
Low Data Complexity Attacks on AES

Charles Bouillaguet1, Patrick Derbez1, Orr Dunkelman2,
Nathan Keller2,⋆, Vincent Rijmen3,4, and Pierre-Alain Fouque1

1 Département d’Informatique
École normale supérieure

45 Rue D’Ulm
75320 Paris, France

{charles.bouillaguet, patrick.derbez, pierre-alain.fouque}@ens.fr
2 Faculty of Mathematics and Computer Science

Weizmann Institute of Science
P.O. Box 26, Rehovot 76100, Israel

{orr.dunkelman,nathan.keller}@weizmann.ac.il
3 Katholieke Universiteit Leuven

Department of Electrical Engineering ESAT/SCD-COSIC
and

Interdisciplinary Center for Broad Band Technologies
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

vincent.rijmen@esat.kuleuven.be
4 Institute for Applied Information Processing and Communications

Faculty of Computer Science
Graz University of Technology

Inffeldgasse 16a, A-8010 Graz, Austria

Abstract. The majority of current attacks on reduced-round variants of
block ciphers seeks to maximize the number of rounds that can be broken,
using less data than the entire codebook and less time than exhaustive
key search. In this paper, we pursue a different approach, restricting the
data available to the adversary to a few plaintext/ciphertext pairs.

We show that consideration of such attacks (which received little atten-
tion in recent years) serves an important role in assessing the security of
block ciphers and of other cryptographic primitives based on block ci-
phers. In particular, we show that these attacks can be leveraged to more
complex attacks, either on the block cipher itself or on other primitives
(e.g., stream ciphers, MACs, or hash functions) that use a small number
of rounds of the block cipher as one of their components.

As a case study, we consider the AES — the most widely used block
cipher, whose round function is used in various cryptographic primitives.
We present attacks on up to four rounds of AES that require at most 10
known/chosen plaintexts. We then apply these attacks to cryptanalyze a
variant of the stream cipher LEX, and to mount a new known plaintext
attack on 6-round AES.

Keywords: AES, Cryptanalysis, Side Channel Attacks, Slide Attacks,
LEX.

⋆ The fourth author was partially supported by the Koshland center for basic research.



1 Introduction

The field of block cipher design has advanced greatly in the last two decades.
New strategies of designing secure block ciphers were proposed, and following the
increase in computing power, designers could offer larger security margins with
reduced performance penalties. As a result, practical attacks on block ciphers
became extremely rare, and even “certificational attacks” (that is, attacks which
are not practical but are still faster than exhaustive key search on the full version
of the cipher), are not very common.1

This led to two approaches in the cryptanalysis community. The first is to
concentrate on attacking reduced-round variants of block ciphers, where the
usual goal of the adversary is to maximize the number of rounds that can be
broken, using less data than the entire codebook and less time than exhaustive
key search. This approach usually leads to attacks with extremely high data and
time complexities, e.g., [22, 38]. The second approach is to allow the adversary
more degrees of freedom in his control. Examples of this approach are attacks re-
quiring adaptive chosen plaintext and ciphertext queries, the related-key model,
the related-subkey model, and even the known-key model [13, 28, 36]. This ap-
proach allows to achieve practical complexities even against widely used block
ciphers such as the AES, but the practicality of the models themselves in real-life
situations can be questioned.

Attacks following each of these approaches are of great importance, as they
ensure that the block ciphers are strong enough, almost independently of the
way in which they are deployed. Moreover, they help to establish the security
margins offered by the cipher. A block cipher which is resistant to attacks when
the adversary has a strong control and almost unrestricted resources offers larger
security margins than a block cipher which does not possess this resistance.

At the same time, concentrating the cryptanalytic attention only on such
attacks may prove insufficient to truly understand the security of the analyzed
block cipher. It seems desirable to consider also other approaches, such as re-
stricting the resources available to the adversary in order to adhere to “real-life”
scenarios. For example, one may study the maximal number of rounds that can
be broken with practical data and time complexity (as considered in [12] with
respect to the related-key model).

In this paper we pursue this direction of research, but we concentrate on an-
other restriction of the adversary’s resources. In the attacks we consider, the time
complexity is not restricted (besides the natural bound of exhaustive search),
but the data complexity is restricted to only a few known or chosen plaintexts.

At first glance, this scenario may seem far fetched. However, it turns out that
our scenario is very natural in the context of several classes of attacks:

1 We note that in stream ciphers and hash functions, the situation is dramatically
different. Several commonly used hash functions were practically broken in recent
years [43, 40], and practical attacks on new stream cipher designs appear every several
months [33, 42].

2



1. Slide attacks [15]: This class of attacks is especially designed against block
ciphers whose rounds are very similar to each other. The main feature of
slide attacks is that they are independent of the number of rounds, and
thus, the common countermeasure of increasing the number of rounds is
not effective against them. Since most other attack techniques can be easily
undermined by adding a few rounds, this makes the slide attacks one of the
most powerful attacks against modern block cipher designs. The main idea
of the slide attacks is to reduce the attack on the entire block cipher to an
attack on a single round, where the data available to the adversary is only
two known plaintext/ciphertext pairs. Hence, the scenario considered in our
paper is exactly the one faced by the adversary in the slide attack.2

2. Attacks based on fixed point properties [18]: In this class of attacks,
the adversary looks for a fixed point of some part of the encryption process.
For such a fixed point, the cipher is reduced to a smaller variant, which
can be (sometimes) attacked efficiently. Since usually the number of fixed
points is extremely small (e.g., one or two), the adversary’s goal is to attack
a reduced-round variant of the cipher given a few known plaintexts.

3. Side channel attacks: In this class of attacks, the adversary has access
to some information on the internal states during the encryption process.
Usually, due to practical restrictions, the amount of data available to the
adversary is extremely low. In the case where the information available to
the adversary is the full intermediate state after a few rounds, the scenario
the adversary faces is exactly the one considered in our paper.3

4. Building block in more complex attacks: As we demonstrate in this
paper on the example of AES, an attack on 2-round AES with two known
plaintexts can be leveraged to a known plaintext attack on 6-round AES. The
attack uses a meet-in-the-middle approach combined with a low probability
differential. We expect that such “leveraging” attacks are applicable against
other block ciphers as well.

5. Attacks on other primitives based on the block cipher: In recent
years, many designs of stream ciphers (e.g., Sosemanuk [3]), hash functions
(like Hamsi [37]), MACs (e.g., ALPHA-MAC [21]), etc., use a small number
of rounds of a block cipher as one of their components. Due to the restric-
tions of the environments where these designs are deployed, in some of them
the information available to the adversary is only a few known or chosen
plaintexts, and thus the attacks we consider can be used against these prim-
itives.

Our concentration on attacks with an extremely small data complexity af-
fects the techniques used in the attacks. The small amount of available data

2 We note that several variants of slide attacks suggested methods to increase the
amount of data available to the adversary [16, 6, 31]. However, all these methods
either require the knowledge of large portion of the codebook or perform in the
more creative adaptively chosen plaintext model.

3 We note that the complementary scenario, where the adversary has access to a small
part of the internal state in multiple encryptions, was studied in [24].

3



makes the classical statistical attacks, such as differential and linear cryptanal-
ysis, almost irrelevant. Moreover, it turns out that even algebraic attacks and
attacks based on SAT-solvers perform quite badly when the available data is
very scarce. Instead, our attacks are based on the meet-in-the-middle approach,
combined with differential-type ideas and vast exploitation of the key schedule
of the analyzed block cipher.4

In order to make our results concrete, we chose to concentrate on a single
block cipher — the AES, the Advanced Encryption Standard [20]. AES is a
128-bit block cipher with a variable key length (128, 192, and 256-bit keys are
supported). Since its selection, AES gradually became one of the most widely
used block ciphers and received a great deal of cryptanalytic attention, both
during the AES process, and even more after its selection. Moreover, a single
AES round, or a small number of AES rounds, serve as a component in numerous
designs of stream ciphers (e.g., LEX [10]), hash functions (e.g., ECHO [2]), and
MACs (e.g., ALPHA-MAC [21]). Thus, we believe that the AES is a good case
study to demonstrate our techniques, which (as we believe) can be used against
other block ciphers as well.

We present several attacks on up to four rounds of AES requiring up to
ten chosen plaintexts. Most of the attacks are based on the meet-in-the-middle
approach. Some of the attacks exploit heavily the AES key schedule, while others
apply even if the subkeys in AES are replaced by independent subkeys. The
attacks are summarized in Table 1.

After presenting the low data complexity attacks, we show two applications:

1. The best known-plaintext attack on 6-round AES: We show that one
of the attacks we present on 2-round AES can be leveraged to an attack on
6-round AES, using a low-probability differential. The resulting attack is the
best known attack on 6-round AES in the known-plaintext model.

2. Attack on a variant of the stream cipher LEX: We consider a variant
of the stream cipher LEX, in which instead of extracting 32 bits of the state
after every AES round, the cipher outputs the entire state after every four
rounds. In this case, the core cipher is reduced to 4-round AES (without
the initial key whitening), but due to the stream cipher environment, the
adversary is restricted to 246.3 known plaintext bytes. While 4-round AES
is considered very weak due to the Square attack which can break it with
only 28 chosen plaintexts, all the previous attacks on AES have very high
data complexity when transformed to the known plaintext model, and thus
cannot be applied in our scenario. Thus, a priori, it is not clear whether this
variant of LEX is less secure than the original LEX (on which the best known
attack requires about 240 known plaintext bytes and 2100 encryptions).

4 We note that it is possible to interpret meet in the middle attacks as trying to solve
a set of (nonlinear) equations by trial substitution. Some of the tools we have used
in this paper followed this approach, but as the actual solution of the equations is
not done using algebraic means, we distinguish between the algebraic nature of them
and the actual attacks.

4



Attack Type Number of Complexity
Rounds Data Time Memory

Square [30] 7 2127.997 CP 2120 2127.997

Imp. Diff. [38] 7 2112.2 CP 2117.2 MA 2112.2

MitM (Collision) [32] 7 232 CP 2128 232

MitM (Collision) [29] 7 2103+k CP 2129−k 2103+k

MitM (Sect. 4) 1 1 KP 240 1
MitM (Sect. 4) 1 1 KP 232 224

Diff. (Sect. 4) 1 2 KP 212 1

MitM (Sect. 5) 2 1 KP 280 1
MitM (Sect. 5) 2 1 KP 264 249

Diff. (Sect. 5) 2 2 KP 248 1
Diff. (Sect. 5) 2 2 CP 228 1
Diff. (Sect. 5) 2 3 KP 232 1

MitM. (Sect. 6) 3 1 KP 2120 1
MitM. (Sect. 6) 3 1 KP 2104 249

Diff. (Sect. 6) 3 2 CP 232 1
Diff. Mitm (Sect. 6) 3 9 KP 240 235

Diff. MitM (Sect. 7) 4 2 CP 2104 1
Diff. MitM (Sect. 7) 4 5 CP 264 268

Diff. MitM (Sect. 7) 4 10 CP 240 243

KP — Known plaintext, CP — Chosen plaintext,
MA — Memory Accesses
Time complexity is measured in encryption units unless
mentioned otherwise.

Table 1. Summary of our Proposed Attacks on AES-128

We show that one of our attacks on 3-round AES can be used to break this
variant with only 360 bytes of keystream and time complexity of 240 encryp-
tions, thus showing that this variant is practically insecure. Furthermore,
we show that even a stronger variant in which the entire state is output
only every 5 rounds, is still less secure than the original LEX, since a known
plaintext variant of one of our attacks on 4-round AES can be used to break
it with 238.5 bytes of keystream and time complexity of 280 encryptions.

The paper is organized as follows: Section 2 gives a description of AES. The
attacks on one round, two rounds, three rounds, and four rounds are given in
Sections 4, 5, 6, 7, respectively. In Section 8 we demonstrate how one of the
2-round attacks can be leveraged to a known plaintext attack on 6-round AES.
In Section 9 we apply our attacks on 3-round and 4-round AES to break variants
of the stream cipher LEX. Finally, we conclude the paper in Section 10.

5



0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15 3 7 11 15 15 3 7 11

ShiftRows MixColumns

SB SR MC
ARK
⊕

ki

SubBytes

xi yi

zi wi

Fig. 1. An AES round

2 Description of AES

The Advanced Encryption Standard [20] is an SP-network that supports key
sizes of 128, 192, and 256 bits. A 128-bit plaintext is treated as a byte matrix of
size 4x4, where each byte represents a value in GF (28). An AES round applies
four operations to the state matrix:

– SubBytes (SB) — applying the same 8-bit to 8-bit invertible S-box 16 times
in parallel on each byte of the state,

– ShiftRows (SR) — cyclic shift of each row (the i’th row is shifted by i bytes
to the left),

– MixColumns (MC) — multiplication of each column by a constant 4x4 ma-
trix over the field GF (28), and

– AddRoundKey (ARK) — XORing the state with a 128-bit subkey.

We outline an AES round in Figure 1. In the first round, an additional Ad-
dRoundKey operation (using a whitening key) is applied, and in the last round
the MixColumns operation is omitted.

Unlike all other works on AES, we deal with full-rounds variants, i.e., we
shall not assume that the MixColumns operation is omitted from the last round.
This model is the more appropriate one for the scenarios in which the attacks we
consider may be applied, e.g., when the low data complexity attack is applied
to a series of inner rounds in the encryption process.

The number of rounds depends on the key length: 10 rounds for 128-bit keys,
12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. We use the round
numbers 1, . . . , Nr, where Nr is the number of rounds (Nr ∈ {10, 12, 14}). In
this paper we consider only AES with 128-bit keys, and hence, AES stands for
AES with 128-bit key and 10 rounds.

As we consider only AES with 128-bit key, we shall describe only its key
schedule algorithm. The key schedule of the other variants can be found in [41].
The key schedule of AES-128 takes the user key and transforms it into 11 subkeys
of 128 bits each. The subkey array is denoted by W [0, . . . , 43], where each word
of W [·] consists of 32 bits. The first four words of W [·] are loaded with the
user supplied key. The remaining words of W [·] are updated according to the
following rule:

– For i = 4, . . . , 43, do

6



• If i ≡ 0 mod 4 then W [i] = W [i − 4] ⊕ RotByte(SB(W [i − 1])) ⊕
RCON [i/4],

• Otherwise W [i] = W [i− 1]⊕W [i− 4],

where RCON [·] is an array of predetermined constants, and RotByte rotates
the word by 8 bits to the right.

2.1 The Notations Used in the Paper

In our attacks we use the following notations: xi denotes the input of round i,
while yi, wi, and zi denote the intermediate values after the application of Sub-
Bytes, ShiftRows, and MixColumns operations of round i, respectively. The
plaintext is denoted by P , and the ciphertext is denoted by C.

We denote the subkey of round i by ki, and the first (whitening) key by
k0, e.g., the subkey of the first round is k1. In some cases, we are interested in
interchanging the order of the MixColumns operation and the subkey addition.
As these operations are linear they can be interchanged, by first XORing the data
with an equivalent key and only then applying the MixColumns operation. We
denote the equivalent subkey for the altered version by ui, i.e., ui = MC−1(ki).

We denote bytes of some intermediate state xi or a key ki (or ui) by integers
between 0 and 15 according to their row and column, i.e., byte xi,j+4·ℓ is the
byte in row j (for j = 0, 1, 2, 3) and column ℓ (for ℓ = 0, 1, 2, 3) of xi. We denote
the z’th column of xi by xi,Col(z), e.g., u0,Col(0) = MC−1(k0,Col(0)). Similarly,
by xi,Col(y,z) we denote columns y and z of xi. We define two more column
related sets. The first is xi,SR(Col(z)) which is the bytes in xi corresponding
to the places after the ShiftRows operation on column z, e.g., xi,SR(Col(0)) is
composed of bytes 0,7,10,13. The second is xi,SR−1(Col(z)) which is the bytes in
the positions of column z after applying the inverse ShiftRows operation.

3 Observations on the Structure of AES

In this section we present five observations on the structure of AES, that we use
in our attacks. While the first three observations are well-known, the latter two
are novel and far from being trivial. Hence, besides their uses in our attacks,
they might be of use in future attacks on AES.

The first well-known observation considers the propagation of differences
through SubBytes, which is the only non-linear operation in AES.

Observation 1 Consider pairs (α 6= 0, β) of input/output differences for a sin-
gle S-box in the SubBytes operation. For 129/256 of such pairs, the differential
transition is impossible, i.e., there is no pair (x, y) such that x ⊕ y = α and
SB(x) ⊕ SB(y) = β. For 126/256 of the pairs (α, β), there exist two ordered
pairs (x, y) such that x ⊕ y = α and SB(x) ⊕ SB(y) = β, and for the remain-
ing 1/256 of the pairs (α, β) there exist four ordered pairs (x, y) that satisfy the
input/output differences. Moreover, the pairs (x, y) of actual input values cor-
responding to a given difference pattern (α, β) can be found instantly from the

7



difference distribution table of the S-box. We recall that the time required to con-
struct the table is 216 evaluations of the S-box, and the memory required to store
the table is about 217 bytes.

The second observation uses the linearity of the MixColumns operation, and
follows immediately from the structure of the matrix used in MixColumns:

Observation 2 Consider a pair (a, b) of 4-byte vectors, such that a = MC(b),
i.e., the input and the output of a MixColumns operation applied to one column.
Denote a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3) where ai and bj are byte values.
The knowledge of any four out of the eight bytes (a0, a1, a2, a3, b0, b1, b2, b3) is
sufficient to uniquely determine the value of the remaining four bytes.

The third observation is concerned with the key schedule of AES, and ex-
ploits the fact that most of the operations in the key schedule algorithm are
linear. It allows the adversary to get relations between bytes of non-consecutive
subkeys (e.g., kr, kr+3 and kr+4), while “skipping” the intermediate subkeys.
The observation extends previous observations of the same nature made in [30,
26].

Observation 3 Consider a series of consecutive subkeys kr, kr+1, . . ., and de-
note kr = (a, b, c, d) and vr = RotBytes(SubBytes(kr,Col(3))) ⊕ RCON [r + 1].
Then, the subkeys kr+1, kr+2, . . . can be represented as linear combinations of
(a, b, c, d) (the columns of kr) and the 32-bit words vr, vr+1, . . ., as shown in the
following table:

Round kCol(0) kCol(1) kCol(2) kCol(3)

r a b c d
r + 1 a⊕ vr a⊕ b⊕ vr a⊕ b⊕ c⊕ vr a⊕ b⊕ c⊕ d⊕ vr
r + 2 a⊕ vr ⊕ vr+1 b ⊕ vr+1 a⊕ c⊕ vr ⊕ vr+1 b⊕ d⊕ vr+1

r + 3 a⊕ vr ⊕ vr+1 ⊕ vr+2 a⊕ b⊕ vr ⊕ vr+2 b ⊕ c⊕ vr+1 ⊕ vr+2 c⊕ d⊕ vr+2

r + 4 a⊕ vr ⊕ vr+1 ⊕ vr+2 ⊕ vr+3 b⊕ vr+1 ⊕ vr+3 c⊕ vr+2 ⊕ vr+3 d⊕ vr+3

As a result, we have the following useful relations between subkeys (for i =
0, 1, 2, 3):

1. kr+2,i ⊕ kr+2,i+8 = kr,i+8,
2. kr+2,i+4 ⊕ kr+2,i+12 = kr,i+12,
3. kr+2,i+4 ⊕ vr+1,i = kr,i+4,
4. kr+4,i+12 ⊕ vr+3,i = kr,i+12,
5. kr+3,i+12 = kr,i+8 ⊕ kr,i+12 ⊕ vr+2,i.

The next two observations concern a full round of AES including the Ad-
dRoundKey operation before the round itself, i.e., a sequence of ARK, SB,
SR, MC, and ARK operations. Both observations show that the knowledge
of a single column in one of the subkeys used in the ARK operations, along
with the input and output values of the round, allows to retrieve the value of

8



a few “unexpected” additional subkey bytes. Both observations were found by
semi-automatic tools that tried to identify algebraic relations in 1-round AES.

These observations are the heart of our attacks on 1-round AES.
Assume that the input and output of this full round, denoted by P and C,

respectively, are known, and denote the two subkeys used in the AddRoundKey
operations by k0 and k1.

Observation 4 The knowledge of P,C and the column k0,Col(3) allows retriev-
ing two additional bytes of k0, namely k0,1 and k0,8.

The main idea behind this observation is that the linearity of the MixColumns
operation and the almost linear key schedule of AES allows to apply the Mix-
Columns operation to the XOR of two columns. The proof of the observation is
presented in Appendix A.

We note that if the adversary knows also the value k0,2, a similar strategy
allows to retrieve the value k0,6. This derivation is used in our first attack on
1-round AES with a single known plaintext in Section 4.2. We also note that
similar statements hold if the adversary knows Col(1) or Col(2) of k0.

We now now turn to the last observation.

Observation 5 The knowledge of P,C, and the column k1,Col(0) allows to re-
trieve bytes k0,7 and k0,8 by a table look-up to a precomputed table of size 224.
For each value of k1,Col(0), there are at most 12 values of (k0,7, k0,8), and on
average a single value. The time complexity required to generate the table is 232

operations.

The proof of this observation is slightly more complex than the proof of the
previous one, and is based on obtaining two nonlinear 8-bit relations involving
two key bytes (given that other bytes of the key and the state are known). In
such a case, we expect on average one solution to these equations (and as our
test shows, in reality the maximal number of solutions is 12). Moreover, as there
are 232 possible systems, one can precompute the acceptable solutions and store
them. The full proof is presented in Appendix A.

4 Attacks on One-Round AES

We start our analysis with the simplest case, an adversary who seeks to break
one full round of AES (a sequence of ARK, SB, SR, MC, and ARK operations).

4.1 Two Known Plaintexts

If the data available to the adversary contains at least two known plaintexts, the
attack takes 212 encryptions.

The simplest attack starts by applying the SR−1 ◦MC−1 to the ciphertext
difference, to obtain the output differences of all the S-boxes. Since the input
differences of the S-boxes are equal to the plaintext difference in the respective

9



bytes, the adversary can consider each S-box independently, go over the 28 pos-
sible pairs of inputs whose difference equals the plaintext difference, and find
the pairs suggesting the “correct” output difference. In each S-box, the expected
number of suggested pairs is two, and each such pair gives a suggestion of one
byte in the subkey k0.

5 Thus, the adversary gets 216 suggestions for the entire
subkey k0, which can be checked by trial encryption.

This attack, whose time complexity is 216 encryptions, can be further im-
proved using the relation between the subkeys k0 and k1. If the adversary checks
the S-boxes in bytes 0, 5, 10, and 15, she can use the 24 = 16 suggestions of output
values of these S-boxes to get 16 suggestions for the column k1,Col(0), along with
bytes 0, 5, 10, 15 of k0. Similarly, checking bytes 3, 4, 9, 14 yields 16 suggestions
for the column k1,Col(1), along with bytes 3, 4, 9, 14 of k0. Combining the sug-
gestions, the adversary obtains 256 suggestions for two columns of k1 and eight
bytes of k0. At this stage, the adversary can use the relation k1,4 = k0,4 ⊕ k1,0,
which holds by the AES key schedule, as a consistency check. Only a single
suggestion is expected to remain. The value of the remaining 8 bytes of k0 can
be obtained similarly by examining the other eight S-boxes. This improvement
reduces the time complexity of the attack to 212 S-box applications.

4.2 One Known Plaintext

If the data available to the adversary is only a single plaintext, then the attack
must use the relation between the two subkeys k0 and k1. (If the subkeys are
independent, then the information available to the adversary is not sufficient
to retrieve the key uniquely). Since any relation between the plaintext and the
ciphertext involves the MixColumns operation, it seems likely that any such
attack should require the guess of a full column, and thus have complexity of at
least 232 encryptions.6

We present two attacks — an attack with time complexity of 240 encryptions
and a negligible memory requirement, and an attack with time complexity of
232 encryptions, and memory requirement of 224 bytes. Thus, it seems that our
attacks are close to reach the optimum for this variant.

The first attack, depicted in Figure 2, is based on Observation 4. The adver-
sary guesses five bytes of the subkey k0 — the column k0,Col(3) and an additional
byte — k0,0. The steps in the key derivation are shown in the figure, where the
number in each cell denotes the step in which its value is retrieved. Steps 1 and
13 are based on Observation 4, steps 5, 9, 17, 21, and 22 exploit the key schedule,
steps 7, 19, 24, and 25 are based on Observation 2, and the rest of the steps are
performed using the application of known operations on known values.

5 We note that this step can be performed only if the differences in all S-boxes are non-
zero. However, since in the known plaintext attack model it is common to assume
that the plaintexts are chosen at random, it is expected that two known plaintexts
have non-zero difference in all the 16 bytes with probability (255/256)16 = 0.939.

6 We note that the problem of attacking one round AES without the MixColumns
operation with a single known plaintext is studied in [25]. It is shown that 216

encryptions are sufficient to retrieve the key.

10



ARK

k0

SB SR MC ARK
k1

2

2

2

2

22

2

3

3

3

3

33

3

4

4

4

4

44

4

1

1

5

5

6

6

7

7

7

7

8

89

9

10

10

11

11

12

1213

14 14

14

15 15

15

16 16

16

17

17

18

18

19

19

19

19

20

20

21

21

22

22

23

23

23

23

24

2424

25

2525

26

26

26

26

Bytes marked by black are guessed, bytes marked by gray are known.

Fig. 2. A 240 time attack on one round AES given one known plaintext

ARK

k−1

SB SR MC ARK

k0

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

5

5

5

5

6

6

7

7

8

8

9

9

10

11

ARK

k0

SB SR MC ARK
k1

1

1

2

2

3

3

4

4

4

4

5

5

5

5

6

6

7

7

8

8

8

9

9

9

10

10

10

11

11

11

12

12

12

121313

13

1415

16 17 18

19

19 19

19

20

20

Bytes marked by gray are known (from previous steps of analysis). Bytes marked with
tilted lines have at most 12 possible values by Observation 5.

Fig. 3. An attack on one round AES given one known plaintext with time complexity
of 232 and memory complexity of 224

The second attack, depicted in Figure 3, is based on Observation 5. In the
first phase of the attack, the adversary guesses the column k1,Col(0), and retrieves
the value of seven additional subkey bytes. This phase is shown in the first row
of the figure, where steps 6 and 10 are based on key schedule arguments, and
the rest of the steps use the application of known operations on known values.
The second phase of the attack, depicted in the second row of the figure, starts
with retrieving the possible values of bytes k0,7 and k0,8 using Observation 5.
Steps 6, 7, 8, and 15 use the key schedule, steps 13 and 19 use Observation 2, and
the rest of the steps follow the application of AES’ operations to known values.

11



5 Attacks on Two-Round AES

In this section we consider attacks on two rounds of AES, denoted by rounds 1
and 2. First we present attacks on two full rounds with two known plaintexts and
with a single known plaintext. Then we present an improved attack with two
known plaintexts that can be applied if the MixColumns operation in round 2
is omitted. This attack is used as a procedure in our attack on 6-round AES
presented in Section 8.

5.1 Two Known Plaintexts

The attack with two known plaintexts, depicted in Figure 4, is based on Obser-
vation 1. As in the one-round attack with two known plaintexts, we observe that
the ciphertext difference allows to retrieve the intermediate difference after the
SubBytes operation of round 2. This observation is used in both phases of the
attack. We also “swap” the order of the MixColumns and the AddRoundKey op-
erations of the second round. This can be done since both operations are linear,
as long as the subkey k2 is replaced by the equivalent subkey u2 = MC−1(k2).

In the first phase of the attack, the adversary guesses bytes 0, 5, 10, 15 of k0,
which allows him to retrieve the intermediate difference in x2,Col(0) (i.e., just
before the SubBytes operation of round 2). Then, Observation 1 can be applied
to the four S-boxes in that column, yielding their actual input/output values in
both encryptions. This in turn allows obtaining k1,Col(0) (as the values before
the ARK with k1 are known). At this stage, the adversary tries to deduce and
compute as many additional bytes as he can.

In the second phase of the attack, the adversary guesses two additional subkey
bytes (k0,7 and k0,8) which are sufficient to retrieve the intermediate difference
in x2,Col(2). Then, Observation 1 can be applied to the four S-boxes in Col(2) of
round 2.

We note that the while the first phase of the attack allows to obtain several
bytes in u2, the knowledge of these bytes cannot be combined directly with the
knowledge of bytes in k1 and k0, since u2 does not satisfy the equations of the key
schedule algorithm. Hence, in the second phase of the attack, we obtain bytes in
both u2 and k2 in parallel, and apply Observation 2 to the relation between k2
and u2, since they are the input and output of a MixColumns operation.

In Phase 1 of the attack, depicted in the top half of Figure 4, step 5 is
based on Observation 1, steps 9 and 13 exploit the key schedule, and the rest
of the steps are performed using encryption/decryption. In the second phase,
depicted in the bottom half of the figure, step 5 is based on Observation 1, step
12 uses Observation 2 applied to the relation between k2 and u2, steps 9, 10, 11,
and 13 exploit the key schedule, and the rest of the steps are performed using
encryption/decryption.

The time complexity of the attack is determined by the fact that 6 subkey
bytes are guessed, and for each guess a few simple analysis steps are performed.
Hence, the time complexity of the attack is 248.

12



ARK

k0

SB SR MC ARK
k1

SB SR ARK
u2

MC

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

9

10

10

11

11

12

12

13

The difference in the bytes marked is guessed. The bytes marked by 5 are found using
the known input and output differences.

k2

ARK

k0

SB SR MC ARK

k1

SB SR ARK
u2

MC

MC−1

MC

2

2

1

1

3

3

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9 9

9

10

10

11

11

12

12

12

12

13

13

The difference in the bytes marked in black is guessed. The bytes marked by 5 are found
using the known input and output differences. The bytes marked by 12 are found using
the relation between the keys k2 and u2.

Fig. 4. The attack with two known plaintexts on two round AES

A Three Known Plaintext Variant We note that if the adversary is given
three known plaintexts, the time complexity can be reduced to 232 encryptions.
In order to achieve the reduction, the adversary applies the first phase of the
attack twice (for the pairs (P1, P2) and (P1, P3)), and uses the values of k1,Col(0)

retrieved in that phase for a consistency check. Since for the correct guess of bytes
0, 5, 10, 15 of k0, both pairs suggest the same value of the four bytes of k1, and for

13



an incorrect guess, the two pairs suggest the same value only with probability
2−32, this allows to discard most of the wrong guesses. Then, the adversary
performs the second phase of the attack only for the remaining guesses, and
thus the time complexity of the attack is dominated by the first step, whose
complexity is 232 encryptions.

A Two Chosen Plaintext Variant If the adversary is given two chosen
plaintexts, then the time complexity can be reduced to 228 encryptions. In order
to achieve this reduction, the adversary asks for the encryption of two plaintexts
which differ only in four bytes composing one column. In this case, at the end
of round 1, there are exactly 127 possible differences in each column. For each
such difference, the adversary can apply Observation 1 to the four S-boxes of
the column, and obtain one suggestion on average for the actual values after
the SubBytes operation of round 2. Combining the values obtained from all four
columns, the adversary gets about 228 suggestions for the entire state after the
SubBytes operation of round 2, and each such suggestion yields a suggestion of
the subkey k2. Thus, the time complexity of the attack is 228 encryptions.

5.2 One Known Plaintext

It is also possible to attack 2-round AES using a single known plaintext. The
attack, depicted in Figure 5, is based mainly on Observation 3 and on many
simpler key schedule considerations.

In the first phase of the attack, the adversary guesses nine subkey bytes
(marked in black in the upper part of the figure). Step 7 uses Observation 3(3),
step 8 uses Observation 3(2), steps 5, 6, and 9 use the key schedule, and the
remaining steps are computed using the AES algorithm.

In the second phase of the attack, the adversary guesses one state byte
(marked in black in the lower part of the figure). Steps 9 and 13 are based
on Observation 3(1), steps 1, 5, 29, and 32 use Observation 2, steps 3,7,8,10–
12, and 21–24 use the key schedule, and the remaining steps are performed by
applying AES’ operations on known values.

The time complexity of the attack is determined by the amount of bytes which
are guessed. Namely, as the adversary guesses 10 bytes, the time complexity of
the attack is 280 encryptions.

A Time-Memory Tradeoff The time complexity can be reduced at the ex-
pense of enlarging the memory complexity, using non-linear equations and a
precomputed table as in Observation 5. In order to achieve this reduction, the
adversary performs the following precomputation: Let bytes 4 and 14 of k0 be
denoted by b and c.7 It is possible to represent all the bytes found during the

7 We note that in this subsection we use notations which are somewhat different from
the notations in the rest of the paper, in order to be consistent with the reference [23],
in which this improvement is described in detail.

14



ARK

k0

SB SR MC ARK
k1

SB SR MC ARK
k2

1 1

1

1 1

1

2 2

2

2 2

2

3 3

3

3 3

3

4

4

4

4

5

6

7

7

8

8

9

10

10

10

11

11

11

12

12

12

13

13

1313

13

The value of the bytes marked in black is guessed. The bytes marked by 7 and 8 are
found using Observation 3.

ARK

k0

SB SR MC ARK
k1

SB SR MC ARK
k21

1

1

1

2

2

3

3

4

4

5

5

5

5

6

78

9

10

1112

13

14

14

15

15 16

16

17

17

17

17

18

18

18 18

18 18

19

19

19 19

19 19

20

2021

22

23

24

25 26 27

28

29

29

29

29

30

31

31

31

3232

32

32

33

The bytes marked is black are guessed. The bytes marked by 9 and 13 are found using
Observation 3(1).

Fig. 5. The attack with one known plaintext on two round AES

attack procedures in terms of b, c, the plaintext, the ciphertext, and the other
8 key bytes which are guessed in the original attack procedure. At the end of
the deduction procedure, after a suggestion for the full subkey k2 (in terms of b
and c) is obtained, the adversary decrypts the ciphertext through the last round
and obtains a suggestion for bytes 4 and 5 of k1. These bytes can be used as
a consistency check, as they can be retrieved independently by the key sched-
ule algorithm, using the suggestion of k2. This consistency check supplies two

15



non-linear equations in b and c, and it turns out that the equations are of the
following form:

a5 =f0(b, c, a0, a1, a2, a3, a4),

a7 =f1(b, c, a0, a1, a2, a4, a6),
(1)

where f0 and f1 are fixed known functions, and a0, a1, . . . , a7 are one-byte pa-
rameters depending on the plaintext, the ciphertext, and the eight additional
subkey bytes guessed in the original attack.8

Hence, it is possible to compute in advance the values of (b, c) corresponding
to each value of (a0, a1, . . . , a7), and store them in a table.

In the online phase of the attack, the adversary guesses only 8 subkey bytes
(instead of 10), computes the values of (a0, a1, . . . , a7), and uses the table in
order to retrieve b and c. The rest of the attack is similar to the original attack.

The time complexity of the resulting attack is reduced to 264, but on the
other hand, the attack requires 265 bytes of memory.

The memory requirement can be further reduced to 249 bytes by observing
that the knowledge of a1, a4, and the six subkey bytes k0,6, k0,11, k0,12, k1,8, k1,13, k1,15
allows to deduce the value of the two remaining subkey bytes guessed in the mod-
ified attack. Using this observation, the attack procedure can be slightly changed
as follows: The adversary starts with guessing the values of a1 and a4, and pre-
pares the table for the given value of a1, a4. In the online phase of the attack,
the adversary guesses the six subkey bytes k0,6, k0,11, k0,12, k1,8, k1,13, k1,15, de-
duces the value of the two additional required subkey bytes, and performs the
original attack. This change reduces the memory complexity to 249 bytes (since
the table is constructed according to 6 byte parameters instead of 8),9 while the
time complexity remains unchanged at 264.

5.3 Improved Attack When the Second MixColumns is Omitted

In Section 8 we present a differential attack on 6-round AES which uses as a
subroutine a 2-round attack on AES. In the attack scenario, the two rounds
attacked in the subroutine are the last two rounds of AES, i.e., a full round
and a round without the MixColumns operation. In this section we present an
improved variant of the attack with two known plaintexts presented above that

8 Since the values of a0, a1, . . . , a7 are very cumbersome, we do not present them in
this paper, and refer the reader to [23].

9 We note that as in the 1-round attack, the expected number of solutions in each
entry of the table is 1. However, there are some small variations (as some entries are
expected to contain more than one solution). This can be dealt with by using a simple
memory encoding where each entry contains a zero bit to indicate no solution, and a 1
bit otherwise. Then, each solution is encoded in 16 bits, where a “0” bit is appended if
this is the last solution, and a “1” bit is appended to suggest an additional solution.
The increased memory consumption is by 245 bytes, and searching in this data
structure is expected to be extremely efficient on average, as we can have a good
estimation on where to start looking for a required entry.

16



applies in this scenario. We note that this attack gives another evidence to the
claim made in [25] that the omission of the the last MixColumns operation in
AES reduces the security of the cipher.

The attack, presented in Figure 6, consists of two phases. In the first phase,
the first 13 steps are identical to the first 13 steps of the attack on two full rounds
presented in Section 5.1 above. Steps 14–20 and 25 exploit the key schedule, and
the rest of the steps apply AES’ operations to known values.

The second phase uses Observation 3 and simpler key schedule observations.
Step 1 uses Observation 3(1,2), step 20 uses Observation 3(1), step 9 uses Ob-
servation 2, steps 2–4,11,12,16–19, and 25 use the AES key schedule, and the
remaining steps are performed using partial encryption or decryption.

6 Attacks on Three-Round AES

In this section we consider attacks on three rounds of AES, denoted by rounds 1–
3. First we present a simple attack with two chosen plaintexts, then we present a
bit more complex meet-in-the-middle attack with 9 known plaintexts, and finally
we present a very time-consuming attack with a single known plaintext.

6.1 Two Chosen Plaintexts

The attack with two chosen plaintexts is similar to the two-round attack with
two chosen plaintexts, presented at the end of Section 5.1. As before, we observe
that the ciphertext difference allows to retrieve the intermediate difference after
the SubBytes operation of round 3. In the attack, the adversary asks for the
encryption of two plaintexts which differ only in one byte. In this case, at the
end of round 2, there are at most 256 possible differences in each column. For
each such difference, the adversary can apply Observation 1 to the four S-boxes
of the column, and obtain one suggestion on average for the actual values after
the SubBytes operation of round 3. Combining the values obtained from all four
columns, the adversary gets at most 232 suggestions for the entire state after the
SubBytes operation of round 3, and each such suggestion yields a suggestion for
the subkey k3. Thus, the time complexity of the attack is 232 encryptions.

6.2 Nine Known Plaintexts

The attack with 9 known plaintexts uses a combination between the differential
approach and the standard meet-in-the-middle approach. The adversary guesses
subkey material in k0 and k3, and obtains a consistency check on the intermediate
difference after the ShiftRows operation of round 2.

Concretely, denote the intermediate values in byte 0 after the ShiftRows oper-
ation of round 2 byX1, X2, . . . , X9. In the first phase of the attack, the adversary
guesses bytes 0, 7, 10, 13 of the equivalent subkey u3 and partially decrypts the
ciphertexts through the last round (obtaining the actual values in x3,Col(0)).
Then, using the linearity of the MixColumns operation, the adversary computes

17



ARK

k0

SB SR MC ARK
k1

SB SR ARK
k2

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

9

10

10

11

11

12

12

13 1415

161718

19

20

21

212121

22

2222 22

23

2323 23

24 24 24

25

26 27 28

ARK

k0

SB SR MC ARK
k1

SB SR ARK
k2

1

1

2

3

4

5

56

6

7

7

8

9

9

9

9

10

11

12

13

13

14

14

15

15

1617

18

19

20

212223

2425

The two phases of the attack on two round AES without MixColumns at the second
round. Bytes marked in black are guessed, and bytes marked in gray are known at this
phase of the attack.

Fig. 6. The attack on two rounds of AES without the second MixColumns using two
known plaintexts

the differences X1⊕X2, X1⊕X3, . . . , X1⊕X9, and stores their concatenation (a
64-bit vector) in a hash table. In the second phase of the attack, the adversary
guesses bytes 0, 5, 10, 15 of k0 and byte k1,0 and by partial encryption of the
plaintexts, obtains the values of X1 ⊕ X2, X1 ⊕ X3, . . . , X1 ⊕ X9, and checks
whether their concatenation appears in the hash table. This consistency check
is a 64-bit filtering, and thus only 272 · 2−64 = 28 key suggestions are expected
to remain. By repeating the procedure with the three other columns, the ad-
versary obtains about 232 suggestions for the full subkey k0 (along with many

18



other subkey bytes), which can be checked by exhaustive key search. The time
complexity of the attack is about 240 encryptions, and the memory requirement
is 235 bytes of memory.

6.3 One Known Plaintext

The attack with a single known plaintext, depicted in Figure 7, combines the
meet-in-the-middle approach with key schedule observations. The attack consists
of two phases.

In the first phase, shown in the top part of the figure, the adversary guesses
15 subkey bytes, and uses key schedule considerations to deduce numerous addi-
tional subkey bytes in the four subkeys k0, k1, k2, and k3. Step 4 of the deduction
uses Observation 3(1), and the other steps use the key schedule algorithm di-
rectly.

The second phase, shown in the bottom part of the figure, is the meet-
of-the-middle part of the attack. Using the known subkey bytes, the adversary
partially encrypts the plaintext and decrypts the ciphertext and obtains sufficient
information in order to apply Observation 2 to the MixColumns operations of
rounds 2 and 3. Steps 13 and 17 of this part use Observation 2, and the other
steps use AES’ operations and the knowledge obtained in previous steps.

Since the adversary guesses 15 key bytes, the time complexity of the attack is
2120 encryptions. As in the single-plaintext attacks on one-round and two-round
AES, the adversary can reduce the time complexity at the expense of enlarging
the memory requirement, using non-linear equations and a precomputed table.
The time complexity of the resulting attack is 2104 encryptions, and the memory
requirement is 249 bytes. Since the technique is similar to the improvement of
the 2-round attack presented in Section 5.2, and the obtained equations are
quite cumbersome, we do not present the improvement here and refer the reader
to [23].

7 Attacks on Four-Round AES

In this section we consider attacks on 4-round AES. Unfortunately, we did not
succeed in finding known plaintext attacks which require only a few plaintexts,
and thus we present only chosen plaintext attacks. We note that these attacks
can be transformed into known plaintext attacks using the standard birthday-
based transformations, but these usually result in a high data complexity.

7.1 Ten Chosen Plaintexts

The attack with 10 chosen plaintexts is similar to the 3-round attack with 9
known plaintexts presented in Section 6.2. The adversary asks for the encryption
of ten plaintexts which differ only in bytes 0,5,10,15. Then she guesses subkey
material in the subkeys k0, k1 and the equivalent subkeys u3 and u4, and ob-
tains a consistency check on some intermediate difference after the MixColumns
operation of round 2.

19



k0 k1 k2 k3

1

1

1

111

1

1

1

1

2

2

2

2

333

333

333

4

5

5

5

6 6

6

6

6

6

6

67

7

7

ARK

k0

SB SR MC ARK
k1

SB SR MC ARK
k2

SB

SR MC ARK
k3

1 1

1

1 1 1 1

1 1 1 1

2 2

2

2 2 2 2

2 2 2 2

3 3

3

3 3 3 3

3 3 3 3 4

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

8

8

8

8

8

8

8

8

8

8

8

9

9

9

9

9

9

9

9

9

9

9

9

10

10

10

10

10

10

10

10

10

10

10

10

11

11

11

11

11

11

11

11

11

11

11

11

12

12

12

12

12

12

12

12

12

12

12

13

13

13

13 13

13

13

13

14

14

15

15

16

16

17

17

17

8

18

The two steps of the attack on three round AES with a single known plaintext. The
first diagram shows the order of deducing subkeys using the key relations, and the
second shows the deduction of the remaining subkey bytes. Guessed bytes are marked
by black, and known bytes are marked by gray.

Fig. 7. The attack on three rounds of AES using one known plaintext

Let the intermediate values in byte 0 after the MixColumns operation of
round 2 beX1, X2, . . . , X10. In the first phase of the attack, the adversary guesses
bytes 0, 7, 10, 13 of the equivalent subkey u4 and byte 0 of the equivalent subkey
u3 and partially decrypts the ciphertexts through the last two rounds obtaining
the actual values in the byte x3,0. (Note that reversing the order of the Mix-
Columns and AddRoundKey operations in the two last rounds allows to obtain
this intermediate value by guessing only 40 subkey bits). Then, using the lin-
earity of the AddRoundKey operation, the adversary computes the differences

20



X1⊕X2, X1⊕X3, . . . , X1⊕X10, and stores their concatenation (a 72-bit vector)
in a hash table.

In the second phase of the attack, the adversary guesses bytes 0, 5, 10, 15 of
k0 and the byte k1,0. By the structure of the chosen plaintexts, this allows to
compute the differences between pairs of intermediate values w2,Col(0) (since the
actual values in byte 0 before the MixColumns operation of round 2 are known by
partial encryption, and the difference in bytes 1, 2, 3 is zero). Thus, the adversary
obtains the values of X1 ⊕ X2, X1 ⊕ X3, . . . , X1 ⊕ X10, and checks whether
their concatenation appears in the hash table. This consistency check is a 72-bit
filtering, and thus only 280 · 2−72 = 28 key suggestions are expected to remain.
By repeating the procedure with the three other columns (from the ciphertext
side), the adversary obtains about 232 suggestions for the full equivalent subkey
u4 (along with many other subkey bytes), which can be checked by exhaustive
key search. The time complexity of the attack is about 240 encryptions, and the
memory requirement is about 243 bytes of memory.

7.2 Five Chosen Plaintexts

If only five chosen plaintexts are available to the adversary, she can perform a
variant of the attack described above, at the expense of enlarging the time and
memory complexities. The plaintexts are chosen as before, but more key material
is guessed: from the ciphertext side, the adversary guesses bytes 0, 7, 10, 13 of
u4 and bytes 0, 1, 2, 3 of u3, and from the plaintext side, the adversary guesses
bytes 0, 5, 10, 15 of k0 and bytes 0, 1, 2, 3 of k1. This allows to get a consistency
check on the intermediate difference at the end of round 2 in bytes 0, 5, 10, 15
(instead of only byte 0), and thus, the four pairs which can be extracted from the
data supply a 128-bit filtering and only the correct key suggestion is expected
to remain. Finally, the adversary repeats the attack procedure with three other
columns from the ciphertext side, and obtains a single suggestion (or a few
suggestions) for the full equivalent subkey u4. The time complexity of the attack
is about 264 encryptions, and the memory requirement is about 268 bytes.

7.3 Two Chosen Plaintexts

The attack with two chosen plaintexts is the most complex attack in this paper,
and uses a combination of Observations 1, 2, and 3 with differential techniques.
The adversary asks for the encryption of two plaintexts which differ only in
byte 3, which assures that the difference in the state z2 (i.e., just before Mix-
Columns of round 2) is zero in all bytes except for one byte in each column
(specifically, except for bytes 3, 6, 9, 12).

In the first phase of the attack, presented in Figure 8, the adversary guesses
8 subkey bytes — k3,Col(2,3), and two state bytes — z4,3 and z4,6. Note that
a single guess is sufficient to obtain the state bytes in both encryptions, since
their difference can be computed by applying the inverse of MixColumns to the
ciphertext difference. Step 1 follows directly from the key schedule algorithm,

21



step 2 is based on Observation 3(4), and steps 3–10 are performed by application
of AES’ operations to known values.

Step 11 is more complex, and actually consists of three steps.

1. First, consider the MixColumns operation of round 2. By the choice of the
plaintext difference, the input difference of that MixColumns in three bytes
of each column is zero. On the other hand, by step 8, the output difference of
that MixColumns is known in one byte in each column. Thus, the adversary
can apply Observation 2 to the MixColumns operation (in all columns) with
respect to differences, and obtain the entire difference in the states z2 and
w2. This allows the adversary to obtain the difference in those bytes of the
state z2 numbered 11.

2. Second, consider the MixColumns operation of round 1, and concentrate
on Col(3). By the choice of the plaintext difference, the only byte with non-
zero difference in z1,Col(3) is byte 12, and the difference in that byte is known
from step 10. Thus, the output difference of that MixColumns is also known,
which means that the difference in the bytes numbered 11 in the state x2 is
known to the adversary.

3. Finally, by combination of the two steps above, the input and output dif-
ferences of the SubBytes operation in bytes 0, 1, 2, 3 of round 2 are known
to the adversary. This allows to apply Observation 1 to these S-boxes and
obtain the actual input and output values.

In the second phase of the attack, the adversary guesses three additional sub-
key bytes — k0,1, k0,6, and k0,11, then retrieves many additional subkey bytes
using key schedule considerations, and finally applies Observation 2 to the Mix-
Columns operation in Columns 0, 1 of round 4. Step 7 is the most complex
one and uses Observation 3(5), step 28 uses Observation 2, step 6 uses Obser-
vation 3(2), steps 15, 16, and 22 use Observation 3(3), step 26 uses Observa-
tion 3(1,2), steps 5,8–14,17–21, and 23–25 are performed by direct application
of the key schedule algorithm, and the remaining steps are application of AES’
operations to known values.

Since the adversary guesses 13 key bytes, the time complexity of the attack
is 2104 encryptions.

8 Differential Attack on 6-Round AES

The design of AES follows the wide trail design strategy, which assures that the
probability of differentials is extremely low, even for only four rounds of the
cipher. For example, it was proved in [44], that any 4-round differential of AES
has probability of at most 2−110. Hence, it is widely believed that no regular
differential attack can be mounted on more than 5 rounds of AES. Furthermore,
the best currently known differential attack on AES-128 is on only four rounds,
and all known attacks on 5 and more rounds use “more sophisticated” techniques
like impossible differentials, boomerangs, or Squares.

22



ARK

k0

SB
SR

MC ARK
k1

SB
SR

MC ARK
k2

SB
SR

MC ARK
k3

SB
SR

MC ARK
k4

1

1

1

1

2

2

2

2

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

55

55

5 5

5 5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

9

9

9

10

10

10

10

11

11

11

11

11

11

11

11

Fig. 8. The first phase of the attack on four rounds of AES using two chosen plaintexts.
Step 11 is relatively complex and is explained in the text.

In this section we show that the low data complexity attack on 2-round AES
presented in Section 5.3 can be leveraged to a differential attack on 6-round AES.
Although the data complexity of the resulting attack is high, the data complexity
of its known plaintext variant is still smaller than the data complexity of the best
known attack on 6-round AES in the known plaintext model. While our attack
certainly does not threaten the security of AES, it shows that its security with
respect to conventional differential attacks is lower than expected before.

As in most published attacks on reduced-round variants of AES, we assume
that the MixColumns operation in the last round is omitted, like in the full
AES.10

Our 6-round attack is based on the following 3-round truncated differential:
The input difference in all bytes except for byte 0 is zero, and the output differ-
ence in all bytes except for bytes 0, 5, 10, 15 is zero. We depict the differential in
Figure 10. A pair satisfying the input and output requirements of the differential
in rounds 2–4 is called a right pair.

10 We were not able to extend the attack to the case where the last MixColumns
operation is not omitted. This gives another evidence to the claim made in [25] that
the omission of the last round MixColumns affects the security of AES.

23



ARK

k0

SB
SR

MC ARK
k1

SB
SR

MC ARK
k2

SB
SR

MC ARK
k3

SB
SR

MC ARK
k4

1

1

1

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6789 1010

11 11

12

13

14

15

16 17

18 19

2021 21

22

23 24 25

26 26

27

27

27

27

27

27

28

28

28

28

28

28

28 28

29 29

Fig. 9. The second phase of the attack on four rounds of AES using two chosen plain-
texts. Step 7 is based on Observation 3(5).

SB,SR

MC,ARK

SB,SR

MC,ARK
SB SR,MC

ARK

2
32

differences

2
32

differences

∆x1 ∆x2 ∆x3

∆y3 ∆x4

Fig. 10. The 3-Round Truncated Differential Used in Our Attack

Consider a right pair (P, P ′). By the structure of AES, the intermediate
difference at the input of round 3 is zero in all bytes except for 0, 1, 2, 3. Thus,
there are at most 232 possible differences in the input of the SubBytes operation
of round 4. On the other hand, since the difference at the output of round 4 is
zero in all bytes except for 0, 5, 10, 15, there are only 232 possible differences after
the SubBytes operation of round 4. Note that by Observation 1, the input and
output differences of a SubBytes operation yield a single suggestion (on average)
for the actual values. Therefore, if (P, P ′) is a right pair, then there are only 264

24



possibilities of the corresponding actual values after the SubBytes of round 4 (or
equivalently, for the actual values after the MixColumns operation of round 4).

This observation allows to mount the following known plaintext attack:

1. Ask for the encryption of 2108.5 plaintexts Pi under the unknown key, and
denote the corresponding ciphertexts by Ci.

2. Insert (Pi, Ci) into a hash table indexed according to bytes 1–4,6–9,11–14 of
Pi and bytes 1–6,8,9,11,12,14,15 of Ci, and consider only the colliding pairs
in the hash table (which are the only pairs which may be right). The number
of remaining pairs is 2216 · 2−192 = 224.

3. For each of the remaining pairs, assume that it is a right pair, and for each
of the 264 possible actual values after the MixColumns operation of round 4,
apply the attack presented in Section 5.3 on rounds 5–6.11

Since the time complexity of the 2-round attack presented in Section 5.3 is
232 encryptions, the overall complexity of the attack is 224 · 264 · 232 = 2120

encryptions. The data complexity of the attack is 2108.5 known plaintexts, which
is smaller than the data complexities of the previously known attacks in the
known plaintext model (see, e.g., [17]).

9 An Attack on Modified LEX

LEX is a stream cipher presented by Biryukov in [9], as an example of the leak
extraction methodology of stream cipher design. In this methodology, a block
cipher is used in an OFB mode of operation, where after each round of the
cipher, some part of the intermediate encryption value is output as part of the
key stream. Lex itself uses the AES as the block cipher.

In the initialization step of LEX, the publicly known IV is encrypted by
AES12 under the secret key K to obtain S = AESK(IV ). Then, S is repeatedly
encrypted in the OFB mode of operation under K, where during the execution
of each encryption, 32 bits of the internal state are leaked in each round. These
state bits compose the key stream of LEX. The state bytes used in the key
stream are shown in Figure 11. After 500 encryptions, another IV is chosen, and
the process is repeated. After 232 different IVs, the secret key is replaced.

LEX was submitted to the eSTREAM competition (see [10]). Due to its high
speed (2.5 times faster than AES), fast key initialization phase (a single AES
encryption), and expected security (based on the security of AES), LEX was
considered a very promising candidate and selected to the third (and final) phase
of evaluation. However, it wasn’t selected to the final portfolio of eSTREAM
due to an attack with data complexity of 236.3 bytes of key stream and time
complexity of 2112 encryptions presented in [26] a few weeks before the end of

11 Note that the 2-round attack requires that the difference in the four bytes x2,Col(0) in
the attacked variant is non-zero, and this condition is indeed satisfied in our attack
(for the state x6 which corresponds to x2 in the two-round attack).

12 Actually, LEX uses a tweaked version of AES where the AddRoundKey before the
first round is omitted, and the MixColumns operation of the last round is present.

25



Odd Round Even Round

The gray bytes are the output bytes.

Fig. 11. State Bytes which Compose the Output in Odd and Even Rounds of LEX

the eSTREAM competition. The complexity of the best published attack on
LEX is about 240 bytes of keystream and 2100 encryptions [27].

In order to study the leak extraction design methodology, we consider a mod-
ified variant of LEX, in which instead of extracting 32 bits of the state after
every AES round, the cipher outputs the entire state after every four rounds.
In this case, the core cipher is reduced to 4-round AES (without the initial key
whitening), but due to the stream cipher environment, the adversary is restricted
to 246.3 known plaintext bytes (as after that amount of key material, the stream
cipher is rekeyed). It turns out that while 4-round AES is considered very weak
due to the Square attack which can break it with only 28 chosen plaintexts,
all the previously known attacks on AES have very high data complexity when
transformed to the known plaintext model, and thus cannot be applied in our
scenario. Thus, a priori, it is not clear whether this variant of LEX is less secure
than the original LEX.

However, using the attacks on reduced-round AES presented in the previous
sections, we can show that this variant is practically insecure, and that even a
stronger variant in which the full state is output every 5 rounds is still less secure
than the original LEX.

Note that four-round AES without the initial key whitening step is equivalent
to three full AES rounds (since the adversary can encrypt all the plaintexts
through the first round without knowledge of the key). Thus, the attack on 3-
round AES with nine known plaintexts, described in Section 6.2, applies directly
to this variant and allows to break it with only 360 bytes of keystream (obtained
from 9 AES invocations), time complexity of 240 encryptions, and 243 bytes of
memory.

Similarly, if the full state is output every 5 rounds, then the underlying cipher
is equivalent to four full AES rounds. In this case, our low complexity attacks
perform only in the chosen plaintext model, and thus we use transformation
to the known plaintext model, based on collecting a sufficient number of known
plaintexts, until enough pairs with the required input difference are encountered.

We consider the attack with five chosen plaintexts presented in Section 7.2. A
set of 249.5 plaintexts picked at random is expected to contain 298 ·2−96 = 4 pairs
with zero difference in the 12 input bytes required in the chosen plaintext attack,
and thus the attack can be applied with data complexity of 254.5 keystream bytes,
time complexity of 264 encryptions and memory requirement of 268 bytes.

26



It is possible to reduce the data complexity of this attack to 233.5 known
plaintexts at the expense of enlarging the time complexity, by slightly chang-
ing the underlying chosen plaintext attack. Instead of considering only pairs of
plaintexts with zero difference in 12 bytes of the state, the adversary uses pairs
with zero difference in only eight bytes: 2, 3, 4, 7, 8, 9, 13, and 14. The adversary
guesses bytes 0, 1, 5, 6, 10, 11, 12, 15 of k0 and bytes 0, 15 of k1, and obtains the
intermediate difference in w2,Col(0) (i.e., at the output of round 2). On the other
hand, the guess of bytes 0, 7, 10, 13 of u4 and byte 0 of u3 is sufficient to obtain
the intermediate difference in byte 0 at the end of round 2, which can be used
as a consistency check. The rest of the attack is similar to the chosen plaintext
attack on 4-round AES with ten chosen plaintexts presented in Section 7. Since
the filtering is on 8 bits, 15 pairs with the required input difference are sufficient
to discard most of the wrong key guesses. Thus, the data complexity is 233.5

known plaintexts, or 238.5 bytes of keystream. The memory requirement is 244

bytes, and the time complexity is 280 encryptions.

10 Summary and Conclusions

In this paper we considered low data complexity attacks on reduced-round vari-
ants of AES. We presented several attacks on up to four rounds of AES given
at most 10 known (or chosen) plaintexts, and showed how to leverage such at-
tacks to more complex attacks on variants of AES with more rounds and on
other primitives based on AES (such as modified variants of the stream cipher
LEX). In particular, we showed that the security margin of AES with respect to
conventional differential attacks is smaller than considered before.

We believe that a big safety margin with respect to attacks in which the
adversary has limited resources (which are more similar to the scenarios in prac-
tical attacks) is an important design criterion for block ciphers and other cryp-
tographic primitives. Thus, attacks with limited resources should be considered
particularly, in parallel with the “usual” line of research which does not restrict
the resources of the adversary and requires only complexity lower than that of
exhaustive key search.

Acknowledgements

We would like to thank Adi Shamir for the fruitful discussions and conversations.

References

1. Behnam Bahrak and Mohammad Reza Aref, A Novel Impossible Differential Crypt-
analysis of AES, proceedings of the Western European Workshop on Research in
Cryptology 2007, Bochum, Germany, 2007.

2. Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyrin,
Matt Robshaw, and Yannick Seurin, SHA-3 Proposal: ECHO (version 1.5), SHA-3
submission, 2009.

27



3. Come Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois, Henri Gilbert,
Louis Goubin, Aline Gouget, Louis Granboulan, Cédric Lauradoux, Marine Minier,
Thomas Pornin, and Hervé Sibert, Sosemanuk, a fast software-oriented stream
cipher, eSTREAM submission, 2005.

4. Eli Biham, Alex Biryukov, and Adi Shamir, Miss in the Middle Attacks on IDEA
and Khufu, proceedings of Fast Software Encryption 1999, Lecture Notes in Com-
puter Science 1636, pp. 124–138, Springer, 1999.

5. Eli Biham, Alex Biryukov, and Adi Shamir, Cryptanalysis of Skipjack Reduced to
31 Rounds, Advances in Cryptology, proceedings of EUROCRYPT 1999, Lecture
Notes in Computer Science 1592, pp. 12–23, Springer, 1999.

6. Eli Biham, Orr Dunkelman, and Nathan Keller, Improved Slide Attacks, proceed-
ings of Fast Software Encryption 2007, Lecture Notes in Computer Science 4593,
pp. 153–166, Springer, 2007.

7. Eli Biham and Nathan Keller, Cryptanalysis of Reduced Variants of Rijndael, un-
published manuscript, 1999.

8. Eli Biham and Adi Shamir, Differential Cryptanalysis of the Data Encryption Stan-
dard, Springer, 1993.

9. Alex Biryukov, The Design of a Stream Cipher LEX, Proceedings of Selected Ar-
eas in Cryptography 2006, Lecture Notes in Computer Science 4356, pp. 67–75,
Springer, 2007.

10. Alex Biryukov, A New 128-bit Key Stream Cipher LEX, ECRYPT stream cipher
project report 2005/013. Available at http://www.ecrypt.eu.org/stream.

11. Alex Biryukov, The Tweak for LEX-128, LEX-192, LEX-256, ECRYPT stream
cipher project report 2006/037. Available at http://www.ecrypt.eu.org/stream.

12. Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi
Shamir, Key Recovery Attacks of Practical Complexity on AES-256 Variants With
Up To 10 Rounds, Advances in Cryptography, proceedings of EUROCRYPT 2010,
Lecture Notes in Computer Science 6110, pp. 299–319, Springer, 2010.

13. Alex Biryukov and Dmitry Khovratovich, Related-Key Cryptanalysis of the Full
AES-192 and AES-256, Advances in Cryptography, proceedings of ASIACRYPT
2009, Lecture Notes in Computer Science 5912, pp. 1–18, Springer, 2009.

14. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic, Distinguisher and Related-
Key Attack on the Full AES-256, Advances in Cryptography, proceedings of
CRYPTO 2009, Lecture Notes in Computer Science 5677, pp. 231–249, Springer,
2009.

15. Alex Biryukov and David Wagner, Slide Attacks, proceedings of Fast Software
Encryption 1999, Lecture Notes in Computer Science 1636, pp. 245–259, Springer,
1999.

16. Alex Biryukov and David Wagner, Advanced Slide Attacks, Advances in Cryptol-
ogy, proceedings of EUROCRYPT 2000, Lecture Notes in Computer Science 1807,
pp. 586–606, Springer, 2000.

17. Jung Hee Cheon, MunJu Kim, Kwangjo Kim, Jung-Yeun Lee, and SungWoo Kang,
Improved Impossible Differential Cryptanalysis of Rijndael and Crypton, proceed-
ings of Information Security and Cryptology — ICISC 2001, Lecture Notes in
Computer Science 2288, pp. 39–49, Springer, 2002.

18. Nicolas T. Courtois, Gregory V. Bard, and David Wagner, Algebraic and Slide
Attacks on KeeLoq, proceedings of Fast Software Encryption 2008, Lecture Notes
in Computer Science 5086, pp. 97–115, Springer, 2008.

19. Joan Daemen and Vincent Rijmen, AES Proposal: Rijndael, NIST AES proposal,
1998.

28



20. Joan Daemen and Vincent Rijmen, The design of Rijndael: AES — the Advanced
Encryption Standard, Springer, 2002.

21. Joan Daemen and Vincent Rijmen, A New MAC Construction ALRED and a
Specific Instance, ALPHA-MAC, proceedings of Fast Software Encryption 2005,
Lecture Notes in Computer Science 3557, pp. 1–17, Springer, 2005.

22. Hüseyin Demirci and Ali Aydin Selçuk, A Meet-in-the-Middle Attack on 8-Round
AES, proceedings of Fast Software Encryption 2008, Lecture Notes in Computer
Science 5086, pp. 116–126, Springer, 2008.

23. Patrick Derbez, Rapport de Stage, report of internship at École Normale
Supérieure, September 2010.

24. Itai Dinur and Adi Shamir, Side Channel Cube Attacks on Block Ciphers, IACR
ePrint report 2009/127.

25. Orr Dunkelman and Nathan Keller, The Effects of the Omission of Last Round’s
MixColumns on AES, Information Processing Letters, Vol. 110, Number 8–9,
pp. 304–308, Elsevier, 2010.

26. Orr Dunkelman and Nathan Keller, A New Attack on the LEX Stream Cipher,
Advances in Cryptology, proceedings of ASIACRYPT 2008, Lecture Notes in Com-
puter Science 5350, pp. 539–556, Springer, 2008.

27. Orr Dunkelman and Nathan Keller, Cryptanalysis of the Stream Cipher LEX, sub-
mitted to Designs, Codes and Cryptography, 2010.

28. Orr Dunkelman, Nathan Keller, and Adi Shamir, A Practical-Time Attack on the
A5/3 Cryptosystem Used in Third Generation GSM Telephony, Advances in Cryp-
tology, proceedings of CRYPTO 2010, Lecture Notes in Computer Science 6223,
pp. 393–410, Springer, 2010.

29. Orr Dunkelman, Nathan Keller, and Adi Shamir, Improved Single-Key Attacks on
8-round AES-192 and AES-256, accepted to ASIACRYPT 2010.

30. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Mike Stay, David Wag-
ner, and Doug Whiting, Improved Cryptanalysis of Rijndael, proceedings of Fast
Software Encryption 2000, Lecture Notes in Computer Science 1978, pp. 213–230,
Springer, 2001.

31. Soichi Furuya, Slide Attacks with a Known-Plaintext Cryptanalysis, proceedings
of Information and Communication Security 2001, Lecture Notes in Computer
Science 2288, pp. 214–225, Springer, 2002.

32. Henri Gilbert and Marine Minier, A collision attack on 7 rounds of Rijndael, pro-
ceedings of the Third AES Candidate Conference (AES3), pp. 230–241, New York,
USA, 2000.

33. Martin Hell and Thomas Johansson, Breaking the F-FCSR-H Stream Cipher in
Real Time, Advances in Cryptology, proceedings of ASIACRYPT 2008, Lecture
Notes in Computer Science 5350, pp. 557–569, Springer, 2008.

34. Dmitry Khovratovich, Alex Biryukov, and Ivica Nikolic, Speeding up Collision
Search for Byte-Oriented Hash Functions, proceedings of CT-RSA 2009, Lecture
Notes in Computer Science 5473, pp. 164–181, Springer, 2009.

35. Jongsung Kim, Seokhie Hong, and Bart Preneel, Related-Key Rectangle Attacks
on Reduced AES-192 and AES-256, proceedings of Fast Software Encryption 2007,
Lecture Notes in Computer Science 4593, pp. 225–241, Springer, 2007.

36. Lars R. Knudsen and Vincent Rijmen, Known-Key Distinguishers for Some Block
Ciphers, Advances in Cryptology, proceedings of ASIACRYPT 2007, Lecture Notes
in Computer Science 4833, pp. 315–324, Springer, 2007.

37. Özgul Küçük, The Hash Function Hamsi, SHA-3 submission, 2009.

29



38. Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim, New Impossible
Differential Attacks on AES, proceedings of INDOCRYPT 2008, Lecture Notes in
Computer Science 5365, pp. 279–293, Springer, 2008.

39. Stefan Lucks, Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys,
proceedings of the Third AES Candidate Conference (AES3), pp. 215–229, New
York, USA, 2000.

40. Stéphane Manuel and Thomas Peyrin, Collisions on SHA-0 in One Hour, proceed-
ings of Fast Software Encryption 2008, Lecture Notes in Computer Science 5086,
pp. 16–35, Springer, 2008.

41. US National Institute of Standards and Technology, Advanced Encryption Stan-
dard, Federal Information Processing Standards Publications Number 197, 2001.

42. Paul Stankovski, Martin Hell, and Thomas Johansson, An Efficient State Recovery
Attack on X-FCSR-256, proceedings of Fast Software Encryption 2009, Lecture
Notes in Computer Science 5665, pp. 23–37, Springer, 2009.

43. Marc Stevens, Fast Collision Attack on MD5, IACR ePrint report 2006/104, 2006.

44. Sangwoo Park, Soo Hak Sung, Seongtaek Chee, E-Joong Yoon, and Jongin Lim, On
the Security of Rijndael-Like Structures against Differential and Linear Cryptanal-
ysis, Advances in Cryptology, proceedings of ASIACRYPT 2002, Lecture Notes in
Computer Science 2501, pp. 176–191, Springer, 2002.

45. Raphael Chung-Wei Phan, Impossible Differential Cryptanalysis of 7-round Ad-
vanced Encryption Standard (AES), Information Processing Letters, Vol. 91, Num-
ber 1, pp. 33-38, Elsevier, 2004.

46. Wentao Zhang, Wenling Wu, and Dengguo Feng, New Results on Impossible Dif-
ferential Cryptanalysis of Reduced AES, proceedings of ICISC 2007, Lecture Notes
in Computer Science 4817, pp. 239–250, Springer, 2007.

47. Wentao Zhang, Wenling Wu, Lei Zhang, and Dengguo Feng, Improved Related-
Key Impossible Differential Attacks on Reduced-Round AES-192, Proceedings of
Selected Areas in Cryptography 2006, Lecture Notes in Computer Science 4356,
pp. 15–27, Springer, 2007.

A Proofs of Observations

In this appendix we present the proof of Observations 4 and 5. Throughout the
appendix, we consider one full AES round (including the key whitening at the
beginning), and assume that the input and the output of this full round, denoted
by P and C, respectively, are known to the adversary.

We denote the two subkeys used in the AddRoundKey operations by k0 and
k1, and the states after the first ARK, the SB, the SR, and the MC operations
by x, y, z, and w, respectively (here we omit the round counters as only one
round is involved).

Observation 4 The knowledge of P,C and the column k0,Col(3) allows retriev-
ing two additional bytes of k0, namely k0,1 and k0,8.

Proof. The derivation of the two additional bytes is performed as follows:

30



1. Consider the 32-bit value wCol(2) ⊕ wCol(3). By the key schedule, we have:

wCol(2) ⊕ wCol(3) =
(

CCol(2) ⊕ CCol(3)

)

⊕
(

K1,Col(2) ⊕ k1,Col(3)

)

=
(

CCol(2) ⊕ CCol(3)

)

⊕ k0,Col(3).
(2)

2. Following the linearity of MixColumns, we obtain that:

zCol(2) ⊕ zCol(3) =MC−1(wCol(2))⊕MC−1(wCol(3))

=MC−1
(

wCol(2) ⊕ wCol(3)

)

.
(3)

3. It is possible to compute z12 using the knowledge of k0,12 as:

z12 = SR(SB(P12 ⊕ k0,12)). (4)

4. Then, the value of z8 can be retrieved by combining Equations (2), (3)
and (4).

5. From z8 it is possible to compute the subkey byte k0,8 using:

k0,8 = P8 ⊕ x8 = P8 ⊕ SB−1(SR−1(z8)).

6. It is possible to use a similar procedure to obtain the value z13, and retrieve
the subkey byte k0,1 as:

k0,1 = P1 ⊕ x1 = P1 ⊕ SB−1(SR−1(z13)).

Observation 5 The knowledge of P,C, and the column k1,Col(0) allows to re-
trieve bytes k0,7 and k0,8 by a look-up into a precomputed table of size 224. For
each value of k1,Col(0), there are at most 12 values of (k0,7, k0,8), and on av-
erage a single value. The time complexity required to construct the table is 232

operations.

Proof. First, we note that the knowledge of the column k1,Col(0) along with the
plaintext and the ciphertext allows to retrieve one additional byte of k1 and six
bytes of k0, as shown in Figure 3.

We denote a = y8 and b = y7, and express several other bytes in terms of
a, b, and known bytes (from the plaintext, the ciphertext and k1,Col(0)). Our
goal is to obtain a system of two equations in a and b, and to solve it using a
precomputed table. This system is constructed as follows:

1. Note that k1,Col(2) can be expressed as:

k1,Col(2) = CCol(2) ⊕ wCol(2) = CCol(2) ⊕MC(zCol(2))

= CCol(2) ⊕MC
(

a, SB(P13 ⊕ k0,13), SB(P2 ⊕ k0,2), b
)

.
(5)

31



2. Note that k1,5 can be computed following the procedure shown in Figure 3,
and the remaining three bytes of k1,Col(1) can be expressed as:

k1,4 =k1,8 ⊕ SB−1(a)⊕ P8,

k1,6 =k1,10 ⊕ k0,10,

k1,7 =k1,3 ⊕ S−1(b)⊕ P7.

(6)

3. Consider the two bytes z4, z5. By the key schedule algorithm:

z4 =SB(P4 ⊕ k0,4) = SB
(

P4 ⊕ k1,0 ⊕ k1,4

)

=SB
(

P4 ⊕ k1,0 ⊕ k1,8 ⊕ SB−1(a)⊕ P8

)

,

z5 =SB(P9 ⊕ k0,9) = SB(P9 ⊕ k1,9 ⊕ k1,5).

(7)

4. On the other hand, given wCol(1) (which is known from the ciphertext C and
the key k1,Col(1)), the column zCol(1) can be derived also in a different way:

zCol(1) = MC−1(wCol(1)) = MC−1
(

CCol(1) ⊕ k1,Col(1)

)

. (8)

5. Equations (6), (7), and (8) can be combined to get a system of two equations
in the unknowns a, b, and the known plaintext, ciphertext, and bytes of
k1,Col(1). These equations can be written in the form:

∆1 =f1(a, b)⊕ SB(f2(a, b) +∆3),

∆2 =f3(a, b)⊕ SB(f4(a, b) +∆4),
(9)

where f1, f2, f3, and f4 are fixed known functions, and ∆1, ∆2, ∆3, and ∆4

are one-byte parameters depending on the plaintext, the ciphertext, and the
guessed subkey bytes.13

System (9) allows to perform the following two-phase procedure:

1. In the precomputation phase, for each of the 232 possible values of (a, b,∆3∆4),
compute ∆1 and ∆2 using Equation (9). Use these values to update a table
of solutions of Equation (9) indexed by (∆1, ∆2, ∆3, ∆4) where each entry
is a list of possible values of (a, b). It turns out that the maximal number of
solutions (a, b) is 12, and the average number is 1. Hence, we can construct
the table in 232 time and 232 memory.

2. In the online phase, once the values of P,C are known, and for each guess of
k1,Col(1), compute the value (∆1, ∆2, ∆3∆4), and obtain from the precom-
puted table the corresponding values of (a, b). Then deduce the subkey bytes
k0,7 and k0,8 using the equations:

k0,8 =P8 ⊕ x8 = P8 ⊕ SB−1(a),

k0,7 =P7 ⊕ x7 = P7 ⊕ SB−1(b).
(10)

13 We note that the exact values of the parameters are given in [23] by linearly com-
bining two equations (namely, Equation 0 of [23, p. 11] and three times Equation 1
of [23, p. 11]).

32



We can reduce the 232 memory required for storing the solutions to only 224,
by observing that one of the bytes of k1,Col(0) occurs only once in ∆1. We can
then enumerate ∆1 instead of enumerating this key byte, as the key byte can
be uniquely deduced from ∆1. By doing so, we can deal only with the equations
relevant to this specific ∆1 in each step of the attack.

1. For each ∆1 do
– Building the table: For all (a, b) pairs:
(a) Compute ∆3 (following the first part of Equation 9).
(b) For every∆4 determine∆2 (following the second part of Equation 9).
(c) Store in a table (a, b) as the solution of (∆2, ∆3, ∆4).

– Using the table:
(a) Guess any 3 bytes of k1,Col(0).
(b) Compute the remaining byte under the assumption that ∆1 is cor-

rect.
(c) Apply the previous attack as before (as the full k1,Col(0) is known).

The size of the table is only 224 (there are 224 tuples of the form (a, b,∆4)), and
we expect on average one value in each entry. To conclude, the running time of
the attack remains 232 operations, while the memory complexity is reduced to
224. For the full description see [23].

33


