
Secure Multiparty Computation with Partial Fairness

Amos Beimel∗

Department of Computer Science
Ben Gurion University

Be’er Sheva, Israel

Eran Omri†

Department of Computer Science
Bar Ilan University
Ramat Gan, Israel

Ilan Orlov‡

Department of Computer Science
Ben Gurion University

Be’er Sheva, Israel

November 23, 2010

Abstract

A protocol for computing a functionality is secure if an adversary in this protocol cannot cause more
harm than in an ideal computation where parties give their inputs to a trusted party which returns the
output of the functionality to all parties. In particular, in the ideal model such computation is fair –
all parties get the output. Cleve (STOC 1986) proved that, ingeneral, fairness is not possible without
an honest majority. To overcome this impossibility, Gordonand Katz (Eurocrypt 2010) suggested a
relaxed definition –1/p-secure computation – which guarantees partial fairness. For two parties, they
construct1/p-secure protocols for functionalities for which the size ofeither their domain or their range
is polynomial (in the security parameter). Gordon and Katz ask whether their results can be extended to
multiparty protocols.

We study1/p-secure protocols in the multiparty setting for general functionalities. Our main result is
constructions of1/p-secure protocols when the number of parties is constant provided that less than 2/3
of the parties are corrupt. Our protocols require that either (1) the functionality is deterministic and the
size of the domain is polynomial (in the security parameter), or (2) the functionality can be randomized
and the size of the range is polynomial. If the size of the domain is constant and the functionality is
deterministic, then our protocol is efficient even when the number of parties isO(log log n) (wheren is
the security parameter). On the negative side, we show that when the number of parties is super-constant,
1/p-secure protocols are not possible when the size of the domain is polynomial.

∗Supported by ISF grant 938/09 and by the Frankel Center for Computer Science.
†This research was generously supported by the European Research Council as part of the ERC project “LAST”.
‡Supported by ISF grant 938/09 and by the Frankel Center for Computer Science.

1 Introduction

A protocol for computing a functionality is secure if an adversary in this protocol cannot cause more harm
than in an ideal computation where parties give their inputsto a trusted party which returns the output of
the functionality to all parties. This is formalized by requiring that for every adversary in the real world,
there is an adversary in the ideal world, called simulator, such that the output of the real-world adversary
and the simulator are indistinguishable in polynomial time. Such security can be achieved when there is a
majority of honest parties [16]. Secure computation is fair– all parties get the output. Cleve [9] proved that,
in general, fairness is not possible without an honest majority.

To overcome the impossibility of [9], Gordon and Katz [22] suggested a relaxed definition –1/p-secure
computation – which guarantees partial fairness. Informally, a protocol is1/p-secure if for every adversary
in the real world, there is a simulator running in the ideal world, such that the output of the real-world
adversary and the simulator cannot be distinguished with probability greater than1/p. For two parties,
Gordon and Katz construct1/p-secure protocols for functionalities whose size of eithertheir domain or
their range is polynomial (in the security parameter). Theyalso give impossibility results when both the
domain and range are super-polynomial. Gordon and Katz ask whether their results can be extended to
multiparty protocols. We give positive and negative answers to this question.

Previous Results. Cleve [9] proved that any protocol for coin-tossing withoutan honest majority cannot
be fully secure, specifically, if the protocol hasr rounds, then it is at most1/r-secure. Protocols with partial
fairness, under various definitions and assumptions, have been constructed for coin-tossing [9, 10, 24, 4],
for contract signing/exchanging secrets [6, 23, 12, 5, 11, 7], and for general functionalities [27, 13, 2, 17,
25, 14, 22]. We next describe the papers that are most relevant to our paper. Moran, Naor, and Segev [24]
construct 2-party protocols for coin tossing that are1/r-secure (wherer is the number of rounds in the
protocol). Gordon and Katz [22] define1/p-security and construct 2-party1/p-secure protocols for every
functionality whose size of either the domain or the range ofthe functionality is polynomial. Finlay, in a
previous work [4] we construct multiparty protocols for coin tossing that areO(1/r)-secure provided that
the fraction of bad parties is slightly larger than half. In particular, our protocol isO(1/r)-secure when the
number of parties is constant and the fraction of bad partiesis less than 2/3.

Gordon et al. [20] showed that complete fairness is possiblein the two party case for some functions.
Gordon and Katz [19] showed similar results for the multiparty case. The characterization of the functions
that can be computed with full fairness without honest majority is open. Completeness for fair computations
has been studied in [21]. Specifically, they show a specific function that is complete for fair two-party
computation; this function is also complete for1/p-secure two-party computation.

1.1 Our Results

We study1/p-secure protocols in the multiparty setting. We construct two protocols for general function-
alities assuming that the fraction of corrupt parties is less than 2/3. The first protocol is efficient when (1)
The number of parties is constant, the functionality is deterministic, and the size of the domain of inputs is
at most polynomial in the security parameter, or (2) The number of parties isO(log log n) (wheren is the
security parameter), the functionality is deterministic,and the size of the domain of inputs is constant. The
second protocol is efficient when the number of parties is constant, the functionality can be randomized, and
the size of therangeof the functionality is at most polynomial in the security parameter. Our second proto-
col does not provide correctness, i.e., in a case of premature termination, with probability of1/poly(n), the
remaining active parties output a value which might be inconsistent with their inputs. In contrast, our first
protocol provides correctness.

1

Our protocols combine ideas from the protocols of Gordon andKatz [22] and our paper [4], both of
which generalize the protocol of Moran, Naor, and Segev [24]. Specifically, our protocols proceed in rounds,
where in each round values are given to subsets of parties. There is a special roundi⋆ in the protocol. Prior to
roundi⋆, the values given to a subset of parties are values that can becomputed from the inputs of the parties
in this subset; staring from roundi⋆ the values are the “correct” output of the functionality. The values given
to a subset are secret shared such that only if all parties in the subset cooperate they can reconstruct the
value. If in some round many (corrupt) parties have aborted such that there is a majority of honest parties
among the active parties, then the set of active parties reconstructs the value given to this set in the previous
round.1 Similar to the protocols of [24, 22, 4], the adversary can cause harm (e.g., bias the output of the
functionality) only if it guessesi⋆; we show that in our protocols this probability is small and the protocols
are1/p-secure. The values in our protocols are chosen similar to [22]. The mechanism to secret share the
values is similar to [4], however, there are important differences in this sharing, as the sharing mechanism
of [4] is not appropriate for1/p-secure computations of functionalities which depend on inputs.

To complete the picture, we prove interesting impossibility results. We show that, in general, when the
number of parties is super-constant,1/p-secure protocols are not possible without honest majoritywhen the
size of the domain is polynomial. This impossibility resultjustifies the fact why in our protocols the number
of parties is constant. We also show that, in general, when the number of parties isω(log n), 1/p-secure
protocols are not possible without honest majority even when the size of the domain is 2. The proof of the
impossibility result is rather simple and follows from an impossibility result of [22].

Our impossibility results should be contrasted with the coin-tossing protocol of [4] which is an efficient
1/p-secure protocol even whenm(n), the number of parties, is polynomial in the security parameter and
the number of bad parties ism(n)/2 + O(1). Our results show that these parameters are not possible for
general1/p-secure protocols even when the size of the domain of inputs is 2.

Open Problems. In both our impossibility results the size of the range is super-polynomial. It is open
if there is an efficient1/p-secure protocol when the number of parties is not constant and the size of both
the domain and range is polynomial. In addition, the impossibility results do not rule out that the double-
exponential dependency on the number of parties can be improved.

The protocols of [22] are private – the adversary cannot learn any information on the inputs of the honest
parties (other than the information that it can learn in the ideal world of computingF). The adversary can
only bias the output. Our first protocol is not private (that is, the adversary can learn extra information).
However, we do not know whether the second protocol is private.2 It is open if there are general multiparty
1/p-secure protocols that are also private.

2 Preliminaries

A multi-party protocol withm parties is defined bym interactive probabilistic polynomial-time Turing
machinesp1, . . . , pm. Each Turning machine, called party, has the security parameter1n as a joint input
and a private inputyj. The computation proceeds in rounds. In each round, the active parties broadcast and
receive messages on a common broadcast channel. The number of rounds in the protocol is expressed as
some functionr(n) in the security parameter (typically,r(n) is bounded by a polynomial). At the end of
the protocol, the (honest) parties should hold a common value w (which should be equal to an output of a
predefined functionality).

1As parties can abort during this reconstruction, they actually reconstruct the value of a subset of this set.
2The problem in our protocols is that the adversary can keep one corrupted party active, thus, the adversary can get the output

of the honest parties.

2

In this work we consider a corrupt, static, computationally-bounded (i.e., non-uniform probabilistic
polynomial-time) adversary that is allowed to corrupt somesubset of parties. That is, before the beginning
of the protocol, the adversary corrupts a subset of the parties and may instruct them to deviate from the
protocol in an arbitrary way. The adversary has complete access to the internal state of each of the corrupted
parties and fully controls the messages that they send throughout the protocol. The honest parties follow the
instructions of the protocol.

The parties communicate via a synchronous network, using only a broadcast channel. The adversary
is rushing, that is, in each round the adversary hears the messages broadcast by the honest parties before
broadcasting the messages of the corrupted parties for thisround (thus, broadcast messages of the corrupted
parties can depend on the broadcast messages of the honest parties in this round).

Notation. For an integerℓ, define[ℓ] = {1, . . . , ℓ}. For a setJ ⊆ [m], defineQJ = {pj : j ∈ J}. An
m-party functionalityF = {fn}n∈N

is a sequence of polynomial-time computable, randomized mappings

fn : (Xn)m → Zn, whereXn = {0, 1}ℓd(n) andZn = {0, 1}ℓr(n) are the domain of inputs of each party
and the range respectively;ℓd, ℓr : N → N are some fixed functions. We denote the size of the domain and
the range ofF by d(n) andg(n) respectively, that is,d(n) = 2ℓd(n) andg(n) = 2ℓr(n). For a randomized
mappingfn, the assignmentw ← fn(x1, . . . , xm) denotes the process of computingfn with the inputs
x1, . . . , xm and with uniformly chosen random coins and assigning the output of the computation tow. If
F is deterministic, we sometimes call it a function. We sometime omitn from functions ofn (for example,
we writed instead ofd(n)).

2.1 The Real vs. Ideal Paradigm

The security of multiparty computation protocols is definedusing the real vs. ideal paradigm. In this
paradigm, we consider the real-world model, in which protocols are executed. We then formulate an ideal
model for executing the task. This ideal model involves a trusted party whose functionality captures the se-
curity requirements from the task. Finally, we show that thereal-world protocol “emulates” the ideal-world
protocol: For any real-life adversaryA there exists an ideal-model adversaryS (called simulator) such that
the global output of an execution of the protocol withA in the real-world model is distributed similarly to
the global output of runningS in the ideal model. In both models there arem partiesp1, . . . , pm holding a
common input1n and private inputsy1, . . . , ym respectively, whereyj ∈ Xn for 1 ≤ j ≤ m.

The Real Model. Let Π be anm-party protocol computingF . Let A be a non-uniform probabilistic
polynomial time adversary that gets the inputyj of each corrupted partypj and the auxiliary inputaux.
Let REALΠ,A(aux)(~y, 1n), where~y = (y1, . . . , ym), be the random variable consisting of the view of the
adversary (i.e., the inputs of the corrupted parties and themessages it got) and the output of the honest
parties following an execution ofΠ.

The Ideal Model. The basic ideal model we consider is a model without abort. Specifically, there is an
adversaryS which has corrupted a subsetB of the parties. The adversaryS has some auxiliary inputaux.
An ideal execution for the computingF proceeds as follows:

Send inputs to trusted party: The honest parties send their inputs to the trusted party. The corrupted par-
ties may either send their received input, or send some otherinput of the same length (i.e.,xj ∈ Xn)
to the trusted party, or abort (by sending a special“abortj” message). Denote byx1, . . . , xm the in-
puts received by the trusted party. Ifpj does not send an input, then the trusted party selectsxj ∈ Xn

3

with uniform distribution.3

Trusted party sends outputs: The trusted party computesfn(x1, . . . , xm) with uniformly random coins
and sends the output to the parties.

Outputs: The honest parties output the value sent by the trusted party, the corrupted parties output noth-
ing, andS outputs any arbitrary (probabilistic polynomial-time computable) function of its view (its
inputs, the output, and the auxiliary inputaux).

Let IDEALF ,S(aux)(~y, 1n) be the random variable consisting of the output of the adversary S in this
ideal world execution and the output of the honest parties inthe execution.

2.1.1 1/p-Indistinguishability and 1/p-Secure Computation

As explained in the introduction, some ideal functionalities for computingF cannot be implemented when
there is no honest majority. We use1/p-secure computation, defined by [22], to capture the divergence from
the ideal worlds.

Definition 2.1 (1/p-indistinguishability) A functionµ(·) is negligibleif for every positive polynomialq(·)
and all sufficiently largen it holds thatµ(n) < 1/q(n). A distribution ensembleX = {Xa,n}a∈Dn,n∈N

is an infinite sequence of random variables indexed bya ∈ Dn and n ∈ N, whereDn is a domain that
might depend onn. For a fixed functionp(n), two distribution ensemblesX = {Xa,n}a∈Dn,n∈N and

Y = {Ya,n}a∈Dn,n∈N are computationally1/p-indistinguishable, denotedX
1/p
≈ Y , if for every non-uniform

polynomial-time algorithmD there exists a negligible functionµ(·) such that for everyn and everya ∈ Dn,

∣∣∣Pr[D(Xa,n) = 1]− Pr[D(Ya,n) = 1]
∣∣∣ ≤

1

p(n)
+ µ(n).

Two distribution ensembles arecomputationally indistinguishable, denotedX
C
≡ Y , if for everyc ∈ N they

are computationally1
nc -indistinguishable.

We next define the notion of1/p-secure computation [22]. The definition uses the standard real/ideal
paradigm [15, 8], except that we consider a completely fair ideal model (as typically considered in the setting
of honest majority), and require only1/p-indistinguishability rather than indistinguishability.

Definition 2.2 (1/p-secure computation [22]) Letp = p(n) be a function. Anm-party protocolΠ is said
to 1/p-securely compute a functionalityF where there are at mostt(n) corrupt parties, if for every non-
uniform probabilistic polynomial-time adversaryA in the real model controlling at mostt(n) parties, there
exists a non-uniform probabilistic polynomial-time adversary S in the ideal model, controlling the same
parties asA, such that the following two distribution ensembles are computationally1/p-indistinguishable

{
IDEALF ,S(aux)(~y, 1n)

}
aux∈{0,1}∗,~y∈(Xn)m,n∈N

1/p
≈

{
REALΠ,A(aux)(~y, 1n)

}
aux∈{0,1}∗,~y∈(Xn)m,n∈N

.

We next define statistical distance between two random variables and the notion of perfect1/p-secure
computation, which implies the notion of1/p-secure computation.

3For the simplicity of the presentation of our protocols, we present a slightly different ideal world than the traditional one. In
our model there is no a default input in case of an “abort”. However, the protocol can be presented in the traditional model, where
a predefined default input is used if a party aborts.

4

Definition 2.3 (statistical distance) We define thestatistical distancebetween two random variablesA and
B as the function

SD (A,B) =
1

2

∑

α

∣∣∣ Pr[A = α]− Pr[B = α]
∣∣∣.

Definition 2.4 (perfect1/p-secure computation) An m-party protocolΠ is said to perfectly1/p-secure
compute a functionalityF if for every non-uniform adversaryA in the real model, there exists a polynomial-
time adversaryS in the ideal model such that for everyn ∈ N, for every~y ∈ (Xn)m, and for every
aux ∈ {0, 1}∗

SD
(
IDEALF ,S(aux)(~y, 1n),REALΠ,A(aux)(~y, 1n)

)
≤

1

p(n)
.

Security with abort and cheat detection is defined in Appendix A. The cryptographic tools we use are
described in Appendix B.

3 The Multiparty Secure Protocols

In this section we present our protocols. We start with a protocol that assumes that either the functionality is
deterministic and the size of the domain is polynomial, or that the functionality is randomized and both the
domain and range of the functionality are polynomial. We then present a modification of the protocol that is
1/p-secure for (possibly randomized) functionalities if the size of the range is polynomial (even if the size
of the domain ofF is not polynomial). The first protocol is more efficient for deterministic functionalities
with polynomial-size domain. Furthermore, the first protocol has full correctness, while in the modified
protocol, correctness is only guaranteed with probability1− 1/p.

Formally, we prove the following two theorems.

Theorem 1 LetF = {fn : (Xn)m → Zn} be randomized functionality where the size of domain isd(n)
and the size of the range isg(n), and letp(n) be a polynomial. If enhanced trap-door permutations ex-
ist, then for anym and t such thatm/2 ≤ t < 2m/3, and for any polynomialp(n) there is anr(n)-
round m-party 1/p(n)-secure protocol computingF tolerating up tot corrupt parties wherer(n) =

p(n) · (2 · d(n)m · g(n) · p(n))2
t

, provided thatr(n) is bounded by a polynomial inn. If F is deterministic,
then there is ar(n)-round1/p(n)-secure protocol forr(n) = p(n) ·d(n)m·2t

, provided thatr(n) is bounded
by a polynomial inn.

Theorem 2 LetF = {fn : (Xn)m → Zn} be randomized functionality where the size of the rangeg(n) is
polynomial inn andm is constant, and letp(n) be a polynomial. If enhanced trap-door permutations exist,
then fort such thatm/2 ≤ t < 2m/3 and for any polynomialp(n) there is anr(n)-roundm-party1/p(n)-

secure protocol computingF tolerating up tot corrupt parties wherer(n) =
(
(2p(n))2

t+1 · g(n)2
t

)
.

Following [24, 4], we present the first protocol in two stages. We first describe in Section 3.1 a protocol
with a dealer and then in Section 3.2 present a protocol without this dealer. The goal of presenting the
protocol in two stages is to simplify the understanding of the protocol and to enable to prove the protocol in
a modular way. In Section 3.3, we present a modification of theprotocol which is1/p-secure if the size of
the range is polynomial (even if the size of the domain off is not polynomial).

5

3.1 The Protocol for Polynomial-Size Domain with a Dealer

We consider a network withm parties where at mostt of them are corrupt such thatm/2 ≤ t ≤ 2m/3. In
this section we assume that there is a special trusted on-line dealer, denotedT . This dealer interacts with the
parties in rounds, sending messages on private channels. Weassume that the dealer knows the set of corrupt
parties. In Section 3.2, we show how to remove this dealer andconstruct a protocol without a dealer.

In our protocol the dealer sends in each round values to subsets of parties; the protocol proceeds with the
normal execution as long as at leastt + 1 of the parties are still active. If at some roundi, there are at mostt
active parties, then the active parties reconstruct the value given to them in roundi−1, output this value, and
halt. Following [24], and its follow up works [22, 4], the dealer chooses at random with uniform distribution
a special roundi⋆. Prior to this round the adversary gets no information and ifthe corrupt parties abort the
execution prior toi⋆, then they cannot bias the output of the honest parties or cause any harm. After round
i⋆, the output of the protocol is fixed, and, also in this case theadversary cannot affect the output of the
honest parties. The adversary cause harm only if it guessesi⋆ and this happens with small probability.

We next give a verbal description of the protocol. This protocol is designed such that the dealer can be
removed from it in Section 3.2. A formal description is givenin Figure 1. At the beginning of the protocol
each party sends its inputyj to the dealer. The corrupted parties may send any values of their choice. Let
x1, . . . , xm denote the inputs received by the dealer. If a corrupt partypj does not send its input, then the
dealer setsxj to be a random value selected uniformly fromXn. In a preprocessing phase, the dealerT
selects uniformly at random a special roundi⋆ ∈ [r]. The dealer computesw ← fn(x1, . . . , xm). Then, for
every round1 ≤ i < r and everyJ ⊆ {1, . . . ,m} such thatm− t ≤ |J | ≤ t, the dealer selects an output,
denotedσi

J , as follows (this output is returned by the parties inQJ = {pj : j ∈ J} if the protocol terminates
in roundi + 1 andQJ is the set of the active parties):

CASE I: 1 ≤ i < i⋆. For everyj ∈ J the dealer setŝxj = xj and for everyj /∈ J it chooseŝxj indepen-
dently with uniform distribution from the domainXn; it computes the outputσi

J ← fn(x̂1, . . . , x̂m).

CASE II: i⋆ ≤ i ≤ r. The dealer setsσi
J = w.

The dealerT interacts with the parties in rounds, where in roundi, for 1 ≤ i ≤ r, there are of three
phases:

The peeking phase.The dealer sends to the adversary all the valuesσi
J such that all parties inQJ are

corrupted.

The abort and premature termination phase. The adversary sends toT the identities of the parties that
abort in the current round. If there are less thant + 1 active parties, thenT sendsσi−1

J to the active
parties, whereQJ is the set of the active parties when parties can also abort during this phase (see
exact details in Figure 1). The honest parties return this output and halt.

The main phase. If at leastt + 1 parties are active,T notifies the active parties that the protocol proceeds
normally.

If after r rounds, there are at leastt + 1 active parties,T sendsw to all active parties and the honest parties
output this value.

Example 3.1 As an example, assume thatm = 5 and t = 3. In this case the dealer computes a valueσi
J

for every set of size 2 or 3. Consider an execution of the protocol wherep1 aborts in round4 andp3 andp4

abort in round100. In this case,T sendsσ99
{2,5} to p2 andp5, which return this output.

6

Inputs: Each partypj holds a private inputyj ∈ Xn and the joint input: the security parameter1n,
the number of roundsr = r(n), and a boundt on the number of corrupted parties.

Instructions for each honest party pj : (1) After receiving the“start ” message, send input
yj to the dealer. (2) If the premature termination step is executed with i = 1, then send
its input yj to the dealer. (3) Upon receiving outputz from the dealer, outputz. (Honest
parties do not send any other messages throughout the protocol.)

Instructions for the (trusted) dealer:

The preprocessing phase:

1. SetD0 = ∅ and send a“start ” message to all parties.

2. Receive an input, denotedxj , from each partypj. For everypj that sends an
“abortj” message, notify all parties that partypj aborted, selectxj ∈ Xn with
uniform distribution, and updateD0 = D0 ∪ {j}.

3. LetD = D0. If |D| ≥ m− t, go to premature termination withi = 1.

4. Setw ← fn(x1, . . . , xm) and selecti⋆ ∈ {1, . . . , r} with uniform distribution.

5. For each1 ≤ i < i⋆, for eachJ ⊆ [m] \ D0 s.t. m− t ≤ |J | ≤ t: for each
j ∈ J set x̂j = xj , for eachj 6∈ J select uniformly at random̂xj ∈ Xn, and set
σi

J ← fn(x̂1, . . . , x̂m).

6. For eachi⋆ ≤ i ≤ r and for eachJ ⊆ [m] \D0 s.t.m− t ≤ |J | ≤ t, setσi
J = w.

7. Send“proceed ” to all parties.

Interaction rounds: In each round1 ≤ i ≤ r, interact with the parties in three phases:

• The peeking phase:For eachJ ⊆ [m] \ D0 s.t. m− t ≤ |J | ≤ t, if QJ contains
only corrupt parties, send the valueσi

J to all parties inQJ .

• The abort phase: Upon receiving an“abortj” message from a partypj , notify
all parties that partypj aborted (ignore all other types of messages) and updateD =
D ∪ {j}. If |D| ≥ m− t, go to premature termination step.

• The main phase:Send“proceed ” to all parties.

Premature termination step:

• If i = 1, then: Receive an input, denotedxj
′, from each active partypj. For every

partypj that sends an“abortj” message, updateD = D∪{j} and selectxj
′ ∈ Xn

with uniform distribution. Setw′ ← fn(x1
′, . . . , xm

′).

• Else, if i > 1, then: For each“abortj” message received from a partypj, update
D = D ∪ {j}. Setw′ = σi−1

J for J = [m] \D.

• Sendw′ to each partypj s.t. j /∈ D0 and halt.

Normal termination: If the last round of the protocol is completed, sendw to to each partypj

s.t. j /∈ D0 .

Figure 1: ProtocolMPCWithDr.

7

The formal proof of the1/p-security of the protocol appears in Appendix C. We next hintwhy for
deterministic functionalities, any adversary can cause harm in the above protocol by at mostO(dO(1)/r),
whered = d(n) is the size of the domain of the inputs and the number of parties, i.e.,m, is constant. As in
the protocols of [24, 22, 4], the adversary can only cause harm by causing the protocol to terminate in round
i⋆. In our protocol, if in some round there are two valuesσi

J andσi
J ′ that the adversary can obtain such that

σi
J 6= σi

J ′ , then the adversary can deduce thati < i⋆. Furthermore, the adversary might have some auxiliary
information on the inputs of the honest parties, thus, the adversary might be able to deduce that a round is
not i⋆ even if all the values that it gets are equal. However, there are less than2t values that the adversary
can obtain in each round (i.e., the values of subsets of thet corrupt parties of size at leastm − t). We will
show that for a roundi such thati < i⋆, the probability that all these values are equal to a fixed value is
1/dO(1) for a deterministic functionfn (for a randomized functionality this probability also depends on the
size of the range). By [22, Lemma 2], the protocol isdO(1)/r-secure.

3.2 Eliminating the Dealer of the Protocol

We eliminate the trusted on-line dealer in a few steps using afew layers of secret-sharing schemes. First,
we change the on-line dealer, so that, in each roundi, it shares the valueσi

J of each subsetQJ among
the parties ofQJ using a|J |-out-of-|J | secret-sharing scheme – calledinner secret-sharing scheme. As
in ProtocolMPCWithDr described in Figure 1, the adversary is able to obtain information onσi

J only if
it controls all the parties inQJ . On the other hand, the honest parties can reconstructσi−1

J (without the
dealer), whereQJ is the set of active parties containing the honest parties. In the reconstruction, if an active
(corrupt) party does not give its share, then it is removed from the set of active partiesQJ . This is possible
since in the case of a premature termination an honest majority among the active parties is guaranteed (as
further explained below).

Next, we convert the on-line dealer to an off-line dealer. That is, we construct a protocol in which the
dealer sends only one message to each party in an initialization stage; the parties interact in rounds using a
broadcast channel (without the dealer) and in each roundi each party learns its shares of theith round inner
secret-sharing schemes. In each roundi, each partypj learns a share ofσi

J in a |J |-out-of-|J | secret-sharing
scheme, for every setQJ such thatj ∈ J andm − t ≤ |J | ≤ t (that is, it learns the share of the inner
scheme). For this purpose, the dealer computes, in a preprocessing phase, the appropriate shares for the
inner secret-sharing scheme. For each round, the shares of each partypj are then shared in a2-out-of-2
secret-sharing scheme, wherepj gets one of the two shares (this share is a mask, enablingpj to privately
reconstruct its shares of the appropriateσi

J although messages are sent on a broadcast channel). All other
parties get shares in at-out-of-(m − 1) Shamir secret-sharing scheme of the other share of the 2-out-of-2
secret-sharing. See Construction B.1 for a formal description. We call the resulting secret-sharing scheme
theouterscheme.

To prevent corrupt parties from cheating, by say, sending false shares and causing reconstruction of
wrong secrets, every message that a party should send duringthe execution of the protocol is signed in the
preprocessing phase (together with the appropriate round number and with the party’s index). In addition,
the dealer sends a verification key to each of the parties. To conclude, the off-line dealer gives each party the
signed shares for the outer secret sharing scheme together with the verification key. A formal description of
the functionality of the off-line dealer, called Functionality MultiShareGen, is given in Figure 2.

The protocol with the off-line dealer proceeds in rounds. Inroundi of the protocol all parties broadcast
their (signed) shares in the outer (t+1)-out-of-m secret-sharing scheme. Thereafter, each party can unmask
the message it receives (with its share in the appropriate2-out-of-2 secret-sharing scheme) to obtain its
shares in the|J |-out-of-|J | inner secret-sharing of the valuesσi

J (for the appropriate setsQJ ’s to which the
party belongs). If a party stops broadcasting messages or broadcasts improperly signs messages, then all

8

Joint input: The security parameter1n, the number of rounds in the protocolr = r(n), a
boundt on the number of corrupted parties, and the set of indices of aborted partiesD0.

Private input: Each partypj, wherej /∈ D0, has an inputxj ∈ Xn.

Computing default values and signing keys

1. For everyj ∈ D0, selectxj with uniform distribution fromXn.

2. Selecti⋆ ∈ [r] with uniform distribution and computew ← fn(x1, . . . , xm).

3. For each1 ≤ i < i⋆, for eachJ ⊆ [m] \D0 s.t.m− t ≤ |J | ≤ t,

(a) For eachj ∈ J , setx̂j = xj.

(b) For eachj 6∈ J , select uniformly at random̂xj ∈ Xn.

(c) Setσi
J ← fn(x̂1, . . . , x̂m).

4. For eachi⋆ ≤ i ≤ r and for eachJ ⊆ [m] \D0 s.t.m− t ≤ |J | ≤ t, setσi
J = w.

5. Compute(Ksign,Kver)← Gen(1n).

Computing signed shares of the inner secret-sharing scheme

6. For eachi ∈ {1, . . . , r} and for eachJ ⊆ [m] \D0 s.t.m− t ≤ |J | ≤ t,

(a) Create shares ofσi
J in a |J |-out-of-|J | secret-sharing scheme for the parties inQJ .

For each partypj ∈ QJ , let Si,J
j be its share ofσi

J .

(b) Sign each shareSi,J
j : computeRi,J

j ← (Si,J
j , i, J, j,Sign((Si,J

j , i, J, j),Ksign)).

Computing shares of the outer secret-sharing scheme

7. For eachi ∈ [r], for eachJ ⊆ [m] \ D0 s.t. m− t ≤ |J | ≤ t, and eachj ∈ J ,
shareRi,J

j using a(t + 1)-out-of-m secret-sharing scheme with respect topj as defined

in Construction B.1: compute one masking sharemaskj(R
i,J
j) andm − 1 complement

shares(comp1(R
i,J
j), . . . , compj−1(R

i,J
j), compj+1(R

i,J
j), . . . , compm(Ri,J

j)).

Signing the messages of all parties

8. For every1 ≤ q ≤ m, compute the messagemq,i that pq ∈ P broadcasts in roundi by
concatenating (1)q, (2) i, and (3) the complement sharescompq(R

i,J
j) produced in Step (7)

for pq (for all J ⊆ [m] \D0 s.t. m− t ≤ |J | ≤ t and allj 6= q s.t. j ∈ J), and compute
Mq,i ← (mq,i,Sign(mq,i,Ksign)).

Outputs: Each partypj such thatj /∈ D0 receives

• The verification keyKver.

• The messagesMj,1, . . . ,Mj,r thatpj broadcasts during the protocol.

• pj ’s private masksmaskj(R
i,J
j) produced in Step (7), for each1 ≤ i ≤ r and each

J ⊆ [m] \D0 s.t.m− t ≤ |J | ≤ t andj ∈ J .

Figure 2: The initialization functionalityMultiShareGenr.

9

other parties consider it as aborted. Ifm − t or more parties abort, the remaining parties reconstruct the
value of the set that contains all of them, i.e.,σi−1

J . In the special case of premature termination already
in the first round, the remaining active parties engage in a fully secure protocol (with honest majority) to
computefn.

The use of the outer secret-sharing scheme with thresholdt+1 plays a crucial role in eliminating the on-
line dealer. On the one hand, it guarantees that an adversary, corrupting at mostt parties, cannot reconstruct
the shares of roundi before roundi. On the other hand, at leastm − t parties must abort to prevent the
reconstruction of the outer secret-sharing scheme (this iswhy we cannot proceed afterm−t parties aborted).
Furthermore, sincet ≤ 2m/3, when at leastm− t corrupt parties aborted, there is an honest majority. To
see this, assume that at leastm− t corrupt parties aborted. Thus, at mostt − (m− t) = 2t −m corrupt
parties are active. There arem− t honest parties (which are obviously active), therefore, as2t−m < m− t
(sincet < 2m/3), an honest majority is achieved whenm− t parties abort. In this case we can execute a
protocol with full security for the reconstruction.

Finally, we replace the off-line dealer by using a secure-with-abort and cheat-detection protocol comput-
ing the functionality computed by the dealer, that is, Functionality MultiShareGenr. Obtaining the outputs
of this computation, an adversary is unable to infer any information regarding the input of honest parties or
the output of the protocol (since it getst shares of a(t+1)-out-of-m secret-sharing scheme). The adversary,
however, can prevent the execution, at the price of at least one corrupt party being detected cheating by all
other parties. In such an event, the remaining parties will start over without the detected cheating party.
This goes on either until the protocol succeeds or there is anhonest majority and a fully secure protocol
computingfn is executed.

A formal description of the protocol appears in Figure 3. Thereconstruction functionality used in this
protocol (when at leastm− t parties aborted) appears in Figure 4. The details of how to construct a protocol
secure-with-abort and cheat-detection withO(1) rounds are given in [4].

Comparison with the multiparty coin-tossing protocol of [4]. Our protocol combines ideas from the
protocols of [22, 4]. However, there are some important differences between our protocol and the protocol
of [4]. In the coin-tossing protocol of [4], the bitsσi

J are shared using a threshold scheme where the
threshold is smaller than the size of the setQJ . This means that a proper subset ofQJ containing corrupt
parties can reconstructσi

J . In coin-tossing this is not a problem since there are no inputs. However, when
computing functionalities with inputs, suchσi

J might reveal information on the inputs of honest parties in
QJ , and we shareσi

J with threshold|QJ |. As a result, we use more setsQJ than in [4] and the bias of the
protocol is increased (put differently, to keep the same security, we need to increase the number of rounds
in the protocol). For example, the protocol of [4] has small bias when there are polynomially many parties
andt = m/2. Our protocol is efficient only when there are constant number of parties. As explained in
Section 4, this difference is inherent as a protocol for general functionalities with polynomially many parties
andt = m/2 cannot have a small bias.

3.3 A 1/p-Secure Protocol for Polynomial Range

Using an idea of [22], we modify our protocol such that it willhave a small bias when the size of the range of
the functionalityF is polynomially bounded (even ifF is randomized and has a big domain of inputs). The
only modification is the way that eachσi

J is chosen prior to roundi⋆: with probability1/(2p) we chooseσi
J

as a random value in the range offn and with probability1− 1/(2p) we choose it as in Figure 2. Formally,
in the model with the dealer, in the preprocessing phase ofMPCWithDr described in Figure 1, we replace
Step (5) with the following step:

• For eachi ∈ {1, . . . , i⋆ − 1} and for eachJ ⊆ [m] \D0 s.t.m− t ≤ |J | ≤ t,

10

Inputs: Each partypj holds the private inputyj ∈ Xn and the joint input: the security
parameter1n, the number of rounds in the protocolr = r(n), and a boundt on the number
of corrupted parties.

Preliminary phase:

1. D0 = ∅

2. If |D0| < m− t,

(a) The parties in{pj : j ∈ [m] \D0} execute a secure-with-abort and cheat-detection
protocol computing FunctionalityMultiShareGenr. Each honest partypj inputsyj

as its input for the functionality.

(b) If a partypj aborts, that is, the output of the honest parties is“abortj”, then, set
D0 = D0 ∪ {j}, chosexj uniformly at random fromxj , and goto Step (2).

(c) Else (no party has aborted), denoteD = D0 and proceed to the first round.

3. Otherwise (|D0| ≥ m− t), the premature termination is executed withi = 1.

In each round i = 1, . . . , r do:

4. Each partypj broadcastsMj,i (containing its shares in the outer secret-sharing scheme).

5. For everypj s.t.Ver(Mj,i,Kver) = 0 or if pj broadcasts an invalid or no message, then all
parties markpj as inactive, i.e., setD = D ∪ {j}. If |D| ≥ m− t, premature termination
is executed.

Premature termination step

6. If i = 1, the active parties use a multiparty secure protocol (with full security) to compute
fn: Each honest party inputsyj and the input of each inactive party is chosen uniformly at
random fromXn. The active parties output the result, and halt.

7. Otherwise,

(a) Each partypj reconstructsRi−1,J
j , the signed share of the inner secret-sharing scheme

produced in Step (6) of FunctionalityMultiShareGenr, for eachJ ⊆ [m] \ D0 s.t.
m− t ≤ |J | ≤ t andj ∈ J .

(b) The active parties execute a secure multiparty protocolwith an honest majority to
compute FunctionalityReconstruction, where the input of each partypj is Ri−1,J

j

for everyJ ⊆ [m] \D0 s.t.m− t ≤ |J | ≤ t andj ∈ J .

(c) The active parties output the output of this protocol, and halt.

At the end of round r:

8. Each active partypj broadcasts the signed sharesRr,J
j for eachJ such thatj ∈ J .

9. Let J ⊆ [m] \ D be the lexicographical first set such that all the parties inQJ broadcast
properly signed sharesRr,J

j . Each active party reconstructs the valueσr
J , outputsσr

J , and
halts.

Figure 3: Them-party protocolMPCr for computingF .

11

Joint Input: The round numberi, the indices of inactive partiesD, a boundt on the number of
corrupted parties, and the verification key,Kver.

Private Input of pj: A set of signed sharesRi−1,J
j for eachJ ⊆ [m] \D0 s.t. m− t ≤ |J | ≤ t

andj ∈ J .

Computation:

1. For eachpj, if pj ’s input is not appropriately signed or malformed, thenD = D∪{j}.

2. SetJ = [m] \D.

3. Reconstructσi−1
J from the shares of all the parties inQJ .

Outputs: All parties receive the valueσi−1
J (as their output).

Figure 4: FunctionalityReconstruction for reconstructing the output in the premature terminationstep.

– with probability1/(2p), select uniformly at randomzi
J ∈ Zn and setσi

J = zi
J .

– with the remaining probability1− 1/(2p),

1. For everyj 6∈ J select uniformly at random̂xj ∈ Xn and for eachj ∈ J , setx̂j = xj.
2. Computeσi

J ← fn(x̂1, . . . , x̂m).

Similarly, in the protocol without the dealer, ProtocolMPCr, we replace Step (3) inMultiShareGenr

(described in Figure 2) with the above step. Denote the resulting protocols with and without the dealer
models byMPCWithDForRange andMPCForRanger, respectively.

The idea why this change improves the protocol is that now theprobability that all values held by the
adversary are equal prior to roundi⋆ is bigger, thus, the probability that the adversary guessesi⋆ is smaller.
This modification, however, can cause the honest parties to output a value that is not possible given their
inputs, and, in general, we cannot simulate the case (which happens with probability1/(2p)) when the
output is chosen with uniform distribution from the range.

4 Impossibility of 1/p-secure Computation with Non-Constant Number of
Parties

For deterministic functions, our protocol is efficient whenthe number of partiesm is constant and the size of
the domain or range is polynomial (in the security parametern) or when the number of parties isO(log log n)
and the size of the domain is constant. We next show that, in general, there is no efficient protocol when the
number of parties ism(n) = ω(1) and the size of the domain is polynomial and whenm(n) = ω(log n)
and the size of the domain of each party is 2. This is done usingthe following impossibility result of Gordon
and Katz [22].

Theorem 3 ([22]) For everyℓ(n) = ω(log n), there exists a deterministic 2-party functionalityF with
domain and range{0, 1}ℓ(n) that cannot be1/p-securely computed forp ≥ 2 + 1/poly(n).

We next state and prove our impossibility results.

Theorem 4 For everym(n) = ω(log n), there exists a deterministicm(n)-party functionalityF ′ with
domain{0, 1} that cannot be1/p-securely computed forp ≥ 2 + 1/poly(n) without an honest majority.

12

Proof: Let ℓ(n) = m(n)/2 (for simplicity, assumem(n) is even). LetF = {fn}n∈N
be the functionality

guaranteed in Theorem 3 forℓ(n). Define anm(n)-party deterministic functionalityF ′ = {f ′
n}n∈N

, where
in f ′

n party pj gets thejth bit of the inputs offn and the outputs offn andf ′
n are equal Assume thatF ′

can be1/p-securely computed by a protocolΠ′ assuming thatt(n) = m(n)/2 parties can be corrupted.
This implies a1/p-secure protocolΠ for F with two parties, where the first party simulates the firstt(n)
parties inΠ′ and the second party simulates the lastt(n) parties. The1/p-security ofΠ is implied by the
fact that any adversaryA for the protocolΠ can be transformed into an adversaryA′ for Π′ controlling
m(n)/2 = t(n) parties; asA′ cannot violate the1/p-security ofΠ′, the adversaryA cannot violate the
1/p-security ofΠ. �

Theorem 5 For everym(n) = ω(1), there exists a deterministicm(n)-party functionalityF ′′ with domain
{0, 1}log n that cannot be1/p-securely computed forp ≥ 2 + 1/poly(n) without an honest majority.

Proof: Let ℓ(m) = 0.5m(n) log n and letF = {fn}n∈N
be the functionality guaranteed in Theorem 3 for

ℓ(m). We divide the2ℓ(n) bits of the inputs offn into m(n) blocks of lengthlog n. Define anm(n)-party
deterministic functionalityF ′′ = {f ′′

n}n∈N
, where inf ′′

n partypj gets thejth block of the inputs offn and
the outputs offn andf ′′

n are equal. As in the proof of Theorem 4, a1/p-secure protocol forF ′′ implies a
1/p-secure protocol forF contradicting Theorem 3. �

The above impossibility results should be contrasted with the coin-tossing protocol of [4] which is
an efficient1/p-secure protocol even whenm is polynomial in the security parameter and the number of
bad parties ism(n)/2 + O(1). Notice that in both our impossibility results the size of the range is super-
polynomial (as we consider the model where all parties get the same output). It is open if there is an efficient
1/p-secure protocol when the number of parties is not constant and the size of both the domain and range is
polynomial.

References

[1] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic ad-
versaries. In S. Vadhan, editor,Proc. of the Fourth Theory of Cryptography Conference – TCC 2006,
volume 4392 ofLecture Notes in Computer Science, pages 137–156. Springer-Verlag, 2007.

[2] D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. InProc. of the 30th IEEE
Symp. on Foundations of Computer Science, pages 468–473, 1989.

[3] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with dishonest majority. Full
version of [4].

[4] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with dishonest majority. In
T. Rabin, editor,Advances in Cryptology – CRYPTO 2010, volume 6223 ofLecture Notes in Computer
Science, pages 538–557. Springer-Verlag, 2010.

[5] M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A fair protocol for signing contracts. InProceedings
of the 12th Colloquium on Automata, Languages and Programming, pages 43–52. Springer-Verlag,
1985.

[6] M. Blum. How to exchange (secret) keys.ACM Trans. Comput. Syst., 1(2):175–193, 1983.

[7] D. Boneh and M. Naor. Timed commitments. In M. Bellare, editor, Advances in Cryptology – CRYPTO
2000, volume 1880 ofLecture Notes in Computer Science, pages 236–254. Springer-Verlag, 2000.

13

[8] R. Canetti. Security and composition of multiparty cryptographic protocols. J. of Cryptology,
13(1):143–202, 2000.

[9] R. Cleve. Limits on the security of coin flips when half theprocessors are faulty. InProc. of the 18th
STOC, pages 364–369, 1986.

[10] R. Cleve. Controlled gradual disclosure schemes for random bits and their applications. In G. Brassard,
editor, Advances in Cryptology – CRYPTO ’89, volume 435 ofLecture Notes in Computer Science,
pages 573–588. Springer-Verlag, 1990.

[11] I. Damgård. Practical and provably secure release of asecret and exchange of signatures.J. of Cryp-
tology, 8(4):201–222, 1995.

[12] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. CACM,
28(6):637–647, 1985.

[13] Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure fault-tolerant protocols and the
public-key model. In C. Pomerance, editor,Advances in Cryptology – CRYPTO ’87, volume 293 of
Lecture Notes in Computer Science, pages 135–155. Springer-Verlag, 1988.

[14] J. A. Garay, P. D. MacKenzie, M. Prabhakaran, and K. Yang. Resource fairness and composability
of cryptographic protocols. In S. Halevi and T. Rabin, editors, Proc. of the Third Theory of Cryptog-
raphy Conference – TCC 2006, volume 3876 ofLecture Notes in Computer Science, pages 404–428.
Springer-Verlag, 2006.

[15] O. Goldreich. Foundations of Cryptography, Voume II Basic Applications. Cambridge University
Press, 2004.

[16] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. InProc. of the 19th ACM
Symp. on the Theory of Computing, pages 218–229, 1987.

[17] S. Goldwasser and L. Levin. Fair computation of generalfunctions in presence of immoral majority.
In A. J. Menezes and S. A. Vanstone, editors,Advances in Cryptology – CRYPTO ’90, volume 537 of
Lecture Notes in Computer Science, pages 77–93. Springer-Verlag, 1991.

[18] S. Goldwasser and Y. Lindell. Secure computation without agreement. InDISC ’02: Proceedings
of the 16th International Conference on Distributed Computing, pages 17–32, London, UK, 2002.
Springer-Verlag.

[19] D. Gordon and J. Katz. Complete fairness in multi-partycomputation without an honest majority. In
Proc. of the Sixth Theory of Cryptography Conference – TCC 2009, pages 19–35, Berlin, Heidelberg,
2009. Springer-Verlag.

[20] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Completefairness in secure two-party computation.
In Proc. of the 40th ACM Symp. on the Theory of Computing, pages 413–422, 2008.

[21] S. D. Gordon, Y. Ishai, T. Moran, R. Ostrovsky, and A. Sahai. On complete primitives for fairness. In
D. Micciancio, editor,Proc. of the Seventh Theory of Cryptography Conference – TCC2010, volume
5978 ofLecture Notes in Computer Science, pages 91–108. Springer-Verlag, 2010.

[22] S. D. Gordon and J. Katz. Partial fairness in secure two-party computation. In Henri Gilbert, editor,
Advances in Cryptology – EUROCRYPT 2010, volume 6110 ofLecture Notes in Computer Science,
pages 157–176. Springer-Verlag, 2010.

14

[23] M. Luby, S. Micali, and C. Rackoff. How to simultaneously exchange a secret bit by flipping a
symmetrically-biased coin. InProc. of the 24th IEEE Symp. on Foundations of Computer Science,
pages 11–21, 1983.

[24] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In Proc. of the Sixth Theory of
Cryptography Conference – TCC 2009, pages 1–18, 2009.

[25] B. Pinkas. Fair secure two-party computation. In E. Biham, editor,Advances in Cryptology – EU-
ROCRYPT 2003, volume 2656 ofLecture Notes in Computer Science, pages 87–105. Springer-Verlag,
2003.

[26] A. Shamir. How to share a secret.Communications of the ACM, 22:612–613, 1979.

[27] A. C. Yao. How to generate and exchange secrets. InProc. of the 27th IEEE Symp. on Foundations of
Computer Science, pages 162–167, 1986.

A Security with Abort and Cheat Detection

We next present a definition of secure multiparty computation that is more stringent than standard definitions
of secure computation with abort. This definition extends the definition for secure computation as given by
Aumann and Lindell [1]. Roughly speaking, the definition requires that one of two events is possible: (1)
The protocol terminates normally, andall parties receive their outputs, or (2) Corrupted parties deviate from
the prescribed protocol; in this case the adversary obtainsthe outputs of the corrupted parties (but nothing
else), and all honest parties are given an identity of one party that has aborted. The formal definition uses
the real vs. ideal paradigm as discussed in Section 2.1. We next describe the appropriate ideal model.

Execution in the ideal model. Let B ⊆ [m] denote the set of indices of corrupted parties controlled by
an adversaryA. The adversaryA receives an auxiliary input denotedaux. An ideal execution proceeds as
follows:

Send inputs to trusted party: The honest parties send their inputs to the trusted party. The corrupted
parties may either send their received input, or send some other input of the same length (i.e.,xj ∈
Xn) to the trusted party, or abort (by sending a special“abortj” message). Denote byx1, . . . , xm

the inputs received by the trusted party. If the trusted party receives an“abortj” message, then it
sends“abortj” to all honest parties and terminates (if it received“abortj” from more than onej,
then it uses the minimal suchj).

Trusted party sends outputs to adversary:The trusted party computesw ← fn(x1, . . . , xm) and sends
the outputw to the adversary.

Adversary instructs the trusted party to continue or halt: A sends either a“continue ” message or
“abortj” to the trusted party for some corrupt partypj, i.e., j ∈ B. If it sends a“continue ”
message, the trusted party sendsw to all honest parties. Otherwise, if the adversary sends“abortj”,
then the trusted party sends“abortj” to all honest parties.

Outputs: An honest party always outputs the valuew it obtained from the trusted party. The corrupted
parties output nothing. The adversaryA outputs any (probabilistic polynomial-time computable)
function of the auxiliary inputaux, the inputs of the corrupt parties, and the valuew obtained from
the trusted party.

15

We let IDEALCD
F ,S(aux)(~y, 1n) and REALΠ,A(aux)(~y, 1n) be defined as in Section 2.1 (where in this

caseIDEALCD
F ,S(aux)(~y, 1n) refers to the above execution with cheat-detection ofF). This ideal model is

different from that of [15] in that in the case of an “abort”, the honest parties get output“abortj” and not
a⊥ symbol. This means that the honest partiesknowan identity of a corrupted party that causes the abort.
This cheat-detection is achieved by most multiparty protocols, including that of [16], but not all (e.g., the
protocol of [18] does not meet this requirement). Using thisnotation we define secure computation with
abort and cheat-detection.

Definition A.1 (security-with-abort and cheat-detection) LetF andΠ be as in Definition 2.2. A protocol
Π is said tosecurely computeF against at mostt(n) corrupt parties with abort and cheat-detection if
for every non-uniform polynomial-time adversaryA in the real model controlling at mostt(n) parties, there
exists a non-uniform polynomial-time adversaryS in the ideal model controlling the same parties, such that
{

IDEALCD
F ,S(aux)(~y, 1n)

}

aux∈{0,1}∗,~y∈(Xn)m,n∈N

C
≡

{
REALΠ,A(aux)(~y, 1n)

}
aux∈{0,1}∗,~y∈(Xn)m,n∈N

.

B Cryptographic Tools

Signature Schemes. Informally, a signature on a message proves that the messagewas created by its
presumed sender, and its content was not altered. A signature scheme is a triple(Gen,Sign,Ver) containing
the key generation algorithmGen, which outputs a pair of keys, the signing keyKS and the verification key
Kv, the signing algorithmSign, and the verifying algorithmVer. We assume that it is infeasible to produce
signatures without holding the signing key. For formal definition see [15].

Secret Sharing Schemes. An α-out-of-m secret-sharing scheme is a mechanism for sharing data among
a set of parties such that every set of sizeα can reconstruct the secret, while any smaller set knows nothing
about the secret. In this paper, we use two schemes: the XOR-basedm-out-of-m scheme (i.e., in this scheme
α = m) and Shamir’sα-out-of-m secret-sharing scheme [26] which is used whenα < m. In both schemes,
for everyα − 1 parties, the shares of these parties are uniformly distributed and independent of the secret.
Furthermore, given suchα − 1 shares and a secrets, one canefficientlycomplete them tom shares of the
secrets.

In our protocols we sometimes require that a single party learns the value of a secret that is shared
among all parties. Since all messages are sent over a broadcast channel, we use two layers of secret sharing
to obtain the above requirements as described below.

Construction B.1 (secret sharing with respect to a certain party) Lets be a secret taken from some finite
field F. We shares amongm partieswith respect toa (special) partypj in an α-out-of-m secret-sharing
scheme as follows:

1. Choose shares(s(1), s(2)) of the secrets in a two-out-of-two secret-sharing scheme (that is, select
s(1) ∈ F uniformly at random and computes(2) = s − s(1)). Denote these shares bymaskj(s) and
comp(s), respectively.

2. Compute shares(λ(1), . . . , λ(j−1), λ(j+1), . . . , λ(m)) of the secretcomp(s) in an(α−1)-out-of-(m−
1) Shamir’s secret-sharing scheme. For eachℓ 6= j, denotecompℓ(s) = λ(ℓ).

Output:

• The share of partypj is maskj(s). We call this share “pj ’s maskingshare”.

16

• The share of each partypℓ, whereℓ 6= j, is compℓ(s). We call this share “pℓ’s complementshare”.

In the above scheme, we share the secrets among the parties inP in anα-out-of-m secret-sharing scheme
where only sets of sizeα that containpj can reconstruct the secret. In this construction, for everyβ < α
parties, the shares of these parties are uniformly distributed and independent of the secret. Furthermore,
given suchβ < α shares and a secrets, one canefficientlycomplete them tom shares of the secrets. In
addition, givenβ shares and a secrets, one canefficientlyselect uniformly at random a vector of shares
competing theβ shares tom shares ofs.

C Proof of 1/p-Security of the Protocols with a Dealer

In this section we prove that our protocols described in Section 3 that assume an trusted dealer are perfect
1/poly-secure implementations of the ideal functionalityF . We start by presenting in Appendix C.1 a
simulator for ProtocolMPCWithDr. In Appendix C.2, we prove the correctness of the simulationby
showing the the global output in the ideal-world is distributed within 1/poly statistical distance from the
global output in the real-world. In Appendix C.3, we describe the required modifications to the simulator
for the protocol forF that has a polynomial-size range, and argue that the modifiedsimulation is correct.

C.1 The Simulator for Protocol MPCWithDr

We next present a simulatorST for ProtocolMPCWithDr, described in Figure 1. LetB be the set of
indices of corrupted parties in the execution.

The simulatorST invokesA on the set of inputs{yj : j ∈ B}, the security parameter1n, and the auxil-
iary inputaux, playing the role of the trusted dealer in the interaction withA.

Simulating the preprocessing phase:

1. D0 = ∅.

2. The simulatorST sends a“start ” message to all corrupt parties.

3. ST receives a set of inputs{xj : j ∈ B} thatA submits to the computation of the dealer. If
A does not submit an input on behalf ofpj , i.e.,A sends an“abortj” message, then, the
simulatorST notifies all corrupted parties that partypj aborted and updatesD0 = D0 ∪ {j}.

4. ST setsD = D0. If |D| ≥ m− t, the simulator setsi = 1 and proceeds to simulate the
premature termination step.

5. ST selectsi⋆ ∈ {1, . . . , r} with uniform distribution.

6. For eachi ∈ {1, . . . , i⋆ − 1} and for eachJ ⊆ B \D0 s.t.m− t ≤ |J | ≤ t do

(a) For eachj ∈ [m], if j ∈ J , thenST setsx̂j = xj , else,ST selects uniformly at random
x̂j ∈ Xn.

(b) ST setsσi
J ← fn(x̂1, . . . , x̂m).

7. The simulatorST sends“proceed ” to all corrupt parties.

Simulating interaction rounds: In each round1 ≤ i ≤ r, the simulatorST interacts in three phases with
the parties{pj : j ∈ B \D0}, i.e., the corrupt parties which are active so far:

• The peeking phase:

– If i = i⋆, the simulatorST sends the set of inputs{xj : j ∈ B \D0} to the trusted party
computingF and receiveswS .

17

– For eachJ ⊆ B \D0 s.t. m− t ≤ |J | ≤ t do
1. If i ∈ {1, . . . , i⋆ − 1}, the simulatorST sends the valueσi

J (prepared in the simulation
of the preprocessing phase) to all parties inQJ (i.e., to the adversary).

2. Else, ifi ∈ {i⋆, . . . , r}, ST sends the valuewS to all parties inQJ (i.e., to the adver-
sary).

• The abort phase:Upon receiving an“abortj” message from a partypj,

1. ST notifies all corrupted parties that partypj aborted.
2. ST updatesD = D ∪ {j}.
3. If at leastm− t parties have aborted so far, that is|D| > m− t, the simulatorST proceeds

to simulate the premature termination step.

• The main phase:ST sends“proceed ” to all corrupt parties.

Simulating the premature termination step:

• If the premature termination step occurred in roundi = 1,

– The simulatorST receives a set of inputs{xj
′ : j ∈ B \D} thatA submits to the compu-

tation of the dealer.
If A does not submit an input on behalf ofpj , i.e., sends an“abortj” message, then, the
simulatorS notifies all corrupted parties that partypj aborted and updatesD = D ∪ {j}.

– The simulatorST sends the set of inputs{xj
′ : j ∈ B \D} to the dealer and receiveswS .

• If the premature termination step occurred in round1 < i < i⋆,

1. Upon receiving an“abortj” message from a partypj , the simulatorST updatesD =
D ∪ {j}.

2. The simulatorST sends the set of inputs{xj : j ∈ B \D} to the trusted party computing
F and receiveswS .

• (⋄ If the premature termination step occurred in roundi⋆ ≤ i ≤ r, thenST already haswS ⋄)

• ST sends the valuewS to each party in{pj : j ∈ B \D0}.

Simulating normal termination: If the last round of the protocol is completed, thenST sendswS to each
party in{pj : j ∈ B \D0}.

At the end of the interaction withA, the simulator will output the sequence of messages exchanged between
the simulator and the corrupted parties.

C.2 Proof of the Correctness of the Simulation forMPCWithDr

In order to prove the correctness of the simulation described in Appendix C.1, we consider the two random
variables from Section 2.1, both of the form(V,C), whereV describes a possible view ofA, andC describes
a possible output of the honest parties (i.e.,C ∈ Zn). The first random variableREALMPCWithDr,A(aux)(~y, 1n)
describes the real world – an execution of ProtocolMPCWithD, whereV describes the view of the adver-
saryA in this execution, andC is the output of the honest parties in this execution. The second random vari-
ableIDEALF ,ST (aux)(~y, 1n) describes the ideal world – an execution with the trusted party computingF
(this trusted party is denoted byTF), whereV describes the output of the simulatorST in this execution, and
C is the output of the honest parties in this execution. For therest of this section, we simplify notations and
denote the above two random variables byREAL = (VREAL, CREAL) andIDEAL = (VIDEAL, CIDEAL)
respectively.

18

We consider the probability of a given pair(v, c) according to the two different random variables. We
compare the two following probabilities: (1) The probability that v is the view of the adversaryA in an
execution of ProtocolMPCWithDr andc is the output of the honest parties in this execution, where the
probability is taken over the random coins of the dealerT . (2) The probability thatv is the output of the
simulatorST in an ideal-world execution with the trusted partyTF andc is the output of the honest parties
in this execution, where the probability is taken over the random coins of the simulatorST and the random
coins of the ideal-world trusted partyTF .

In Lemma C.3 we prove the correctness of the simulation by showing that the two random variables are
within statistical distance1/poly. For the proof of the lemma we need the following claim from [22].

Claim C.1 ([22, Lemma 2]) Let A be an adversary in ProtocolMPCWithDr and let x1, . . . , xm be a
set of inputs. Assume that for every possible outputw obtained by the dealer using this set of inputs the
probability that in a roundi < i⋆ all the values that the adversary sees are equal tow is at leastα. Then,
the probability thatA guessesi⋆ (i.e., causes premature termination in roundi⋆) is at most1/αr.

As the adversary might have some auxiliary information on the inputs of the honest parties and know
the value offn(x1, . . . , xm), the adversary might be able to deduce that a round is noti⋆ if not all the values
that it gets are equal to this value (or a possible value for randomized functionalities). Specifically, in the
worst case scenario, the adversary knows the inputs of all the honest parties. In the next claim we show a
lower bound on the probability that all the values that the adversary obtains in a roundi < i⋆ of Protocol
MPCWithDr are all equal to a fixed value.

Claim C.2 Let d(n) andg(n) be the size of the domain and range, respectively, of a randomized function-
ality F computed by the protocolMPCWithDr. Letǫ be a number such thatPr[fn(x1, . . . , xm) = wℓ] ≥ ǫ
for every set of inputsx1, . . . , xm and for eachwℓ from the range offn(x1, . . . , xm). Then, the proba-
bility that in a roundi < i⋆ all the values that the adversary sees are equal to a specificw is at least
(ǫ/d(n)m)2

t−1.
Furthermore, ifF is deterministic, then, this probability is at least(1/d(n)m)2

t−1.

Proof: We start with the case of a deterministic functionalityF . Recall thatx1, . . . , xm are the inputs
used by the dealer to obtainw = fn(x1, . . . , xm) andσi⋆

J = w for eachJ ⊆ [m] s.t. m− t ≤ |J | ≤ t.
Let J be such that the adversary obtainsσi

J in roundi < i⋆. Recall that̂x1, . . . , x̂m are the inputs used by
the dealer to obtainσi

J , that is,σi
J = fn(x̂1, . . . , x̂m), wherex̂j = xj for eachj ∈ J and x̂j is selected

uniformly at random from̂xj for everyj /∈ J . We bound the probability thatσi
J = w by the probability that

x̂j = xj for all j /∈ J . The probability that̂xj = xj is 1/d. Therefore, the probability that both sets are the
same is(1/d)m−|J | > (1/d)m.

In each round of the protocol,A obtains the valueσi
J for each subsetQJ s.t. J ⊆ [m] andm− t ≤

|J | ≤ t, therefore,A obtains less than2t values. For each such two valuesσi
J andσi

J ′ obtained byA
in roundi < i⋆, the sets of inputs{x̂j : j /∈ J} and{x̂j : j /∈ J ′} are totally independent. Therefore, the
probability that all the values that the adversary sees in round i < i⋆ are equal tow = fn(x1, . . . , xm) is at
least(1/dm)2

t−1.
For randomized functionalityF , we think of the evaluation offn(x̂1, . . . , x̂m) as two steps: first̂xj is

randomly chosen fromXn for everyj 6∈ J and then the randomized functionality is evaluated. Therefore, as
A obtains less than2t values in each roundi < i⋆, that the probability that all the values that the adversary
sees in each roundi < i⋆ are equal to the specificw is at least(1/dm)2

t−1 · ǫ2t−1. �

In the next lemma, we prove the correctness of the simulationby using the previous two lemmas.

19

Lemma C.3 LetF be a (possibly randomized) functionality,A be a non-uniform polynomial-time adver-
sary corruptingt < 2m/3 parties in an execution of ProtocolMPCWithD, and ST be the simulator
described in Appendix C.1 (whereST controls the same parties asA). Then, for everyn ∈ N, for every
~y ∈ (Xn)m, and for everyaux ∈ {0, 1}∗

SD
(

REALMPCWithDr,A(aux)(~y, 1n),IDEALF ,ST (aux)(~y, 1n)
)
≤ 2g(n)d(n)m/ (r(n))2

t

,

whered(n) andg(n) are the sizes of the range and the domain ofF , respectively, andr(n) be the number
of rounds in the protocol.

Furthermore, ifF is deterministic, then, the statistical distance between these two random variables is
at most(d(n)m)2

t

/r(n).

Proof: Our goal here is to show that the statistical distance between the above two random variables is
at most as described in lemma. The flow of our proof is as follows. We first bound the statistical distance
between the two random variables by the probability that theadversaryA guesses the special roundi⋆. We
do this by showing that, conditioned on the event that the adversary fails to guess roundi⋆, the two random
variables are identically distributed. Then, we bound the probability of guessingi⋆ in time using Claim C.1
and Claim C.2.

Observe that, in the simulation,ST follows the same instructions as the trusted partyT in Protocol
MPCWithDr, except for two changes. First,ST does not compute the outputwS, but rather getswS

externally fromTF . The simulator obtains this value either in the premature termination phase (ifi < i⋆) or
in the peeking stage wheni = i⋆. The second difference is that in the case of a premature termination,ST

will always usewS as its message to the corrupt parties, whileT will use the value from roundi⋆− 1 of the
appropriate subsetQJ as its message.

We analyze the probabilities of(v, c) in the two random variables according to weather the premature
termination occurred before, during, or after the special roundi⋆.

Premature termination before round i⋆. We argue that in this case, both in the real protocol and in
the simulation, the view ofA is identically distributed in the two worlds.ST follows the same random
process in interacting withA (before sending the last message in the premature termination) as doesT in
the real-world execution. The view of the adversary consists of values which are outputs of evaluations of
the functionfn on the same input distributions. The adversary does not learn anything about the inputs of
the honest parties, hence, its decision to abort does not depend on any new information it obtains during the
interaction rounds so far. In addition, in both worlds, the output of the honest parties is the evaluation of
the functionfn on the same set of inputs for the active parties and uniformlyselected random inputs for the
aborted parties.

Premature termination after round i⋆ or never occurs. Herev must containσi⋆

J for someJ , which,
in the real-world execution, is equal to the output value of all sets for any roundi > i⋆ (recall that the
output value of the honest parties will be determined by one such value), and in the simulation it equalswS .
Thus, in both scenarios,v must be consistent withi⋆ and withc, hence,v completely determinesC. Again,
sinceST follows the same random process in interacting withA as doesT in the real-world execution the
probabilities are the same.

Premature termination in round i⋆. This is the interesting case, which causes the statistical distance. In
the real world, the output of the honest parties isσi⋆−1

J for someJ , while in the ideal world their output
is wS ← fn(x1, . . . , xm). In the first case the output is independent of the adversary’s view, while in the

20

second case, the view determines the output. Thus, in this case the probabilities of the views are different.
However, we will show that the event of premature termination in roundi⋆ happens with small probability.

Since the probabilities of(v, c) in the first two cases are equal, the statistical distance between the two
random variables is bounded by the probability of the adversary guessingi⋆ correctly (before the abort phase
of roundi⋆). That is,

SD (IDEAL,REAL) ≤ Pr[Premature termination in roundi⋆]. (1)

We next use Claim C.1 and Claim C.2 to bound the probability that the adversary guessesi⋆. However,
there might be values such thatPr[w = fn(x1, . . . , xm)] is small. Therefore, we consider two events
of guessingi⋆, wherep0 is a parameter specified below. We call an output valuesw heavyif Pr[w =
fn(x1, . . . , xm)] > 1/(p0 · g), otherwise, we callw light.

Case 1: The adversary guessesi⋆ with some lightw. Since there are at mostg possible values offn(x1, . . . , xm),
the probability of this event, by the union bound, is at most1/p0.

Case 2: The adversary guessesi⋆ with some heavyw. Thus, by Claim C.2 whereǫ = p0 · g, the probability
of w = σi

J for all values that the adversary sees in roundi < i⋆ is at least(1/dm · p0 · g)2
t−1. By

Claim C.1, the probability that the adversary guessesi⋆ conditioned on thew being heavy is at most
(dm · p0 · g)2

t−1/r.

We takep0 = r2−t

/(g ·dm); the total probability that the adversary guessesi⋆ in the two cases is at most

(dm · p0 · g)2
t−1

r
+

1

p0
≤ 2 ·

g · dm

r2−t
.

Therefore, by Equation (1), the statistical distance between the two random variables in the randomized case
is as claimed in the lemma.

The case thatF is deterministic is simpler. By combining Claim C.1 and Claim C.2 we get that the
probability thatA guessesi⋆ is at most(r/d(n)m)2

t−1. By applying Equation (1), we get the bound on
statistical distance between the two random variables for the deterministic case as claimed in the lemma.�

C.3 The Simulator for the Protocol with the Dealer for Polynomial Range

Lemma C.4 LetF be a (possibly randomized) functionality. For every non-uniform polynomial-time ad-
versaryA corrupting t < 2m/3 parties in an execution of ProtocolMPCWithDForRange, there exists a
simulatorST in the ideal model, that simulates the execution ofA (whereST controls the same parties as
A). That is, for everyn ∈ N, for every~y ∈ (Xn)m, and for everyaux ∈ {0, 1}∗

SD
(
REALMPCWithDr ,A(aux)(~y, 1n), IDEALF ,ST (aux)(~y, 1n)

)
<

(2p(n) · g(n))2
t

r(n)
+

1

2p(n)
,

whereg(n) is the size of the range ofF , with probability1/(2p(n)) each valueσi
J in roundi < i⋆ is selected

uniformly at random from the range, andr(n) be the number of rounds in the protocol.

Proof: The simulators and their proofs for ProtocolMPCWithDForRange and ProtocolMPCWithD
are similar; we only present (informally) the differences between the two simulators and the two proofs.

21

The modified simulator. Recall that the protocolsMPCWithD andMPCWithDForRange are different
only in Step (3) of the share generation step. InMPCWithDForRange, each valueσi

J prior to roundi⋆

is chosen with probability1/(2p) as a random value from the range offn and with probability1 − 1/(2p)
it is chosen just like in Figure 1. There are two modificationsto the simulator. The first modification in
the simulator is in Step (6) in the simulation of the preprocessing phase, i.e., in the computation ofσi

J for
i < i⋆. The step that replaces Step (6) appears below.

• For eachi ∈ {1, . . . , i⋆ − 1} and for eachJ ⊆ B \D0 s.t.m− t ≤ |J | ≤ t do

1. with probability1/(2p), select uniformly at randomzi
J ∈ Zn and setσi

J = zi
J .

2. with the remaining probability1− 1/(2p),

(a) For eachj ∈ [m], if j ∈ J , thenST setsx̂j = xj , else,ST selects uniformly at random
x̂j ∈ Xn.

(b) ST setsσi
J ← fn(x̂1, . . . , x̂m).

The second modification is less obvious. Recall that both random variables appearing in the lemma contain
the output of the honest parties. In the ideal world, the honest parties always outputfn applied to their
inputs. In the real world, in a premature termination in round i < i⋆, with probability1/(2p), the honest
parties output a random value from the range offn. It is hard to simulate the output of the honest parties in
first case.4 We simply modify the simulator such that with probability1/(2p) the simulator returns⊥, i.e.,
it announces that the simulation has failed. The new premature termination step appears below.

Simulating the premature termination step:

• If the premature termination step occurred in roundi < i⋆,

– With probability1/(2p), for eachj ∈ B \D0 send“abortj” to the trusted party comput-
ingF and return⊥.

– With the remaining probability1−1/(2p), execute the original simulation of the premature
termination step (appearing in Appendix C.1).

• Else (i ≥ i⋆), execute the original simulation of the premature termination step (appearing in
Appendix C.1).

The modified proof. The proof to the simulator forMPCWithDForRange remains basically the same,
except for two changes. We first modify Claim C.2 below and prove a slightly different claim, which changes
the probability of the adversary guessingi⋆.

Claim C.5 Let g(n) be the size of the range of the (possibly randomized) functionality F computed by the
protocolMPCWithDForRanger andw ∈ Zn. Then, the probability that in a roundi < i⋆ all the values
that the adversary sees are equal tow is at least(1/2p(n) · g(n))2

t

.

Proof: According to the protocol, there are two different ways to produce each valueσi
J in roundi < i⋆:

(1) Computefn on a set of inputs and a set of uniformly selected values from the domain of the functionality,
and (2) Setσi

J as a uniformly selected value from the range of the functionality. We ignore the first case.
In the second option, with probability1/2p, the valueσi

J is uniformly selected from the range. Hence, the
probability thatσi

J is equal to a specific value is at least1/(2p · g).

4For example, there might not be possible inputs of the corrupt parties causing the honest parties to output such output.

22

It was explained in the proof of Claim C.2 that in each round ofthe protocol,A obtains less than2t

values. Therefore, we conclude that he probability that allthe values thatA obtains in roundi < i⋆ are all
equal tow is at least(1/(2p · g))2

t

. �

By applying the Claim C.1 we conclude that the probability ofthe adversary guessingi⋆ correctly in
ProtocolMPCWithDForRanger is at most(2p ·g)2

t

/r. In case of a premature termination in roundi < i⋆,
with probability1 − 1/(2p) in both the ideal world and real world, the value that the honest parties output
is the evaluation offn on the inputs of the active parties and random inputs for the parties that aborted.
However, with probability1/(2p), if premature termination occurs prior to roundi⋆, the output of the
honest parties ProtocolMPCWithDForRanger is a random value from the range offn; the simulator fails
to simulate the execution in this case and outputs⊥. Thus,

SD (IDEAL,REAL)

≤ Pr[Premature termination in roundi⋆] + (1/2p) · Pr[Premature termination before roundi⋆]

≤ (2p · g)2
t

/r + (1/2p).

Therefore, the statistical distance is as claimed. �

D Proof of Security for the Protocols without the Dealer

D.1 The Simulator for Protocol MPCr

We next prove that ProtocolMPCr is a secure real-world implementation of the (ideal) functionality of
ProtocolMPCWithDr. By Lemma C.3, whenr(n) is sufficiently large, ProtocolMPCWithDr is a1/p-
secure protocol forF . Thus, together we get that ProtocolMPCr is a1/p-secure protocol forF . according
to the definition appears in Appendix A. We analyze ProtocolMPCr in a hybrid model where there are 3
ideal functionalities:

Functionality MultiShareGenWithAbortr. This functionality is an (ideal) execution of Functional-
ity MultiShareGenr in the secure-with-abort and cheat-detection model. That is, the functionality
gets a set of inputs. If the adversary sends“abortj” for some corrupt partypj, then this message
is sent to the honest parties and the execution terminates. Otherwise, FunctionalityMultiShareGenr

is executed. Then, the adversary gets the outputs of the corrupt parties. Next, the adversary decides
whether to halt or to continue: If the adversary decides to continue, it sends a“proceed ” message
and the honest parties are given their outputs. Otherwise, the adversary sends“abortj” for some
corrupt partypj, and this message is sent to the honest parties.

Functionality FairMPC. This functionality computes the valuefn(x1, . . . , xm). That is, the functional-
ity gets a set of inputs. If a partypj sends“abortj” message thenxj selected fromXn with uniform
distribution, computes an output of the randomized functionality fn for them, and gives it to all par-
ties. When this functionality is executed, an honest majority is guaranteed, hence, the functionality
can be implemented with full security (e.g., with fairness).

Functionality Reconstruction. This functionality is described in Figure 4; this functionality is used in
the premature termination step in ProtocolMPCr for reconstructing the output value from the shares
of the previous round. When this functionality is executed,an honest majority is guaranteed, hence,
the functionality can be implemented with full security (e.g., with fairness).

23

We consider an adversaryA in the hybrid model described above, corruptingt < 2m/3 of the parties
that engage in ProtocolMPCr. We next describe a simulatorS interacting with the honest parties in the
ideal-world via a trusted partyTMPCWithD executing FunctionalityMPCWithDr. The simulatorS runs the
adversaryA internally with black-box access. SimulatingA in an execution of the protocol,S corrupts the
same subset of parties as doesA. Denote byB = {i1, . . . , it} the set of indices of corrupt party. At the end
of the computation it outputs a possible view of the adversary A. To start the simulation,S invokesA on
the set of inputs{yj : j ∈ B}, the security parameter1n, and the auxiliary inputaux.

Simulating the preliminary phase:

1. D0 = ∅.

2. The simulatorS receives a set of inputs{xj : j ∈ B \D0} thatA submits to Functionality
MultiShareGenWithAbortr.
If a partypj for j ∈ B \D0 does not submit an input, i.e., sends an“abortj” message, then,

(a) S sends“abortj” to the trusted partyTMPCWithD.
(b) S updatesD0 = D0 ∪ {j}.
(c) If |D0| < m− t, then Step (2) is repeated.
(d) Otherwise (|D0| ≥ m− t), simulate premature termination withi = 1.

3. S prepares outputs for the corrupted parties for Functionality MultiShareGenWithAbortr: The
simulatorS setsσi

J = 0 for everyJ ⊆ [m] \D0 s.t.m− t ≤ |J | ≤ t and for alli ∈ {1, . . . , r}.
Then,S follows Step (1) and Steps 5–8 in the computation of Functionality MultiShareGenr

(skipping the Steps 2–4) to obtain shares for the parties.5

4. For each partypj s.t. j ∈ B \D0, the simulatorS sends toA:

• The verification keyKver.

• The masking sharesmaskj(R
i,J
j) for eachi ∈ {1, . . . , r} and for everyJ ⊆ [m] \D0 s.t.

m− t ≤ |J | ≤ t andj ∈ J .
• The messagesMj,1, . . . ,Mj,r.

5. If A sends an“abortj” for some partypj s.t. j ∈ B \D0 to S, then,

(a) S sends“abortj” to the trusted partyTMPCWithD.
(b) S updatesD0 = D0 ∪ {j}.
(c) If |D0| < m− t, then Steps 2–5 are repeated.
(d) Otherwise (|D0| ≥ m− t), go to simulating premature termination withi = 1.

Otherwise (A sends a“continue ” message toS),

(a) The simulatorS denotesD = D0.
(b) The simulator sendsxj to TMPCWithD for every j ∈ B \ D0 (and gets as response a

“proceed ” message).

Simulating interaction rounds:
LetJ be the collection of subsetsJ ⊆ B \D0 s.t.m− t ≤ |J | ≤ t. I.e.,J is the collection of sets of
indices of active corrupt parties after the simulation of the executions ofMultiShareGenWithAbortr

To simulate roundi for i = 1, . . . , r, the simulatorS proceeds as follows:

5These shares are temporary and will later be open to the actual values obtained fromTMPCWithD during the interaction rounds
using the properties of Shamir’s secret-sharing scheme.

24

1. S gets from the trusted partyTMPCWithD the values that the corrupted parties see. That is,S
gets a bitτ i

J for eachJ ∈ J .6

2. The simulatorS selects shares for the inner secret-sharing scheme for corrupted parties: For
every J ∈ J , the simulatorS selects uniformly at random shares ofτ i

J in a |J |-out-of-|J |

Shamir secret sharing scheme. Denote these shares by
{
Xi,J

j : pj ∈ QJ

}
.

For eachpj ∈ QJ , let Y i,J
j ← (Xi,J

j , i, J, j,Sign((Xi,J
j , i, J, j),Ksign)).

3. The simulatorS selects complementary shares for all honest parties: For every J ∈ J and for
eachj ∈ B \D0,

(a) S calculatesαj = maskj(R
i,J
j)⊕ Y i,J

j .
(b) S selects uniformly at randomm− t shares ofαj uniformly at random over all possible

selections ofm− t shares that are shares ofαj together with the|B \D0| − 1 shares
{

compq(R
i,J
j) : q ∈ B \ (D0 ∪ {j})

}

produced in Step (3) in the simulation of the preliminary phase.
(This is possible according to the property of Shamir’s scheme)
Denote bycompq(Y

i,J
j) the complementary share thatS selects for the honest partypq for

a partypj s.t. j ∈ (B \D0) ∩ J , whereJ ∈ J .

4. For partypj and a subsetJ /∈ J , let compq(R
i,J
j) be the complementary share which was

produced in Step (3) in the simulation of the preliminary phase, i.e.,compq(R
i,J
j).

5. Construct signed messagesm′
q,i for each honest partypq in roundi by concatenating:

(a) q.
(b) The round numberi.
(c) The complement shares which were described in Step (4) above.

(d) The complement sharescompq(Y
i,J
j) for all J ∈ J and for allj ∈ J produced in Step (3)

for pq.

Then,S signsm′
q,i, i.e.,S computesM ′

q,i ← (m′
q,i,Sign(m′

q,i,Ksign)).

6. The simulatorS sends all the messageM ′
q,i on behalf of each honest partypq toA.

7. For everyj ∈ B \ D0 s.t. A sends an invalid or no message on behalf ofpj, the simulatorS
sends“abortj” to TMPCWithD:

(a) D = D ∪ {j}.
(b) If |D| ≥ m− t go to premature termination step.
(c) Otherwise, the simulatorS proceeds to the next round.

Simulating the premature termination step:

• If i = 1, thenS simulatesA’s interaction with FunctionalityFairMPC as follows:

1. S receives fromA the inputs of the active corrupt parties.
2. For everyj ∈ B \D: If pj does not send an input, thenS sends“abortj” to TMPCWithD

else,S sendspj ’s input toTMPCWithD.

6In Steps 2–5, the simulatorS constructs the messages of the honest parties in order to allow the corrupted parties in each
J ∈ J to reconstructτ i

J .

25

• If i > 1, thenS simulatesA’s interaction with FunctionalityReconstruction as follows:

1. S receives fromA the inputs of the active corrupt parties, i.e.,pj s.t. j ∈ B \D.
2. If an active corrupt partypj, does not send an input, or its input is not appropriately signed

or malformed, thenS sends“abortj” to TMPCWithD.

• S gets fromTMPCWithD a valueσ and sends it toA.

• The simulatorS outputs the sequence of messages exchanged betweenS and the adversaryA
and halts.

Simulating normal termination at the end of round r:

1. The simulator getsw from the trusted partyTMPCWithD.

2. S constructs all the singed shares of the inner secret-sharing scheme for eachJ ⊆ [m] \D0 s.t.
m− t ≤ |J | ≤ t and for each honest partypj ∈ QJ as follows.
For eachJ /∈ J , the simulatorS selects uniformly at random|J \B| shares ofw uniformly at
random over all possible selections of|J \B| shares that together with the|J ∩B| given shares{

Ri,J
j : j ∈ B

}
(produced in Step (2) in the simulation of the preliminary phase) are a sharing

of w in a |J |-out-of-|J | secret sharing scheme.
(This is possible according to the property of Shamir’s scheme)

Denote these shares by
{
Xr,J

j

}
.

For each shareXr,J
j , the simulator concatenates the corresponding identifying details, and signs

them to obtain:Y r,J
j ← (Xr,J

j , r, J, j,Sign((Xr,J
j , r, J, j),Ksign)).

3. For each honest partypj, the simulatorS sends toA the sharesY r,J
j for all subsetsJ , such that

pj ∈ QJ .

4. The simulatorS outputs the sequence of messages exchanged betweenS and the adversaryA
and halts.

D.2 Proving the Correctness of ProtocolMPCr and ProtocolMPCForRanger

It can be proved that ProtocolMPCr is a secure implementation of the (ideal) functionality of the dealer’s
in ProtocolMPCWithDr. That is,

Lemma D.1 Let t < 2m/3. If enhanced trap-door permutations exist, then ProtocolMPCr presented in
Section 3.2, is a computationally-secure implementation (with full security) of the dealer functionality in
ProtocolMPCWithDr.

In [3], a similar framework to the one used in this paper is used: first a protocol with a dealer for the
coin-tossing problem is presented and, then, a real-world protocol that is a computationally-secure imple-
mentation (with full security) of the dealer functionalityis described. In [3], a simulator for this protocol
is given. This simulator is similar to the simulator described in Appendix D.1, than a full proof for the
simulator is provided. As the proof is very similar to the proof of our simulator, we omit the proof.

To conclude the proof, asMPCWithDr is a 1/p-secure implementation ofF andMPCr is a secure
implementation of the (ideal) functionality of the dealer in ProtocolMPCWithDr, by the composition
theorem of Canetti [8] we conclude thatMPCr 1/p-secure implementation ofF . That is, Theorem 1 is
proved.

Next, we claim thatMPCForRanger is a secure implementation of the (ideal) functionality of the dealer
in ProtocolMPCWithDForRanger. That is,

26

Lemma D.2 Let t < 2m/3. If enhanced trap-door permutations exist, then ProtocolMPCForRanger

described in Section 3.3, is a computationally-secure implementation (with full security) of the dealer func-
tionality in ProtocolMPCWithDForRanger.

Proof: Recall that the only difference between ProtocolMPCr and ProtocolMPCForRanger is in the
way that the values that the parties see prior roundi⋆ are produced, i.e., the difference is in Functional-
ity MultiShareGenr. Specifically, in Section 3.3 we presented a modification in Step (3) in Functional-
ity MultiShareGenr in order to get ProtocolMPCr from ProtocolMPCForRange. Now, observe that
the simulator presented above does not refer to Step (3) of Functionality MultiShareGenr in any step.
Therefore, the simulator presented in Appendix D.1 for Protocol MPCr is also a simulator for Protocol
MPCForRanger. �

Claim C.5 and Lemma D.2 imply Theorem 2.

27

