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Abstract
Very recently, Ding proposed an ingenious algorithm to solve LWE problem

with bounded errors in polynomial time. We find that it can be easily used to
give a broadcast attack against NTRU, the most efficient lattice-based public-
key cryptosystem known to date.
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1 Introduction

In 1988, Hästad [3] proposed the first broadcast attack against public key cryptosys-
tems. The attack enables an attacker to recover the plaintext sent by a sender to
multiple recipients, without requiring any knowledge of the recipient’s secret key.

In 2009, Plantard and Susilo [13] first considered the broadcast attack against
the lattice-based public-key cryptosystems and also gave some heuristic attacks.

However, they showed that NRTU may resist their broadcast attacks, since half
of its ”message” is random.

Very recently, Ding proposed an ingenious algorithm to solve LWE problem with
bounded errors in polynomial time.

We find that it can be easily used to give a broadcast attack against NTRU. As
we know, it is the first broadcast attack against NTRU.

We have to point out that some other lattice-based cryptosystems, such as [12],
can not resist the broadcast attack either.

The remainder of the paper is organized as follows. In Section 2, we give some
preliminaries. In Section 3, we describe the broadcast attack. In Section 4, we give
a short conclusion.
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2 Preliminaries

We denote by Z the integer ring and by Zq the residue class ring Z/qZ. We use bold
letters to denote vectors, in column notation. If v is a vector, then we denote by vi

the i-th entry of v.

2.1 NTRU

The NTRU cryptosystem proposed by Hoffstein, Pipher, Silverman [7] is the most
practical scheme known to date. It features reasonably short, easily created keys,
high speed, and low memory requirements. By the results of Coppersmith and
Shamir [1], the security of NTRU is related, but not equivalent, to the hardness of
some lattice problems. To date, the chosen-ciphertext attacks against NTRU may
be the most dangerous. Most of the ciphertext-only attacks [9, 5, 4] against NTRU
rely on the underlying lattice’s special cyclic structure.

For the completeness, we give a simple description of the NTRU cryptosystem.
For more details see [7].

The NTRU cryptosystem depends on three integer parameters (N, p, q) and four
sets Lf ,Lg,Lr,Lm of polynomials of degree N − 1 with small integer coefficients.
We choose p, q such that gcd(p, q) = 1 and p is much smaller than q.

Denote the ring Z[x]/(xN − 1) by R and the multiplication in R by ∗ in this
subsection. Every element in R can be represented as a polynomial or a vector. For
example, for f ∈ R, we can represent f as

f =
N−1∑
i=0

fix
i.

We work in the ring R.
Key Generation:

Step 1 Choose f ∈ Lf , g ∈ Lg such that there exists Fq, Fp ∈ R satisfying f ∗Fq =
1 mod q and f ∗ Fp = 1 mod p.

Step 2 Let h = p ∗ Fq ∗ g mod q.

Public Key: h, p, q.
Private Key: f , Fp.
Encryption: To encrypt m ∈ Lm, we first choose an r ∈ Lr, then compute the
ciphertext:

c = h ∗ r + m mod q
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Decryption: First we compute

a = f ∗ c mod q
= pg ∗ r + f ∗m mod q

then we choose the coefficients of a in the interval from − q
2 to q

2 . By the fact that
all the coefficients of pg ∗ r + f ∗m may be in the interval from − q

2 to q
2 , we almost

get
a = pg ∗ r + f ∗m.

Then we recover the message m by computing m = Fp ∗ a mod p.
Since there exists several variants of NTRU, this has made the analysis of NTRU

a tricky task. We may use totally different ways to attack NTRU instead of a uniform
one.

As in [10], we summarize the main instantiations of NTRU in the table below:

Variant q p Lf Lg Lm Lr F Ref
NTRU-1998 2k ∈ [N2 , N ] 3 L(df , df − 1) L(dg, dg) Lm L(dr, dr) - [7]
NTRU-2001 2k ∈ [N2 , N ] 2 + x 1 + p ∗ F B(dg) B B(dr) B(dF ) [8]
NTRU-2005 prime 2 1 + p ∗ F B(dg) B B(dr) B(dF ) [6]

where

• Lm = {m ∈ R : m has coefficients lying between − 1
2(p− 1) and 1

2(p− 1)},

• L(d1, d2) = {F ∈ R : F has d1 coefficients equal 1, d2 coefficients equal -1, the rest 0},

• B denotes the set of all polynomials with binary coefficients,

• B(d) = {F ∈ R : F has d coefficients equal 1, the rest 0}.

2.2 Ding’s Algorithm for LWE

The Learning with Errors (LWE) problem was first introduced by Regev [14]. Since
it is hard as worst-case lattice problems, the LWE problem has many applications
in constructing cryptosystems with security proofs.

We can describe the LWE problem as follows as in [2].
First, we have a parameter n, a prime modulus q , and an error probability

distribution κ on the finite field Fq with q elements.
Let

∏
s,κ on Fq be the probability distribution obtained by selecting an element

a in Fn
q randomly and uniformly, choosing e ∈ Fq according to κ, and outputting

(a, < a, s > +e), where + is the addition that is performed in Fq.
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We say that an algorithm solves LWE with modulus q and error distribution κ,
if, for any s in Fn

q , with an arbitrary number of independent samples from
∏

s,κ, it
outputs s (with high probability).

Very recently, Ding [2] proposed an ingenious algorithm to solve LWE problem
with bounded errors, in which the error probability distribution κ is on a proper
subset ES = {e1, e2, · · · , eD} of the whole finite field Fq, in polynomial time with
fixed D(D < q).

The main steps of Ding’s Algorithm are

• Nonlinearization: For any sample (a, < a, s > +e), if we let b =< a, s > +e,
we have a linear equation

n∑
i=1

aisi + e = b. (1)

Then we can also have a corresponding nonlinear equation

D∏
k=1

(
n∑

i=1

aisi + ek − b) = 0 (2)

where ek ∈ ES.

• Linearization: Notice that the total degree of every monomial of s1, s2, · · · , sn

in (2) is at most D, we assign each of such monomials a new variable yi, then
we transform (2) to a linear equation:∑

i

ciyi = 0 (3)

where ci is the corresponding coefficient of yi in (2).

• Solving. Let Q =
(
n+D

n

)
, we know that the number of yi’s is at most Q − 1.

So when we have enough, O(nD), linear equations like (3), we can find yi by
solving a set of linear equations.

3 A Broadcast Attack against NTRU

3.1 A Broadcast Attack against NTRU

We find Ding’s Algorithm can be easily used to give a broadcast attack against
NTRU.

Suppose there is a sender and k recipients. All these recipients use NTRU
cryptosystems with the same N, q, p but different public and private keys. The
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sender encrypts the same message m with every public key of these recipients and
independent r ∈ Lr respectively. Then he sends the k ciphertexts to these recipients
respectively. The broadcast attack is to recover m with these k ciphertexts without
requiring any knowledge of the recipient’s secret key. More precisely, the attacker
wants to recover m from

h(1) ∗ r(1) + m = c(1) mod q

h(2) ∗ r(2) + m = c(2) mod q
...

h(k) ∗ r(1) + m = c(k) mod q

where h(i) is the i-th recipient’s public key and the attacker knows none of these
r(i)’s.

Before giving the attack, we need transform NTRU to its linear form.

3.1.1 The Linear Form of NTRU over Zq

In NTRU, a polynomial f =
N−1∑
i=0

fix
i ∈ R can also be represented as a vector

f = (f0, f1, · · · , fN−1)T .

and the multiplication of f and g can be represented as

t =


f0 fN−1 · · · f1

f1 f0 · · · f2
...

...
. . .

...
fN−1 fN−2 · · · f0




g0

g1
...

gN−1


That is, t is the corresponding vector of f ∗ g in R.

Then, for the equation in R

c = h ∗ r + m mod q,

we have the linear form
c = Hr + m mod q (4)

where

H =


h0 hN−1 · · · h1

h1 h0 · · · h2
...

...
. . .

...
hN−1 hN−2 · · · h0


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or we have N linear equations

ci =
N−1∑
j=0

Hi+1,j+1rj + mi mod q

where i = 0, · · ·N − 1.
This is a little different from (1). We would like to point out that it is not

necessary for q to be a prime. However, if we want to recover m, we need m to be
the same as s in (1), but not r. So we can’t use Ding’s Algorithm directly.

If H is invertible in ZN×N
q , obviously we can easily get the equation below from

(4):
H−1m + r = H−1c mod q

Let Ĥ = H−1, b = H−1c, then we have

Ĥm + r = b mod q (5)

3.1.2 The Pseudo-Inverse of H

Usually, H is invertible in ZN×N
q with high probability in NTRU-2001 and NTRU-

2005. However, H is not invertible in NTRU-1998.
Luckily, for any public key h in NTRU-1998, we can usually find a polynomial

h′ ∈ R with overwhelming probability such that for any r ∈ L(dr, dr),

h′ ∗ h ∗ r = r mod q.

We call h is pseudo-invertible as in [11].
We can find h′ in polynomial time as follows. Since Rq = Zq[x]/(xN − 1) is

isomorphic to P1 × P2 where P1 = Zq[x]/(x − 1) and P2 = Zq[x]/(xN−1 + xN−2 +
· · ·+ 1), we have

φ : Rq → P1 × P2.

Since h(1) = 0 mod q, we have φ(h) = (0, h̄) where h̄ denotes the reduction of h
modulo xN−1 + xN−2 + · · · + 1. With high probability, h̄ is invertible in P2. We
denote its inverse in P2 by h̃. Considering the polynomial h′ = φ−1((1, h̃)) in Rq, it
satisfies h′ ∗ h ∗ r = r mod q for r ∈ L(dr, dr).

Let

H ′ =


h′0 h′N−1 · · · h′1
h′1 h′0 · · · h′2
...

...
. . .

...
h′N−1 h′N−2 · · · h′0

 ,

6



we have
H ′m + r = H ′c mod q

from (4).
Similarly, let Ĥ = H ′, b = H ′c, then we also have

Ĥm + r = b mod q

3.1.3 A Broadcast Attack against NTRU

Obviously, we have N linear equations from (5):

N−1∑
j=0

Ĥi+1,j+1mj + ri = bi mod q

where i = 0, · · ·N − 1. This is totally as same as (1). So we can use Ding’s
Algorithm to recover m if we have enough linear equations, since ri is usually in
{0, 1} or {−1, 0, 1}. Usually, by Ding’s result, we need O(N2) and O(N3) linear
equations respectively to complete the attack for ES = {0, 1} and ES = {−1, 0, 1}.
Since we can obtain N linear equations from one recipient, we expect that we need
O(N) and O(N2) recipients respectively to complete the attack.

3.2 Improving the Attack

Two natural ideas to improve the attack is obvious:

• decreasing the number of variables,

• increasing the number of equations.

In fact, from the view of the effect, increasing the number of equations is usually
equivalent to decreasing the number of variables.

3.2.1 With the Description of ES

In NTRU, ES is usually {−1, 0, 1} or {0, 1}.

• if ES = {−1, 0, 1}, we can add N equations: m3
i −mi = 0 (i = 0, · · · , N − 1).

• if ES = {0, 1}, we can add N equations: m2
i −mi = 0 (i = 0, · · · , N − 1).
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3.2.2 With Known Bits

If we know some bits, either the message bits or the random bits, we can also improve
the attack.

• If we know some bits of m, for example, m0,m2, · · · ,mk−1, then we can
obviously eliminate those monomials containing at least one of these known
bits.

• If we know some bits of r, for example, r0, r2, · · · , rk−1, then for i = 0, · · · , k−
1, we have k linear equations:

N−1∑
j=0

Ĥi+1,j+1mj + ri − bi = 0 mod q (6)

For each of these equations, we also have N equations for ES = {0, 1}:

m0(
∑N−1

j=0 Ĥi+1,j+1mj + ri − bi) = 0 mod q

m1(
∑N−1

j=0 Ĥi+1,j+1mj + ri − bi) = 0 mod q
...

mN−1(
∑N−1

j=0 Ĥi+1,j+1mj + ri − bi) = 0 mod q

Together with (6), we have N + 1 equations for each linear equation. Notice
that though we have (N + 1)k new equations, in general they are not linearly
independent when we transform them to linear equations by involving new
variables yi. We conjecture that the effect when we use these new equations
is as the same as when we know k bits of m.

For ES = {−1, 0, 1}, we can similarly have another N2 equations

miml(
N−1∑
j=0

Ĥi+1,j+1mj + ri − bi) = 0 mod q

for i, l = 0, · · · , N − 1.

However, how can we obtain these bits we need? A natural idea is guessing the bits.
We next show that ”guessing” is not a bad idea for NTRU.

For any vector v = v0,v1, · · · ,vN−1)T , we denote by v(r) its r-cycle:

v(r) = (vN−r,vN−r+1, · · · ,vN−1,v0,v1, · · · ,vN−r−1)T

where r ∈ {1, · · · , N − 1} and v(0) = v.
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For NTRU, since we have

Hr + m = c mod q,

we can conclude that for i = 0, · · · , N − 1,

Hr(i) + m(i) = c(i) mod q.

We take r as an example to show that how we guess its some bits. For example, we
guess r0 = 0, r2 = 0, · · · , rk−1 = 0. Then only if there is an i-cycle of r such that

r(i)
0 = r0

r(i)
1 = r1

...
r(i)
k−1 = rk−1

can we use the corresponding equation Hr(i) + m(i) = c(i) mod q instead of the
origin one for any recipient to continue the attack. Of course, we don’t know what
i is. However, we can commit the attack for every i ∈ {0, 1, · · · , N − 1}, then check
whether we get the correct message.

By [9], we know that the probability that there is an i-cycle we need is approxi-

mately equal to 1− (1−
dr−1∏
j=0

(1− k
N−j ))

N for L(r) = B(dr) which is very close to 1

for small k. More analysis see [9].

3.2.3 With the Clue from the Parameters

We can easily get
h(1)r(1) + m(1) = c(1) mod q

when we take h(x), r(x),m(x) and c(x) as polynomials. Since we know h(x), c(x),
and by Lr we also know that r(1) = 0 in NTRU-1998 or r(1) = dr in NTRU-2001
and NTRU-2005, we have

N−1∑
j=0

mj + h(1)r(1)− c(1) = 0 mod q.

As above, we also have N new equations for ES = {0, 1}

mi(
N−1∑
j=0

mj + h(1)r(1)− c(1)) = 0 mod q
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for i = 0, · · · , N − 1.
For ES = {−1, 0, 1}, we have another N2 equations

miml(
N−1∑
j=0

mj + h(1)r(1)− c(1)) = 0 mod q

for i, l = 0, · · · , N − 1.

3.3 A Toy Example

Suppose N = 3, q = 5, and the sender wants to send the message m = (0, 1, 0)T to
the recipient whose public key H satisfies

Ĥ = H−1 =

 1 2 3
3 1 2
2 3 1

 mod q,

(in fact, we don’t really generate a NTRU public key and we just give an example
to illustrate the algorithm here) and he chooses a random vector r = (0, 1, 1)T from
B(2). Finally, he gets the ciphertext (2, 2, 4)T .

Suppose the attacker obtains the ciphertext and without loss of generality, he
knows r0 = 0.

As above, the attacker can generate the equations below:

m2
i −mi = 0 i = 0, 1, 2

m0 + 2m1 + 3m2 − 2 = 0
mi(m0 + 2m1 + 3m2 − 2) = 0 i = 0, 1, 2

(3m0 + m1 + 2m2 − 1)(3m0 + m1 + 2m2 − 2) = 0
(2m0 + 3m1 + m2 − 4)(2m0 + 3m1 + m2 − 3) = 0

m0 + m1 −m2 − 1 = 0
mi(m0 + m1 −m2 − 1) = 0 i = 0, 1, 2

Taking every monomial appearing in the equations as a new variable, then we have
13 linear equations and only 9 variables. Very luckily, we can solve the set of linear
equations.

4 Conclusion

Using Ding’s Algorithm, we give a broadcast attack against NTRU, the most efficient
lattice-based public-key cryptosystem known to date. We also give some ways to
improve the attack. However, the lager N is, the larger the size of the set of the
linear equations is, and the more ciphertexts of the recipients we need. This leads
a difficult task to the attacker to commit the broadcast attack.
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