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Abstract—A lot of interest has been drawn recently into public-key encryption with keyword search (PEKS), which keeps public-
key encrypted documents amendable to secure keyword search. However, PEKS resist against keyword guessing attack by
assuming that the size of the keyword space is beyond the polynomial level. But this assumption is ineffective in practice. PEKS
are insecure under keyword guessing attack. As we observe, the key to defend such attack is to avoid the availability of the
exact search trapdoor to adversaries. Accordingly, we compromise the exactness of search trapdoor by mapping at least two
different keywords into a fuzzy search trapdoor. We propose a novel concept called public-key encryption with fuzzy keyword
search (PEFKS), by which the un-trusted server only obtains the fuzzy search trapdoor instead of the exact search trapdoor, and
define its semantic security under chosen keyword attack (SS-CKA) and indistinguishability of keywords under non-adaptively
chosen keywords and keyword guessing attack (IK-NCK-KGA). For the keyword space with and without uniform distribution, we
respectively present two universal transformations from anonymous identity-based encryption to PEFKS, and prove their SS-
CKA and IK-NCK-KGA securities. To our knowledge, PEFKS is the first scheme to resist against keyword guessing attack on
condition that the keyword space is not more than the polynomial level.

Index Terms—Public-key encryption with keyword search, keyword guessing attack, public-key encryption with fuzzy keyword
search, anonymous identity-based encryption
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1 INTRODUCTION

PUBLIC-KEY encryption with keyword search
(PEKS) [1] is the first keyword searchable encryp-

tion based on a probabilistic public key system. It
is more convenient to search ciphertexts for multiple
users, compared with previous schemes based on a
symmetric key system, such as [2, 3, 4, 5]. Figure 1
presents a classic scenario, in which t senders send
searchable ciphertexts to the proxy server of the re-
ceiver. When we employ PEKS in this scenario, all
the senders produce searchable ciphertexts with the
public key of the receiver. So PEKS does not need
any coordination between the receiver and any sender
when the sender first joins in, which is opposite
to previous schemes [2, 3, 4, 5]. In addition, PEKS
achieves semantic security under an adaptive chosen
keyword attack (SS-CKA), which can not be achieved
in previous schemes.

So far, all of proposed PEKS schemes and their ex-
pansions had proved their SS-CKA security. However
under keyword guessing attack (KGA), their provable
securities rely on an implicit assumption that the
size of keyword space must be beyond the polyno-
mial level. Therefore, any adversary with the limited
computational ability fails to exhaustively search the
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Fig. 1. A classic scenario with searchable encryption

keyword space to guess the correct keyword in PEKS.
Nevertheless, we confirm that the implicit assumption
is obviously unreasonable:

• In practice, keywords are mostly semantical and
indexable in any dictionary. Moreover, some key-
words are used in high frequency, such as ‘Ur-
gency’. Therefore keywords are non-uniformly
employed. In addition, the keyword space should
be carefully determined when establishing a
cryptosystem [6], because for the keywords hav-
ing the same meaning, like ‘urgent’ and ‘impera-
tive’, a searcher needs different search trapdoors
for the same meaning, and the time cost of search
will be multiplied. Hence, when determining the
keyword space, the basic rule is that its size
should not be more than the polynomial level.

• In theory, let we provide a counter example that
the size of keyword space is 2k, and EKi denotes
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the keyword Ki has the probability EKi to be
used. We trivially have

2k∑
i=1

EKi = 1 (1)

Let Poly() denote any polynomial. If all key-
words have EKi ≥ Poly−1(k), it obviously has∑2k

i=1 EKi � 1, which is contrary with Equation 1.
So just a part of keywords have EKi ≥ Poly−1(k).
Moreover, the number of this kind of keywords is
not more than Poly(k). In other words, the num-
ber of keywords having a practical probability
to be used is not more than Poly(k), even if the
keyword space is the exponential level.

On the practical condition that the size of keyword
space is not more than the polynomial level, Byun et
al. first proposed keyword guessing attack [7], and
attacks a PEKS scheme and a PECKS scheme [8]
successfully in 2006. On the same condition, Jeong
et al. proved that any PEKS scheme satisfying at
least computationally indistinguishable consistency
implies successful KGA [9] necessarily. Moreover,
since it is necessary to satisfy at least computationally
indistinguishable consistency for any efficient PEKS,
to defend KGA seems impossible on the practical
condition.

1.1 The Motivation
Referring to PEKS, we notice that a search trapdoor
of a keyword is necessary for an adversary to imple-
ment KGA. Moreover, he can efficiently guesses this
keyword when the size of the keyword space is not
beyond polynomial level. Therefore, the key to defend
KGA is to avoid to leak the the exact search trapdoor
of any keyword.

We heuristically conceived an opposite scheme that
is public-key encryption without keyword search
(called O-PEKS). Obviously, no search trapdoor of
any keyword is needed in O-PEKS scheme. Moreover,
keywords encrypted using the existing cryptosystem
can keep their privacy. Therefore, no adversary can
successfully guess any keyword in O-PEKS scheme.
In other words, O-PEKS is secure under KGA, but
it is not a keyword searchable encryption. When
improving O-PEKS to support keyword searchabil-
ity, it is necessary to provide the search trapdoors
of keywords. But when providing the exact search
trapdoor of any keyword, O-PEKS also will leak the
contents of keywords under KGA. In summary, we
either achieve the exact keyword searchability, or
maintain the privacy of keywords under KGA. So we
were motivated to propose an approach to tradeoff
searchability and privacy, such that searchability can
be achieved as well as possible without losing the
privacy of keywords.

We were motivated to propose a fuzzy keyword
search, which may be the first scheme to defend

KGA in PEKS as far as we know. In the fuzzy
keyword search, adversaries only know the fuzzy
search trapdoor of any keyword. So even if under
KGA, they just know there are at least two keywords
can generate the fuzzy search trapdoor, but they can
not deterministically guess which one of them is the
correct one. Furthermore, beyond the consideration of
cryptosystem, they may have a biased advantage to
guess the correct keyword according to the probability
distribution of the keyword space. But we will reduce
it in our best effort. Formally speaking, we think
that a fuzzy keyword search is secure under KGA,
if no adversary can distinguish the two keywords,
which can generate the same fuzzy search trapdoor.
Correspondingly, we formally propose a new security
definition called indistinguishability of keywords un-
der non-adaptively chosen keywords and KGA (IK-
NCK-KGA).

1.2 IK-NCK-KGA Security
In this subsection, we further discuss IK-NCK-KGA
security and illuminate its rationality. In general, the
security of a cryptosystem often is a relative concept,
because a cryptosystem with perfect security should
be inefficient in practice, such as the encryption with
one-time key. Therefore the security of a cryptosystem
often has several definitions for different strength. For
example, indistinguishability under chosen plaintext
attack (IND-CPA) [10] is a popular security definition
of public-key encryption, and it has a more secure
improved version that is indistinguishability under
chosen ciphertext attack (IND-CCA) [10].

Analogously, when considering the security of
keyword-searchable encryption under KGA, it is in-
tuitive to define the security as indistinguishability
of keywords under KGA (IK-KGA). However the
security contradicts to the searchability of encryption,
and would be un-achievable in theory. Because KGA
allows an adversary to know the search trapdoor of a
keyword which he wants to challenge, the adversary
can distinguish the keyword with any adaptively cho-
sen keyword, which can not be searched by the search
trapdoor. By this reason, we restrain the choice of
the challenging keywords and propose IK-NCK-KGA
security, which will be achieved by our proposed
keyword-searchable encryption.

In addition, PEKS is not IK-NCK-KGA secure. An
efficient PEKS scheme necessarily satisfies the con-
sistency [11] mentioned in Subsection 2.2. It means
that if an adversary knows a search trapdoor of a
challenging keyword in PEKS, he can distinguish
the keyword with any other keyword. Therefore, IK-
NCK-KGA security can not be achieved by PEKS, no
matter what NCK defined.

In conclusion, IK-NCK-KGA security is a rational
definition. On one hand, a more stronger definition
IK-KGA security is contradictive with the searchabil-
ity of searchable encryption. On the other hand, a
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IK-NCK-KGA secure searchable encryption is more
secure than PEKS under KGA.

1.3 Our Contributions
Public-Key encryption with fuzzy keyword search
(PEFKS) and its IK-NCK-KGA security are novelly
defined in our paper. Furthermore, we propose two
universal transformations from identity-based encryp-
tion (IBE) to PEFKS respectively under different con-
ditions, and prove their SS-CKA and IK-NCK-KGA
securities. Specifically, we first present a universal
transformation for the keyword space with the uni-
form distribution (called PEFKS-UD). We also propose
an instance of PEFKS-UD based on the anonymous
IBE scheme proposed by Boneh in 2001 [12]. Sec-
ondly, we propose another universal transformation
for the keyword space with the non-uniform distri-
bution (called PEFKS-ND). In addition, we cite two
methods to sort keywords, which is the key to realize
PEFKS-ND. Beyond the perspective of cryptosystem,
we discuss the biased advantage of KGA on PEFKS-
ND, which is caused by the non-uniform distribution
of the keyword space, and illuminate that we have
reduced the biased advantage as much as possible.

1.4 Related Works on PEKS
As Boneh et al. first proposed PEKS, he also proposed
a universal transformation from anonymous IBE 1

[12, 13, 14, 15, 16] to PEKS [1]. Hereafter, PEKS has
been given a lot of attention. Furthermore, Abdalla et
al. completed the foundations of PEKS, presented an
improved universal transformation from anonymous
IBE to PEKS, and a novel expansion of PEKS, that
is public-key encryption with temporary keyword
search (PETKS) in 2005. To achieve combinable multi-
keyword search, two public-key encryption with con-
junctive keyword search (PECKS) schemes [8, 17]
were respectively proposed in 2004 and 2007. Conclu-
sively, the aforementioned schemes have a common
character that they only succeeded on the equality
search, rather than achieved range search and so on.
Hence, Bethencourt et al. succeeded on public-key
encryption with conjunctive keyword range search
[18] by anonymous hierarchical IBE (HIBE) [13] in
2006, and further updated their work in 2007 [19]. In
TCC’2007 , Boneh et al. proposed a novel technique
called hidden vector encryption (HVE) to achieve con-
junctive, range and subset searches [20]. In addition,
an improved trapdoor generation of keywords was

1. The first anonymous IBE scheme was proposed by Boneh et
al. in 2001 and proved its security in the random oracle (RO)
model [12]. In 2006, Boyen et al. proposed an anonymous IBE
scheme [13], which for the first time obtain the provable security
in the standard model. In the same year, Gentry proposed the
most efficient anonymous IBE scheme in [14]. Ducas proposed an
anonymous IBE scheme first based on the asymmetric bilinear map
in 2010 [15]. In 2010, Fan et al. proposed the first anonymous multi-
receiver IBE [16].

proposed by Camenisch et al. [21], who employed
the committed two-part computation protocol and
achieved the invisibility of keyword to generator.
The scheme was called public-key encryption with
oblivious keyword search (PEOKS). Although several
efficiently conjunctive keyword search over encrypted
datum were proposed [22, 23], they need to share
a secret among users. So they are not convenient
for multiple users, compared with aforementioned
scheme. Conclusively, all researches on PEKS focused
on the various functions of search in recent years
rather than its security under KGA.

1.5 Organization
The rest of this paper is organized as follows. In
Section 2, some definitions about IBE and PEKS will
be given. In Section 3, we will define PEFKS and its
SS-CKA and IK-NCK-KGA securities. In Section 4, we
will propose PEFKS-UD, prove its SS-CKA and IK-
NCK-KGA securities and give an instance of it. In Sec-
tion 5, we will propose PEFKS-ND, prove its SS-CKA
and IK-NCK-KGA securities and discuss the biased
advantage of KGA on PEFKS-ND, which is caused by
the non-uniform distribution of the keyword space. In
Section 7, we will conclude our works and propose an
interesting idea for a future work.

2 PRELIMINARIES

Throughout this paper we employ Poly() to denote
any polynomial. The symbol r

$← R means randomly
choosing r from the space R or outputting r by the
randomized algorithm R. (Note that unless stated
otherwise, all symbols have the same meaning as
when they first appear in this paper.)

2.1 IBE and Anon-ID-CPA Security
IBE [12] and its anonymity under adaptive-ID and
chosen plaintext attack (Anon-ID-CPA)[13] are rede-
fined as follows.

Definition 1 (IBE). An IBE scheme consists of following
polynomial time algorithms:

• Setup(k, r1): Take as input a security parameter k
and a random tape r1, and produce a pair of public-
and-private system parameters {PubIBE , P riIBE},
in which PubIBE includes the message space M and
the identity space ID.

• Extract(PriIBE , r2, ID): Take as input PriIBE , a
random tape r2 and an identity ID ∈ ID, and
produce the private key PriKID of ID.

• Encrypt(PubIBE , r3, ID, M): Take as input
PubIBE , an identity ID ∈ ID, a random tape r3

and a message M ∈M, and produce a ciphertext C.
• Decrypt(PubIBE , P riKID, C): Take as input

PubIBE , a private key PriKID and a ciphertext C,
and return the decryption result of C.
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Moreover, it satisfies the consistency that for any ciphertext
C = Encrypt(PubIBE , r3, ID′,M), M = Decrypt(
PubIBE , P riKID, C) holds if and only if ID = ID′,
where ID

$← ID.

Definition 2 (Anon-ID-CPA Security of IBE [24,
13]). An IBE scheme IBE = (Setup,Extract, Encrypt,
Decrypt) is Anon-ID-CPA secure, if any adversary A,
associated to the experiment EXPAnon-ID-CPA-b

IBE,A (k) in Fig-
ure 2 (where b ∈ {0, 1}), has a negligible advantage
AdvAnon-ID-CPA

IBE,A , where

AdvAnon-ID-CPA
IBE,A =Pr(EXPAnon-ID-CPA-1

IBE,A (k) = 1)

− Pr(EXPAnon-ID-CPA-0
IBE,A (k) = 1)

Experiment EXPAnon-ID-CPA-b
IBE,A (k)

IDSet← ∅; {r1, r3}
$← {0, 1}Poly(k);

{PubIBE , P riIBE} ← Setup(k, r1);
{ID0, ID1,M, state} $← ATrap(·)(find, PubIBE);
C ← Encrypt(PubIBE , r3, IDb,M);
b′

$← ATrap(·)(guess, C, state);
if {ID0, ID1}

⋂
IDSet = ∅ then return b′

else return 0;

Oracle Trap(ID)
IDSet = IDSet

⋃
{ID}; r2

$← {0, 1}Poly(k);
PriKID ← Extract(PriIBE , r2, ID);
return PriKID;

Fig. 2. Experiment on Attacking Anon-ID-CPA Secu-
rity.

2.2 PEKS and Its Insecurity under KGA
We redefine PEKS [1] and illuminate its insecurity
under KGA [7] as follows.

Definition 3 (PEKS). A PEKS scheme consists of follow-
ing polynomial time algorithms:

• SysG(k, r1): Take as input a security parameter k and
a random tape r1, and produce a pair of public-and-
private system parameters {PubPEKS , P riPEKS}, in
which PubPEKS includes the keyword space K.

• Trapdoor(PriPEKS , r2,K): Take as input
PriPEKS , a random tape r2 and a keyword
K ∈ K, and produce a search trapdoor TK .

• CipherG(PubPEKS , r3,K): Take as input
PubPEKS , a random tape r3 and a keyword
K ∈ K, and produce a searchable ciphertext C of K.

• ExactTest(PubPEKS , TK , C): Take as input
PubPEKS , a search trapdoor TK and a searchable
ciphertext C = CipherG(PubPEKS , r3,K

′), and
return{

1 if K ′ = K;
0 otherwise.

Moreover, it satisfies the consistency that for any keyword
searchable ciphertext C ′ = CipherG(PubPEKS , r3,K

′),

ExactTest(PubPEKS , TK , C ′) returns 1 if and only if
K = K ′, where K

$← K.

KGA is a brute force way to guessing the correct
keyword. In PEKS, an adverse searcher, who knows
the search trapdoors of keywords, can efficiently find
out these keywords by KGA on condition that |K| ≤
Poly(k) (in which k is the security parameter of
PEKS). The details of KGA on PEKS is defined as
follows:

Definition 4 (KGA on PEKS). Given a public system
parameters PubPEKS and a valid search trapdoor TK of
a keyword K, an adversary indexes all keywords in the
keyword space K as {K1,K2, . . . ,K |K|} and implements
keyword guessing attack as follows:

1) Let i = 1.
2) Generate a keyword searchable ciphertext C of Ki,

where C = CipherG(PubPEKS , r3,K
i).

3) If ExactTest(PubPEKS , TK , C) = 1, then return
Ki;

4) If i 6= |K|, compute i = i + 1 and go to step 2;
otherwise it returns ’⊥’ (it means the abortion).

Insecurity of PEKS under KGA According to the
consistency of PEKS 2, the output Ki of the adversary
equals to K with at most negligible error probability.
In addition, when |K| ≤ Ploy(k), the adversary can
efficiently and exhaustively search all keywords. Con-
sequently, the adversary can deterministically guess
the correct keyword, which is used to generate the
search trapdoor.

3 PEFKS
In this section, we define PEFKS and its SS-CKA and
IK-NCK-KGA security.

3.1 The Definition of PEFKS
PEFKS novelly contains two test algorithms: the fuzzy
test algorithm FuzzTest and the exact test algorithm
ExactTest, which is the main difference with PEKS.
When receiving a query, FuzzTest is used to filter
out most of ineffective keyword searchable cipher-
texts. But the remainders still contain the keyword
searchable ciphertexts which do not satisfy the query.
ExactTest is used to find out the correct keyword
searchable ciphertexts from these remainders. In prac-
tice, a proxy server implements FuzzTest to respond
the query of a receiver. The receiver implements
ExactTest to find out the correct searchable cipher-
texts from the responses.

Definition 5 (PEFKS). PEFKS consists of following
polynomial time algorithms:

• SysG(k, r1): Take as input a security parameter
k and a random tape r1, and produce a pair of

2. The consistency is computationally indistinguishable at least
[11].
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public-and-private system parameters {PubPEFKS ,
P riPEFKS}, in which PubPEFKS includes the key-
word space K and a deterministic function Fuz(K,
K). Fuz(K,K) deterministically returns a fuzzy
value for an inputted keyword K and there are at least
two different keywords have the same fuzzy value.

• DTrapdoor(PriPEFKS , r2,K): Take as input
PriPEFKS , a random tapes r2, and a keyword K ∈
K, and produce a fuzzy search trapdoor FTK for the
fuzzy value FK = Fuz(K,K), and an exact search
trapdoor ETK for K.

• CipherG(PubPEFKS , r3,K): Take as input
PubPEFKS , a random tape r3 and a keyword
K ∈ K, and produce a fuzzy keyword searchable
ciphertext C of K.

• FuzzTest(PubPEFKS , FTK , C): Take as input
PubPEFKS , a fuzzy search trapdoor FTK of the
keyword K and a fuzzy keyword searchable ciphertext
C = CipherG(PubPEFKS , r3,K

′), and return{
1 if Fuz(K ′,K) = Fuz(K,K);
0 otherwise.

• ExactTest(PubPEFKS , ETK , C): Take as input a
public system parameters PubPEFKS , an exact
search trapdoor ETK of the keyword K and a
fuzzy keyword searchable ciphertext C = CipherG(
PubPEFKS , r3,K

′), and return{
1 if K ′ = K;
0 otherwise.

Moreover, for any fuzzy keyword searchable ciphertext
C ′ = CipherG(PubPEFKS , r3,K

′), it satisfies the fol-
lowing consistencies:

1) FuzzTest(PubPEFKS , FTK , C ′) returns 1, if and
only if Fuz(K ′,K) = Fuz(K,K);

2) ExactTest(PubPEFKS , ETK , C ′) returns 1, if and
only if K = K ′.

3.2 SS-CKA and IK-NCK-KGA security definitions
of PEFKS

SS-CKA security is a conventional security definition
of PEKS, and used to prove the privacy of keywords
under chosen keyword attack. Referring to PEFKS, we
define the SS-CKA security of PEFKS as follows:

Definition 6 (SS-CKA Security of PEFKS). A PE-
FKS scheme PEFKS = (SysG,DTrapdoor, CipherG,
FuzzTest, ExactTest) is SS-CKA secure, if any adver-
sary A, associated to the experiment EXPSS-CKA-b

PEFKS,A(k) in

Figure 3 (where b
$← {0, 1}), has a negligible advantage

AdvSS-CKA
PEFKS,A, where

AdvSS-CKA
PEFKS,A =Pr(EXPSS-CKA-1

PEFKS,A(k) = 1)

− Pr(EXPSS-CKA-0
PEFKS,A(k) = 1)

Experiment EXPSS-CKA-b
PEFKS,A(k)

KSet← ∅; {r1, r3}
$← {0, 1}Poly(k);

{PubPEFKS , P riPEFKS} ← SysG(k, r1);
{K0,K1, state} $← ADTrap(·)(find, PubPEFKS);
C ← CipherG(PubPEFKS , r3,K

b);
b′

$← ADTrap(·)(guess, C, state);
if {K0,K1}

⋂
KSet = ∅ then return b′

else return 0;

Oracle DTrap(K)
KSet = KSet

⋃
{K}; r2

$← {0, 1}Poly(k);
{FTK , ETK}

$← DTrapdoor(PriPEFKS , r2,K);
return {FTK , ETK};

Fig. 3. Experiment on Attacking SS-CKA Security.

SS-CKA security of PEFKS defines the indistin-
guishability of any two keywords under chosen key-
word attack. It does not consider whether these two
keywords have the same output of Fuz(). In con-
trast, IK-NCK-KGA security of PEFKS defines the
indistinguishability of the two keywords, which have
the same output of Fuz(), under KGA. So these two
security definitions are different, and do not have any
trivial relationship.

Definition 7 (IK-NCK-KGA Security of PEFKS).
A PEFKS scheme PEFKS = (SysG,DTrapdoor,
CipherG, FuzzTest, ExactTest) is IK-NCK-KGA se-
cure, if any adversary A, associated to the experiment
EXPIK-NCK-KGA-b

PEFKS,A (k) in Figure 4 (where b
$← {0, 1}), has

a negligible advantage AdvIK-NCK-KGA
PEFKS,A , where

AdvIK-NCK-KGA
PEFKS,A =Pr(EXPIK-NCK-KGA-1

PEFKS,A (k) = 1)

− Pr(EXPIK-NCK-KGA-0
PEFKS,A (k) = 1)

Experiment EXPIK-NCK-KGA-b
PEFKS,A (k)

KSet← ∅; {r1, r3}
$← {0, 1}Poly(k);

{PubPEFKS , P riPEFKS} ← SysG(k, r1);
{K0,K1, state} $← ADTrap(·),FTrap(·)(find, PubPEFKS);
C ← CipherG(PubPEFKS , r3,K

b);
b′

$← ADTrap(·),FTrap(·)(guess, C, state);
if {K0,K1}

⋂
KSet = ∅ and Fuz(K0,K) =

Fuz(K1,K) then return b′

else return 0;

Oracle DTrap(K)
KSet = KSet

⋃
{K}; r2

$← {0, 1}Poly(k);
{FTK , ETK}

$← DTrapdoor(PriPEFKS , r2,K);
return {FTK , ETK};

Oracle FTrap(K)
r2

$← {0, 1}Poly(k);
{FTK , ETK}

$← DTrapdoor(PriPEFKS , r2,K);
return FTK ;

Fig. 4. Experiment on Attacking IK-NCK-KGA Security.

In next section, we will proposed two universal
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transformations from IBE to PEFKS, when the key-
word space of PEFKS respectively has uniform and
non-uniform distributions.

4 PEFKS-UD
Let k be a security parameter,

∑
be an alphabet and

the keyword space K =
∑n, where |K| ≤ Ploy(k).

Moreover, K has the uniform distribution that each
symbol of

∑
has the identical or computationally

indistinguishable probability to be used. The function
Fuz(K,K) of PEFKS-UD works as follows:

1) Take as input a keyword K ∈ K, and parse K
as K = K1|| . . . ||Kn where Ki ∈

∑
for i ∈ [1, n].

2) Finally return FK = K1|| . . . ||K(n−1).
The complete description of PEFKS-UD is as follows.

4.1 A Universal Transformation from IBE to
PEFKS-UD

Let IBE = (Setup,Extract, Encrypt,Decrypt) be an
IBE scheme. Let H1 : FK

∧
K → ID be a collision

resistant function. PEFKS-UD consists of following
algorithms:

• SysG(k, r1): Take as input a security parameter k
and a random tape r1, and run algorithm Setup(
k, r1) of IBE to generate a pair of public-and-
private system parameters that

PubPEFKS-UD = 〈PubIBE , Fuz,H1,K〉
PriPEFKS-UD = PriIBE

• DTrapdoor(PriPEFKS-UD, r2, r
′
2,K): Take as in-

put PriPEFKS-UD, two random tapes r2 and r′2,
and a keyword K ∈ K, and generate a fuzzy
search trapdoor FTK and an exact search trap-
door ETK , where

FTK = Extract(PriIBE , r′2,H1(Fuz(K,K)))
ETK = Extract(PriIBE , r2,H1(K))

• CipherG(PubPEFKS-UD, r3, r
′
3,K): Take as input

PubPEFKS-UD, two random tapes r3 and r′3, and
a keyword K ∈ K, choose M

$← M, and
generate a fuzzy keyword searchable ciphertext
〈M,CF , CE〉, where

CF = Encrypt(PubIBE , r′3,H1(Fuz(K,K)),M)
CE = Encrypt(PubIBE , r3,H1(K),M)

• FuzzTest(PubPEFKS-UD, FTK , 〈M,CF , CE〉):
Take as input PubPEFKS-UD, a fuzzy search
trapdoor FTK and a fuzzy keyword searchable
ciphertext 〈M,CF , CE〉, and return{

1 if M = Decrypt(PubIBE , FTK , CF );
0 otherwise.

• ExactTest(PubPEFKS-UD, ETK , 〈M,CF , CE〉):
Take as input PubPEFKS-UD, an exact search

trapdoor ETK and a fuzzy keyword searchable
ciphertext 〈M,CF , CE〉, and return{

1 if M = Decrypt(PubIBE , ETK , CE);
0 otherwise.

The consistency of PEFKS-UD According to Theorem
4.2 in [11], it is easy to find that PEFKS-UD is consis-
tent, when the anonymous IBE scheme IBE satisfies
the semantic security.

4.2 Provable SS-CKA Security of PEFKS-UD

Theorem 1. For a PEFKS-UD scheme PEFKS-UD =
(SysG,DTrapdoor, CipherG, FuzzTest, ExactTest)
based on an IBE scheme IBE = (Setup,Extract,
Encrypt,Decrypt), if IBE is Anon-ID-CPA secure, then
PEFKS-UD is SS-CKA secure.

Proof: Assuming that there is an adversary A with
non-negligible advantage AdvSS-CKA

PEFKS-UD,A to break
PEFKS-UD, we prove this theorem by inducing a
contradiction with the Anon-ID-CPA securiry of IBE.
Therefore, we construct an adversary B who employs
adversary A to break the Anon-ID-CPA security of
IBE.

Adversary BTrap(·)(find, PubIBE)
configure Fuz, H1,K;
PubPEFKS-UD = 〈PubIBE , Fuz,H1,K〉;
{K0,K1, state} $← ADTrap(·)(find, PubPEFKS-UD);
M

$←M; ID0 = H1(K0), ID1 = H1(K1);
return {ID0, ID1,M, state};

Adversary BTrap(·)(guess, C, state))
CE = C; r′3

$← {0, 1}Poly(k);
CF = Encrypt(PubIBE , r′3,H1(Fuz(K0,K)),M);
b′

$← ADTrap(·)(guess, 〈M,CF , CE〉, state);
return b′;

Oracle DTrap(K)
FTK = Trap(H1(Fuz(K,K)));
ETK = Trap(H1(K));
return {FTK , ETK};

Fig. 5. Adversary B Employs Adversary A of SS-
CKA Security of PEFKS-UD to Break Anon-ID-CPA
Security of IBE.

Figure 5 presents the construction of adversary B.
In it, Adversary B employs the oracle Trap(·) and the
public key PubIBE of IBE to simulate a PEFKS-UD
scheme with PubPEFKS-UD = 〈PubIBE , Fuz,H1,K〉.
Moreover, he simulates the challenging ciphertext
〈M,CF , CE〉 of PubPEFKS-UD by concatenating the
challenging ciphertext C of IBE with his produced
CF = Encrypt(PubIBE , r′3,H1(Fuz(K0,K)),M), in
which CE = C. It is obvious that 〈M,CF , CE〉 is
effective, if both CE and CF were generated by
K0. In other word, 〈M,CF , CE〉 is a real challenging
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ciphertext of PubPEFKS-UD with 1
2 probability. Ex-

cept the challenging ciphertext, adversary B simulates
PubPEFKS-UD as a real PEFKS-UD scheme. Conse-
quently, we have

AdvAnon-ID-CPA
IBE,B ≥ 1

2
·AdvSS-CKA

PubP EF KS-UD,A

But it contradicts to the Anon-ID-CPA security of
IBE, when AdvSS-CKA

PubP EF KS-UD,A
is non-negligible. So if

IBE is Anon-ID-CPA secure, then PubPEFKS-UD is
SS-CKA secure.

4.3 Provable IK-NCK-KGA Security of PEFKS-UD
Theorem 2. For a PEFKS-UD scheme PEFKS-UD =
(SysG,DTrapdoor, CipherG, FuzzTest, ExactTest)
based on an IBE scheme IBE = (Setup,Extract,
Encrypt,Decrypt), if IBE is Anon-ID-CPA secure, then
PEFKS-UD is IK-NCK-KGA secure.

Proof: Assuming that there is an adversary A with
non-negligible advantage AdvIK-NCK-KGA

PEFKS-UD,A to break
PEFKS-UD, we prove this theorem by inducing
a contradiction with the Anon-ID-CPA security of
IBE. So we construct an adversary B who employs
adversary A to break Anon-ID-CPA security of IBE.

Adversary BTrap(·)(find, PubIBE)
configure Fuz, H1,K;
PubPEFKS-UD = 〈PubIBE , Fuz,H1,K〉;
{K0,K1, state} $← ADTrap(·),FTrap(·)(find, PubPEFKS-UD);
M

$←M; ID0 = H1(K0), ID1 = H1(K1);
return {ID0, ID1,M, state};

Adversary BTrap(·)(guess, C, state))
CE = C; r′3

$← {0, 1}Poly(k);
CF = Encrypt(PubIBE , r′3,H1(Fuz(K0,K)),M);
b′

$← ADTrap(·),FTrap(·)(guess, 〈M,CF , CE〉, state);
return b′;

Oracle DTrap(K)
FTK = Trap(H1(Fuz(K,K)));
ETK = Trap(H1(K));
return {FTK , ETK};

Oracle FTrap(K)
FTK = Trap(H1(Fuz(K,K)));
return FTK ;

Fig. 6. Adversary B Employs Adversary A of IK-NCK-
KGA Security of PEFKS-UD to Break Anon-ID-CPA
Security of IBE.

Figure 6 presents the construction of adversary B.
In it, Adversary B employs the oracle Trap(·) and the
public key PubIBE of IBE to simulate a PEFKS-UD
scheme with PubPEFKS-UD = 〈PubIBE , Fuz,H1,K〉.
Moreover he simulates the challenging ciphertext
〈M,CF , CE〉 of PubPEFKS-UD by concatenating the
challenging ciphertext C of IBE with his produced
CF = Encrypt(PubIBE , r′3,H1(Fuz(K0,K)),M), in

which CE = C. And 〈M,CF , CE〉 is effective, because
it has Fuz(K0,K) = Fuz(K1,K) according to the
definition of IK-NCK-KGA security. So adversary B
simulates PubPEFKS-UD as a real PEFKS-UD scheme.
Consequently, we have

AdvAnon-ID-CPA
IBE,B ≥ AdvIK-NCK-KGA

PubP EF KS-UD,A

But it contradicts to the Anon-ID-CPA security of
IBE, when AdvIK-NCK-KGA

PubP EF KS-UD,A
is non-negligible. So if

IBE is Anon-ID-CPA secure, then PubPEFKS-UD is
IK-NCK-KGA secure.

4.4 An Instance of PEFKS-UD
According to the above universal transformation, we
construct an instance of PEFKS-UD based on the
anonymous IBE scheme BF01 in [12].

Let G and Gt denote two multiplicative groups of
prime order q, and g be a generator of G. Let the
bilinear map e : G × G → Gt [12, 25, 26] be an
efficiently computable and non-degenerate function
with the bilinearity that e(ga, gb) = e(g, g)ab, where
{a, b} $← Z∗

q . e(g, g) is the generator of Gt. Let the
bilinear map generator BGen(1k) be an efficient algo-
rithm that returns 〈q, G, Gt, g, e〉 with a given security
parameter k.

• SysG(k, r1): It takes as input a security parameter
k and a random tape r1, and works as follows:

1) Run BGen(1k) to generate 〈q, G, Gt, g, e〉.
2) Set gpub = gs, where s

$← Z∗
q .

3) Choose a collision resistance function H1 :∑n−1 ∨
K → G.

4) Choose a pseudo-random function H2 : Gt

→M.
5) Return a pair of public-and-private system

parameter

PubPEFKS-UD =〈q, G, Gt, g, e, gpub, Fuz,H1,

H2,K,M〉
PriPEFKS-UD =s

where K =
∑n and M = {0, 1}k1 .

• DTrapdoor(PriPEFKS-UD,K): It takes as input
PriPEFKS-UD and K ∈ K, and works as follows:

1) Compute gFK = H1(Fuz(K,K)) and the
fuzzy search trapdoor FTK = gs

FK .
2) Compute gEK = H1(K) and the exact search

trapdoor ETK = gs
EK .

3) Return {FTK , ETK}
• CipherG(PubPEFKS-UD,K): It takes as input

PubPEFKS-UD and K ∈ K, and works as follows:
1) Choose M

$←M and {t, t′} $← Z∗
q .

2) Compute gFK = H1(Fuz(K,K)) and gEK =
H1(K).

3) Return a fuzzy keyword searchable cipher-
text 〈M,CF , CE〉, where

CF = 〈gt′ ,H2(e(gFK , gpub)t′)⊕M〉
CE = 〈gt,H2(e(gEK , gpub)t)⊕M〉
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• FuzzTest(PubPEFKS-UD, FTK , 〈M,CF , CE〉): It
takes as input PubPEFKS-UD, FTK and 〈M,CF ,
CE〉, and works as follows:

1) Parse CF as 〈CF1, CF2〉.
2) Return 1 if M = CF2 ⊕ H2(e(FTK , CF1));

otherwise return 0.
• ExactTest(PubPEFKS-UD, ETK , 〈M,CF , CE〉): It

takes as input PubPEFKS-UD, ETK and 〈M,CF ,
CE〉, and works as follows:

1) Parse CE as 〈CE1, CE2〉.
2) Return 1 if M = CE2 ⊕ H2(e(ETK , CE1));

otherwise return 0.
The consistency of the instance of PEFKS-UD Ac-
cording to the IND-ID-CPA (indistinguishability un-
der adaptive-ID and chosen plaintext attacks) secu-
rity of BF01 scheme, it is easy to deduce that the
instance has the computationally indistinguishable
consistency.

5 PEFKS-ND

Let k be a security parameter. Let EK denote the
probability of the event that the keyword K ∈ K
is employed in practice, where |K| ≤ Ploy(k). We
partition all keywords into several subsets as follows:

1) Sort all keywords in descending order of their
probabilities and denote them by {K1,K2, . . . ,
K |K|}.

2) Partition {K1,K2, . . . ,K |K|} into P , where P =
{{K1,K2}, {K3,K4}, . . . , {K |K|−1,K |K|}}

if |K| is even;
{{K1,K2}, . . . , {K |K|−4,K |K|−3}, {K |K|−2,K |K|−1,K |K|}}

if |K| is odd.

Let H1 : {0, 1}∗ → {0, 1}k2 be a collision resistance
function. The function Fuz(Ki,K) of PEFKS-ND is
redefined as follows:

1) If |K| is even, then return{
H1(Ki−1||Ki) if i is even;
H1(Ki||Ki+1) if i is odd.

2) Otherwise, return
H1(K |K|−2||K |K|−1||K |K|) if i ≥ |K| − 2;
H1(Ki−1||Ki) if i is even;
H1(Ki||Ki+1) if i is odd.

Referring to the function Fuz, we can easily verify the
following properties:

• For any subset {Ki,Ki+1} in P , Fuz(Ki,K) =
Fuz(Ki+1,K) holds.

• For any two subsets {Ki,Ki+1} and {Kj ,Kj+1}
in P (i 6= j), Fuz(Ki,K) 6= Fuz(Kj ,K) holds by
the collision resistance of H1.

The complete description of PEFKS-ND is as follows.

5.1 A Universal Transformation From IBE to
PEFKS-ND
Let IBE = (Setup,Extract, Encrypt,Decrypt) be an
IBE scheme. Let H2 : {0, 1}k2

∨
K → ID be a collision

resistant function. PEFKS-ND consists of following
polynomial time algorithms:

• SysG(k, r1): Take as input a security parameter
k and a random tape r1, and run Setup(k, r1)
of IBE to generate a pair of public-and-private
system parameters that

PubPEFKS-ND = 〈PubIBE , Fuz,H1,H2,K〉
PriPEFKS-ND = PriIBE

• DTrapdoor(PriPEFKS-ND, r2, r
′
2,K

i): Take as in-
put PriPEFKS-ND, two random tapes r2 and r′2,
and a keyword Ki ∈ K, and generate a fuzzy
search trapdoor FTKi and an exact search trap-
door ETKi , where

FTKi = Extract(PriIBE , r′2,H2(Fuz(Ki,K))

ETKi = Extract(PriIBE , r2,H2(Ki))

• CipherG(PubPEFKS-ND, r3, r
′
3,K

i): Take as input
PubPEFKS-ND, two random tapes r3 and r′3 and a
keyword Ki ∈ K, choose a message M

$←M, and
generate a fuzzy keyword searchable ciphertext
〈M,CF , CE〉, where

CF = Encrypt(PubIBE , r′3,H2(Fuz(Ki,K)),M)

CE = Encrypt(PubIBE , r3,H2(Ki),M)

• FuzzTest(PubPEFKS-ND, FTKi , 〈M,CF , CE〉):
Take as input PubPEFKS-ND, a fuzzy search
trapdoor FTKi and a fuzzy keyword searchable
ciphertext 〈M,CF , CE〉, and return{

1 if M = Decrypt(PubIBE , FTKi , CF );
0 otherwise.

• ExactTest(PubPEFKS-ND, ETKi , 〈M,CF , CE〉):
Take as input PubPEFKS-ND, an exact search
trapdoor ETKi and a fuzzy keyword searchable
ciphertext 〈M,CF , CE〉, and return{

1 if M = Decrypt(PubIBE , ETKi , CE);
0 otherwise.

The consistency of PEFKS-ND According to Theo-
rem 4.2 in [11], it is easy to find that PEFKS-ND has
the consistency, when the IBE scheme IBE satisfies
the semantic security.

5.2 How To Evaluate The Probability Distributions
of Keywords
Compared with PEFKS-UD, the key to realize PEFKS-
ND is how to evaluate the probability distributions
or frequencies of keywords. Recently, SubtlexUS [27]
project counted more than 60,384 words’ frequencies
using an improved word frequency measure, and the
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No. States Results
(million)

1 New York 2430
2 California 1750
3 Washington 1440
4 Texas 1370
5 Florida 1200
6 Wisconsin 1190
7 Georgia 930
8 Virginia 760
9 Ohio 715
10 Michigan 672
11 Colorado 638
12 Arizona 610
13 Illinois 597

No. States Results
(million)

14 Indiana 545
15 New Jersey 536
16 Pennsylvania 525
17 Oregon 512
18 Kansas 401
19 Hawaii 399
20 Minnesota 382
21 Massachusetts 375
22 Maryland 369
23 Montana 365
24 Tennessee 362
25 North Carolina 361
26 Oklahoma 358

No. States Results
(million)

27 Missouri 353
28 Alabama 351
29 Alaska 343
30 Kentucky 324
31 Maine 324
32 Nevada 318
33 Iowa 305
34 Utah 305
35 Connecticut 302
36 Louisiana 294
37 Mississippi 261
38 Arkansas 252
39 South Carolina 251

No. States Results
(million)

40 Delaware 230
41 Nebraska 219
42 Idaho 214
43 New Mexico 214
44 Vermont 201
45 New Hampshire 186
46 Rhode Island 179
47 West Virginia 179
48 Wyoming 177
49 North Dakota 156
50 South Carolina 152

TABLE 1
The Search Results of 50 States of America by Internet Search Engine Google.

results can be downloaded on webpage [28]. So it can
be used to sort the keywords, which consist of a single
word. But it is ineffective for the keywords consisted
of more than one word. For this case, we recommend
to estimate their frequencies by internet search engine
Google (this method was proposed in [29]).

For example, let the keyword space K of PEFKS-
ND consist of 50 states of America. We search them
by the exact search of Google, and sort them in
descending order of their frequencies in Table 1. So
we can partition them as the description of PEFKS-
ND, and realize a PEFKS-ND scheme based on an
anonymous IBE scheme, such as BF01 scheme [12].

In this subsection, we proposed two basic methods
to sort keywords. But they do not consider any special
application. So in practice, it is better to choose an
improved sort method according to the speciality
of applications. For example, when the American
government employs PEFKS-ND to provide a public
service, and its keyword space also is K, every Amer-
ican people should applies the service with the same
probability. So the state names in K are used with the
frequencies linear with their population, and K should
be sorted in descending order of their population in
this application.

5.3 Provable SS-CKA Security of PEFKS-ND
Theorem 3. For a PEFKS-ND scheme PEFKS-ND =
(SysG,DTrapdoor, CipherG, FuzzTest, ExactTest)
based on an IBE scheme IBE = (Setup,Extract,
Encrypt,Decrypt), if IBE is Anon-ID-CPA secure, then
PEFKS-ND is SS-CKA secure.

Proof: Assuming that there is an adversary A with
non-negligible advantage AdvSS-CKA

PEFKS-ND,A to break
PEFKS-ND, we prove this theorem by inducing
a contradiction with the Anon-ID-CPA security of
IBE. So we construct an adversary B who employs
adversary A to break Anon-ID-CPA security of IBE.

Figure 7 presents the construction of adversary
B. In it, adversary B employs the oracle Trap(·)
and the public key PubIBE of IBE to simu-
late a PEFKS-ND scheme with PubPEFKS-ND =

Adversary BTrap(·)(find, PubIBE)
configure Fuz, H1,H2,K;
PubPEFKS-ND = 〈PubIBE , Fuz,H1,H2,K〉;
{K0,K1, state} $← ADTrap(·)(find, PubPEFKS-ND);
M

$←M; ID0 = H2(K0); ID1 = H2(K1);
return {ID0, ID1,M, state};

Adversary BTrap(·)(guess, C, state))
CE = C; r′3

$← {0, 1}Poly(k);
CF = Encrypt(PubIBE , r′3,H2(Fuz(K0,K)),M);
b′

$← ADTrap(·)(guess, 〈M,CF , CE〉, state);
return b′;

Oracle DTrap(K)
FTK = Trap(H2(Fuz(K,K)));
ETK = Trap(H2(K));
return {FTK , ETK};

Note: K0 and K1 is not relative to the sort of keywords.
They can denote any two keywords.

Fig. 7. Adversary B Employs Adversary A of SS-
CKA Security of PEFKS-ND to Break Anon-ID-CPA
Security of IBE.

〈PubIBE , Fuz,H1,H2,K〉. Moreover he simulates the
challenging ciphertext 〈M,CF , CE〉 of PubPEFKS-ND

by concatenating the challenging ciphertext C of
IBE with his produced CF = Encrypt(PubIBE , r′3,
H2(Fuz(K0,K)),M), in which CE = C. It is obvious
that 〈M,CF , CE〉 is effective, if both CE and CF were
generated by K0. In other word, 〈M,CF , CE〉 is a real
challenging ciphertext of PubPEFKS-ND with 1

2 prob-
ability. Except the challenging ciphertext, adversary B
simulates PubPEFKS-ND as a real PEFKS-ND scheme.
Consequently, we have

AdvAnon-ID-CPA
IBE,B ≥ 1

2
·AdvSS-CKA

PubP EF KS-ND,A

But it contradicts to the Anon-ID-CPA security of
IBE, when AdvSS-CKA

PubP EF KS-ND,A
is non-negligible. So if

IBE is Anon-ID-CPA secure, then PubPEFKS-ND is
SS-CKA secure.
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5.4 Provable IK-NCK-KGA Security of PEFKS-ND
Theorem 4. For a PEFKS-ND scheme PEFKS-ND =
(SysG,DTrapdoor, CipherG, FuzzTest, ExactTest)
based on an IBE scheme IBE = (Setup,Extract,
Encrypt,Decrypt), if IBE is Anon-ID-CPA secure, then
PEFKS-ND is IK-NCK-KGA secure.

Proof: Assuming that there is an adversary A with
non-negligible advantage AdvIK-NCK-KGA

PEFKS-ND,A to break
PEFKS-UD, we prove this theorem by inducing
a contradiction with the Anon-ID-CPA security of
IBE. So we construct an adversary B who employs
adversary A to break Anon-ID-CPA security of IBE.

Adversary BTrap(·)(find, PubIBE)
configure Fuz, H1,H2,K;
PubPEFKS-ND = 〈PubIBE , Fuz,H1,H2,K〉;
{K0,K1, state} $← ADTrap(·),FTrap(·)(find, PubPEFKS-ND);
M

$←M; ID0 = H2(K0), ID1 = H2(K1);
return {ID0, ID1,M, state};

Adversary BTrap(·)(guess, C, state))
CE = C; r′3

$← {0, 1}Poly(k);
CF = Encrypt(PubIBE , r′3,H2(Fuz(K0,K)),M);
b′

$← ADTrap(·),FTrap(·)(guess, 〈M,CF , CE〉, state);
return b′;

Oracle DTrap(K)
FTK = Trap(H2(Fuz(K,K)));
ETK = Trap(H2(K));
return {FTK , ETK};

Oracle FTrap(K)
FTK = Trap(H2(Fuz(K,K)));
return FTK ;

Note: K0 and K1 is not relative to the sort of keywords.
They can denote any two keywords.

Fig. 8. Adversary B Employs Adversary A of IK-NCK-
KGA Security of PEFKS-ND to Break Anon-ID-CPA
Security of IBE.

Figure 8 presents the construction of adversary
B. In it, Adversary B employs the oracle Trap(·)
and the public key PubIBE of IBE to simu-
late a PEFKS-ND scheme with PubPEFKS-ND =
〈PubIBE , Fuz,H1,H2,K〉. Moreover he simulates the
challenging ciphertext 〈M,CF , CE〉 of PubPEFKS-ND

by concatenating the challenging ciphertext C of
IBE with his produced CF = Encrypt(PubIBE , r′3,
H2(Fuz(K0,K)),M), in which CE = C. And 〈M,CF ,
CE〉 is effective, because it has Fuz(K0,K) =
Fuz(K1,K) according to the definition of IK-
NCK-KGA security. So adversary B simulates
PubPEFKS-ND as a real PEFKS-ND scheme. Conse-
quently, we have

AdvAnon-ID-CPA
IBE,B ≥ AdvIK-NCK-KGA

PubP EF KS-ND,A

But it contradicts to Anon-ID-CPA security of IBE,
when AdvIK-NCK-KGA

PubP EF KS-ND,A
is non-negligible. So if IBE

is Anon-ID-CPA secure, then PubPEFKS-ND is IK-
NCK-KGA secure.

5.5 The Essence of Sorting Keywords

Recall that the keyword space K of PEFKS-ND has
non-uniform distribution. It means that the keywords
of K are non-uniformly used. But referring to the
definitions of SS-CKA and IK-NCK-KGA securities,
we can find that the challenging keywords {K0,K1}
are uniformly chosen to generate the challenging ci-
phertext. So it seems that these security definitions
is not suitable for PEFKS-ND. But the fact is inverse.
Roughly speaking, a secure cryptosystem means that
no adversary can learn anything from the cryptosys-
tem. So the security of a cryptosystem does not
consider what an adversary can learn beyond the
cryptosystem, such as the non-uniform distribution of
keywords.

Specifically, an adversary can find two candidate
keywords under KGA on PEFKS-ND, which are de-
noted by {Ki,Ki+1} ∈ P without loss of generality.
And without considering any others, the adversary
practically has the biased advantage |EKi − EKi+1 | to
decide which one of them is the correct one. Moreover,
the biased advantage is caused only by the non-
uniform distribution of keywords, so it can not be
avoided by any keyword searchable encryption. But
PEFKS-ND has decreased the biased advantage by
sorting and sequentially partitioning keywords. By
this method, the candidate keywords Ki and Ki+1

have the similar distribution as much as possible.
Correspondingly, the biased advantage |EKi − EKi+1 |
can be much decreased.

Partitions Probability
Difference Partitions Probability

Difference Partitions Probability
Difference

{1, 2} 0.163 {11, 12} 0.022 {21, 22} 0.008
{17, 18} 0.122 {19, 20} 0.022 {47, 48} 0.006
{7, 8} 0.101 {45, 46} 0.019 {5, 6} 0.004
{13, 14} 0.046 {37, 38} 0.018 {23, 24} 0.004
{39, 40} 0.044 {35, 36} 0.013 {25, 26} 0.004
{9, 10} 0.031 {49, 50} 0.013 {27, 28} 0.003
{43, 44} 0.031 {41, 42} 0.012 {33, 34} 0.000
{29, 30} 0.028 {15, 16} 0.010
{3, 4} 0.025 {31, 32} 0.009

Note: all states in Table 1 are denoted by their numbers in this table.

TABLE 2
The Partitions of The Keyword Space in Table 1 and

Their Probability Differences.

For example, we partition the keywords listed in
Table 1 according to PEFKS-ND, and compute the
biased advantage (probability difference) of each pair
of keywords in Table 2. In theory, except {33, 34}, the
others have the non-negligibly biased advantage. But
all of them are much smaller than 1.

In conclusion, PEFKS-ND not only achieves IK-
NCK-KGA security from the side of cryptography,
but also decreases the biased advantage under KGA
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on PEFKS-ND, which is caused only by the non-
uniform distribution of keywords. In next subsection,
we will illuminate why the biased advantage has been
decreased as much as possible.

5.6 The Insecurity of A Further Decrease in The
Biased Advantage
At the end of Subsection 5.5, we stated that we have
decreased the biased advantage as much as possible.
To prove it, we will propose a method, which is the
only one method that can further decrease the biased
advantage, and illuminate that it is not an secure
universal method.

Referring to the partition P of K at the begin-
ning of this section, we sorted all keywords in de-
scending order of their probabilities and sequentially
partitioned them. Therefore, we did not consider to
combine a keyword with one of its two neighbor-
ing keywords, which has the minimum probability
difference with it. When partitioning keywords ac-
cording to this rule, however this partition method
is not an secure universal method. For example,
let K = {K1,K2,K3,K4} denote the sorted key-
words in descending order of their probabilities.
We sequently combine each keyword with one of
its two neighboring keywords, which has the min-
imum probability difference with them. Assuming
|EK1 − EK2 | > |EK2 − EK3 |, therefore we result the
partition {{K1,K2}, {K2,K3}, {K3,K4}}. By imple-
menting KGA on PEFKS-ND, an adversary can easily
find out {K1,K2} when he knows the fuzzy search
trapdoor generated by {{K1,K2}. Furthermore, he
can deterministically guess K1 rather than with any
biased advantage, because a fuzzy search trapdoor of
K2 should be generated by {K2,K3}. Hence, if an
adversary finds out {K1,K2} under KGA on PEFKS-
ND, he can deterministically decide that the fuzzy
search trapdoor was generated by K1 rather than K2.

Consequently, this improved method is not a secure
universal method. However, it obviously is the only
one method that has chance to further decrease the
biased advantage. So we think there is not any other
secure universal method can further decrease the
biased advantage.

6 PERFORMANCE COMPARISON
Generally speaking, PEFKS divides a query from a
receiver into two processes: first, a proxy server im-
plements a fuzzy keyword search over all its stored
ciphertexts, and returns the results to the receiver;
secondly, the receiver implements an exact keyword
search over these results. In contrast, PEKS only has
an exact keyword search over all stored ciphertexts,
which is implemented by a proxy server. So in order
to achieve IK-NCK-KGA security, PEFKS increases the
workload of the receiver and the communication cost.
In Table 3, we compare the performance of PEFKS and
PEKS when they receive a query.

The Workload of
The Proxy Server

The Cost of
Communication

The Workload of
The Receiver

PEKS n t 0
PEFKS n 2t 2t

• Note: the workload and communication cost are denoted by
the number of keyword searchable ciphertexts.

• n: the total number of keyword searchable ciphertexts stored
in the proxy sever.

• t: the number of keyword searchable ciphertexts satisfied the
query of the receiver.

TABLE 3
The Performance Comparison between PEKS and

PEFKS.

7 CONCLUSION AND FUTURE WORK

In PEKS, a proxy sever, who responds the keyword
queries of a receiver, can know the content of key-
words by implementing KGA. Moreover, it is effi-
cient under the practical condition that the size of
the keyword space is not more than the polynomial
level. In order to resist against KGA, we novelly
defined public-key encryption with fuzzy keyword
search (PEFKS) and its IK-NCK-KGA security. And
we proposed two universal transformations from IBE
to PEFKS under different conditions. Under the condi-
tion that the keyword space has uniform distribution,
we proposed a SS-CKA and IK-NCK-KGA secure
transformation PEFKS-UD, and provided an instance
based on BF01 scheme [12]. Under the condition that
the keyword space has non-uniform distribution, we
proposed another SS-CKA and IK-NCK-KGA secure
transformation PEFKS-ND, and provided two meth-
ods to sort keywords, which is the key to realize
PEFKS-ND. Beyond the perspective of cryptosystem,
we discussed the biased advantage of KGA on PEFKS-
ND, which is caused only by the non-uniform dis-
tribution of the keyword space. We illuminate that
the biased advantage has been decreased as much as
possible. So we made PEFKS-ND secure in a broad
sense.

The future work Both in PEKS and PEFKS, their
searches take time linear in the number of ciphertexts.
Hence it is a crucial problem of performance that
how to build indexes in PEKS and PEFKS. More-
over, it is more useful to improve the performance
of PEFKS than PEKS. But it is a challenging work,
because the SS-CKA securities of PEKS and PEFKS
are contradictive to establish indexes. So a tradeoff
between security and search performance should be a
basic idea. Moreover, we think that a dynamic tradeoff
controlled by the owner of datum is a promising
method.
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