
Statistical Analysis of Reduced Round Compression Functions
of SHA-3 Second Round Candidates

Ali Doğanaksoy, Barış Ege, Onur Koçak, Fatih Sulak

Institute of Applied Mathematics, Middle East Technical University, Turkey
{aldoks, baris.ege, onur.kocak, sulak} @metu.edu.tr

Abstract. National Institute of Standards and Technology announced a competition in 2008, of
which the winner will be acknowledged as the new hash standard SHA-3. There are 14 second round
candidates which are selected among 51 first round algorithms. In this paper, we apply statistical
analysis to the second round candidate algorithms by using two different methods, and observe how
conservative the algorithms are in terms of randomness. The first method evaluates 256-bit outputs,
obtained from reduced round versions of the algorithms, through statistical randomness tests. On
the other hand, the second method evaluates the randomness of the reduced round compression
functions based on certain cryptographic properties. This analysis gives a rough idea on the security
factor of the compression functions.
Keywords: Statistical Randomness Testing, Cryptographic Randomness Testing, Hash Functions,
SHA-3 Competition

1 Introduction

Following the cryptanalysis of the widely used hash functions MD5 and SHA-1, National Institute
of Standards and Technology (NIST) settled a public competition, of which the winner will be
acknowledged as the new hash standard SHA-3 [1]. 51 submissions out of 64 were qualified as
first round candidates as of October 2008, and 14 second round candidates were announced in
July 2009. At the time of this writing, public analysis period continues and the finalist algorithms
will be announced in the last quartet of 2010.

A basic property that block ciphers and hash functions are expected to satisfy is indistin-
guishability from a random mapping. Therefore, the statistical analysis of the algorithms is of
great importance. The statistical analysis of the Advanced Encryption Standard (AES) can-
didate algorithms was done by Soto [2], using the NIST Test Suite[3]. However, this suite is
designed to evaluate Pseudo Random Number Generators (PRNGs). Moreover, some of the
tests in the suite require sequences of length at least 106 bits, due to the approximations and
the asymptotic approaches used in the necessary computations. Soto overcame this problem
by applying the sixteen tests in the NIST Test Suite to the concatenation of the outputs of
candidate algorithms, which correspond to eight data types such as key avalanche, low density
plaintext, high weight keys, and the like, to obtain 189 p-values. In 2010, Sulak et. al. proposed
an alternative approach, where the tests are applied to sets of outputs, rather than their con-
catenations [4]. In that work, the authors choose seven tests suitable for 256-bit sequences, and
they improve the evaluation method of the NIST Test Suite for short sequences.

Recently, a package of cryptographic randomness tests is introduced by Doğanaksoy et. al.
[5]. This package consists of statistical tests designed based on certain cryptographic properties
of block ciphers and hash functions such as diffusion, confusion and collision resistance. The
authors apply the package to the AES finalist algorithms, and observe the number of rounds
where the randomness is achieved more precisely than the previous methods.

As an ongoing effort on analysis of the second round candidates, we focus on black-box
analysis of the algorithms from a randomness perspective. We define the reduced versions of the
algorithms, and apply two methods to observe the randomness properties of the compression
functions of the candidate algorithms. In the first method, we apply the proper tests for 256-bit



sequences in the NIST Test Suite and use the evaluation method mentioned in [4]. For this
purpose, we construct data sets having certain structures and test the corresponding output
sets. In the second method, we apply the package of cryptographic randomness tests presented
in [5] to the compression functions of the algorithms, and observe how conservative the designs
are.

This paper is organized as follows. In Section 2, we explain the statistical randomness tests
used in this work, the method to form data sets from the candidate algorithms, and the evaluation
method. In Section 3, we give the brief descriptions of the cryptographic randomness tests. In
section 4 we apply both methods to SHA-3 candidate algorithms and present the results. And
in the last section we conclude the paper with our plans for the future work.

2 Statistical Randomness Tests

Statistical randomness tests are functions that take arbitrary length input and produce a real
number between 0 and 1 called the p-value, by evaluating certain randomness properties of
the given input. When testing generators for randomness, generally more than one statistical
randomness test is applied, and there are several test suites [3, 6–9] designed for this purpose,
which include a variety of tests to observe randomness properties of sequences.

We apply the method of Sulak et. al. [4] to the SHA-3 candidates. We define 5 data sets
similar to those described in [2], and apply proper statistical randomness tests of the NIST Test
Suite to the algorithms.

2.1 NIST Test Suite

NIST Test Suite (published in 2001) originally consisted of 16 tests but the Fast Fourier Trans-
form Test was later discarded due to a problem observed, by NIST in 2009. The proper tests
for 256-bit sequences in the mentioned suite are Frequency Test, Frequency Test within a Block,
Runs Test, Test for the Longest Run of Ones in a Block, Serial Test, Approximate Entropy
Test and Cumulative Sums Tests. In this subsection, we give brief descriptions of the mentioned
statistical randomness tests.

The subject of Frequency Test and Frequency Test within a Block is the weight of the
sequence. In the Frequency Test, the p-value depends only on the weight of the sequence. Fre-
quency Test within a Block separates the sequence into m bit blocks and the variables used for
computing the p-value are the weights of each block. We take m = 32 for this test.

The subject of the Runs Test is the the number of runs (an uninterrupted maximal subse-
quence of identical bits) in the sequence, and the p-value is determined by the weight of the
sequence and the number of runs in the sequence. Whereas, Test for the Longest Run of Ones in
a Block separates the sequence into m bit blocks and the subject of this test is the the longest
run of ones of these blocks. We take m = 8 for this test.

Serial Test and Approximate Entropy Test are related to the entropy and the subject of
these tests are overlapping m and m + 1 bit blocks of the sequence. We take m = 2 for Serial
Test and m = 1 for Approximate Entropy Test. The p-values for both tests are determined by
the frequencies of 1-bit and 2-bit blocks.

Cumulative Sums Test evaluates the sequence as a random walk and the subject of the test
is the maximum distance of the random walk from the x-axis. This test is applied twice, forward
and backward through the input sequence, and two p-values are obtained.

2.2 Data Sets

Any cryptographic module must have the property that the redundancies at the input should
not leak to the output. Depending on this understanding, we construct data sets having certain



structures. Then we try to observe whether this structure is inherited by the module. In all of
the tests, it is assumed that the compression function is a mapping Fm

2 × Fn
2 7−→ Fn

2 , where m
is the size of the message block and n is the size of the chaining variable.

Low Density Message (LW) The data set is formed by binary strings of low weight. The
message length of candidate algorithms are 32, 256, 512, 1088 and 1536 bits. In the 32-bit case,
the data set consists of 32-bit binary strings of weight not exceeding 5. In 256-bit case, this
bound is 3 and in the remaining cases the strings of weights 1 and 2 are taken. The number of
sequences for different message lengths are given in Table 1.

Table 1. The number of sequences for different message lengths

m weight # Sequences

32 ≤ 5 242 824

256 ≤ 3 2 796 416

512 ≤ 2 131 328

1088 ≤ 2 592 416

1536 ≤ 2 1 242 676

High Density Message (HW) The data set is formed by choosing high density messages and
they are formed similar to the low density message case. In other words, the inputs of the low
density messages are complemented bitwise.

1-Bit Message Avalanche (Av1) A random message R of length m is chosen. Then each
time by flipping another bit of R, a set of m messages is formed and the corresponding hash
values are obtained. The same procedure is applied to k different messages to get a set of mk
sequences. The values of k for different input lengths are given in Table 2.

Table 2. Selection of k for 1-Bit Message Avalanche and Message Rotation

m k mk

32 32768 1 048 576

256 4096 1 048 576

512 2048 1 048 576

1088 963 1 047 744

1536 682 1 047 552

8-Bit Message Avalanche (Av8) A random message R = b0b1 . . . bs of length m = 8s is
chosen, where bi is a 8-bit word for i = 0, 1, . . . , s. Then, by assigning all possible 256 values to
each word, 255·m8 different messages are formed and the corresponding hash values are obtained.
The same procedure is applied to k different messages and the values of k for different input
lengths are given in Table 3.

Message Rotation (Rot) A random message R of length m is chosen. A set of m messages
is formed by consecutive 1-bit rotations of R and the corresponding hash values are obtained.
The same procedure is applied to k different messages to get a set of mk sequences.



Table 3. Selection of k for 8-Bit Message Avalanche

m k mk

32 1028 1 048 560

256 128 1 044 480

512 64 1 044 480

1088 30 1 040 400

1536 21 1 028 160

2.3 Evaluation Method

Each data set produces a large set of p-values. Our first task is to obtain a single p-value asso-
ciated with the data set under consideration. We apply χ2 Goodness of Fit Test by partitioning
the interval [0,1] into 10 equal subintervals as follows. Let t be the number of sequences in a
data set, and Fi be the number of p-values observed in subinterval i for i = 1, 2, . . . , 10. Then
the χ2 value and the corresponding p-value are calculated as

χ2 =
10∑
i=1

(Fi − t · pi)2

t · pi
and p-value = igamc

(
9

2
,
χ2

2

)

where igamc is the incomplete gamma function. The subinterval probabilities can be found in
[4].

If we assume that the tests are independent, then the probability of Type I error (the data
is random, but the null hypothesis is rejected) is computed as 1− (1− α)s, where α is the level
of level of significance, and s is the number of tests. We choose α = 0, 0001, in other words, if
p-value≥ 0, 0001 we conclude the data is random, and 0,0799% random data will be concluded
as nonrandom.

In the case of α = 0, 001, 0,797% of random data will be concluded as nonrandom. Since
we test several reduced versions of the algorithms, it is not much surprising to obtain a p-
value< 0, 001. In that case we put a flag and repeat the test with a different data set (In the
case of LW and HW, as it is not possible to change the data set, we change the weights of the
strings to obtain new data sets.). If p-value< 0, 001 is obtained for the same test, we conclude
that the data is non-random.

3 Cryptographic Randomness Tests

Apart from statistical randomness testing of the outputs of the algorithms using test packages
which consist of statistical randomness tests designed to evaluate PRNGs, a different method can
be applied to evaluate the randomness based on cryptographic properties. A recent package is
designed by Doğanaksoy et. al [5] to evaluate block ciphers and hash functions, via cryptographic
randomness tests. Since the authors obtain more precise results for AES finalist algorithms, we
believe it is worthwhile to test the SHA-3 second round algorithms using the mentioned package.

In this section, brief descriptions of the cryptographic randomness tests used in the work are
given. The details of these tests with the computation of probabilities can be found in [5].

3.1 Strict Avalanche Criterion Test (SAC Test)

A function is said to satisfy the strict avalanche criterion, whenever a single input bit is com-
plemented, each of the output bits changes with probability a half. The aim of the SAC test is
to measure if any flipped bit of the plaintext bit affects the ciphertext bits as if it is a random



mapping. In this test, an n × m matrix, so called SAC Matrix, is formed and this matrix is
evaluated for randomness.

The SAC Matrix is formed in the following way:

– A random message is taken, and the output of the compression function is computed.
– For each 1 ≤ i ≤ m:
• The ith bit of the input is flipped.
• The corresponding output is XOR ed to the original output.
• For each non-zero bit j of the output, (i, j)th entry of the matrix is incremented by 1.

– This process is repeated for 220 different random inputs.

The final state of the matrix is analyzed for randomness. The entries of the matrix should
follow a binomial distribution, and two approaches are used to evaluate this matrix. In the first
approach, χ2 goodness of fit test with 5 bins is applied to measure how well the distribution of
the entries of the matrix fits binomial distribution, while the second approach looks for entries
with significant deviations from the expected value. The ranges and probabilities for the first
approach are given in the Table 4.

Table 4. Ranges and probabilities of SAC Test for 220 trials

Bin Range Probability

1 0-523857 0.200224

2 523858-524158 0.199937

3 524159-524417 0.199677

4 524418-524718 0.199937

5 524719-1048576 0.200224

3.2 Linear Span Test

Nonlinearity is one of the basic design criteria for hash functions. The linear span test, a ran-
domness test based on nonlinearity, examines the linear dependence of the outputs formed from
a highly linearly dependent set of inputs. In this test, a matrix is formed by the outputs of the
compression function corresponding to this set, and the rank of this matrix is compared to the
rank of a random binary matrix.

The core of the test is as follows:

– A set of log2n linearly independent messages are chosen.
– The output set of the compression function for all possible linear combinations of the elements

in the chosen set is computed.
– The rank of the resulting n × n matrix is computed, and the corresponding bin value is

incremented by one.
– These steps are repeated 220 times.

The χ2 goodness of fit test with 3 bins is used for evaluation. The probabilities used to derive
the expected values are given in Table 5.

3.3 Collision Test

Collision resistance is an important design criterion for hash functions, which means that it
should be hard to find two messages with the same hash value. The Collision Test is designed



Table 5. Probabilities used in Linear Span Test (n > 19)

Rank ≤ m− 2 m− 1 m

Probability 0.133636 0.577576 0.288788

to evaluate randomness based on collision resistance. However, as the output space is large, the
collisions in a subset of output space is considered. In other words, the subject of the Collision
Test is the number of collisions in specific bits of the output, which can be considered as near
collision.

The core of the test is as follows:

– A random message is taken and a set of size 212 is formed by assigning all possible values to
its first 12-bits.

– The output set of the compression function for this set is obtained.
– The number of collisions in the first 16-bits is computed, and the corresponding bin value is

incremented by one.
– These steps are repeated for 220 different inputs.
– The same process is repeated for an input set of size 214 and the first 20-bits of the output

is considered.

The χ2 goodness of fit test with 5 bins is used for evaluation. The probabilities used to derive
the expected values are given in Table 6, and two p-values are produced for different versions.

Table 6. Ranges and probabilities of Collision Test for 16 and 20 bits

n = 212 , m = 216 n = 214 , m = 220

Bin Range Probability Range Probability

1 0-116 0.206246 0-117 0.190231

2 117-122 0.194005 118-124 0.215008

3 123-128 0.219834 125-130 0.211585

4 129-134 0.183968 131-137 0.202689

5 135-4096 0.195947 138-16384 0.180487

3.4 Coverage Test

Hash functions are one-way functions and required to behave like a random mapping, which
implies that the expected coverage is about 63% of the size of the input set. The coverage test
examines the size of the output set (coverage) formed from a subset of the domain.

The core of the test is as follows:

– A random message is taken and a set of size 212 is formed by assigning all possible values to
its first 12-bits.

– The output set of the compression function for this set is obtained.
– The coverage is computed, and the corresponding bin value is incremented by one.
– These steps are repeated for 220 different inputs.
– The same process is repeated for an input set of size 214.

The χ2 goodness of fit test with 5 bins is used for evaluation. The probabilities used to derive
the expected values are given Table 7.



Table 7. Ranges and probabilities of Coverage Test for 12 and 14 bits

12 - bits 14 - bits

Bin Range Probability Range Probability

1 1-2572 0.199176 1-10323 0.201674

2 2573-2584 0.204681 10324-10346 0.195976

3 2585-2594 0.197862 10347-10367 0.207530

4 2595-2606 0.203232 10368-10390 0.195266

5 2607-4096 0.195049 10391-16384 0.199554

Similar to the statistical randomness tests, if p-value < 0, 0001, we consider the data as
non-random for the tests mentioned in this section. If p-value < 0, 001, we apply the test once
more to check whether such a case is coincidental or not. If p-value < 0, 001 is obtained again
we consider the data as non-random.

4 Application

In this section, we apply statistical analysis to the SHA-3 second round candidate algorithms.
For this purpose, first we define reduced versions of the candidates. Then, we apply statistical
randomness tests and cryptographic randomness tests to observe the number of rounds that the
algorithms achieve randomness.

When defining reduced versions of the algorithms, we only reduce the number of compression
function rounds and ignore the finalization functions, if exist. Reduced rounds of finalization
functions can also be taken into account, but this process together with the reduced rounds of
compression functions increases the complexity of the tests by introducing plenty of versions for
only one algorithm.

On the other hand, BMW and SHAvite-3 have two tunable parameters for the compression
function that can be changed when reducing the algorithms. Therefore, to have a level testing
field, we fix the first parameter and make the second one variable when defining the reduced
versions of these algorithms. Also for SIMD, as the feed forward operation has a significant
importance in the security of the algorithm, we do not exclude this operation in the reduced
versions. Hence, 1 round of SIMD refers to 1 round of its compression function besides the feed
forward operation.

For the sake of simplicity and ease of computations, we apply statistical analysis only to
the 256-bit versions of the algorithms. In the case of cryptographic randomness testing, we
apply the package directly to the compression functions of the candidate algorithms. Therefore,
initialization and padding are excluded. In the case of statistical randomness testing, all the
algorithms are tested for 256-bit output values, since the internal state size of the algorithms
vary from 256 bits to 1600 bits and one needs to find the exact bin values of all the statistical
randomness tests for each state size, which is not feasible.

4.1 Statistical Randomness Test Results

When applying statistical randomness tests to the candidates, we reduce the algorithms by
excluding finalization, setting IV and salt values to 0. Moreover, we discard the padding operation
and the output is generated from a single message block which is iterated only once.

For statistical tests, we produce approximately 224 256-bit outputs for each algorithm from
the data sets mentioned in Section 2.2. In Table 8, for each algorithm, the number of rounds that
the randomness is achieved is given together with the data sets which produce the corresponding
results. According to these results, Fugue does not achieve randomness after its full rounds of



Table 8. Statistical randomness test results for the 256-bit versions of the algorithms

Algorithm # Rounds # Rounds Random Data Sets

Blake [10] 10 3 Av1

BMW [11] 2/14 2/1 All

CubeHash [12] 16 6 LW

ECHO [13] 8 4 Av1

Fugue [14] 2 >2 All

Grøstl [15] 10 3 LW, HW, Av1, Rot

Hamsi [16] 3 1 All

JH [17] 35.5 8 LW, HW, Av1, Av8

Keccak [18] 24 3 LW, HW, Av1, Av8

Luffa [19] 8 3 LW, HW

Shabal [20] 3 1 All

Shavite3 [21] 3/12 3/1 All

SIMD [22] 4 1 All

Skein [23] 72 8 All

compression functions. However, we observe that two rounds of G1 finalization or a single round
of G2 finalization is enough for it to have random looking outputs.

4.2 Cryptographic Randomness Test Results

Different from statistical testing of the outputs of the algorithms, cryptographic randomness tests
are applied directly to the compression functions of the candidate algorithms. As mentioned
before in Section 3, the core operations of each test are advised to be repeated 220 times.
However, especially in Coverage Test and Collision Test, 212 calls (or 214 calls depending on
the chosen parameter) to the compression functions of the algorithms is required. This poses
some limitations towards the number of times the cores of the tests can be repeated, since the
performances of the reference codes provided in the submissions of the candidate algorithms
vary significantly. Hence, we repeat the core operations of the tests as given in Table 9 to have
reasonable running times for all algorithms.

Table 9. Number of times the core of the tests repeated with corresponding testing parameters

Test (Parameter) # Repetitions

SAC Test (-) 220

Linear Span Test (-) 216

Collision Test (16) 216

Collision Test (20) 212

Coverage Test (12) 216

Coverage Test (14) 212

In Table 10, the number of rounds that the compression functions achieve randomness is
given together with the tests from which the best results are obtained for each algorithm. The
abbreviations LS Test, Col. Test and Cov. Test in the table stand for Linear Span Test, Collision
Test and Coverage Test respectively. According to these results, compression functions of Fugue,
Hamsi and Shabal do not achieve randomness after their full rounds, but each of these algorithms
have finalization rounds after all message blocks are processed. Therefore, we believe it is highly
unlikely that these observations on the compression functions will lead to a cryptanalysis effort
on the hash function.



Table 10. Cryptographic randomness test results for the compression functions of the 256-bit versions of the
algorithms

Algorithm # Rounds # Rounds Random Tests that give the best results

Blake 10 2 Col. Test, Cov. Test, SAC Test

BMW 2/14 2/5 SAC Test

CubeHash 16 7 SAC Test

ECHO 8 2 Col. Test, Cov. Test, SAC Test

Fugue 2 > 2 Col. Test, Cov. Test, SAC Test

Grostl 10 3 Col. Test (20)

Hamsi 3 > 3 Col. Test, Cov. Test

JH 35.5 11 Cov. Test (12), SAC Test

Keccak 24 4 SAC Test

Luffa 8 4 SAC Test

Shabal 3 > 3 Col. Test, Cov. Test, SAC Test

Shavite-3 3/12 3/3 SAC Test

SIMD 4 1 Col. Test, Cov. Test, SAC Test, LS Test

Skein 72 9 SAC Test

5 Conclusion and Future Work

In this work, we applied statistical randomness tests and cryptographic randomness tests on
reduced round variants of the compression functions of the SHA-3 competition second round
algorithms. We observed up to how many rounds a compression function behaves random. Al-
though the results do not imply cryptographic weaknesses about the hash functions directly, it
may provide a starting point for the cryptanalysis. The main outcome of this analysis is the
knowledge of how conservative the algorithms are.

The results in Table 9 and Table 10 show how conservative the compression functions are. Ac-
cording to these results Keccak, SIMD and Skein are the most conservative designs. On the other
hand, the results obtained from Fugue, Shabal and Hamsi indicate relatively weak compression
functions used for their designs. However they make up for this with use of cryptographically
strong finalization functions.

As a future work, the analysis can be extended to other hash sizes. Moreover, finalization
functions can be considered and more reduced versions can be constructed. Also new data sets
can be defined for the statistical randomness testing.

References

1. National Institute of Standards and Technology. Announcing Request for Candidate Algorithm Nominations
for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Register, 27(212):62212–62220, 2007.
Available at: http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf.

2. Juan Soto and Jr. Randomness testing of the aes candidate algorithms.
3. Andrew Rukhin, Juan Soto, James Nechvatal, Elaine Barker, Stefan Leigh, Mark Levenson, David Banks,

Alan Heckert, James Dray, San Vo, Andrew Rukhin, Juan Soto, Miles Smid, Stefan Leigh, Mark Vangel, Alan
Heckert, James Dray, and Lawrence E Bassham Iii. A statistical test suite for random and pseudorandom
number generators for cryptographic applications, 2001.

4. F. Sulak, A. Doğanaksoy, B. Ege, and O. Koçak. Evaluation of randomness test results for short sequences.
In Claude Carlet and Alexander Pott, editors, Sequences and Their Applications – SETA 2010, volume 6338
of Lecture Notes in Computer Science, pages 309–319. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-
642-15874-2 27.

5. Ali Doğanaksoy, Barış Ege, Onur Koçak, and Fatih Sulak. Cryptographic randomness testing of block ciphers
and hash functions. Cryptology ePrint Archive, Report 2010/564, 2010. http://eprint.iacr.org/.

6. D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley,
1981.



7. W. Caelli, E. Dawson, L. Nielsen, and H. Gustafson. CRYPT–X statistical package manual, measuring the
strength of stream and block ciphers, 1992.

8. G. Marsaglia. The Marsaglia random number CDROM including the DIEHARD battery of tests of random-
ness. 1996.

9. P. L’Ecuyer and R. Simard. Testu01: A c library for empirical testing of random number generators. ACM
Trans. Math. Softw., 33(4):22, 2007.

10. Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. Sha-3 proposal blake. Sub-
mission to NIST, 2008.

11. Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog, Mohamed El-Hadedy, Jorn Amundsen, and
Stig Frode Mjolsnes. Cryptographic hash function blue midnight wish. Submission to NIST (Round 2),
2009.

12. Daniel J. Bernstein. Cubehash specification (2.b.1). Submission to NIST (Round 2), 2009.
13. Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyrin, Matt Robshaw, and Yan-

nick Seurin. Sha-3 proposal: Echo. Submission to NIST (updated), 2009.
14. Shai Halevi, William E. Hall, and Charanjit S. Jutla. The hash function fugue. Submission to NIST (updated),

2009.
15. Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Martin

Schläffer, and Søren S. Thomsen. Grøstl – a sha-3 candidate. Submission to NIST, 2008.
16. Özgül Küçük. The hash function hamsi. Submission to NIST (updated), 2009.
17. Hongjun Wu. The hash function jh. Submission to NIST (updated), 2009.
18. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak specifications. Submission to NIST (Round

2), 2009.
19. Christophe De Canniere, Hisayoshi Sato, and Dai Watanabe. Hash function luffa: Specification. Submission

to NIST (Round 2), 2009.
20. Emmanuel Bresson, Anne Canteaut, Benot Chevallier-Mames, Christophe Clavier, Thomas Fuhr, Aline

Gouget, Thomas Icart, Jean-Franois Misarsky, Mara Naya-Plasencia, Pascal Paillier, Thomas Pornin, Jean-
Ren Reinhard, Cline Thuillet, and Marion Videau. Shabal, a submission to nists cryptographic hash algorithm
competition. Submission to NIST, 2008.

21. Eli Biham and Orr Dunkelman. The shavite-3 hash function. Submission to NIST (Round 2), 2009.
22. Gatan Leurent, Charles Bouillaguet, and Pierre-Alain Fouque. Simd is a message digest. Submission to NIST

(Round 2), 2009.
23. Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi Kohno, Jon Callas,

and Jesse Walker. The skein hash function family. Submission to NIST (Round 2), 2009.


