏
m∈S ρm and ρm̄ are relatively prime by

construction. Note that if ω2ρm̄ = g mod N , then we have

(ω2ahb)ρm̄ = ha2
∏
m∈S ρm+bρm̄ = h mod N .

If ω−2ρm̄ = g mod N , then we change the sign of ρm̄ and the above holds. We conclude
that A′ breaks the strong RSA-assumption, since conditioned on the event that the
output of A′ is not ⊥, the event that m = m̄ is independent of the event E and happens
with probability 1/`(n), where `(n) is polynomially bounded. �

36

B Assumptions

B.1 Strong RSA-Assumption

In this paper we use random primes p and q such that both (p − 1)/2 and (q − 1)/2
are primes. Such primes are sometimes called safe primes. It is not known if there are
infinitely many such primes, but in practice a random prime p has this property with
probability roughly 1/ log p. Formally we need an assumption.

Definition 39 (Safe Prime Assumption). There exists an integer c such that a random
n-bit prime p is safe with probability at least n−c.

The strong RSA-assumption, introduced in [3], says that it is infeasible to compute
any non-trivial root of a random element in SQN , where N is an RSA-modulus.

Definition 40 (Strong RSA-Assumption). Let p and q be randomly chosen n/2-bit safe
primes, define N = pq, and let g ∈ SQN be randomly chosen. Then for every A ∈ PPT:
Pr [A(N, g) = (g′, e) ∧ e 6= ±1 ∧ (g′)e = g mod N] is negligible in n.

Lemma 41. Let p and q be randomly chosen n/2-bit safe primes, define N = pq, and
let g, h ∈ SQN be randomly chosen. Then for every A ∈ PPT:

Pr
[
A(N, g) = (g′, e0, e1, e2) ∧ (g′)e0 = ge1he2 mod N ∧ e0 6= 0 ∧ (e0 - e1 ∨ e0 - e2)

]
is negligible in n.

A proof of this lemma is given, e.g., in Damg̊ard and Fujisaki [16].

B.2 Decision Diffie-Hellman Assumption

The decision Diffie-Hellman problem can be considered over many different groups.
Below we define the assumption over a large prime order subgroup of a modular multi-
plicative group.

Definition 42 (Decision Diffie-Hellman Assumption). Let N be an integer and Gq a
subgroup of Z∗N of prime order q with log q = O(n). Let g be a generator of this group
and let a, b, c ∈ Zq be randomly chosen. Then for every adversary A ∈ PPT the following
quantity is negligible in n:∣∣∣Pr

[
A(N, q, g, ga, gb, gab) = 1

]
− Pr

[
A(N, q, g, ga, gb, gc) = 1

]∣∣∣ .
C Program Used To Estimate the Complexity
; (load "efficiency.scm")

; (complexity 1024 30 50 81)

(define (complexity secp secpR secpC secpP)

; Cost of an exponentiation as a function of number of bits in exponent

(define (expos bits-in-exp)

(/ bits-in-exp secp))

; Complexity of prover in terms of exponentiations

(define (prover-complexity)

37

(+ 1 ; Compute Y

4 ; Cramer et al PoK of exponent

1 ; Compute C

(expos secpC)

(* 3 (expos (+ secp secpC (* 2 secpR)))) ; 2 alphas and beta

(* 3 (expos (+ secp secpR))) ; 3 nus

(* 3 (expos secpP))

(* 3 (expos (+ secp secpC (* 2 secpR)))) ; 3 gammas

(* 3 (expos (+ secpP secpC secpR)))

(* 2 (expos (+ secp (* 2 secpC) (* 3 secpR)))) ; 2 deltas

))

; Complexity of verifier in terms of exponentiations

(define (verifier-complexity)

(+ 6 ; Cramer et al PoK of exponent

1 ; Check opening of C

(expos secpC)

(* 3 (expos (+ secp secpC (* 2 secpR)))) ; 2 alphas and beta

(* 3 (expos secpC))

(* 3 (expos (+ secp secpC (* 2 secpR)))) ; 3 nus and gammas

(* 3 (expos (+ secpP secpC secpR)))

(* 3 (expos secpC))

(* 2 (expos (+ secp (* 2 secpC) (* 3 secpR)))) ; 2 nus and 2 deltas

(* 2 (expos secpC))

))

; Print the result nicely

(define (print-complexities)

(newline)

(newline)

(display "Complexity of transfer protocol:")

(newline)

(display "Prover ")

(display (round (prover-complexity)))

(display " exponentiations.")

(newline)

(display "Verifier ")

(display (round (verifier-complexity)))

(display " exponentiations.")

(newline)

(newline))

(print-complexities)

); (load "efficiency.scm")

; (complexity 1024 30 50 81)

(define (complexity secp secpR secpC secpP)

; Cost of an exponentiation as a function of number of bits in exponent

(define (expos bits-in-exp)

(/ bits-in-exp secp))

; Complexity of prover in terms of exponentiations

(define (prover-complexity)

(+ 1 ; Compute Y

4 ; Cramer et al PoK of exponent

1 ; Compute C

(expos secpC)

(* 3 (expos (+ secp secpC (* 2 secpR)))) ; 2 alphas and beta

(* 3 (expos (+ secp secpR))) ; 3 nus

(* 3 (expos secpP))

(* 3 (expos (+ secp secpC (* 2 secpR)))) ; 3 gammas

(* 3 (expos (+ secpP secpC secpR)))

(* 2 (expos (+ secp (* 2 secpC) (* 3 secpR)))) ; 2 deltas

))

; Complexity of verifier in terms of exponentiations

(define (verifier-complexity)

(+ 6 ; Cramer et al PoK of exponent

1 ; Check opening of C

(expos secpC)

(* 3 (expos (+ secp secpC (* 2 secpR)))) ; 2 alphas and beta

(* 3 (expos secpC))

(* 3 (expos (+ secp secpC (* 2 secpR)))) ; 3 nus and gammas

(* 3 (expos (+ secpP secpC secpR)))

(* 3 (expos secpC))

(* 2 (expos (+ secp (* 2 secpC) (* 3 secpR)))) ; 2 nus and 2 deltas

(* 2 (expos secpC))

))

; Print the result nicely

(define (print-complexities)

(newline)

(newline)

(display "Complexity of transfer protocol:")

(newline)

38

(display "Prover ")

(display (round (prover-complexity)))

(display " exponentiations.")

(newline)

(display "Verifier ")

(display (round (verifier-complexity)))

(display " exponentiations.")

(newline)

(newline))

(print-complexities)

)

39

