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Abstract. In this paper we develop a technique of constructing bent–
negabent Boolean functions by using complete mapping polynomials.
Using this technique we demonstrate that for each ` ≥ 2 there exits bent–
negabent functions on n = 12` variables with algebraic degree n

4
+ 1 =

3`+ 1. It is also demonstrated that there exist bent–negabent functions
on 8 variables with algebraic degrees 2, 3 and 4.
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1 Introduction

Let F2 be the prime field of characteristic 2 and let Fn
2 is the n-dimensional

vector space over F2. A function from Fn
2 to F2 is called a Boolean function on

n variables. The reader is referred to Section 1.1 for all the basic notations and
definitions related to Boolean functions.

Walsh, Hadamard, or Walsh–Hadamard transform has been exploited exten-
sively for analyzing Boolean functions used in coding theory and cryptology [6].
For even n, the functions which attain the largest distance from the set of affine
functions, that is the functions which have the largest nonlinearity are called
bent functions. From the perspective of coding theory these functions attain
the covering radius of the first order Reed–Muller code. A Boolean function on
even number of variables is bent if and only if the magnitude of all the val-
ues in its Walsh–Hadamard spectrum are same, that is to say that a Boolean
function is bent if and only if its Walsh–Hadamard spectrum is flat. Walsh–
Hadamard transform is an example of a unitary transformation on the space
of Boolean functions. Riera and Parker [18] considered some generalized bent
criteria for Boolean functions by analyzing Boolean functions which have flat
spectrum with respect of one or more transforms chosen from a set of unitatry
transforms. The transforms chosen by Riera and Parker [18] are n-fold tensor

product of the identity mapping

(
1 0
0 1

)
, the Walsh–Hadamard transformation

and the nega–Hadamard transformation. Riera and Parker [18] mention that the
choice of these transforms is motivated by a choice of local unitary transforms



that play an important role in the structural analysis of pure n-qubit stabilizer
quantum states. A Boolean functions whose nega–Hadamard spectrum is flat is
said to be a negabent function. The research initiated in [18] leads to a natural
question of constructing Boolean function which are both bent and negabent.
These functions are referred to as bent–negabent functions. This motivated sev-
eral works in the area of Boolean functions [15, 23, 24] in the last few years. In
Theorem 10 [23] it is proved that if f is a Maiorana–McFarland type bent func-
tion on n variables (n even) which is also negabent then the algebraic degree of
f is atmost n/2− 1. In Example 6 [23] a technique to construct bent–negabent
functions on 4n variables of algebraic degree ranging from 2 to n is described.
Another technique to construct bent–negabent functions on 4n variables of al-
gebraic degree ranging from 2 to n − 1 is described in Theorem 7 [24]. Thus,
although it is known that there may exist bent–negabent functions on n variables
(n even) of algebraic degree up to n/2 − 1 there is no general construction of
bent–negabent functions of algebraic degree greater that n

4 , for all n ≡ 0 mod 4.
In this paper we describe a technique of constructing bent–negabent functions by
using complete mapping polynomials of finite fields which are a special class of
permutation polynomials [11, 14]. First we demonstrate the connection between
existence of complete mapping polynomial over a finite field and the existence
of a class of bent–negabent functions. Then we demonstrate that for each ` ≥ 2
there exit bent–negabent functions on n = 12` variables with algebraic degree
n
4 + 1 = 3`+ 1.

1.1 Definitions and Notations

The set of all Boolean functions on n variables is denoted by Bn. Any element
x ∈ Fn

2 can be written as an n-tuple (x1, . . . , xn), where xi ∈ F2 for all i =
1, . . . , n. The set of integers, real numbers and complex numbers are denoted
by Z, R and C respectively. The addition over Z, R and C is denoted by ‘+’.
The addition over Fn

2 for all n ≥ 1, is denoted by ⊕. If x = (x1, . . . , xn) and
y = (y1, . . . , yn) are two elements of Fn

2 , we define the scalar (or inner) product,
respectively, the intersection by

x · y = x1y1 ⊕ x2y2 ⊕ · · · ⊕ xnyn,x ∗ y = (x1y1, x2y2, . . . , xnyn).

The cardinality of the set S is denoted by |S|. If z = a + b ı ∈ C, then
|z| =

√
a2 + b2 denotes the absolute value of z, and z = a − b ı denotes the

complex conjugate of z, where ı2 = −1, and a, b ∈ R. Any f ∈ Bn can be
expressed in algebraic normal form (ANF) as

f(x1, x2, . . . , xn) =
⊕

a=(a1,...,an)∈Fn
2

µa

(
n∏

i=1

xai
i

)
, µa ∈ F2.

The (Hamming) weight of x ∈ Fn
2 is wt(x) :=

∑n
i=1 xi. The algebraic degree

of f , deg(f) := maxa∈Fn
2
{wt(a) : µa 6= 0}. Boolean functions having algebraic



degree at most 1 are said to be affine functions. For any two functions f, g ∈ Bn,
we define the (Hamming) distance d(f, g) = |{x : f(x) 6= g(x),x ∈ F2n}|.

The Walsh–Hadamard transform of f ∈ Bn at any point u ∈ Fn
2 is defined

by

Hf (u) = 2−
n
2

∑
x∈Fn

2

(−1)f(x)⊕u·x.

The multiset [Hf (u) : u ∈ Fn
2 ] is said to be the Walsh–Hadamard spectrum

of the function f . A function f ∈ Bn is a bent function if |Hf (u)| = 1 for all
λ ∈ Fn

2 . Bent functions (defined by Rothaus [19] more than thirty years ago) hold
an interest among researchers in this area since they have maximum Hamming
distance from the set of all affine Boolean functions. Several classes of bent
functions were constructed by Rothaus [19], Dillon [8], Dobbertin [9], and later
by Carlet [2].

The sum Cf,g(z) =
∑

x∈Fn
2
(−1)f(x)⊕g(x⊕z) is the crosscorrelation of f and

g at z. The autocorrelation of f ∈ Bn at u ∈ Fn
2 is Cf,f (u) above, which we

denote by Cf (u). The multiset [Cf (u) : u ∈ Fn
2 ] is said to be the autocorrelation

spectrum of the function f . It is known [6] that a function f ∈ Bn is bent if and
only if Cf (u) = 0 for all u 6= 0.

For a detailed study of Boolean functions we refer to Carlet [3, 4], and Cusick
and Stănică [6].

The nega–Hadamard transform of f ∈ Fn
2 at any vector u ∈ Fn

2 is the complex
valued function:

Nf (u) = 2−
n
2

∑
x∈Fn

2

(−1)f(x)⊕u·x ıwt(x).

The multiset [Nf (u) : u ∈ Fn
2 ] is said to be the nega–Hadamard spectrum of the

function f . A function is said to be negabent if the nega–Hadamard transform
is flat in absolute value, namely |Nf (u)| = 1 for all u ∈ Fn

2 . The sum

Cf,g(z) =
∑
x∈Fn

2

(−1)f(x)⊕g(x⊕z)(−1)x·z

is the nega–crosscorrelation of f and g at z. We define the nega–autocorrelation
of f at u ∈ Fn

2 by

Cf (u) =
∑
x∈Fn

2

(−1)f(x)⊕f(x⊕u)(−1)x·u.

The multiset [Cf (u) : u ∈ Fn
2 ] is said to be the nega–autocorrelation spectrum

of the function f .
The negaperiodic autocorrelation defined by Parker and Pott [15, 16] is as

follows
nf (u) =

∑
x∈Fn

2

(−1)f(x)⊕f(x⊕u)(−1)wt(u)(−1)x·u.

It is to be noted that the difference between the above two definitions is not
critical and both the defintions can be used.



The group of all invertible n×n matrices over Fn
2 is denonted by GL(n,F2).

Two Boolean functions f, g ∈ Bn are said to be equivalent if there exist A ∈
GL(n,F2), b,u ∈ Fn

2 and ε ∈ F2 such that g(x) = f(xA + b) + u · x + ε for all
x ∈ Fn

2 . If u = 0 and ε = 0, then f and g are said to be affine equivalent.

1.2 Quadratic Boolean functions

The properties of quadratic Boolean functions, that is Boolean functions having
algebraic degree 2, can be found in ([12], chapter 15). Suppose f is a Boolean
function of degree 2 on n variables. The associated symplectic form of f is a
map Ψ : Fn

2 × Fn
2 −→ F2 defined by

Ψ(u,v) = f(0) + f(u) + f(v) + f(u + v).

The kernel Ef of Ψ is defined as

Ef = {u ∈ Fn
2 : for all v ∈ Fn

2 such that Ψ(u,v) = 0}.

The set Ef is a subspace of Fn
2 with dimension n− 2h where 2h is the rank of Ψ .

It is known that two quadratic functions f and g are equivalent if and only in
dim(Ef ) = dim(Eg) ([12], chapter 15, Theorem 4). We recall the following result
(proposition A1 [1])

Proposition 1. An element a ∈ Ef if and only if the function Daf is constant.
The subspace Ef is the linear space of f .

Since the autocorrelation spectrum of any bent function is zero at all points
except at u = 0 the linear space of any quadratic bent function is of dimension
0. Therefore by ([12], chapter 15, Theorem 4) and Proposition 1 all quadratic
bent function are equivalent to each other.

Suppose n = 2p, π : Fp
2 −→ Fp

2 is a permutation and g : Fp
2 −→ F2 is any

Boolean function. Rothaus proved that a Boolean function f : Fp
2 × Fp

2 −→ F2

defined by

f(x,y) = π(x) · y + g(x) for all (x,y) ∈ Fp
2 × Fp

2

is a bent function. The collection of bent functions of this type is called the
Maiorana-McFarland class, denoted by M. If π is an identity permutation and
g(x) = 0 for all x ∈ Fp

2, then the function h(x,y) = x · y =
∑p

i=1 xiyi for all
(x,y) ∈ Fp

2 × Fp
2 is a quadratic bent function. Thus any quadratic bent function

of n variables is equivalent to h. Let yi = xp+i for all i = 1, . . . , p. For all x ∈ Fn
2

the function h can be written as h(x) =
∑p

i=1 xixp+i. Throughout this paper
h will represent this particular function. From the above discussions it is clear
that if f ∈ Bn is any quadratic bent then there exist A ∈ GL(n,F2), b,u ∈ Fn

2 ,
and ε ∈ F2 such that h(x) = f(xA+ b) + u · x + ε.



2 Construction of bent–negabent Boolean functions

Throughout this section n = 2p. A Boolean function is said to be symmetric if
inputs of the same weight produce the same output, that is, f(x) = f(σ(x)), for
any permutation σ. The function s2 ∈ Bn defined by

s2(x) =
∑
i<j

xixj for all (x1, . . . , xn) ∈ Fn
2

is a quadratic symmetric Boolean function. It is known that this function is a
bent function. Therefore by the results of Section 1.2, s2 is equivalent to the
quadratic bent h as defined in Section 1.2. The following theorem is due to
Parker and Pott

Theorem 1 (Theorem 24, [15]). Suppose f ∈ Bn. If f is a bent function then
f + s2 is negabent, and if f is a negabent function then f + s2 is bent.

Using Theorem 1 we obtain:

Lemma 1. A Boolean function f ∈ Bn is bent–negabent if and only if, f and
f + s2 both are bent functions.

Proof. Let f ∈ B2p is a bent–negabent function. Since f is a negabent function,
f + s2 is a bent function. Thus f and f + s2 both are bent functions.

Conversely let us suppose that f and f + s2 both are bent function. Since
f + s2 is a bent function f + s2 + s2 = f is a negabent function. Therefore, f is
a bent–negabent function. ut

The following theorem provides a strategy to construct bent–negabent functions.

Theorem 2. Let s2(x) = h(xA + b) + u · x + ε for all x ∈ Fn
2 , where A ∈

GL(n,F2), b,u ∈ Fp
2 and ε ∈ F2. Suppose f ∈ Bn is a bent function such that

f + h is also a bent function. Then g ∈ Bn define by

g(x) = f(xA+ b) + h(xA+ b) + u · x + ε = f(xA+ b) + s2(x) for all x ∈ Fn
2

is a bent–negabent function.

Proof. The function g is equivalent to f + h. Therefore g is bent. The function
g + s2 is affine equivalent to f . Since f is a bent function, g + s2 is also a bent
function. Therefore by Lemma 1 g is a bent–negabent function. ut

Remark 1. For definiteness we define h as h(x) =
∑n

i=1 xixp+i for all (x1, . . . , xn) ∈
Fn
2 . However it should be noted that the Theorem 2 holds even if we replace h

by any quadratic bent Boolean function on n variables.

Theorem 2 reduced the problem of constructing bent–negabent functions to char-
acterizing bent functions f such that f + h is also a bent function. We observe
that such functions can be constructed by using complete mapping polynomials.



2.1 Complete mapping polynomials

The field extension of F2 of degree p denoted by F2p . The finite field F2p is
isomorphic to Fp

2 as a vector space over F2. Any permutation of F2p can be
identified with a permutation on Fp

2. Any permutation on F2p can be represented
by a polynomial in F2p [X] of degree atmost 2p−2. A polynomial F (x) ∈ F2p [X] is
said to be a complete mapping polynomial if F (X) and F (X)+X both correspond
to permutations on F2p . For details on complete mapping polynomials we refer
to [11, 14]. The following provides us a strategy to construct bent–negabent
functions by using complete mapping polynomials.

Proposition 2. Let n = 2p. Suppose πF denote the permutation on Fp
2 induced

by a complete mapping polynomial F (X) ∈ F2p [X]. Let fF ∈ Bn be defined by
fF (x) = πF (x1, . . . , xp)·(xp+1, . . . , xn) for all x ∈ Fn

2 . Then the Boolean function
fF + h is a Maiorana-McFarland type bent and

g(x) = fF (xA+ b) + h(xA+ b) + u ·x + ε = fF (xA+ b) + s2(x) for all x ∈ Fn
2

is a bent–negabent function. The algebraic degrees of g and fF are equal.

Proof. The proof is direct from the properties of complete mapping polynomials
and Theorem 2.

2.2 Bent–negabent function on n variables with algebraic degree
greater than n

4

We consider a particular complete mapping polynomial constructed by Laigle-
Chapuy [11].

Theorem 3 (Theorem 4.3, [11]). Let p be a prime and (m, `) ∈ N2. Let k be
the order of p in Z/mZ. Take q = pk`m and r a positive integer coprime with
q − 1. Assume a ∈ Fpk` is such that (−a)m 6= 1. Then the polynomials

P (X) = X(X
q−1
m + a)

and
Q(X) = aX

q−1
m +1

are complete mapping polynomials.

First we construct a bent–negabent function on 24 variables having algebraic
degree 7.

Example 1. Following the notations of Theorem 3 let p = 2 and m = 3. The
order of p in Z/3Z is 2, that is k = 2. Choose ` = 2. Thus, k`m = (2)(2)(3) =

12; q = pk`m = 212. The polynomial P (X) = X(X
q−1
m + a) = X(X1365 +

a) where a ∈ F24 \ F22 . The last condition guarantees (−a)m = (−a)3 6= 1.
By using this polynomial P (X) in Proposition 2 we obtain a bent–negabent
function on 24 variables and algebraic degree 7. The algebraic degrees of the
bent–netabent functions constructed in [23, 24] are bounded above by n

4 . Thus
the bent–negabent function constructed above does not belong to these classes.



In general we observe the following.

Lemma 2. Suppose the prime p = 2, m = 3. The order of p in Z/mZ, k = 2.
Then for any ` ≥ 2 the polynomials

P (X) = X(X
26`−1

3 + a) and Q(X) = aX
26`−1

3 +1

have algebraic degree 3`.

Proof. Let t = 26`−1
3 + 1.

t =
26` − 1

3
+ 1

=
26` − 4 + 3

3
+ 1

=
26` − 4

3
+ 2

=
22((22)3`−1 − 1)

22 − 1
+ 2

= ((22)3`−1 + (22)3`−2 + (22)3`−3 + . . .+ (22)2 + 22)︸ ︷︷ ︸
3`−1 terms

+2

= 26`−2 + 26`−4 + 26`−6 + . . .+ 24 + 22 + 2︸ ︷︷ ︸
3` terms

.

(1)

This proves that both P (X) and Q(X) have degree 3`. ut

Theorem 4. For each ` ≥ 2 there exit bent–negabent functions on n = 12`
variables with algebraic degree n

4 + 1 = 3`+ 1.

Proof. For each ` ≥ 2 it is possible to construct P (X) and Q(X) as in Lemma 2
with p = 2 and m = 3. It is proved in Lemma 2 that P (X) and Q(X) both have
algebraic degree 3`. It is also to be noted that if ` ≥ 2 we can choose a ∈ F2` \F2

so that (−a)m 6= 1. Therefore P (X) and Q(X) constructed in this way are
complete mapping polynomials. If we use the Proposition 2 by inducing the
permutation πF where F (X) ∈ {P (X), Q(X)}, then we obtain bent–negabent
functions on n = (2)(6`) = 12` variables with algebraic degree 3`+ 1. It is also
to be noted that these functions may not be of Maiorana–McFarland type but
belongs to the complete class of Maiorana–McFarland type functions. ut

2.3 Existence of bent-negabent functions of degree 2, 3 and 4 on 8
variables Boolean functions

Y.Yuan et al.[25] obtained the degree distribution of complete mapping polyno-
mial over F24(= F16). The results on complete mapping polynomial over F24 are
given below.



Theorem 5 ([25], Theorem 3). The complete mapping trinomial of the form
axi + bxj + cx, abc 6= 0, and 15 > i > j > 1 must be one of the following

1. ax4 + bx2 + cx
2. ax8 + bx2 + cx
3. ax8 + bx4 + cx
4. ax11 + bx7 + cx

Table 1. Complete mapping polynomials of reduced degree 4,8,10,12 and 13 (algebraic
degree 1,1,2,2,3 respectively).

(reduced degree, algebraic degree ) complete mapping polynomials

(4, 1) a(x4 + bx), ab 6= 0; b, b+ a−1 6= α3, α6, α9, α12

(8, 1) a(x8 + bx2), ab 6= 0; b 6= α3, α6, α9, α12; and
x7 + bx+ a−1has no root in F16

(10, 2) α4x10 + α13x9 + α2x8 + α7x13 + α4x

(12, 2) α8x12 + α14x9 + α5x6 + α11x3 + α5x

(13, 3) α14x13 + α8x10 + α7x7 + α8x
Here α is a primitive element in F16.

In 2007, by searching with computer Y.Yuan et.al [25] obtained the degree dis-
tribution of complete mapping polynomial over F16 is given in Tabel 2.

Table 2. The degree distribution of complete mapping polynomial over F16 [25].

reduced degree algebraic degree number of complete mapping polynomials

1 1 224

4 1 6560

8 1 132480

10 2 798720

11 3 933888

12 2 22179840

13 3 220692480

Theorem 6. There exists bent-negabent functions of degree 2, 3 and 4 on 8
variables.

Proof. By Proposition 2 and Table 1, 2 and Theorem 5, we obtain bent-negabent
functions of degree 2, 3 and 4 on 8 variables.

From Table 2, it is clear that there exists a large number of bent-negabent
function of degree 2, 3 and 4.
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24. P. Stănică, S. Gangopadhyay, A. Chaturvedi, A. Kar Gangopadhyay, S. Maitra,
Nega–Hadamard transform, bent and negabent functions, SETA 2010, Lecture notes
in Computer Science, LNCS, vol. 6338, pp. 359-372, 2010.

25. Y. Yuan, Y. Tong, and H. Zhan, Complete Mapping Polynomials over Finite Field
F16, C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 147158, 2007
2007.

26. Y. Zhao, H. Li, On bent functions with some symmetric properties, Discrete Appl.
Math. 154 (2006), 2537–2543.


