
Generic Compilers for Authenticated Key Exchange∗

Tibor Jager Florian Kohlar Sven Schäge Jörg Schwenk

August 2, 2012

Abstract

So far, all solutions proposed for authenticated key agreement combine key agreement and
authentication into a single cryptographic protocol. However, in many important application
scenarios, key agreement and entity authentication are clearly separated protocols. This fact
enables efficient attacks on the näıve combination of these protocols. In this paper, we propose
new compilers for two-party key agreement and authentication, which are provably secure in the
standard Bellare-Rogaway model. The constructions are generic: key agreement is executed first
and results (without intervention of the adversary) in a secret session key on both sides. This
key (or a derived key) is handed over, together with a transcript of all key exchange messages,
to the authentication protocol, where it is combined with the random challenge(s) exchanged
during authentication.

Keywords: authenticated key agreement, protocol compiler, TLS

1 Introduction

Authenticated key agreement (AKE) is a basic building block in modern cryptography. Many secure
protocols for two-party and group key agreement have been proposed, including generic compilers
that transform simple key agreement protocols into authenticated key agreement protocols, with
many additional security properties.

However, all known constructions (including e.g. the modular approach of [1], and the Katz-
Yung compiler [22]) result in a single cryptographic protocol, whereas many security-critical real-
world applications combine two or more clearly separated protocols:

• (Client) Authentication and SSL/TLS. The most prominent example is SSL/TLS. Al-
though server and browser can be authenticated in a provably secure way [20, 25] within a
single cryptographic protocol (the TLS handshake protocol), nearly all known web applica-
tions authenticate the client through a different protocol on top of the TLS channel. The
security of these protocols is based on the sole assumption that the (human) user is able to
authenticate the server on the basis of security indicators of the browser, which was shown to
be false in [17]. We do not rely on this assumption. Instead, we regard SSL/TLS simply as a
key agreement protocol, which cannot be changed due to the large number of implementations
that are running worldwide. We may however change the authentication protocol, since the

∗The research leading to these results has received funding from the European Community (FP7/2007-2013)
under grant agreement number ICT-2007-216646 - European Network of Excellence in Cryptology II (ECRYPT II)
and the Ministry of Economic Affairs and Energy of the State of North Rhine-Westphalia, grant 315-43-02/2-005-
WFBO-009.

1

authentication protocol is often implemented in HTML/Javascript. 1

• Browser based Single Sign-On (SSO). This scenario is perhaps the most complex one
and a formalization is out of scope of this paper. However, it may serve as an illustration of
how cryptographic protocols are combined today to implement key exchange (KE) and au-
thentication functionalities. In SSO protocols, two key agreement protocols, and two different
authentication protocols are combined to achieve the desired goal. Cryptographically secure
SSO protocols have e.g. been described in [19].

In this work, we present a new compiler that handles these scenarios. Moreover, we can use our
compiler to combine existing authentication protocols in a novel way with key exchange protocols.
This includes:

• Zero-Knowledge Authentication. Zero-knowledge protocols have been developed with
the goal to authenticate entities. However, in all known compilers, they cannot be combined
with key agreement, except if they are transformed into digital signature schemes using the
Fiat-Shamir heuristic. With our second compiler, ZK protocols can be used directly, which
enables many interesting new protocols.

• Privacy-preserving authentication. With our compiler, we can easily combine privacy-
preserving authentication protocols like Direct Anonymous Attestation with different key
agreement protocols.

Man-in-the-middle Attack. Our real world attack scenario is as follows (cf. Figure 1): the
adversary E (”Eve”) acts as an active (wo)man-in-the-middle (MITM) between A and B during key
exchange, and then acts as a passive ”wire” during authentication. As a result, E has successfully
authenticated as ”A” towards B, and as ”B” towards A, and shares (different) keys with A and B.

A E B

←−
key − exchange
−−−−−−−−−−−−−→

←−
key − exchange
−−−−−−−−−−−−−→

←−−−−−−−−−−−
authentication
−−−−−−−−−−−−−−−−−−−−−−→

A E B

←−−−−−−−−−−
key − exchange
−−−−−−−−−−−−−−−−−−−−−−→

←−
authentication
−−−−−−−−−−−−→

←−
authentication
−−−−−−−−−−−−→

Figure 1: Attack Scenario: Real world man-in-the-middle attack (left), and unknown key share
attack (right)

To counter this attack, one could of course apply standard cryptographic primitives to turn
the key exchange protocol into an authenticated key exchange protocol (AKE) [1], but this is
not possible in the cases cited above, because the implementation of the KE protocol cannot be
changed, or the desired security goals (e.g. privacy) cannot be reached with standard compilers.

1At first glance, it seems that the security of TLS as a key agreement protocol could easily be proven in the
Bellare-Rogaway model, since we only have to consider passive adversaries, and the TLS ciphersuites includes e.g.
ephemeral Diffie-Hellman key exchange. However, there are some subtle problems with the Reveal query and the
fact that the final Finished message of the TLS handshake is already encrypted. Therefore it is still unclear if TLS
fits in our theoretical framework.

2

Our compiler turns the combination of the two protocols into a provably secure AKE protocol.
During compilation, only the authentication protocol is changed slightly.

Unknown Key Share (UKS) Attacks. To be able to prove the security in the standard
Bellare-Rogaway (BR) model, the resulting AKE protocol must also be secure against unknown key
share (UKS) attacks [14, 13] that do not directly lead to an attack in the real world, but invalidate
security proofs in the model. Interestingly, in our scenario this is a kind of orthogonal attack to
MITM attacks (cf. Figure 1): The adversary acts as a man-in-the-middle on the authentication
protocol. To achieve security against both (MITM and UKS) attacks, one usually needs two
compilers: One compiler who adds authenticators to each message [1], and one compiler who
includes the complete state of the session into the computation of the session key [15]. Our compilers
achieve this in one step, because we force the adversary to prove knowledge of the session key k
through the derived key dk during authentication. Thus the adversary cannot authenticate to A
or B without knowing k, and neither A nor B will accept.

Practical AKE protocols. If the two parties accept, they share a common state. This state
consists of the secret key k, and the transcript of all messages sent and received. This transcript
plays an important role in the BR model, since it defines the attack possibilities of the adversary. In
practically relevant AKE protocols, a hash of this transcript is included in a final message secured
with a MAC, to protect against MITM attacks.

The A&KE Compilers. To protect against MITM attacks in our generic scenario, it is suffi-
cient to simply include the transcript of the KE protocol into the authentication protocol. (Many
authentication protocols offer the possibility to authenticate arbitrary strings chosen by A od B,
e.g. authentication protocols based on digital signatures, or the MAP2 protocol from [2].) Such
a compiler protects against MITM attacks because (a) any modification of messages in the KE
protocol automatically results in a modification of messages in the authentication protocol (since
the transcript is included), which results in an abort of the authentication protocol if this protocol
is secure in the BR model. Thus (b) the adversary is restricted to a passive role when attacking
the KE protocol, but this protocol is by definition secure against passive adversaries.

Unfortunately, this simple compiler cannot be proven secure in the BR model, because the
adversary also has access to the transcript of the protocol, and can use this in both instances of the
authentication protocol (cf. right side of Fig. 1.) To avoid this attack, a secret value only known
to A and B (i.e. the session key k) must be used in the authentication protocol in a generic way.
There are at least two different methods (besides [15]) how to achieve this:

• An additional pair of messages can be sent after the KE and the authentication protocol.
These messages contain a cryptographic checksum over the transcripts of both protocols.
This checksum is basically a MAC, computed over the transcript of both the KE and the
authentication protocol, using a key Kmac = PRF(k, “MAC”) derived from the key k returned
by the KE protocol and some pseudo-random function PRF. The actual session key K re-
turned by the compiled protocol (i.e., the value returned by a Reveal or Test query in the BR
model) is also derived from k as K = PRF(k, “KE”). In Section 3, we describe the compiler
for this in detail, and prove its security in the standard model.

• Alternatively, we can modify a value that is present in all secure authentication protocols, in
such a way that it does not change the security properties of the protocol:

In a generic authentication protocol, a random challenge rA guaranteeing the freshness of

3

the message(s) must be sent from the challenger A to the prover B, which is answered with
a response sB from B. Ideally, this challenge is chosen from a large message space with
uniform distribution. We assume that rA is chosen uniformly from {0, 1}t, for some security
parameter t. The answer sB := f(skB, rA) is computed using the secret long-lived key skB
of B, and the challenge rA.

Our compiler changes the computation of sB slightly. Instead of using the challenge rA
directly, we use a derived value r′A from the same distribution:

r′A := H(Kmac, rA, rB, transcriptKE), s′B := f(skB, r
′
A),

where H is some hash function modeled as a random oracle and k = (K,Kmac) is the key that
is output by the underlying KE protocol. Please note that r′A is never sent (cf. Figure 3), but
has to be computed by A and B. Thus the adversary E does not learn r′A. This construction
does not alter the security properties of the authentication protocol. In Section 4, we give a
security proof for this compiler in the random oracle model.

1.1 Related Work

In their seminal papers [2, 1] on two-party authenticated key agreement, Bellare et al. started a line
of research that has expanded in two directions: group key agreement [9], [8, 22, 10], and refined
models to cover different types of attacks [11, 23, 24]. All these models cover concurrent execution
of the protocol, and at least corruption of non-related session keys.

All models can roughly be classified in two groups: models that require a unique session ID
before the start of the protocol, and models that construct this session ID. [11] is the prototype of
the former case: proofs and definitions are easier, but it is unclear how a session ID can be defined
for practical applications. (E.g. in case of an SSL man-in-the-middle, browser and server do not
share any common state.) Newer models like [23] or [24] thus avoid this assumption, and construct
the session identifiers from the messages sent and received by the intended communication partners.

Unknown key share [5] attacks do not threaten the real world security of cryptographic pro-
tocols, but invalidate security proofs in the formal models that follow [2]: If the adversary is able
to force two protocol participants into accepting the same session key, but without a matching
conversation, a Reveal query to one of the participants will help to win the Test game against
the other participant. Choo, Boyd and Hitchcock have shown how to invalidate security proofs
of various protocols in the different models [14, 13], and how to fix the problem by including the
whole session information in the computation of the session key [15]. They were able to compare
the relative strengths of the different models assuming that session identifiers are constructed as a
concatenation of the exchanged messages.

Canetti and Krawczyk in [12] consider a practically important protocol (IPSec IKE), which
has a structure that places authentication after key exchange. Still, this is a single AKE protocol,
and thus not comparable to our construction. In 2008 Morissey et al. studied the security of the
TLS key agreement protocol [25] and provided a modular and generic proof of security for the
established application keys.

Katz and Yung presented in [22] a first scalable compiler that transforms any passively secure
group key-exchange protocol to an actively secure AKE. Their compiler adds one round and con-
stant size (per user) to the original scheme, by appending an additional signature to each message
of the protocol.

4

1.2 Contribution

In this paper, we describe two new compilers that allow us to combine key agreement protocols
(which, in the BR model, need only be secure against passive adversaries) with arbitrary authen-
tication protocols to form an authenticated key agreement (AKE) protocol in the sense of [2].

These compilers enable us to formally prove the security of real world protocols in the BR model,
which was not possible before. The most important case here is TLS with an authentication protocol
on top of the TLS channel, which can be proven secure if the authentication protocol is secure in
the BR model. This is possible since we consider TLS only as a key agreement protocol, and not
as an AKE protocol, and it seems likely that the security of (some ciphersuites of) TLS against
passive adversaries can be proven.

Additionally, the compilers allow for a modular design of new AKE protocols, using existing
protocols (e.g. TLS, IPSec IKE) or new ones (e.g. zero-knowledge authentication, group signa-
tures). The formal security proof is simplified considerably, since the security of key agreement
and authentication protocols can be proven separately, and our theorems yield the security of the
combined protocol.

2 Preliminaries and Definitions

In this section, we recall the syntax and security definitions of the building blocks for our protocol
compilers.

2.1 Digital Signature Schemes

A digital signature scheme is a triple SIG = (SIG.Gen,SIG.Sign,SIG.Vfy), consisting of a key gen-

eration algorithm (sk, pk)
$← SIG.Gen(1κ) generating a (public) verification key pk and a secret

signing key sk on input of security parameter κ, signing algorithm σ
$← SIG.Sign(sk,m) generating

a signature for message m, and verification algorithm SIG.Vfy(pk,m, σ) returning 1, if σ is a valid
signature for m under key pk, and 0 otherwise.

Consider the following security experiment played between a challenger C and an adversary A.

1. The challenger generates a public/secret key pair (sk, pk)
$← SIG.Gen(1κ), the adversary

receives pk as input.

2. The adversary may query arbitrary messages mi to the challenger. The challenger replies each
query with a signature σi = SIG.Sign(sk,mi). Here i is an index, ranging between 1 ≤ i ≤ q
for some polynomial q = q(κ). Queries can be made adaptively.

3. Eventually, the adversary outputs a message/signature pair (m,σ).

Definition 1. We say that SIG is secure against existential forgeries under adaptive chosen-message
attacks (EUF-CMA), if

Pr
[
(m,σ)

$← AC(1κ, pk) : SIG.Vfy(pk,m, σ) = 1 ∧m 6∈ {m1, . . . ,mq}
]
≤ ε.

for all probabilistic polynomial-time (in κ) adversaries A, where ε = ε(κ) is some negligible function
in the security parameter.

5

2.2 Message Authentication Codes

A message authentication code is an algorithm MAC. This algorithm implements a deterministic
function w = MAC(Kmac,m), taking as input a (symmetric) key Kmac ∈ {0, 1}κ and a message m,
and returning a string w.

Consider the following security experiment played between a challenger C and an adversary A.

1. The challenger samples Kmac
$← {0, 1}κ uniformly random.

2. The adversary may query arbitrary messages mi to the challenger. The challenger replies
each query with wi = MAC(Kmac,mi). Here i is an index, ranging between 1 ≤ i ≤ q for
some polynomial q = q(κ). Queries can be made adaptively.

3. Eventually, the adversary outputs a pair (m,w).

Definition 2. We say that MAC is a secure message authentication code, if

Pr
[
(m,w)

$← AC(1κ) : w = MAC(Kmac,m) ∧m 6∈ {m1, . . . ,mq}
]
≤ ε

for all probabilistic polynomial-time (in κ) adversaries A, where ε = ε(κ) is some negligible function
in the security parameter.

2.3 Pseudo-Random Functions

A pseudo-random function is an algorithm PRF. This algorithm implements a deterministic function
z = PRF(k, x), taking as input a key k ∈ {0, 1}κ and some bit string x, and returning a string
z ∈ {0, 1}κ.

Consider the following security experiment played between a challenger C and an adversary A.

1. The challenger samples k
$← {0, 1}κ uniformly random.

2. The adversary may query arbitrary values xi to the challenger. The challenger replies each
query with zi = PRF(k, xi). Here i is an index, ranging between 1 ≤ i ≤ q for some polynomial
q = q(κ). Queries can be made adaptively.

3. Eventually, the adversary outputs value x and a special symbol >. The challenger sets

z0 = PRF(k, x) and samples z1
$← {0, 1}κ uniformly random. Then it tosses a coin b

$← {0, 1},
and returns zb to the adversary.

4. Finally, the adversary outputs a guess b′ ∈ {0, 1}.

Definition 3. We say that PRF is a secure pseudo-random function, if∣∣Pr
[
b = b′

]
− 1/2

∣∣ ≤ ε
for all probabilistic polynomial-time (in κ) adversaries A, where ε = ε(κ) is some negligible function
in the security parameter.

6

2.4 Key Exchange Protocols

A (two-party) key-exchange protocol is a protocol executed among two parties A and B. At the
end of the protocol, both A and B obtain the same key K0 as the output of the protocol.

Definition 4. We say that a key-exchange protocol is passively-secure if for all polynomial-time
adversary holds that |Pr[b = b′]−1/2| ≤ ε for some negligible function ε in the following experiment.

1. A challenger generates the public parameters Λ of the protocol (e.g. a generator describing a
group etc.).

2. The adversary receives Λ as input, and may query the challenger. To this end, it submits a
symbol ⊥. Then, the challenger runs a protocol instance, and obtains the transcript T of all
messages exchanged during the protocol and a key K0. The challenger returns (T,K0).

3. Eventually, the adversary outputs a special symbol >. Given >, the challenger runs a protocol
instance, obtaining the transcript T and key K0, samples K1 uniformly at random from the
key space of the protocol, and tosses a fair coin b ∈ {0, 1}. Then it returns (T,Kb) to the
adversary.

4. The adversary may continue making ⊥-queries to the challenger.

5. Finally, adversary E outputs a bit b′.

We say that the adversary wins the game, if b = b′.

Simple protocols satisfying the above definition are the Diffie-Hellman protocol (under the DDH
assumption), or key-transport using an IND-CPA secure encryption scheme (i.e., party A samples
a random key k, encrypts k under B’s public key, and sends the ciphertext to B).

2.5 Secure Authenticated Key Exchange

While the security model for passively-secure key-exchange protocols is very simple, a more complex
model is required to model the capabilities of active adversaries to define secure authenticated key-
exchange. We must describe the subtleties of executions that we expect from the implementations of
the protocol, the attacks against which our protocol should be secure, and which outcome we expect
if we run the protocol with the defined adversary. In accordance with the line of research [5, 11,
24, 16] initiated by Bellare and Rogaway [2], we model our adversary by providing an “execution
environment”, which emulates the real-world capabilities of an active adversary. That is, the
adversary has full control over the communication network, thus may forward, alter, or drop any
message sent by the participants, or insert new messages.

Execution Model. Let I = I(κ) and S = S(κ) be polynomials in the security parameter κ. Our
model is characterized by a collection of oracles

{πsi,j : i, j ∈ [I], s ∈ [S]}

An oracle πsi,j represents an entity i running the protocol with entity j for the s-th time. Each
oracle maintains its own internal state (e.g. nonces), all oracles representing some entity i share
the same long-term secrets of entity i. Moreover, each oracle πsi,j maintains a variable T storing an
ordered list of all messages sent and received by πsi,j so far.

7

An oracle aborts, if it receives a message which is not valid according to the protocol specifica-
tion, or terminates after it has sent or received the last protocol message according to the protocol
specification. When a process terminates, it outputs “accept” or “reject” and (possibly) a key k.

An adversary may interact with these oracles by issuing different types of queries. Before the
first query is asked, long-term secret/public key pairs (pki, ski) for each entity i are generated. An
adversary A receives as input the long-term public keys (pk1, . . . , pkl) of all parties, and may then
ask the following query:

• Send(πsi,j ,m): The adversary can use this query to send any message m of his own choice to
oracle πsi,j . The oracle will respond according to the protocol specification. If m = ∅, where
∅ denotes the empty string, then πsi,j will respond with the first protocol message.

Secure Authentication Protocols. An authentication protocol is a protocol run between
two processes πsi,j and πtj,i of two parties Pi and Pj , where both processes output either “accept”
or “reject” at the end of the protocol. We define correctness and security of an authentication
protocol following the idea of matching conversations, as introduced by Bellare and Rogaway [2].

In the following let Ti,s denote the transcript of all messages sent and received by process πsi,j .
Intuitively, we would like to say that a protocol is correct, if a process πsi,j outputs “accept” if there
exists a process πtj,i with Ti,s = Tj,t. Likewise, we would like to say that a protocol is secure, if a
process accepts only if there exists a process πtj,i with Ti,s = Tj,t.

As in [2], we face a minor technical obstacle here, which is inherent to authentication protocols.
Suppose that Pj sends the last message of the protocol (thus, Pi has initiated the protocol run if
the number of protocol rounds is even, or Pj has initiated the protocol if the number of rounds is
odd). Party Pj does not get any response to its last message, thus has to accept without knowing
whether Pi received the last message.2 To overcome this obstacle, we let T ′i,s be the transcript Ti,s
truncated by the last message, and we have to define correctness and security in a slightly more
complicated way.

Definition 5. We say that two processes πsi,j and πtj,i have matching conversations, if either

• Pi sends the last message of the protocol according to the protocol specification and it holds
that T ′j,t = T ′i,s, or

• Pj sends the last message of the protocol according to the protocol specification and it holds
that Tj,t = Ti,s.

Definition 6. We say that an authentication protocol is correct, if for all processes πsi,j holds that
πsi,j “accepts” if there exists a process πtj,i such that πsi,j and πtj,i have matching conversations.

Definition 7. We say that an authentication protocol is secure in the Bellare-Rogaway model, if
for all probabilistic polynomial-time (PPT) adversaries A, interacting with the black-box O(Π) as
described above in the execution model, holds that:

Each process πsi,j of O(Π) “accepts” only if there exists a process πtj,i such that πsi,j and πtj,i have
matching conversations, except for some negligible probability ε = ε(κ) in the security parameter.

2In contrast, a protocol can be designed such that the party receiving the last message accepts only if it has
received this message correctly according to the protocol specification.

8

Secure Authenticated Key-Exchange Protocols. An authenticated key-exchange protocol
is an authentication protocol, where additionally both parties obtain a key k after accepting.
Intuitively, we would like to say that a authenticated key-exchange protocol is secure, if

• the protocol is a secure authentication protocol, and

• an adversary can not distinguish a key k computed in a protocol run from a uniformly
random value from the key space. This should hold even if the adversary is able to learn the
key computed in other protocol instances.

We formalize this by extending the execution model by two more type of queries, which may be
asked by the adversary.

• Test(πsi,j): This query may only be asked once throughout the game. If process πsi,j has not
(yet) “accepted”, the black-box returns some failure symbol ⊥. Otherwise the black-box flips
a fair coin b. If b = 0, a random element from the keyspace is returned. If b = 1 then the
session key k computed in process πsi,j is returned.

• Reveal(πsi,j): The adversary may learn the encryption key K computed in process πsi,j by
asking this type of query. The adversary submits πsi,j to the black-box. If process πsi,j has
“accepted”, the black-box responds with the key k in process πsi,j . Otherwise some failure
symbol ⊥ is returned.

Definition 8. Let A be a PPT adversary, interacting with the black-box O(Π) described in the
above execution model (denoted with AO(Π)).

We say that an authenticated key-exchange protocol Π is secure in the Bellare-Rogaway model,
if 1.) Π is a secure authentication protocol according to Definition 7, and 2.)∣∣∣∣Pr[AO(Π)(1κ) = b]− 1

2

∣∣∣∣ ≤ ε
for all A.

As Shoup pointed out in [27, §15], we do not have to explicitly model a Corrupt-query, as one
can efficiently reduce the standard BR-Model to a model without Corrupt-queries (see [6, p. 70 ff.]).

3 Authenticated Key Exchange Compiler in the Standard Model

Let us now describe our generic AKE compiler. The compiler takes as input the following building
blocks (which have been defined in Section 2).

• A key-exchange protocol KE,

• a digital signature scheme SIG = (SIG.Gen, SIG.Sign, SIG.Vfy),

• a message authentication code MAC,

• and a pseudorandom function PRF.

The compiled protocol between two parties A and B proceeds as follows (see also Figure 2).

9

1. A and B run the key exchange protocol. For instance, both parties may run the well-known
Diffie-Hellman protocol [18]. Throughout this protocol run, both parties compute key k and
record a transcript TAKE and TBKE, where TCKE consists of the list of all messages sent and received
by party C ∈ {A,B}. Note, that there is no long-term value (e.g. long-term public keys)
which is used in several executions of the protocol and all parameters need to be generated
freshly for each session.3

2. The key k computed by KE is used to derive two distinct keys K = PRF(k, “KE”) and
Kmac = PRF(k, “MAC”), where “KE” and “MAC” are some arbitrary fixed constants such
that “KE” 6= “MAC”.4

3. Then A samples a random nonce rA
$← {0, 1}λ and sends it to B, B samples rB

$← {0, 1}λ
and sends it to A.

4. Party A computes a signature σA
$← SIG.Sign(skA, T

A
1) under A’s secret key skA, where

TA1 = (TAKE||rA||rAB) is the transcript of all messages sent and received by A so far. Then B
computes a signature over the transcript TB1 = (TBKE||rBA ||rB) of all messages sent and received
by B. Let TA2 = (σA||σAB) denote the signatures sent and received by A, and TB2 = (σBA ||σB)
be the signatures sent and received by B.

5. A sends a MAC tA = MAC(Kmac, T
A
2 ||0) over transcript TA2 using the key Kmac computed in

2. B replies with tB = MAC(Kmac, T
B
2 ||1).

6. Party A accepts, if SIG.Vfy(pkB, T
A
1 , σ

A
B) = 1 and tB = MAC(Kmac, T

A
2 ||1), that is, if σAB is a

valid signature for TA2 under B’s verification key pkB and if wB is a valid MAC under key Kmac

for TA2 ||1. B accepts if it holds that SIG.Vfy(pkA, T
B
1 , σ

B
A) = 1 and wA = MAC(Kmac, T

B
2 ||0).

Finally, if both parties accept then the key K is returned.

Observe that the signatures and MACs are verified using the internal transcripts of party A and B.
The intention behind the idea of embedding the transcripts in the protocol is to detect any changes
that an active adversary makes to the messages sent by A and B. Informally, in the two-layer
authentication consisting of the signature scheme and MAC, the signature is used to authenticate
users and thwart man-in-the-middle attacks on the key-exchange protocol, while the MAC is used
as an implicit “key confirmation” step to avoid unknown key-share attacks [14, 13].

This allows us to prove security requiring only pretty weak security properties from the utilized
building blocks, namely we require that KE is secure against passive adversaries only, that the
digital signatures are existential unforgeable under (non-adaptive) chosen-message attacks, and
that the MAC and PRF meet their standard security notions.

Remark 1. The digital signatures sent in the first round after running KE are merely a concrete
instantiation of a tag-based authentication scheme as defined in Appendix A. It is possible to
generalize the above protocol by replacing the digital signatures with a tag-based authentication
scheme, without making substantial changes to the protocol or the security proof given below.

3For instance, to instantiate the key exchange protocol with an encrypted key transport scheme (in a secure matter
according to our model and definition), we require the used public keys to be generated freshly at the beginning of
each protocol execution!

4Note that we assume here implicitly, that the output key space of KE matches the input key space of PRF. This
fact is not only important for correctness, but also for the security proof.

10

A B

←−
KE

−−−−−−−−−−−−−−−−−→
obtain k, TA

KE obtain k, TB
KE

K := PRF(k, “KE”) K := PRF(k, “KE”)
Kmac := PRF(k, “MAC”) Kmac := PRF(k, “MAC”)

−
rA

−−−−−−−−−−−−−−−−−→
←−

rB
−−−−−−−−−−−−−−−−−

record TA
1 = (TA

KE||rA||r
A
B) record TB

1 = (TB
KE||r

B
A ||rB)

σA := SIG.Sign(skA, T
A
1) σB := SIG.Sign(skB , T

B
1)

−
σA

−−−−−−−−−−−−−−−−−→
←−

σB
−−−−−−−−−−−−−−−−−

record TA
2 = (σA||σA

B) record TB
2 = (σB

A ||σB)
wA := MAC(Kmac, TA

2 ||“0”) wB := MAC(Kmac, TB
2 ||“1”)

−
wA

−−−−−−−−−−−−−−−−−→
←−

wB
−−−−−−−−−−−−−−−−−

accept if accept if
SIG.Vfy(pkB , T

A
1 , σ

A
B) = 1 SIG.Vfy(pkA, T

B
1 , σ

B
A) = 1

and and
MAC(Kmac, TA

2 ||“1”) = wA
B MAC(Kmac, TB

2 ||“0”) = wB
A

Figure 2: AKE Protocol

3.1 Security Analysis

Theorem 1. If the KE protocol, the signature scheme, the message authentication code and the
pseudo-random function are secure with respect to the definitions in Section 2, then the above
protocol is a secure AKE protocol in the sense of Definition 8.

We prove the above theorem by two lemmas. Lemma 1 states that the AKE protocol meets
property 1) of Definition 8, Lemma 2 states that it meets property 2) of Definition 8.

Lemma 1. If the key exchange protocol (KE), the signature scheme (SIG), the message authentica-
tion code (MAC) and the pseudo-random function (PRF) are secure with respect to the definitions
in Section 2, then the above protocol meets Property 1 of Definition 8.

Proof.(Sketch) The proof proceeds in a sequence of games, following [3, 28]. The first game is the
real security experiment. By assumption there exists an adversary A that breaks the security of the
above protocol. We then describe several intermediate games that step-wisely modify the original
game. Next we show that in the final security game the adversary has only negligible advantage in
breaking the security of the protocol. Finally we prove that (under the stated security assumptions)
no adversary can distinguish Game i+ 1 from Game i. Let Gi be the event that A wins in Game i.
In the following let negl(κ) be some (unspecified) negligible function in the security parameter κ.

Game 0. This is the original security game. Assume an adversary A breaking Property 1 of
Definition 8 with probability ε. In the sequel we will show that ε is negligible for any algorithm A.

Game 1. This game proceeds exactly like the previous game, except that the simulator aborts if
A or B accept and TA1 6= TB1 .

Claim 1. We claim that
|Pr[G1]− Pr[G0]| ≤ negl(κ)

11

by the EUF-CMA security of the digital signature scheme. The proof of this claim exploits that from
A’s perspective the transcript TA1 = (TAKE||rA||rAB) is unique with overwhelming probability since
rA is uniformly random, and for B TB1 = (TBKE||rBA ||rB) is unique with overwhelming probability
since rB is uniformly random. Thus, in order to make A or B accept, the adversary needs to create
a signature over TA1 or TB1 where rA or rB are unique. Thus we can use this adversary to break
the EUF-CMA security of SIG.

Game 2. This game proceeds exactly like the previous game, except that the simulator now
chooses a uniformly random key k̂ to derive Kmac and K as Kmac = PRF(k̂, “MAC”) and K =
PRF(k̂, “KE”).

Claim 2. We claim that
|Pr[G2]− Pr[G1]| ≤ negl(κ)

by the security of KE against passive adversaries. Note that we must have TA1 = TB1 if A or B
accept, as otherwise we abort due to Game 1. This implies that the adversary forwards all messages
of KE without altering anything. We can thus use an adversary distinguishing Game 2 from Game 1
to break the security of KE against passive adversaries.

Game 3. This game proceeds exactly like the previous game, except that the simulator now
chooses a uniformly random key k̃ (instead of Kmac) to compute wA and wB as wA = MAC(k̃, T2||0)
and wB = MAC(k̃, T2||1).

Claim 3. We claim that
|Pr[G3]− Pr[G2]| ≤ negl(κ)

by the security of the pseudorandom function PRF. In the proof we exploit that we have exchanged
the “real” key k computed in KE with a “random” key k̃ in Game 2.

Game 4. This game proceeds exactly like the previous game, except that the simulator aborts if
A or B accepts and TA2 6= TB2 .

Claim 4. We claim that
|Pr[G4]− Pr[G3]| ≤ negl(κ)

Recall that in Game 4 we must have TA1 = TB1 due to our abort condition from Game 1, and that
we have replaced the key k computed in KE with a uniformly random key k̃ in Game 3 to compute
the MACs in this protocol instance. Thus, if we have TA2 6= TB2 , then the adversary must have
forged a MAC to make A or B accept. We can therefore use the adversary to break the security of
MAC.

Game 5. This game proceeds exactly like the previous game except that the simulator aborts if
A or B accepts and TA3 6= TB3 , where TA3 = (wA, w

A
B) consists of the MACs sent and received by A

and TB3 = (wBA , wB) consists of the MACs sent and received by B.

Claim 5. We have
Pr[G5] = Pr[G4].

This follows from the fact that MAC is a deterministic function, and we have TA1 = TB1 due to
Game 1 and TA2 = TB2 due to Game 4. Note that in Game 5 an oracle accepts only if there

12

exists another oracle having a matching conversation, as the game is aborted otherwise. Thus, no
adversary can break Property 1 of Definition 8 in Game 5.

Summing up the probabilities from Game 0 to 5, we obtain that in Game 0 both A and B
accept only if they have matching conversations, except for some negligible error probability. �

Lemma 2. If KE, SIG, MAC and PRF are secure with respect to the definitions in Section 2, then
the above protocol meets Property 2 of Definition 8.

Proof.(Sketch). We proceed in a sequence of games which is very similar to the sequence of games
We merely add one further game.

Game 0. This is the original security game. We assume an adversary A breaking Property 2
of Definition 8 with probability 1/2 + ε. In the sequel we will show that ε is negligible for any
algorithm A.

Game 1. In this game, we make the same modifications as in Games 1 to 5 in the proof of
Lemma 1. With the same arguments as before, we have

|Pr[G1]− Pr[G0]| ≤ negl(κ)

Game 2. This game proceeds exactly like the previous game except that the simulator now
chooses K uniformly at random from the keyspace.

Claim 2. We claim that
|Pr[G2]− Pr[G1]| ≤ negl(κ).

This again follows from the security of the PRF, where we use that the seed k̂ is chosen uniformly
random and independent (cf. Game 2).

In Game 2, the adversary receives a uniformly random key K. However, by collecting probabil-
ities from Game 0 to 2 we obtain that Game 2 is indistinguishable from Game 0 (except for some
negligible probability), which proves indistinguishability of “real” from “random” keys. Thus, the
protocol meets Property 2 of Definition 8. �

4 An Alternative AKE Compiler for Practical Protocols

Our second compiler is designed for practical applications, where we cannot change the session key
K resulting from the KE protocol [15], or where we want to avoid an additional round of protocol
messages after the authentication protocol. In this compiler, we directly integrate the transcript
of the KE protocol, and the secret value Kmac, into the authentication protocol. To do so, we first
have to define a ”generic” scheme for an authentication protocol.

We only have minimal requirements on the authentication protocols. The party (”challenger”)
who wants to authenticate the other party (”prover”) has to include a random value of high entropy
into one of its protocol messages. (Otherwise an adversary may just query different instances of

13

A B

−−
rA
−−−−→
←−
sB , rB
−−−−−−
−−
sA
−−−−→

A B

−
rA

−−−−−−−−−−−−−−→
r′A := H(Kmac, rA, rB , transcriptKE)

s′B := f(skB , r
′
A)

←−
s′B , rB

−−−−−−−−−−−−−−
r′B := H(Kmac, rB , transcriptKE)

s′A := f(skA, r
′
B)

−
s′A

−−−−−−−−−−−−−−→

Figure 3: Scheme of a standard mutual authentication protocol Γ (left), and the version Γ′ modified
by our compiler (right). (We let k = (K,Kmac) with k being the secret value resulting from the
key agreement protocol.)

the prover for responses for the most probable challenges to increase her advantage.) The prover
must answer with a value that was computed using his long-lived key sk, and the challenge itself.

The following protocols fulfill our requirements:

• AKEP1 and AKEP2 as defined in [2]

• Sigma- and Schnorr protocols (see [26])

• Zero-Knowledge Authentication protocols as introduced in [7]

• Zero-Knowledge Password-Proof protocols as introduced in [4].

• Signature based authentication protocols.

In this respect, our compiler may even enhance the security of the authentication protocol. This
applies to the authentication of both parties, or of one party only.

Let Γ be an authentication protocol as depicted in Fig. 3. Then we denote by rA a value (the
challenge) that is sent from A to B, and by sB = f(skB, rA) the value (response) returned to A
that allows A to check the authenticity of B. The values rB and sA are defined analogously.

The main idea in the construction of a modified authentication protocol Γ′ is to transmit rA
and rB according to the protocol specification of Γ, but to compute the response based on both
the received challenge, the transcript transcriptΠ of the key agreement protocol Π, and secret
value Kmac. This is done using a random oracle H. Our compiler Comp, which takes as input a
key agreement protocol Π secure against passive adversaries, and a secure authentication protocol
Γ, outputs an authenticated key agreement protocol Comp(Π,Γ) which works as follows:

A&KE-2 Compiler: Let (πsA,B, γ
s
A,B) and (πtB,A, γ

t
B,A) be two pairs of oracles for Π and Γ.

1. Π is executed by πsA,B and πtB,A without any change. The resulting secret value is

k = (K,Kmac) for πsA,B , and k′ = (K ′,K ′mac) for πtB,A . (Ideally k = k′, but we have
to take into account actions by the adversary.) The session key K (K ′, resp.) is used for
encryption and integrity protection, and the secret value Kmac (K ′mac, resp.) is sent locally
to the processes γsA,B and γtB,A , together with the local transcript of the messages of Π.
(The values K and Kmac are computed as described in Section 3.)

14

2. Now Γ is executed by γsA,B and γtB,A with the following change: In the computation of
sA and sB, the values rA and rB are replaced with r′A := H(Kmac, rA, rB, transcriptΠ) and
r′B := H(K ′mac, rB, transcript

′
Π), and thus we get s′A = f(skA, r

′
B) and s′B = f(skB, r

′
A),

where H(·, ·, ·) is a random oracle. If γsA,B accepts, the local output is K, and K ′ for γtB,A .

Lemma 3. If Π is a key agreement protocol secure against passive adversaries, then it is impossible
that three different oracles accept with the same (secret) state (k, transcriptΠ), where k = (K,Kmac)
is the secret value computed by Π, and transcriptΠ is the transcript of all protocol messages.

Proof. If this was the case, then A, B and the (active) adversary E all would be able to compute
k, but the adversary would not have modified any message exchanged between A and B (since the
transcripts are identical). Thus E, acting as a passive adversary, would be able to compute k, a
contradiction. �

Lemma 4. In Comp(Π,Γ), any two oracles γsA,B and γtB,A with matching conversations have
access to a unique random oracle that is defined as HAtBs(·) := H(Kmac, ·, transcriptΠ). Neither
E, nor any other oracle has access to this random oracle.

Proof. Since the pair (Kmac, transcriptΠ) is unique for any pair of oracles, HAtBs(·) is unique,
too. �

Theorem 2. If Γ is a secure authentication protocol, then Γ′ as defined in Fig. 3 also is a secure
authentication protocol.

Proof. Let γ′sA,B and γ′tB,A be two process (oracle) instances of A and B in Γ′. It should be

clear that if γ′sA,B and γ′tB,A have matching conversations, then both oracles will accept.

We have to show that the probability that γ′sA,B or γ′tB,A accepts without a matching
conversation is negligible. Now assume on the contrary that there is an adversary E′ that is able to
make γ′sA,B or γ′tB,A accept without a matching conversation, with non-negligible probability ε.
Then we can define an adversary E that achieves the same goal with the protocol Γ: Since E′ has
no access to the random oracle HAB, she can only try to guess the challenge r′A (r′B, resp.). Now E
is simply ignoring the challenge rX she sees, and simply guesses a random challenge r′′X , and tries
to compute s′Y from this challenge. This strategy succeeds with non-negligible probability ε, and
we have thus contradicted our assumption that Γ is a secure authentication protocol. �

Theorem 3. If Π is a key agreement protocol secure against passive adversaries, and if Γ is a
secure authentication protocol, then Comp(Π,Γ) is a secure authenticated key agreement protocol.

Proof.[Sketch] γsA,B and γtB,A will accept in Γ′ if and only if they have access to the same
random oracle HAtBs(·). (Otherwise they have to guess the challenge r′X , which succeeds only
with negligible probability.) If they have access to the same random oracle, then πsA,B and πtB,A
completed Π with the same state (k, transcriptΠ). If γsA,B and γtB,A accept, Π and Γ were both
completed by the same endpoints A and B. This excludes active attacks on Π (since the transcript
is unchanged), and UKS attacks on Γ. Thus E may only mount a passive attack on Π, which
succeeds only with negligible probability. �

15

References

[1] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the design and
analysis of authentication and key exchange protocols (extended abstract). In STOC, pages
419–428, 1998.

[2] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In CRYPTO,
pages 232–249. Springer, 1993.

[3] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In EUROCRYPT, pages 409–426. Springer, 2006.

[4] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In IEEE SYMPOSIUM ON RESEARCH IN SECURITY
AND PRIVACY, pages 72–84, 1992.

[5] Simon Blake-Wilson and Alfred Menezes. Unknown key-share attacks on the station-to-station
(STS) protocol. In Public Key Cryptography, pages 154–170, 1999.

[6] Colin Boyd and Anish Mathuria. Protocols for Authentication and Key Establishment.
Springer, 1 edition, September 2003.

[7] J. Brandt, I. B. Damg̊ard, P. Landrock, and T. Pedersen. Zero-knowledge authentication
scheme with secret key exchange. In CRYPTO, pages 583–588. Springer, 1990.

[8] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic group Diffie-Hellman
key exchange under standard assumptions. In EUROCRYPT, pages 321–336. Springer, 2002.

[9] Emmanuel Bresson, Olivier Chevassut, David Pointcheval, and Jean-Jacques Quisquater. Prov-
ably authenticated group Diffie-Hellman key exchange. In ACM Conference on Computer and
Communications Security, pages 255–264, 2001.

[10] Emmanuel Bresson and Mark Manulis. Securing group key exchange against strong corrup-
tions. In Masayuki Abe and Virgil D. Gligor, editors, ASIACCS, pages 249–260. ACM, 2008.

[11] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In EUROCRYPT, pages 453–474. Springer, 2001.

[12] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-based key-exchange
protocol. In CRYPTO, pages 143–161. Springer, 2002.

[13] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. Errors in computational
complexity proofs for protocols. In ASIACRYPT, pages 624–643. Springer, 2005.

[14] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. Examining
indistinguishability-based proof models for key establishment protocols. In ASIACRYPT,
pages 585–604. Springer, 2005.

[15] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. On session key construction
in provably-secure key establishment protocols. In Mycrypt, pages 116–131. Springer, 2005.

16

[16] Cas J. F. Cremers. Session-state reveal is stronger than ephemeral key reveal: Attacking the
NAXOS authenticated key exchange protocol. In ACNS, pages 20–33, 2009.

[17] Rachna Dhamija, J. D. Tygar, and Marti A. Hearst. Why phishing works. In Rebecca E.
Grinter, Tom Rodden, Paul M. Aoki, Edward Cutrell, Robin Jeffries, and Gary M. Olson,
editors, CHI, pages 581–590. ACM, 2006.

[18] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22:644–654, 1976.

[19] Sebastian Gajek, Tibor Jager, Mark Manulis, and Jörg Schwenk. A browser-based kerberos
authentication scheme. In ESORICS, pages 115–129. Springer, 2008.

[20] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and Jörg Schwenk.
Universally composable security analysis of TLS. In ProvSec, pages 313–327. Springer, 2008.

[21] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. Generic compilers for authen-
ticated key exchange. Full version. To appear on eprint http://eprint.iacr.org/, 2010.

[22] Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key exchange. In
CRYPTO, pages 110–125. Springer, 2003.

[23] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In CRYPTO,
pages 546–566. Springer, 2005.

[24] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated
key exchange. In ProvSec, pages 1–16. Springer, 2007.

[25] Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. A modular security analysis of the
TLS handshake protocol. In ASIACRYPT, pages 55–73. Springer, 2008.

[26] Claus P. Schnorr. Efficient identification and signatures for smart cards. In CRYPTO, pages
239–252. Springer, 1989.

[27] V. Shoup. On formal models for secure key exchange. IBM Research Report RZ, 3120, 1999.

[28] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology
ePrint Archive, Report 2004/332, Nov 2004.

17

A Tag-based Authentication Schemes

In this section we introduce the notion of tag-based authentication schemes. Essentially, a tag-
based authentication scheme is a standard authentication protocol, with the additional property
that both the proving and and the verifying algorithms receive an additional value, the tag, as
input. Identification succeeds only if both parties use identical tags.

A tag-based authentication scheme is triple (G,P, V), where G is a setup procedure generating
public and secret key material of a prover, and P and V are (interactive) Turing machines running
an authentication protocol. For simplicity, we will consider only a certain class of authentication
schemes, namely where the scheme is implemented by a two-round protocol. This particular class
of protocols yields a very simple security model.

During a set-up procedure, party P runs (sk, pk)
$← G(1κ) to compute a long-term secret sk

with corresponding public parameter pk. We describe the verifier V as a two-stage algorithm
V = (Vch, Vvfy). The protocol is executed as follows. First, Vch is run on input pk and tag t to
compute a challenge c = Vch(pk, t). This challenge is sent to the prover P . The prover computes
a response r = P (sk, c, t) for tag t. V verifies the proof by running Vvfy(pk, t, c, r), which outputs
accept, if and only if r is a correct response to c both parties used the same tag t.

Considering only the above class of protocols enables us to define security of tag-based au-
thentication schemes in a quite weak and simple way. In the security experiment played with an
adversary E, E may interact with oracles OP , Och and Ovfy, implementing the prover P and verifier
V = (Vch, Vvfy). The adversary receives as input pk generated by P . She may submit challenge-tag
pairs (c1, t1), (c2, t2), . . . to the prover oracle OP , which responds with the respective authentication

token ri
$← P (sk, ci, ti) for i ∈ 1, 2, Moreover, E may query Och by submitting a tag t∗, which

answers with a new challenge c∗ = Vch(pk, t∗). Finally, E may query Ovfy by submitting (r∗, c∗, t∗).
The oracle responds with {accept, reject} ∈ OVvfy(pk, t∗, c∗, r∗), depending on whether r∗ was the
“correct” answer to the challenge (c∗, t∗) or not.

The number of queries issued by E is bounded only by the running time of E (which in turn
will be assumed to be bounded by a polynomial in the security parameter). We say that adversary
E wins the game, if Ovfy(pk, t

∗, c∗, r∗) = accept, and such that E has not received r∗ in response
to a query (c∗, t∗) made to P .

Definition 9. We say that a (two-round) tag-based authentication scheme is secure, if the probabil-
ity of winning the above game is a negligible function in the security parameter for all probabilistic
polynomial-time adversaries E.

18

