
Exact, Efficient and Information-Theoretically Secure

Voting with an Arbitrary Number of Cheaters

Anne Broadbent 1, 2

Stacey Jeffery 1, 2

Alain Tapp 3

1. Department of Combinatorics and Optimization, University of Waterloo, Canada

2. Institute for Quantum Computing, University of Waterloo, Canada

3. Départment d’informatique et de recherche opérationnelle, Université de Montréal, Canada

15 November 2010

Abstract

We present three voting protocols with unconditional privacy and correctness,
without assuming any bound on the number of corrupt participants. All proto-
cols have polynomial complexity and require private channels and a simultaneous
broadcast channel. Unlike previously proposed protocols in this model, the proto-
cols that we present deterministically output the exact tally. Our first protocol is
a basic voting scheme which allows voters to interact in order to compute the tally.
Privacy of the ballot is unconditional in the sense that regardless of the behavior of
the dishonest participants nothing can be learned through the protocol that could
not be learned in an ideal realisation. Unfortunately, a single dishonest partici-
pant can make the protocol abort, in which case the dishonest participants can
nevertheless learn the outcome of the tally. Our second protocol introduces voting
authorities which improves the communication complexity by limiting interaction
to be only between voters and authorities and among the authorities themselves;
the simultaneous broadcast is also limited to the authorities. In the second proto-
col, as long as a single authority is honest, the privacy is unconditional, however, a
single corrupt authority or a single corrupt voter can cause the protocol to abort.
Our final protocol provides a safeguard against corrupt voters by enabling a verifi-
cation technique to allow the authorities to revoke incorrect votes without aborting
the protocol. Finally, we discuss the implementation of a simultaneous broadcast
channel with the use of temporary computational assumptions, yielding versions of
our protocols that achieve everlasting security.

Keywords: voting, multiparty computation, information-theoretic security, se-
cret sharing, simultaneous broadcast, everlasting security

1 Introduction

Multiparty secure computation enables a group of n participants to collaborate in order
to compute a function on their private inputs. Assuming that private random keys are
shared between each pair of participants, every function can be securely computed if
and only if less than n/3 participants are corrupt; this fundamental result is due to
David Chaum, Claude Crépeau and Ivan Damg̊ard [CCD88] and to Michael Ben-Or,
Shafi Goldwasser and Avi Wigderson [BGW88]. When a broadcast channel is available,



the results of Tal Rabin and Michael Ben-Or [RB89] tell us that this proportion can be
improved to n/2.

Among all functions that can be computed with these general-purpose protocols,
perhaps the one that has the most obvious application is voting. If we have a guarantee
on the proportion of honest participants, a secure voting protocol based only on pairwise
private channels can be implemented. (If, in addition to this, we have a broadcast
channel, then we can tolerate more cheaters). Here, we are interested in the case
where no such guarantee on the proportion of honest participants is available. Unlike
some recent voting schemes (see, for example, [RS07, CvdGRV07, RBH+09, CCM07,
CCC+09] or [Adi06] for a review) our voting protocols are information-theoretically
secure. In this sense, our schemes are not comparable to these more practical voting
schemes. Implementation of our scheme in a practical voting situation is left for future
work; in this paper we consider voting from a purely theoretical standpoint.

The first protocol for voting that is information-theoretically secure even in the
presence of a majority of dishonest participants was presented in [BT07] and expanded
in [BT08]. Along with the use of private communication, the protocol uses a simulta-
neous broadcast channel. In this paper, we present a new approach in the same model
that achieves better functionality. Although our initial motivation was theoretical in
nature, we believe that this work may lead to interesting practical applications.

We present three voting protocols. In our first protocol, we assume that each pair
of voters is connected by a private authenticated channel. In our second and third
protocols, we relax this assumption by introducing voting authorities. The assumption
then becomes that there are private and authenticated channels only between voters
and authorities and among the authorities themselves. The third protocol improves on
the second by enabling the authorities to revoke an invalid ballot.

All three protocols require a simultaneous broadcast channel [CGMA85, HM05],
which, for our purpose, is a collection of broadcast channels where the input of one
participant cannot depend on the input of any other participant (see Definition 1).
This could be achieved if all participants simultaneously performed a broadcast. In
the context of our second and third protocols, a simultaneous broadcast among the
authorities is sufficient.

Definition 1. An n participant simultaneous broadcast channel is a collection of n
broadcast channels, one for each participant, such that each participant chooses his
input to the broadcast before receiving the value of any other participant’s broadcast.

It is not uncommon in multiparty computation to allow additional resources, even
if these resources cannot be implemented with the threshold on the honest participants
(the results of [RB89], which combine a broadcast channel with n/2 honest participants
being the most obvious example). Our work suggests that a simultaneous broadcast
channel is an interesting primitive to study in this context. Given a resource to im-
plement bit commitment, we can implement a simultaneous broadcast: all participants
commit to their values, and then all participants open these values. In Section 3, we
discuss these issues further, and show that they lead to implementations of our protocols
that provide everlasting security.

The last two of our protocols involve authorities that compute the tally and return
its value to the voters. In order to do this, they can simply broadcast the tally to
the voters. If the tally is not unanimous, the voters all learn that the protocol has
failed. Alternatively, a detectable Byzantine agreement (broadcast) secure against faulty
majorities [FGH+02], which relies only on pairwise private channels can be used. The

2



same type of channel is used for all broadcasts in all three protocols.
Under the assumption that trapdoor one-way permutations exist, multiparty com-

putation can be realized with no assumption on the number of dishonest participants
[FGH+02]. The advantage of our scheme is that we only require simultaneous broad-
cast, which is no harder than bit commitment and can be implemented under the sole
assumption of one-way functions.

1.1 Goals and Assumptions

Our voting protocols involve n voters, each casting a ballot for a single choice among
r candidates. The goal of the protocols is to faithfully count the number of ballots in
favour of each candidate in such a way that voters’ ballots remain private, honest ballots
are counted and dishonest voters cannot vote adaptively or influence the vote any more
than by honestly voting. Protocol 1 involves only the voters, while Protocols 2 and 3
also involve t voting authorities.

We do not place any restriction on the dishonest participants, though we assume
that all corrupt participants are part of a single collusion. We present our protocols in
the usual scenario where each voter casts a ballot with a choice for a single candidate.
Our protocols can easily be adapted to allow any number of voices per ballot (allowing,
for instance, each voter to either choose two candidates, or to vote twice for the same
candidate). We can also add a dummy candidate to allow voters to honestly cancel
their ballots.

All three protocols are exclusively based on private authenticated channels and a
simultaneous broadcast channel. In the first protocol, no assumption is made on the
number of honest voters and in the last two, the only assumption is that at least one
authority is honest. Under these assumption, our protocols provide perfect privacy and
correctness. This was believed to be impossible [vdG08] before [BT07] was published.
The major drawback is that any dishonest participant can make any protocol abort
(except in our third protocol, where only dishonest authorities can make the protocol
abort). When a protocol aborts, information about the tally may leak, but this never
represents more information than would have been available, had the protocol succeeded.

1.2 Comparison with Previous Work

The first voting protocol that provides information-theoretic security in the presence of
an unlimited number of cheaters was given in [BT07]. The protocol requires pairwise
private channels and a simultaneous broadcast channel. It uses probabilistic techniques
to evaluate the tally for each candidate; for this reason, it is correct with probability
1 − 2−Ω(s), with s being a chosen security parameter. Then, in [BT08], the protocol
was extended to involve authorities. We use a similar technique to involve authorities
in our work: the first idea is to use authorities to compute the tally, thereby restricting
the number of participants in the simultaneous broadcast and reducing the number of
required pairwise private channels. The second idea is to use the authorities to verify
ballots, thereby preventing a voter from causing the protocol to abort. This article
improves on previous work in three ways. First, for honest participants, the outcome is
deterministic and always represents the exact tally. Second, Protocol 1 is significantly
more efficient than what was previously proposed. Finally, we believe that the idea of
“voting bins” is more elegant and might have other applications.

3



1.3 Summary of Results

We now review the main features of each protocol. We omit here the statements “except
with exponentially small probability”. Formal protocols and their properties are given
in Section 2, and proofs of formal properties are given in Appendix A. It is common in
multiparty computation to compare an implementation of a functionality with its ideal
functionality. This ideal functionality is represented as a black box, accepting private
inputs from each participant and privately communicating the function evaluation on
these private inputs back to each participant.

1.3.1 Basic Voting (Protocol 1)

• Only voters are involved in the protocol.

• A collusion of dishonest voters can only learn through the protocol what they
would learn in the ideal functionality, and this even (and also) if the protocol
aborts.

• A single dishonest voter can make the protocol abort.

• If all participants are honest, the protocol does not abort.

• If the protocol does not abort, then the output is consistent with all ballots of the
honest voters and some assignment of ballots for the dishonest voters.

• Dishonest voters cannot vote adaptively.

1.3.2 Voting with Authorities (Protocol 2)

• Voters and a small number of authorities are involved in the protocol.

• Voters only interact with authorities and in a forward direction.

• If at least one authority is honest, a collusion of dishonest voters and authorities
can only learn what they would learn in the ideal functionality, and this even (and
also) if the protocol aborts.

• A single dishonest voter or authority can make the protocol abort.

• If all participants are honest, the protocol does not abort.

• If at least one authority is honest and if the protocol does not abort, then the
output is consistent with all ballots of the honest voters and some assignment of
ballots for the dishonest voters.

• If at least one authority is honest, a collusion of dishonest voters and authorities
cannot vote adaptively.

1.3.3 Voting with Authorities and Verification (Protocol 3)

• Voters and a small number of authorities are involved in the protocol.

• Voters only interact with authorities and in a forward direction.

4



• If at least one authority is honest, a collusion of dishonest voters and authorities
can only learn what they would learn in the ideal functionality, and this even (and
also) if the protocol aborts.

• No collusion of voters alone can make the protocol abort.

• A single dishonest authority can make the protocol abort.

• If all participants are honest, the protocol does not abort.

• If at least one authority is honest and if the protocol does not abort, then the
output is consistent with all ballots of the honest voters and some assignment of
ballots for the dishonest voters.

• If at least one authority is honest, a collusion of dishonest voters and authorities
cannot vote adaptively.

• Dishonest voters not following the protocol will have their ballots revoked.

• A dishonest authority can choose to revoke the ballot of an honest voter.

• When a ballot is revoked, the voter who cast the ballot, as well as all authorities,
know about it.

1.4 Intuitive Description of the Protocols

We now give a physical analogy to our protocols. The protocols are modelled after the
concrete setup of an array of rn bins, where r is the number of candidates, so that there
are n bins per candidate. Each bin is such that a voter may place a ball in any bin,
but may not remove a ball from a bin or observe the contents of a bin. Each voter is
given a single ball to place in a single bin. He randomly chooses one of his candidate’s
n bins and places his vote in said bin. When all votes have been cast, the totals for
each bin are revealed and each candidate’s vote can be tallied by summing over all n of
her bins. So far the need for n bins per candidate is not clear, but we will soon see why
it is necessary.

For our protocols, we model each bin as an integer (mod m), with a vote consisting
of a string of rn integers, one integer for each bin. We choose m = 2n + 1. The ith
integer of a vote represents the number of balls the voter places in the ith bin. In this
case, a well-constructed vote has a single 1, and a value of 0 for all other bins. In our
protocols, each voter splits his vote into shares, each share consisting of rn integers
(mod m), with the property that the bin-wise sum (mod m) of all the shares is equal to
the vote. A vote that is split in this way is called a ballot. Given a set of ballots shared
among a group, it is easy to compute the tally without revealing any information on
the individual votes: this is exactly what is required for a voting protocol!

Without looking at individual votes, we must ensure that all votes that contribute
to the tally are well-constructed. If a voter votes multiple times, there will be extra
votes, which will be detected in the tally stage. Our physical analogy breaks down at
this point, since it is possible for a corrupt voter to cast a negative vote (by choosing
m − 1 ≡ −1 (mod m) votes) in some bin. Thus, a cheating strategy would be to vote
twice in one bin, and vote −1 in another. However, having n bins makes it likely
that most bins are empty, and a negative vote in an empty bin causes it to have a
negative number of total votes. We define a negative number (mod m) as a number

5



whose residue (mod m) is greater than m
2 . Such a number would be detected at the

tally stage, since m
2 > n, and no bin can have more than n votes if each voter votes

once. This justifies the need for n bins, as well as m = 2n + 1. A negative vote is
detected with constant probability and repetition yields exponential security.

1.5 Evaluation

There are several properties by which a voting system may be evaluated (see, for ex-
ample, [VAB+04]). In this section we give a high-level evaluation of all three of our
protocols with respect to these properties.

Protocols 2 and 3 make use of voting authorities. If we group the authorities
together, they act as a trusted third party, which means that collectively they can violate
privacy and correctness of the protocol. However, taken individually, both privacy and
correctness are guaranteed as long as a single authority is honest. This suggests that
in practice, authorities could be chosen to represent different interest groups, with each
voter needing to trust only a single authority (note that it is not necessary for the
voters to trust the same authority!). Strictly speaking, Protocol 1 does not involve
authorities, however, when discussing general properties of all three protocols in this
section, we consider the voters to be playing the role of the authorities in Protocol 1.

1.5.1 Accuracy

In all three protocols, as long as at least one authority is honest, the tally is correct, or
the protocol aborts. Also, if all participants are honest, the protocol succeeds and the
tally is exact.

Each voter is guaranteed exactly one vote. The use of authenticated channels permits
each voter to cast a single ballot, and we can check that each ballot contains only one
vote by checking the total number of votes in the tally (which should be equal to the
number of ballots). In Protocol 3, the verification step detects a ballot with more than
one vote with exponentially high probability, before the tally stage.

As long as a single authority is honest, no authority can add, change, or delete a
vote without the protocol aborting. In Protocol 3, a single dishonest authority can
cause a ballot to be revoked by making it appear invalid. Unfortunately, the effect of
this is extremely similar to an authority being able to delete votes — the only difference
being that all authorities and the voter are aware that the vote is being deleted. Only
the voter knows for certain that his vote was wrongfully revoked.

Because of the ease with which an authority may cause a ballot to be revoked, voter
profiling could have a negative impact on the final results of Protocol 3. Although
this is arguably the biggest flaw with Protocol 3, this is the tradeoff for ensuring that
no voter can make the protocol abort, and it may not be possible to circumvent this
problem without introducing new assumptions.

1.5.2 Ballot Secrecy

There are two aspects of ballot secrecy. The first is the privacy of the vote. In all three
protocols, if at least one authority is honest, no information can be learned about a vote
except what can be learned from the tally.

The second aspect of ballot secrecy is a voting system’s resistance to voter coercion.
If a voter can provide evidence to a third party that he voted for a particular candidate,
he can be coerced into voting a certain way, or he can sell his vote. Unfortunately, in

6



all three protocols, a voter can sell his vote to an authority by voting in a specific bin
as instructed ahead of time by the buyer. Since most bins are likely to be empty, the
presence of a vote in a series of specified bins across all repetitions provides overwhelming
evidence that the voter has complied.

1.5.3 Verifiability

In a general voting scheme, there are two things that a voter might like to verify. The
first thing is that his vote was properly cast, and the second is that his vote was counted.
In addition, the public may wish to verify that the system is working correctly by
performing an audit. In our protocols, if there is a single honest authority, the protocol
is certain to be correct, or abort, and so there is nothing gained from verification, since
the protocol can’t fail to be accurate if there is at least one honest authority.

The exception is in Protocol 3 where an authority can cause a ballot to be revoked.
In this case, the authorities notify the voter via broadcast whether or not his vote was
revoked. This notification is guaranteed accurate provided at least one authority is
honest.

If the voter is notified that his vote was not revoked, he can be sure that it is properly
counted or that the protocol aborts, as long as one authority is honest. One way that
the voter could verify that his vote was counted would be if the tallies of each bin were
made public. This is the case in Protocol 1, where the authorities are just the voters.
In this case, the voter checks to see that there is at least one vote in the bin in which
he voted and knows with high probability that his vote was counted.

1.5.4 Robustness

It is often desirable for a voting system to be robust against breakdowns. In all three
of our protocols, a single dishonest authority can cause the protocol to abort. In Pro-
tocol 1 and Protocol 2, a single dishonest voter can cause the protocol to abort,
however this is improved in Protocol 3 where no collusion of voters can make the
protocol abort.

Although the protocols are not robust, their high accuracy and secrecy makes them
useful in situations where there is little to gain from making the protocol abort. For
example, in a federal election, the authorities would be chosen from respected members
of various interest groups, so that each voter trusts at least one authority. In this case,
although an authority might have much to gain from altering the vote, she would have
nothing to gain from causing the protocol to abort. In fact, this would only serve to cast
suspicion on all authorities, and perhaps a new group of authorities would be chosen.
The corrupt authority gains nothing from this outcome.

2 Voting Protocols

We now present our protocols (Section 2.1) and formally state their properties (Sec-
tion 2.2). Proofs of the statements can be found in Appendix A.

2.1 Protocols

We now give our main protocols, Protocols 1, 2, and 3, which make use of the various
procedures as given below. All protocols (and most procedures) may terminate with
the outcome abort ; this is sometimes only implicit. If a called procedure aborts, then

7



the calling procedure also aborts. This is also the case for the use of the simultaneous
broadcast, which may abort if a participant refuses to participate. We say that a
protocol succeeds if it does not abort.

Procedure 1 shows how to generate randomness, in a group of participants S. As
long as one participant is honest, the output is an unbiased integer between 0 and `−1.

Procedure 1 RANDOM
Input: S, `
Output: a ∈ {0, ..., `− 1}

1. Each participant i ∈ S sets ai ∈R {0, ..., `− 1} .

2. Each participant i ∈ S inputs ai into the simultaneous broadcast channel.

3. Each participant i ∈ S sets a =
∑

i∈S ai (mod `).

Our voting protocols (Protocols 1, 2, 3) use a very basic n-out-of-n threshold
secret sharing scheme called an additive secret sharing scheme.

Definition 2. An additive distributed secret ADS(S, v,m) is a list of values vi ∈
{0, . . . ,m−1}, each vi in the possession of participant i ∈ S, such that v ≡

∑
i∈S vi (mod m)

and such that any strict subset of the participants S has no information on v. We call v
the secret.

A single participant can create an ADS(S, v,m) using Procedure 2. It is easy to
see that the procedure creates a valid ADS.

Procedure 2 MAKE-ADS
Input: S, v,m
Output: ADS(S, v,m)

1. For each i ∈ {1, ..., |S| − 1}, set vi ∈R {0, ...,m− 1}.

2. Set v|S| = v −
∑|S|−1

i=1 vi (mod m).

3. For all i ∈ S, privately send vi to participant i .

If participants share a set of k ADSs, they can, with no communication, create a
new ADS with secret being the sum (mod m) of the initial ADSs. The method is given
in Procedure 3. Note that this procedure does not allow the participants to learn any
information about the contents of the ADSs.
Procedure 3 SUM-ADS

Input: {Xj}kj=1 a set of ADSs, each of type ADS(S, vj ,m)

Output: Y an ADS(S, v′,m) where v′ =
∑k

j=1 vj (mod m)

1. Each participant i ∈ S sets v′i =
∑k

j=1 v
j
i (mod m).

As mentioned in Section 1.4, the main concept in our protocols is that the voters
distribute their votes in a system of bins: for each of the r candidates, there are n bins.
Thus we call the list of all the bins for all candidates a VOTING-BIN-SET.

Definition 3. A VOTING-BIN-SET(S, n, r) is a list of rn ADS(S, vij , 2n + 1) (i =
1, . . . , r, j = 1, . . . , n).

A BALLOT is a VOTING-BIN-SET that corresponds to a valid vote. This means
that all ADSs have v = 0 except a single one that has v = 1.

Definition 4. A BALLOT(S, n, r, c, o) is a VOTING-BIN-SET(S, n, r) such that only
vco = 1 and all other vij = 0.

8



From above, we see that a BALLOT(S, n, r, c, o) is a vote for candidate c expressed
in bin number o of that candidate. Procedure 4 is used to perform the bin-wise sum
of the votes, such that the result is distributed as a VOTING-BIN-SET.

Procedure 4 SUM-BALLOT
Input: {Xj}nj=1 a set of BALLOTs
Output: Y a VOTING-BIN-SET

1. Execute SUM-ADS for each ADS in each BALLOT to form the VOTING-BIN-
SET Y .

Definition 5. A VOTING-BIN-SET is sum consistent if each ADS has secret 0 ≤
vij ≤ n and

∑
i∈[r],j∈[n] vij = n.

Thus, as mentioned in Section 1.4, a VOTING-BIN-SET that is not sum consistent
implies that the tally has been tampered with. We use this notion in our first voting
protocol, Protocol 1. In all three protocols, s is the security parameter.

Protocol 1 VOTE-BASIC
Input: {xi}ni=1, where xi ∈ {0, . . . , r − 1} is the private vote for participant i
Output: the tally for each candidate

Let S = {0, . . . , n− 1} .
Repeat the following in parallel s times:

1. Each voter i creates Xi, a BALLOT(S, n, r, xi, o) where o is randomly chosen
in {0, . . . , n− 1} .

2. Voters create the sum, Y = SUM-BALLOT({Xj}nj=1) .

3. Voters input their values for Y into the simultaneous broadcast channel.

4. If Y is not sum consistent, abort.

5. The tally for each candidate is computed by adding all the values of the voting
bins in Y for the candidate.

Each repetition should give the same answer, otherwise abort

In Protocol 2, we use S as a set of t authorities and all ADSs, BALLOTs and
VOTING-BIN-SETs involve only the authorities.

Protocol 2 VOTE-AUTHORITIES
Input: {xi}ni=1, where xi ∈ {0, . . . , r − 1} is the private vote for participant i

S, a set of authoritites
Output: the tally for each candidate

Repeat the following in parallel s times:
1. Each voter i creates Xi, a BALLOT(S, n, r, xi, o) where o is randomly chosen

in {0, . . . , n− 1} .

2. Authorities create the sum, Y = SUM-BALLOT({Xj}nj=1) .

3. Authorities input their values for Y into the simultaneous broadcast channel.

4. If Y is not sum consistent, abort.

5. The tally for each candidate is computed by adding all the values of the voting
bins in Y for the candidate.

Each repetition should give the same answer, otherwise abort.
Authorities make the result of the vote public.

In Protocol 3, we again use S as a set of t authorities and all ADSs, BALLOTs
and VOTING-BIN-SETs involve only the authorities. This time, the authorities verify
the BALLOTs. The voters will actually vote many times, each BALLOT being a valid

9



vote to a random candidate. Half of these ballots will be opened to test that they are
valid. Then the voter will tell the authorities how to individually shift all the remaining
BALLOTs so that they are all equal to his private vote. Protocol 5 is then used to test
that all remaining BALLOTs vote for the same candidate, and one BALLOT is chosen.
We repeat this s times in parallel.

Procedure 5 ADS-EQUALITY

Input: {Xj}2sj=1 a set of 2s ADSs of type ADS(S, vj ,m)
Output: equal or unequal

Repeat the following s times in parallel:
1. The participants in S use RANDOM to choose a random partition {P,Q} of {Xj}

with |P | = |Q| = s .

2. The participants in S use SUM-ADS to compute Y =
∑

i∈P Xi −
∑

i∈QXi .

3. The participants in S input their values for Y into the simultaneous broadcast
channel.

Return unequal if any Y has a secret that is not 0, otherwise return equal.

2.2 Formal Properties

We now formally state the correctness, privacy and related properties of our main
protocols, Protocols 1, 2, 3, as well as our procedures. In all theorems, we assume
that if authorities are involved in the protocol, then at least one authority is honest.
Proofs of all theorems can be found in Appendix A.

Theorem 1. ADS-EQUALITY detects inequality (mod m) in {Xi}, except with expo-
nentially small probability, as long as m is odd.

Theorem 2. (Protocols 1, 2, 3) If all voters and authorities are honest, then the
protocol succeeds and is correct with probability 1.

Theorem 3. (Protocols 1, 2, 3) A collusion of dishonest participants cannot learn
more from the execution of the protocol than what they can learn from their inputs and
the output of the ideal protocol.

Theorem 4. (Protocols 1, 2, 3) Voters cannot vote adaptively.

Theorem 5. (Protocols 1 and 2) Whatever the behaviour of a collusion of dishonest
participants, the probability that the protocol succeeds and the output is inconsistent with
the vote of the honest voters is exponentially small.

Theorem 6. (Protocol 3) Whatever the behavior of a collusion of dishonest partici-
pants, the probability that the protocol succeeds and the output is inconsistent with the
vote of the honest voters is exponentially small. Dishonest authorities can revoke votes.

In Protocols 1 and 2, any participant can make the protocol abort, but this is not
the case for Protocol 3.

Theorem 7. (Protocol 3) A voter can only make the protocol abort with exponentially
small probability.

10



Protocol 3 VOTE-AUTHORITIES-ROBUST
Input: {xi}ni=1, where xi ∈ {0, . . . , r − 1} is the private vote for participant i

S, a set of authoritites
Output: the tally for each candidate

for each voter, a bit indicating whether or not his vote was revoked

For each voter i = 1, . . . , n
1. Voter i creates s sets of 2s BALLOT(S, n, r, c, o), where c = xi for each ballot and

o is equal for all BALLOTs in a set, but random otherwise. Before distributing
the BALLOTs, the voter encrypts each BALLOT with two random shift values:
one between 0 and r−1 that changes which candidate the BALLOT is for and the
other between 0 and n− 1 that changes which bin the vote is in. The BALLOTs
are then distributed.

2. Each set is treated separately at first. For each set :

(a) Half the BALLOTs are opened (chosen using RANDOM) and the voter’s vote
revoked if an opened BALLOT is not valid. Opened BALLOTS as discarded.

(b) For each remaining BALLOT, the voter broadcasts the shift values. The
authorities decrypt their shares of the remaining BALLOTs using these shift
values.

3. The authorities verify that each remaining BALLOT is a vote for the same can-
didate (without opening any vote). For each candidate c:

(a) For each BALLOT, sum all the bins for candidate c using SUM-ADS.

(b) Use s rounds of ADS-EQUALITY to test equality of the above sums, the ith
round having the ith and i + 1 (mod s)th sets as input. Revoke the vote if
any call to ADS-EQUALITY returns unequal.

4. The authorities broadcast to the voter and to the other authorities a single bit
indicating whether or not his vote was revoked. If the messages are not unanimous,
abort.

For each voter whose vote was not revoked, the authorities take a random remaining
BALLOT from each set (chosen using RANDOM) and use these to compute s parallel
tallies as in Protocol 2. Each repetition should give the same answer; otherwise abort.
Authorities make the result of the vote public.

11



2.3 Complexity

All our protocols have polynomial computational and communication complexity. We
now give the details of the communication complexity, which includes, for both the
private and simultaneous broadcast channels, the number and size of messages sent per
participant.

In Protocol 1, each voter’s complexity is n− 1 messages of size rndlog(2n + 1)es,
and one simultaneous broadcast of size rndlog(2n + 1)es. The protocol is done in two
rounds of communication.

In Protocol 2, each voter’s complexity is |S| = t messages of size rndlog(2n+ 1)es,
done in one round. The authorities receive these messages and do one simultaneous
broadcast of size rndlog(2n+1)es. The protocol is done in two rounds of communication.
In addition, making the result of the vote public requires for each authority a broadcast
of size rdlog ne .

In Procedure 1 (RANDOM), there is a single simultaneous broadcast of size
dlog(`)e among the |S| participants.

In Procedure 5 (ADS-EQUALITY), there is an initial call to RANDOM costing

a simultaneous broadcast of size sdlog (2s)!
s!s! e ∈ O(s2 log s) among the participants in S,

followed by another simultaneous broadcast of size sdlogme.
In Protocol 3, each voter’s complexity is t messages of size 2rndlog(2n + 1)es2

followed by t messages of size s2dlog(nr)e done in two rounds. The authorities receive
these messages. In opening half of the BALLOTs for each voter, they do a simultaneous
broadcast of size s2rn2dlog(2n + 1)e, and make one call to RANDOM (costing a single
simultaneous broadcast of size dlog

(
2s
s

)nse ∈ O(ns2 log s)).
In testing the equality of the remaining unopened BALLOTs, the authorities make

rns calls to ADS-EQUALITY. Each of these calls costs two simultaneous broadcasts
among the t authorities, one of size O(s2 log s) and the other of size sdlog(2n + 1)e.

In telling each voter whether or not his BALLOT was revoked, the authorities do n
broadcasts to t + 1 participants, each of size 1.

The authorities make a single call to RANDOM (costing one simultaneous broadcast
of size dlog snse = dns log se among the t authorities) to choose a BALLOT from each set
for each voter. They then do one more simultaneous broadcast of size rndlog(2n+ 1)es.
In addition, making the result of the vote public requires for each authority a broadcast
of size rdlog ne .

In total, Protocol 3 requires:
1. tn secure authenticated channels, each of which will send 2 messages of size ≤

2rndlog(2n + 1)es2 (since r < n implies s2dlog(nr)e < s2dlog n2e = s2d2 log ne).
2. 2rns+4 simultaneous broadcasts among the t authorities, each of size in O(n2s2r log(ns)).

3. n + 1 broadcasts from t participants to ≤ n participants, each of size ≤ rdlog ne.

3 Everlasting Security

All three of our protocols rely on the existence of a simultaneous broadcast channel.
In practice, such a channel can be obtained from a primitive called bit commitment,
[BCC88] which can itself be obtained either from one-way functions [HR07, Nao91,
HILL99] or based on the laws of physics [Ken99]. Implementing a simultaneous broad-
cast channel using a bit commitment is simple: all participants commit to their values,
and then all participants open these values. Using this method with a computationally

12



secure bit commitment yields everlasting security : as long as the computational as-
sumptions are not broken during the execution of the protocol (more precisely, during
the simulation of the simultaneous broadcast), the security of the protocols is perfect.
Note that the privacy of individual votes remains perfect even if these computational
assumptions are broken during the protocol: breaking the simultaneous broadcast only
helps voters or authorities to adaptively modify the result of the vote. In our context,
because we cannot enforce simultaneous commitment or simultaneous opening of the bit
commitments, the use of an unconditionally binding or an unconditionally concealing
bit commitment is equivalent: breaking a computationally concealing bit commitment
allows a participant to manipulate the tally depending on the votes of those who have
already committed to theirs, while breaking a computationally binding bit commitment
allows a participant to manipulate the tally according to the commitments that occur
afterwards.

4 Future Work

There are several areas of potential improvement to the protocols presented in this
extended abstract. It is not known to us whether or not the protocols could be modified
so that voter coercion is impossible. Another question of interest is whether or not it
is possible to reduce the power of authorities to revoke honest votes without making
additional assumptions. Also, we would not be surprised if the same functionality could
be acheived more efficiently (under the same assumptions).

An interesting long term project will be to understand the functionalities that can be
achieved under the simultaneous broadcast assumption (or even weaker assumptions).
What functionality beyond the ones presented here and those in [BT07, BT08] can be
achieved? Simultaneous broadcast seems like a powerfull primitive and yet is achievable
under physical assumptions [Ken99]. Its power is not well understood and we believe it
warrants further exploration.

References

[Adi06] B. Adida. Advances in cryptographic voting systems. PhD thesis, Cam-
bridge, MA, USA, 2006. AAI0810143.

[BCC88] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs
of knowledge. Journal of Computer and System Sciences, 37(2):156–189,
1988.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proceedings
of the 20th annual ACM Symposium on Theory of Computing (STOC),
pages 1–10, 1988.

[BT07] A. Broadbent and A. Tapp. Information-theoretic security without an
honest majority. In Proceedings of the 13th International Conference
on the Theory and Application of Cryptology and Information Security
(ASIACRYPT 2007), pages 410–426, 2007.

[BT08] A. Broadbent and A. Tapp. Information-theoretically secure voting with-
out an honest majority. In Proceedings of the IAVoSS Workshop On Trust-

13



worthy Elections (WOTE 2008), 2008. Cryptology ePrint Archive: Report
2008/266.

[CCC+09] D. Chaum, R. T. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L. Rivest,
P. Y. A. Ryan, E. Shen, Alan T. Sherman, and P. L. Vora. Scantegrity II:
end-to-end verifiability by voters of optical scan elections through con-
firmation codes. Transactions on Information Forensics and Security,
4:611–627, December 2009.

[CCD88] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally
secure protocols. In Proceedings of the 20th annual ACM Symposium on
Theory of Computing (STOC), pages 11–19, 1988.

[CCM07] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure
voting system, 2007.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults. In Proceed-
ings of the 26th annual Symposium on Foundations of Computer Science
(FOCS), pages 383–395, 1985.

[CvdGRV07] D. Chaum, J. van de Graaf, P. Y. A. Ryan, and P. L. Vora. Secret ballot
elections with unconditional integrity. Cryptology ePrint Archive, Report
2007/270, 2007.

[FGH+02] M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein, and A. Smith. Detectable
Byzantine agreement secure against faulty majorities. In Proceedings of
the 21st annual Symposium on Principles of Distributed Computing, pages
118–126, 2002.

[HILL99] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

[HM05] A. Hevia and D. Micciancio. Simultaneous broadcast revisited. In Pro-
ceedings of the 24th annual ACM symposium on Principles of Distributed
Computing, pages 324–333, 2005.

[HR07] I. Haitner and O. Reingold. Statistically-hiding commitment from any
one-way function. In Proceedings of the 39th annual ACM Symposium on
Theory of Computing, pages 1–10, 2007.

[Ken99] A. Kent. Unconditionally secure bit commitment. Physical Review Letters,
83:1447–1450, 1999.

[Nao91] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptol-
ogy, 4:151–158, 1991. 10.1007/BF00196774.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty proto-
cols with honest majority. In Proceedings of the 21st annual ACM Sym-
posium on Theory of Computing (STOC), pages 73–85, 1989.

[RBH+09] P. Y. A. Ryan, D. Bismark, J. Heather, S. Schneider, and Z. Xia. Prêt
à voter: a voter-verifiable voting system. Transactions on Information
Forensics and Security, 4:662–673, 2009.

14



[RS07] R. L. Rivest and W. D. Smith. Three voting protocols: ThreeBallot, VAV,
and Twin. In Proceedings of USENIX/ACCURATE Electronic Voting
Technology (EVT). USENIX Association, 2007.

[VAB+04] P. L. Vora, B. Adida, R. Bucholz, D. Chaum, D. L. Dill, D. Jefferson, D. W.
Jones, W. Lattin, A. D. Rubin, M. I. Shamos, and M. Yung. Evaluation
of voting systems. Communications of the ACM, 47:144, 2004.

[vdG08] J. van de Graaf. Private Communication, 2008.

15



A Proofs of Formal Properties

Theorem 1. ADS-EQUALITY detects inequality (mod m) in {Xi}, except with expo-
nentially small probability, as long as m is odd.

Proof. Suppose the input {Xj} is unequal. Let P and Q be any partition of {Xj} such
that |P | = |Q| and

∑
i∈P Xi =

∑
i∈QXi. Note that by swapping any two non-equal

elements in Q and P respectively, we make the two sums unequal. This observation is
not entirely obvious, since we’re working (mod m). Suppose we swap a ∈ P and b ∈ Q
where a > b. This will result in

∑
i∈P Xi decreasing by a − b and

∑
i∈QXi increasing

by a − b. Since these two sums were equal before the swap, we now have a difference
of 2(a − b). If 2(a − b) ≡ 0 (mod m), since m is odd, then we must have (a − b) ≡ 0
(mod m), which is a contradiction since a and b are assumed non-equal. So as long
as we swap non-equal elements from the partitions, their sums will no longer be equal.
From this observation, we will show that there are at least as many partitions with∑

i∈P Xi 6=
∑

i∈QXi as there are with
∑

i∈P Xi =
∑

i∈QXi.
Consider the operation of swapping the first two unequal elements in the sorted sets

P and Q. Clearly this operation maps equal sum partitions to unequal sum partitions.
In addition, let us specify that the partition where P and Q are identical be mapped
to the partition obtained by sorting the set {Xi} and setting P equal to the first half;
the result will be unequal since {Xi} is unequal. We now have a one-to-one mapping
from equal sum partitions to unequal partitions, so no more than half of the possible
partitions can have the property

∑
i∈P Xi =

∑
i∈QXi.

Thus the probability of choosing a partition with this property when two or more
elements are unequal is less than 1

2 . With s repetitions, the probability of an unequal
set passing ADS-EQUALITY is less than 1

2s .

Theorem 2. (Protocols 1, 2, 3) If all voters and authorities are honest, then the
protocol succeeds and is correct with probability 1.

Proof. This follows from the additivity of the secret sharing scheme.

Theorem 3. (Protocols 1, 2, 3) A collusion of dishonest participants cannot learn
more from the execution of the protocol than what they can learn from their inputs and
the output of the ideal protocol.

Proof. For Protocol 1 and 2, since we assume that there is at least one honest authority
(or one honest voter in the case of Protocol 1), this follows from the properties of the
secret sharing scheme, and the fact that SUM-ADS reveals no information about the
values of the ADSs. We give a slightly more in depth discussion for Protocol 3.

Upon receiving the distributed BALLOTs, the authorities open half of the BALLOTs
in each set. Since these BALLOTs are encrypted using random shifts, any opened
BALLOT votes for each of the candidates with probability 1

r , independent of the voter’s
chosen candidate, xi. The shift values are only revealed for the unopened BALLOTs,
and the application of shifts to a BALLOT by each authority simply results in the
authorities having the correct BALLOT as an ADS. We know that as long as one
authority is honest, no information can be learned about the BALLOT by any authority.

Next the authorities use several rounds of SUM-ADS and ADS-EQUALITY to verify
the equality of the unopened votes. We noted earlier that SUM-ADS does not allow
participants to learn anything about the contents of the ADSs. As for ADS-EQUALITY,
in each of s rounds, the value of Y =

∑
i∈P Xi −

∑
i∈QXi is revealed. If a voter is

16



honest, all of his values for Y will be 0, and so no information will be revealed, unless
an authority has altered his share of some of the ADSs. Say an authority (or similarly,
a group of authorities) changes his (their) shares of the {Xj}2sj=1 by adding aj to his

share of Xj for j = 1 . . . 2s. Then, assuming the {Xj}2sj=1 were equal before, we now

get Y =
∑

i∈P ai −
∑

i∈Q ai. This value reveals nothing about the value of any Xj .

Theorem 4. (Protocols 1, 2, 3) Voters cannot vote adaptively.

Proof. This follows from the use of simultaneous broadcast.

Theorem 5. (Protocols 1 and 2) Whatever the behaviour of a collusion of dishonest
participants, the probability that the protocol succeeds and the output is inconsistent with
the vote of the honest voters is exponentially small.

Proof. Suppose a collusion of k < n dishonest voters wishes to cause the final tally to be
incorrect. If they vote more than k times between them, the final tally will be greater
than n and the protocol will abort. Thus, the only way for them to cause the final tally
to be incorrect is for at least one of them to vote negatively in at least one bin, say bin
b. If no other voter casts a vote in bin b, then the bin total will be m − 1 > n, so the
protocol will abort. For a voter to succeed in voting negatively without the protocol
aborting, he must vote negatively in a bin with at least one vote in it.

Even in the worst case, where all n− 1 other voters vote for the candidate to which
bin b belongs, the probability that bin b is empty is (n−1

n )n−1, which is greater than 1
3

for n ≥ 2. By repeating the protocol s times, the probability that a voter successfully
casts a single negative vote without the protocol aborting is less than (2

3)s.
A similar analysis applies to corrupt authorities in Protocol 2: since there is at

least one honest authority, any collusion (even involving authorities) that modifies or
casts an incorrect vote will cause the protocol to abort, except with exponentially small
probability.

Theorem 6. (Protocol 3) Whatever the behavior of a collusion of dishonest partici-
pants, the probability that the protocol succeeds and the output is inconsistent with the
vote of the honest voters is exponentially small. Dishonest authorities can revoke votes.

Proof. The proof that a collusion of dishonest voters cannot cause the output to be
inconsistent with the vote of the honest voters (with exponential probability) is the
same as that given in Theorem 5, since in Protocol 3, voters have even less power to
cheat, due to the verification steps which distinguish Protocol 3 from Protocol 2. If
the authorities attempt to modify a BALLOT, just as in Protocol 2, they must subtract
a vote from some bin for every vote they add to any bin. This has an exponentially
high probability of causing a negative total in some bin just as it does in the case of
Protocol 2, since the distribution of votes in the bins for a particular candidate are
independent from set to set.

The only extra power of the authorities to affect the outcome through the added
verification is their ability to revoke votes. A dishonest authority can cause an honest
vote to be revoked by simply adding 1 to his share of any bin of a BALLOT selected
for opening. This will cause the BALLOT to appear invalid, and the vote will be
revoked.

Theorem 7. (Protocol 3) A voter can only make the protocol abort with exponentially
small probability.

17



Proof. For a voter to make the protocol abort, he must cast a vote that is not a valid
BALLOT, or cast votes across the s parallel tallies for different candidates.

If a voter wants to cast an invalid BALLOT in a set, he must create no more than s
invalid BALLOTS in that set, or he is guaranteed to have at least one invalid BALLOT
opened at step (3) of the protocol. If he has 1 ≤ x ≤ s invalid BALLOTs, then the
probability that no invalid BALLOT is opened is:(

2s−x
s

)(
2s
s

) =
s(s− 1) . . . (s− x + 1)

2s(2s− 1) . . . (2s− x + 1)
=

1

2

x−1∏
i=1

s− i

2s− i
≤ 1

2
.

If the voter has at least one invalid BALLOT per set, the probability that an invalid
BALLOT is not opened is ≤ 1

2s . If the voter has invalid votes in some sets and not
others, then his BALLOTs are not equal. Here we take a looser definition of equal,
whereby two BALLOTs are equal if and only if each BALLOT has the same number of
votes for each candidate. This is the type of equality required so that the final tallies
of each round are equal. If the unopened BALLOTs are not equal in this sense, then
with exponentially high probability, ADS-EQUALITY will return unequal at step 3 and
the vote will be revoked. Hence, except with exponentially small probability, the voter
cannot make the protocol abort.

18


