
Differential Fault Analysis of AES using a Single

Multiple-Byte Fault

Subidh Ali1, Debdeep Mukhopadhyay1, and Michael Tunstall2

1 Department of Computer Sc. and Engg, IIT Kharagpur, West Bengal, India.
{subidh,debdeep}@cse.iitkgp.ernet.in

2 Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol BS8 1UB, United Kingdom.
tunstall@cs.bris.ac.uk

Abstract. In this paper we present an improved fault attack on the Advanced En-
cryption Standard (AES). This paper presents an improvement on a recently pub-
lished differential fault analysis of AES that requires one fault to recover the secret
key being used. This attack requires that one byte entering into the eighth round is
corrupted. We show that the attack is possible where more than one byte has been
affected. Experimental results are described where a fault is injected using a glitch in
the clock, demonstrating that this attack is practical.

1 Introduction

There are numerous methods for injecting a fault into a microprocessor, such as electromag-
netic radiation, light, temperature variations, spikes in supply voltages and clock glitches [1].
Preventing all of these methods is becoming more and more complex for hardware designers.
This problem is compounded by the ongoing scaling of devices to nano technologies where
faults will be even harder to prevent. While these faults may have undesirable effects on
normal applications, it can be totally disastrous for cryptographic systems. This was first
noted by Boneh et al. [4], who observed that a single fault in one of the two exponentiations
required to generate a RSA signature using the Chinese remainder theorem would allow an
attacker to retrieve the private key. Subsequently, Biham and Shamir [2] proposed the idea
of Differential Fault Analysis (DFA), based on differential cryptanalysis, to attack DES.
This fault attack required around 50 to 1500 faulty ciphertexts to extract an entire secret
key, assuming that a one bit fault was being introduced at a random point in the algorithm
during each execution.

In 2001 NIST standardized a new block cipher named Advanced Encryption Standard
(AES) [8]. Subsequently, it has become a popular target for cryptanalysis because it will, in
many cases, replace DES. In 2004 Giraud described a differential fault analysis of AES that
required a single byte fault to be introduced at the beginning of the ninth round and 250
fault ciphertexts [6]. Similarly, Blömer and Seifert proposed an attack that required between
128 and 256 faulty ciphertexts [3]. The attack on AES was further improved by Dusart et
al. who prosed an attack that required 50 faulty ciphertexts [5].

Piret and Quisquater showed that a DFA on AES is possible with only two faulty ci-
phertexts and a key search of 48 and 40 bits [10]. This was subsequently improved upon by
Mukhopadhyay who pointed out that the fault attack against AES can be performed with a
single byte fault and an key search among 232 key hypotheses [7]. This analysis was extended
by Tunstall and Mukhopadhyay where it was shown that the number of key hypotheses can
be reduced to 28 from a single fault [12].

Recent work by Saha et al. has shown that multiple byte faults can be analyzed in the
same manner described by Mukhopadhyay [11]. That is, if multiple byte faults are induced,



while leaving a significant number of bytes untouched, a secret key can still be recovered using
differential fault analysis. This paper revisits this work and applies the method described
by Tunstall and Mukhopadhyay [12] to improve the attack. We also present experimental
results to support the claims made by demonstrating the fault attack on an iterated AES
core prototyped on a Xilinx Spartan-3E platform using glitches in the clock line.

Notation

In this paper, multiplications are considered to be polynomial multiplications over F28 mod-
ulo the irreducible polynomial x8 +x4 +x3 +x+1. It should be clear from the context when
a mathematical expression contains integer multiplication.

Organization

The paper is organized as follows: In Section 2 we describe the background to this paper. In
Section 3 we describe a previously published attack based on one of the fault models given
in Section 2. In Section 4 we extend the work to multi byte fault models. In Section 5 we
describe some experimental results, and we conclude in Section 6.

2 Background

2.1 The Advanced Encryption Standard

Algorithm 1: The AES-128 encryption function.

Input: The 128-bit plaintext block P and key K.
Output: The 128-bit ciphertext block C.

X ← AddRoundKey(P, K) ;
for i← 1 to 10 do

X ← SubBytes(X) ;
X ← ShiftRows(X) ;
if i 6= 10 then

X ← MixColumns(X) ;
end

K ← KeySchedule(K) ;
X ← AddRoundKey(X, K) ;

end

C ← X ;

return C

The structure of the Advanced Encryption Standard (AES), as used to perform encryp-
tion, is illustrated in Algorithm 1. Note that we restrict ourselves to considering AES-128
and that the description above omits a permutation typically used to convert the plaintext
P = (p1, p2, . . . , p16)(256) and key K = (k1, k2, . . . , k16)(256) into a 4×4 array of bytes, known
as the state matrix. For example, the 128-bit plaintext input block to AES is arranged in
the following fashion









p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15

p4 p8 p12 p16











The corresponding fault free (CT ) and faulty ciphertexts (CT ′) are respectively:

CT =









x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

x4 x8 x12 x16









CT
′ =









x′

1 x′

5 x′

9 x′

13

x′

2 x′

6 x′

10 x′

14

x′

3 x′

7 x′

11 x′

15

x′

4 x′

8 x′

12 x′

16









where xi ∈ {0, . . . , 255}. ∀i ∈ {1, . . . , 16}.
We also define the key matrix for the subkeys used in the ninth and tenth round as:

K10 =









k1 k5 k9 k13

k2 k6 k10 k14

k3 k7 k11 k15

k4 k8 k12 k16









K9 =









k′

1 k′

5 k′

9 k′

13

k′

2 k′

6 k′

10 k′

14

k′

3 k′

7 k′

11 k′

15

k′

4 k′

8 k′

12 k′

16









The encryption itself is conducted by the repeated use of a number of round functions:

– The SubBytes function is the only non-linear step of the block cipher. It is a bricklayer permu-
tation consisting of an S-box applied to the bytes of the state. Each byte of the state matrix
is replaced by its multiplicative inverse, followed by an affine mapping. Thus the input byte
x is related to the output y of the S-Box by the relation, y = A x−1 + B, where A and B
are constant matrices. In the remainder of this paper we will refer to the function S as the
SubBytes function and S−1 as the inverse of the SubBytes function.

– The ShiftRows function is a byte-wise permutation of the state.
– The KeySchedule function generates the next round key from the previous one. The first round

key is the input key with no changes, subsequent round keys are generated using the SubBytes

function and XOR operations. This is shown in Algorithm 2, that shows how the rth round key
is computed from the (r− 1)th round key. The value hr is a constant defined for the rth round,
and << is used to denote a bitwise left shift.

– The MixColumn is a bricklayer permutation operating on the state column by column. Each
column of the state matrix is considered as a 4-dimensional vector where each element belongs
to F(28). A 4×4 matrix M whose elements are also in F(28) is used to map this column into a
new vector. This operation is applied on all the 4 columns of the state matrix. Here M and its
inverse M−1 are defined as:

M =









2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2









M−1 =









14 11 13 9

9 14 11 13

13 9 14 11

11 13 9 14









All the elements in M and M−1 are elements of F(28) expressed as a decimal digit.
– AddRoundKey: Each byte of the array is XORed with a byte from a corresponding array of round

subkeys.

2.2 Fault Model of the Attack

The fault model is central to the description of a fault based cryptanalysis. In our attack we consider
two types of faults: one byte faults and faults that affect multiple bytes lying in different diagonals
of the state matrix of AES. We formally define the diagonal of the AES state matrix as follows:

Definition 1. Diagonal: A diagonal is a set of four bytes of the state matrix, where the ith diagonal

is defined as follows. Di = {bj,(j+i)mod4 ; where 1 ≤ j ≤ 4}

Formally the fault models are classified as follows:

1. Model M(1): Faults under this class are single byte faults, that only affect one of the four
diagonals.



Algorithm 2: The AES-128 KeySchedule function.

Input: (r − 1)th round key (X = xi for i ∈ {1, . . . , 16}).
Output: rth round key X.

for i← 0 to 3 do
xi+1 ← xi+1 ⊕ S(x((i+1)∧3)+13) ;

end

x1 ← x1 ⊕ hr ;
for i← 5 to 16 do

xi ← xi ⊕ xi−4 ;
end

return X

2. Model Md: Faults under this class are faults that affect multiple bytes. They affect d diagonals
of the state matrix, where 1 ≤ d ≤ 4. This model is further classified into four different
submodels:

(a) Model M
(i)
1 : The faults in this class affect i byte locations of one diagonal; where 2 ≤ i ≤ 4.

(b) Model M
(i,j)
2 : The faults in this class affect two of the four diagonals; One with i modified

bytes and the other with j modified bytes; where 1 ≤ i, j ≤ 4.

(c) Model M
(i,j,k)
3 : The faults in this class affect three of the four diagonals, where the faulty

diagonals have i, j and k modified bytes respectively; where 1 ≤ i, j, k ≤ 4.

(d) Model M4: Faults in this class are multiple byte faults, that affect all of the four diagonals
.

The rationale of the above fault model comes from observations described in [11] where faults
are injected into an iterated implementation of AES using a glitch in the clock frequency. As the
clock frequency of the glitches was increased, the number of bytes affected spread along the different
diagonals.

3 Previous Work

3.1 Analyzing the Final Round

An attack that requires one ciphertext where a fault has been injected into the beginning of the
eighth round of an instantiation of AES is described in [7]. This attack reduces the number of
possible keys from 2128 to 232. A one byte fault injected into the beginning of the eighth round will
propagate as shown in Figure 1. This corresponds to the model M(1) defined above.

Let us consider CT , CT ′, and K10 as defined in Section 2.1 where all elements are in F28 . If we
use the interrelation between the faulty bytes of the first column c1 at the end of the ninth round
MixColumn as in Figure 1, we have following four equations:

2F = S−1(x1 ⊕ k1)⊕ S−1(x′

1 ⊕ k1)

F = S−1(x14 ⊕ k14)⊕ S−1(x′

14 ⊕ k14)

F = S−1(x11 ⊕ k11)⊕ S−1(x′

11 ⊕ k11)

3F = S−1(x8 ⊕ k8)⊕ S−1(x′

8 ⊕ k8)

,

where F ∈ F28 . These four equations can be solved for four key bytes k1, k8, k11 and k14. The key
space of this quadruplet of key bytes is reduced to an expected value of 28. This can be repeated for
the each of the columns using similar formulae to produce 232 possible key hypotheses, as described
in [7].



C3 C4

f f ′ f ′
2f ′

f ′

3f ′

f ′

F3

F4

F2

F3

F4

8
th Round Input 8

th Round Byte Sub 8
th Round Mix Column

9
th Round Byte Sub

F2

C2 C1 C1 C1
C2 C2 C2

C3 C3 C3
C4 C4

C4

F1

8
th Round Shift Row

9
th Round Mix Column 9

th Round Shift Row

F1 F4

2F4

F3

3F3

2F3

F3

3F2

F2

C1

F4 F12F1

2F2

3F4F1

3F1

F2

Fig. 1. Propagation of byte fault induced at the input of eighth round

3.2 Extending to Multiple Rounds

If we consider the difference at the end of the eighth round, as defined in Section 3.1, a similar
analysis can be conducted using Equations 1–4 defined below. We further define e1 = 2 f ′, e2 = f ′,
e3 = f ′ and e4 = 3 f ′ where f ′, ei∀i ∈ {1, . . . , 4} are ∈ F28 . The number of key hypotheses remaining
after evaluating these equations is expected to be 28 [12].

e1 =S−1(14 (S−1(x1 ⊕ k1)⊕ ((k1 ⊕ S(k14 ⊕ k10)⊕ h10))) ⊕ 11 (S−1(x8 ⊕ k8)⊕

(k2 ⊕ S(k15 ⊕ k11))) ⊕ 13 (S−1(x11 ⊕ k11)⊕ (k3 ⊕ S(k16 ⊕ k12)))⊕

9 (S−1(x8 ⊕ k8)⊕ (k4 ⊕ S(k13 ⊕ k9)))) ⊕ S−1(14 (S−1(x′

1 ⊕ k1)

⊕ ((k1 ⊕ S(k8 ⊕ k10)⊕ h10))) ⊕ 11 (S−1(x′

8 ⊕ k8)⊕ (k2 ⊕ S(k15 ⊕ k11))⊕

13 (S−1(x′

11 ⊕ k11)⊕ (k3 ⊕ S(k16 ⊕ k12))) ⊕ 9 (S−1(x′

8 ⊕ k8)⊕

(k4 ⊕ S(k13 ⊕ k9))))

(1)

e2 =S−1(9 (S−1(x13 ⊕ k13)⊕ (k13 ⊕ k9)) ⊕ 14 (S−1(x10 ⊕ k10)⊕ (k10 ⊕ k14)))⊕

11 (S−1(x7 ⊕ k7) ⊕ (k15 ⊕ k11))⊕ 13(S−1(x4 ⊕ k4)⊕ (k16 ⊕ k12)))⊕

S−1(9 (S−1(x′

13 ⊕ k13)⊕ (k13 ⊕ k9)) ⊕ 14 (S−1(x′

10 ⊕ k10)⊕ (k10 ⊕ k14)))⊕

11 (S−1(x′

7 ⊕ k7) ⊕ (k15 ⊕ k11))⊕ 13 (S−1(x′

4 ⊕ k4)⊕ (k16 ⊕ k12)))

(2)

e3 =S−1(13 (S−1(x9 ⊕ k9)⊕ (k9 ⊕ k5)) ⊕ 9 (S−1(x6 ⊕ k6)⊕ (k10 ⊕ k6)))⊕

14 (S−1(x3 ⊕ k3)⊕ (k11 ⊕ k7))⊕ 11 (S−1(x16 ⊕ k16)⊕ (k12 ⊕ k8)))⊕

S−1(13 (S−1(x′

9 ⊕ k9)⊕ (k9 ⊕ k5)) ⊕ 9 (S−1(x′

6 ⊕ k6)⊕ (k10 ⊕ k6)))⊕

14 (S−1(x′

3 ⊕ k3) ⊕ (k11 ⊕ k7))⊕ 11 (S−1(x′

16 ⊕ k16)⊕ (k12 ⊕ k8)))

(3)



e4 = S−1(11 (S−1(x2 ⊕ k2)⊕ (k2 ⊕ k1)) ⊕ 13 (S−1(x5 ⊕ k5)⊕ (k6 ⊕ k5)))⊕

9 (S−1(x12 ⊕ k12) ⊕ (k10 ⊕ k9))⊕ 14 (S−1(x15 ⊕ k15)⊕ (k14 ⊕ k13)))⊕

S−1(11 (S−1(x′

2 ⊕ k2)⊕ (k2 ⊕ k1)) ⊕ 13 (S−1(x′

5 ⊕ k5)⊕ (k6 ⊕ k5)))⊕

9 (S−1(x′

12 ⊕ k12) ⊕ (k10 ⊕ k9))⊕ 14 (S−1(x′

15 ⊕ k15)⊕ (k14 ⊕ k13)))

(4)

4 Proposed Multi Byte Attack Based on Model Md

In this section we perform an analysis similar to that described in the section where the faults
injected correspond to the multiple byte fault model Md, where d is the number of diagonals
affected by a fault and 1 ≤ d ≤ 4. In this section we describe attacks based on previous work by
Saha et al. where only the last round is analyzed [11], in a similar manner to that described in
Section 3.2. For each model we extend the attack by Saha et al. by adding a second phase to the
attack.

4.1 Multi Byte Attack Based on Model M
(i)
1

In this section we consider model M
(i)
1 , where i bytes of one diagonal are affected by a fault

injected at the beginning of the eighth round of an instantiation of AES. In all cases the first phase
of the attack is as described in [11], since all the affected bytes are in the same column after the
computation of the MixColumn at the end of the eighth round. This can be seen in Figure 2 that
shows the propagation of fault; where a fault corrupts only one diagonal of the state matrix.

C1 C2 C3 C4

F4

F3

F2

F1

F1

F2

F3

F4

Input

8
th Round

Byte Sub Shift Row

8
th Round 8

th Round

8
th Round MixColumn

9
th Round Byte Sub

9
th Round Shift Row

F3

2F3

3F3

F3 3F2

2F2

F2

F2

2F1

F1

3F1

F1 3F4

F4

F4

2F4

9
th Round Mix Column

Fig. 2. Propagation of one diagonal fault induced at the input of eighth round.

Hence the first phase analysis of all the instances of fault model M
(i)
1 will produce 232 key

hypotheses, as described in Section 3.1. These 232 key hypotheses can further be reduced by a
second phase of the attacks. The key reduction in the second phase is dependent on different



instances of model M
(i)
1 . For example, model M

(1)
1 will correspond to the fault model required

for the attack described in Section 3 and the number of key hypotheses can be reduced using the
analysis described in Section 3.2. In the following sections we describe the second phase for the
remaining models M

(i)
1 for 2 ≤ i ≤ 4.

Proposed Second Phase of the Attack Based on Model M
(2)
1 . In this model an

attacker is expected to have injected a two bytes fault in any one of the four diagonals. Figure 3
shows the propagation of fault based on model M

(2)
1 . Given that the number of key hypotheses has

been reduced to 232 by the first phase of the attack.

C1 C2 C3 C4

F1 ⊕ 2F2

F1 ⊕ F2

3F1 ⊕ F2

8
th Round Input 8

th Round Byte Sub 8
th Round Shift Row 8

th Round Mix Column

F1

F2F2

F1

f2

f1 2F1 ⊕ 3F2

C1 C1 C1C2 C2 C2C3 C3 C3C4 C4 C4

Fig. 3. Propagation of two byte faults induced at the input of eighth round

If we denote the fault values of the first column at the end of eighth round MixColumn operation
by e1, e2, e3, and e4 we get

e1 = 2 F1 ⊕ 3F2, e2 = F1 ⊕ 2F2, e3 = F1 ⊕ F2, and e4 = 3 F1 ⊕ F2

where ei for ei ∈ {1, . . . , 4} is defined as described in Section 3.2. If we eliminate F1, F2 from the
above system of equations we will have the following relationship between e1, e2, e3 and e4,

e2 ⊕ e4 = e1 and 2 e2 ⊕ 3 e4 = 7 e3 .

Here, it is clear that if we fix any two of the four variables {e1, e2, e3, e4} then the remaining two
variables can only take one value. This gives 216 possible values for the quadruplet {e1, e2, e3, e4}
each of which will produce 0, 2 or 4 possible key hypotheses, but is expected to return one key
hypotheses [9]. We can, therefore, state that an arbitrary key value will produce a valid quadruplet
{e1, e2, e3, e4} with a probability of 216/232 = 2−16. This will, therefore, reduce the number of
possible key hypotheses to 216.

Proposed Second Phase of the Attack Based on Model M
(3)
1 . Similarly, if three bytes

in one diagonal are affect by a fault then we can define

e1 = 2 F1 ⊕ 3F2 ⊕ F3, e2 = F1 ⊕ 2 F2 ⊕ 3F3,

e3 = F1 ⊕ F2 ⊕ 2F3, and e4 = 3 F1 ⊕ F2 ⊕ F3 ,

where we assume that the effect of the fault is as shown in Figure 4.

If we eliminate F1, F2 and F3 from the above system of equations we will have the following
relationship between e1, e2, e3 and e4,

11 e1 ⊕ 13 e2 = 9 e3 ⊕ 14 e4 .

It is interesting to note that this can be written as 11 e1 ⊕ 13 e2 ⊕ 9 e3 ⊕ 14 e4 = 0, where the
coefficients correspond to the values in the Inverse MixColumn matrix M−1. Following the same
reasoning as above this will reduce the number of key hypotheses from 232 to 224.



C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

f1

8th Round Input 8th Round Byte Sub 8th Round Shift Row 8th Round Mix Column

F1

C2 C3 C4
C1

f2 F2

F3
F1 ⊕ F2 ⊕ 2F3

F1 ⊕ 2F2 ⊕ 3F3

2F1 ⊕ 3F2 ⊕ F3

3F1 ⊕ F2 ⊕ F3

F2

f3 F3

F1

Fig. 4. Propagation of four byte faults induced at the input of eighth round

Proposed Multi Bytes Attack Based on Mode M
(4)
1 . If all four bytes in a diagonal are

affected then there is no information to be exploited in a second analysis phase. This is because
there will be 232 possible valid combinations for {e1, e2, e3, e4}. The number of key hypotheses will
not go below the 232 found using the attack defined by Saha et al. [11].

4.2 Proposed Multi Byte Attack Based one Model M
(i,j)
2

In this section we apply our previous analysis on two diagonal fault model M
(i,j)
2 ; where the fault

affects two of the four diagonal of the state matrix and i and j bytes are affected in these diagonals.
As in Section 4.1, the attack is broken into two phases where the first phase has been defined
previously by Saha et al. [11].

The First Phase of the Attack Based on Model M
(i,j)
2 . In the first phase of the attack

the difference in the last round is produced by two columns of the state matrix at the end of
the eighth round being corrupted by a fault. This analysis will be identical for all values of i and
j assuming the same two diagonals are affected. If, for example, the two left-most columns are
affected then the fault will propagate through the ninth round as shown in Figure 5.

C2 C3 C4C1C2 C3 C4C1C2 C3 C4C1

C1 C3 C4

F1 ⊕ F6

F1 ⊕ 2F6

2F1 ⊕ 3F6 2F5 ⊕ F4

F5 ⊕ 3F4

3F5 ⊕ 2F4

3F3 ⊕ F8

2F3 ⊕ 3F8

F3 ⊕ 2F8

F3 ⊕ F8 3F2 ⊕ F7

2F2 ⊕ 3F7

F2 ⊕ 2F7

F2 ⊕ F7

F5 ⊕ F4

3F1 ⊕ F6

C2

F1

F6

F5

F8

F2

F4

F3 F7

8
th Round Mix Column 9

th Round Byte Sub 9
th Round Shift Row

9
th Round Mix Column

F1

F3

F4

F5

F7

F8

F6F2

Fig. 5. Propagation of two byte faults induced at the input of the eighth round.



For each column can be analyzed independently. If we consider the first column c1 and define
the difference

a1 = 2 F1 ⊕ 3F6, a2 = F1 ⊕ 2F6, a3 = F1 ⊕ F6, and a4 = 3 F1 ⊕ F6 ,

as defined in Figure 5. If we eliminate F1, F6 from the above system of equations we will have a
relation between a1, a2, a3 and a4, we have

a2 ⊕ a4 = a1 and 2 a2 ⊕ 3 a4 = 7 a3

where a1, a2, a3, and a4 can be expressed as,

a1 = S−1(x1 ⊕ k1)⊕ S−1(x′

1 ⊕ k1), a2 = S−1(x14 ⊕ k14)⊕ S−1(x′

14 ⊕ k14),

a3 = S−1(x11 ⊕ k11)⊕ S−1(x′

11 ⊕ k11), and a4 = S−1(x8 ⊕ k8)⊕ S−1(x′

8 ⊕ k8) .

As described above this gives 216 possible values for the quadruplet {a1, a2, a3, a4} each of which
will produce 0, 2 or 4 possible key hypotheses, but is expected to return one key hypotheses [9].
This will, therefore, produce 216 hypotheses for the quadruplet {k1, k8, k11, k14} and, therefore, 264

key hypotheses for the secret key from analyzing all the four columns.

Proposed Second Phase of the Attack Based on Model M
(i,j)
2 . In this section we

present the proposed second phase of the attack on model M
(i,j)
2 . There are 10 different instances

of model M i,j
2 based on the number of faulty bytes in two faulty diagonals. If we consider the two

faulty diagonals as Dx and Dy and corresponding faulty columns as cx and cy at the end of eighth
round MixColumn then, depending on the values of i and j, each of the two faulty columns cx and
cy can produce three different systems of equations in the manner described above. It is clear from
Section 4.1 that a faulty diagonal where all four bytes are affected does not help in reducing key
hypotheses in the second phase.

Both sets of equations can be evaluated independently, and can both be used to reduce the
number of valid key hypotheses. For example, if we consider M

(1,1)
2 , there two faulty diagonals in

this model are D1 and D2 and the corresponding infected columns are c1 and c2. Figure 6 shows
the propagation of a fault corresponding to model M

(1,1)
2 .

C2C1 C3 C4 C2C1 C3 C4

F1

F1

3F1

2F1 2F2

F2

F2

3F2

C2C1 C3 C4
C2C1 C3 C4

f1 F1f2 F1 F2F2

8
th Round Input 8

th Round Byte Sub 8
th Round Shift Row 8

th Round Mix Column

Fig. 6. Propagation of faults based on model M
(1,1)
2

In the first stage of this attack the 264 key hypotheses generated from the first phase of the
attack is tested by the system of equations generated for columns c1 and c2. We note that the first
stage of the attack will produce four sets of 216 hypotheses each of which corresponds to 32 bits of
the secret key. An attacker is not required to search through the entire 264 hypotheses.

Each of the sets of equations will validate a given key hypothesis with a probability of pi,j = 2−24,
and, therefore, the probability both sets of equations validate a given key hypothesis will be 2−48.
The number of key hypotheses returned is 264 · 2−48 = 216.

This method can be applied to all the instances of model M i,j
2 . The result of these analysis is

shown in Table 1. As the Table 1 shows the proposed second phase of the attack gives best result
on the model M

(1,1)
2 whereas it does not work for the model M

(4,4)
2 . Therefore, we conclude in this

section that the attack is most effective when the least number of bytes are affected.



Table 1. Results of The Proposed Second Phase of the Attack on Model M i,j
2 .

Model Probability Key

(M i,j
2 ) (pi,j) Hypotheses

M1,1
2 2−48 216

M1,2
2 2−40 224

M1,3
2 2−32 232

M1,4
2 2−24 240

M2,2
2 2−32 232

Model Probability Key

(M i,j
2 ) (pi,j) Hypotheses

M2,3
2 2−24 240

M2,4
2 2−16 248

M3,3
2 2−16 248

M3,4
2 2−8 256

M4,4
2 – 264

4.3 Proposed Attack Based on Model M
(i,j,k)
3

According to this model the induced fault affects three of the four diagonals of the state matrix.
These three faulty diagonals have i, j, and k bytes modified respectively; where 1 ≤ i, j, k ≤ 4.
As with the previous attacks, we divide this attack into two phases. Where, as previously, the first
phase is defined by Saha et al. [11].

The First Phase of the Attack Based on Model M
(i,j,k)
3 . This attack is similar to the

first phase of the attack based on model M
(i,j)
2 . Figure 7 shows the propagation of such a fault.

F9

F10

F11

F12F8

F7

F6

F5F1

F2

F3

F4

F9F5F1

F2
F10

F11 F3 F7

F12F8F4

F6

C4C3C2C1
C4C3C2C1 C4C3C2C1

8
th Round Mix Column 9

th Round Byte Sub

C1 C2 C3 C4

9
th Round Mix Column

F5 ⊕ 2F10 ⊕ F4

2F9 ⊕ F3 ⊕ F8 3F2 ⊕ F7 ⊕ F12

F1 ⊕ 2F6 ⊕ 3F11

F5 ⊕ F10 ⊕ 3F4

F9 ⊕ 3F3 ⊕ F8

F9 ⊕ 2F3 ⊕ 3F8

3F9 ⊕ F3 ⊕ 2F8

2F2 ⊕ 3F7 ⊕ F12

F2 ⊕ 2F7 ⊕ 3F12

F2 ⊕ F7 ⊕ 2F12

2F5 ⊕ 3F10 ⊕ F4

3F1 ⊕ F6 ⊕ F11 3F5 ⊕ F10 ⊕ 2F4

F1 ⊕ F6 ⊕ 2F11

2F1 ⊕ 3F6 ⊕ F11

9
th Round Shift Row

Fig. 7. Propagation of faults based on mode M
(1,1)
2

The difference in the result of the ninth round MixColumn can therefore be defined. For example,
the left most column c1 produces the quadruplet

a1 = 2 F1 ⊕ 3F6 ⊕ F11, a2 = F1 ⊕ 2F6 ⊕ 3F11,

a3 = F1 ⊕ 2 F6 ⊕ 2F11, and a4 = 3 F1 ⊕ F6 ⊕ F11 .



If we eliminate F1, F6, and F11 from above equations we get,

11 a1 ⊕ 13 a2 = 9 a3 ⊕ 14 a4

where a1, a2, a3, and a4 can be expressed as,

a1 = S−1(x1 ⊕ k1)⊕ S−1(x′

1 ⊕ k1), a2 = S−1(x14 ⊕ k14)⊕ S−1(x′

14 ⊕ k14)

a3 = S−1(x11 ⊕ k11)⊕ S−1(x′

11 ⊕ k11), and a4 = S−1(x8 ⊕ k8)⊕ S−1(x′

8 ⊕ k8)

The above equations will produce 224 possible values for the quadruplet {k1, k8, k11, k14}. Similarly,
solving the equivalent equations for the other columns will each return 224 hypotheses, producing
296 key hypotheses for the first phase of the attack.

Proposed Second Phase of the Attack Based on Model M
i,j,k
3 The model M i,j,k

3 has
three faulty diagonals and three corresponding faulty columns at the end of eighth round MixColumn.
Let us assume that the faulty diagonals are Dx, Dy , Dz and the corresponding faulty columns are
cx, cy , cz. Each of these three columns will produce a system of equations similar to the second
phase of the attack in Section 4.2. Therefore the key reduction process is affected by the equations
formed to represent the difference produced by the affected columns cx, cy and cz, in the same
manner as previously described in Section 4.2. There are 20 possible instances of model M i,j,k

3 , and
their effect on reducing the 296 possible key hypotheses produced by the first phase of the attack is
summarized in Table 2.

Table 2. Results of the proposed second phase of the attack on Model M i,j,k
3 .

Model Probability Key

(M i,j,k
3 ) (pi,j,k) Hypotheses

M1,1,1
3 2−72 224

M1,1,2
3 2−64 232

M1,1,3
3 2−56 240

M1,1,4
3 2−48 248

M1,2,2
3 2−56 240

M1,2,3
3 2−48 248

M1,2,4
3 2−40 256

M1,3,3
3 2−40 256

M1,3,4
3 2−32 264

M1,4,4
3 2−24 272

Model Probability Key

(M i,j,k
3 ) (pi,j,k) Hypotheses

M2,2,2
3 2−48 248

M2,2,3
3 2−40 256

M2,2,4
3 2−32 264

M2,3,3
3 2−32 264

M2,3,4
3 2−24 272

M2,4,4
3 2−16 280

M3,3,3
3 2−24 272

M3,3,4
3 2−16 280

M3,4,4
3 2−8 288

M4,4,4
3 −− 296

5 Experimental Result

To validate the proposed attack, and the models used, a series of experiments were conducted, which
were based around an iterative AES-128 implementation using Verilog HDL in a Xilinx Spartan-3E
FPGA xc3s500E device with an operating frequency of 36 MHz. Faults were injected into the eighth
round input of AES by inducing clock glitches. The setup is subjected to two different input clocks;



one clock having a higher frequency than the other. The clocks are multiplexed in such a way that
when the eighth round of the AES starts the device switches to a faster clock before returning to a
normal clock speed. We used ChipScope Pro 7.1 analyzer to observe the faulty bytes in the state
matrix of AES hardware running on the FPGA. The experiment started with a fast clock frequency
set to 72 MHz. This frequency was gradually increased at the rate 0.2 MHz per step. At each step
we perform 512 attempts to inject faults.

Appendix A summarizes the experimental results. The first column represents the fast clock
frequency with which we attempted to inject faults. The second column gives the number of fault
free samples out of 512 attempts and the subsequent columns depicts the number of faulty samples
as per the corresponding fault model. The columns M1, M2, M3, M4 represent the number of faulty
sample corresponding to faults affecting one, two, three, and four diagonals respectively. The rest
of the columns correspond to the number of faulty samples of the 6 instances of fault models
M

(i)
1 , M

(i,j)
2 , and M

(i,j,k)
3 . Only those models for which we acquired at least one faulty sample were

included in Appendix A.
The first fault appeared when the glitch clock frequency was set to 72.6 MHz, although only

faults corresponding to model M
(1)
1 were observed with a clock speed less than 73.8 MHz. The

experiment was continued with up to 80 MHz of clock frequency and we can observe that the
probability of acquiring a sample belonging to a particular fault model is not uniform. Furthermore,
it may be noted that the experimental findings show that the induced faults indeed belong to the
desirable models (for which the proposed attacks reduce the key space to sizes which can be easily

brute force searched). For example, the worst observed model is M
(1,1,3)
3 , in case of which the

proposed attack reduces the key space to 240. In most cases, however the faults belong to the faults
M

(1)
1 , M

(1,1)
2 and M

(1,2)
2 for which the attacks reduce the key space to expected values of 28, 216

and 224 respectively. Repeated experiments show that the nature and distribution of faults can
be reproduced, thus showing that the attacker can suitably control the most probable faults to
belong to models for which the attacks reduce the key space to practical limits. As the ratios of
faults corresponding to a particular model and clock frequency can be reproduced, following the
results tabulated in Appendix A an attacker can monitor the clock frequency and produce faults
corresponding to a desired model with high probability.

6 Conclusion

The paper presents an differential fault analysis of AES where multiple bytes can be affected by a
fault and an attacker will only require one acquisition to recover the secret key used. Experimental
results have been provided to show that the practicality of the attack is improved by the techniques
proposed in the paper for faults that affect multiple bytes. Not all of the attacks are practical
as described since the number of key hypotheses generated is too large for a practical exhaustive
search. However, the number of key hypotheses can be further reduced by acquiring more faulty
ciphertexts that correspond to the same fault model. An attacker can then take the intersection of
the key hypotheses generated by the first and second phase independently.

References

1. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The sorcerer’s apprentice
guide to fault attacks. Proceedings of the IEEE, 94(2):370–382, 2006.

2. E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems. In B. S.
Kaliski, editor, Advances in Cryptology — CRYPTO ’97, volume 1294 of LNCS, pages 513–
525. Springer, 1997.

3. J. Blömer and J.-P. Seifert. Fault based cryptanalysis of the advanced encryption standard
(AES). In R. N. Wright, editor, Financial Cryptography — FC 2003, volume 2742 of LNCS,
pages 162–181. Springer, 2003.

4. D. Boneh, R. DeMillo, and R. Lipton. On the importance of checking cryptographic protocols
for faults. In W. Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, volume 1233 of
LNCS, pages 37–51. Springer, 1997.



5. P. Dusart, G. Letourneux, and O. Vivolo. Differential fault analysis on A.E.S. In J. Zhou,
M. Yung, and Y. Han, editors, Applied Cryptography and Network Security — ACNS 2003,
volume 2846 of LNCS, pages 293–306. Springer, 2003.

6. C. Giraud. DFA on AES. In H. Dobbertin, V. Rijmen, and A. Sowa, editors, International

Conference Advanced Encryption Standard — AES 2004, volume 3373 of LNCS, pages 27–41.
Springer, 2004.

7. D. Mukhopadhyay. An improved fault based attack of the advanced encryption standard. In
B. Preneel, editor, Progress in Cryptology — AFRICACRYPT 2009, volume 5580 of LNCS,
pages 421–434. Springer, 2009.

8. National Institute of Standards and Technology (NIST). Advanced Encryption Standard (AES).
FIPS Publication 197, available for download at http://www.itl.nist.gov/fipspubs/, 2001.

9. K. Nyberg. Differentially uniform mappings for cryptography. In T. Helleseth, editor, Advances

in Cryptology — EUROCRYPT ’93, volume 765 of LNCS, pages 55–64. Springer, 1993.
10. G. Piret and J.-J. Quisquater. A differential fault attack technique against SPN structure,

with application to the AES and KHAZAD. In C. D. Walter, Ç. K. Koç, and C. Paar, editors,
Cryptographic Hardware and Embedded Systems — CHES 2003, volume 2779 of LNCS, pages
77–88. Springer, 2003.

11. D. Saha, D. Mukhopadhyay, and D. RoyChowdhury. A diagonal fault attack on the Advanced
Encryption Standard. Cryptology ePrint Archive, Report 2009/581, 2009. http://eprint.

iacr.org/.
12. M. Tunstall and D. Mukhopadhyay. Differential fault analysis of the advanced encryption

standard using a single fault. Cryptology ePrint Archive, Report 2009/575, 2009. http://

eprint.iacr.org/.

A Experimental Results

Clock Fault M1 M2 M3 M4 M
(1)
1 M

(1,1)
2 M

(1,2)
2 M

(1,3)
2 M

(1,1,2)
3 M

(1,1,3)
3

Frequency(MHz) free

72.0 512 0 0 0 0 0 0 0 0 0 0

72.2 512 0 0 0 0 0 0 0 0 0 0

72.4 512 0 0 0 0 0 0 0 0 0 0

72.6 510 2 0 0 0 2 0 0 0 0 0

72.8 511 1 0 0 0 1 0 0 0 0 0

73.0 508 4 0 0 0 4 0 0 0 0 0

73.2 504 8 0 0 0 8 0 0 0 0 0

73.4 507 5 0 0 0 5 0 0 0 0 0

73.6 490 22 0 0 0 22 0 0 0 0 0

73.8 489 23 0 0 0 23 0 0 0 0 0

74.0 419 79 14 0 0 79 14 0 0 0 0

74.2 448 60 4 0 0 60 4 0 0 0 0

74.4 437 64 14 0 0 64 13 1 0 0 0

74.6 403 94 15 0 0 94 15 0 0 0 0

74.8 408 99 5 0 0 99 5 0 0 0 0

75.0 248 226 38 0 0 226 38 0 0 0 0

75.2 214 205 93 0 0 205 84 9 0 0 0

75.4 128 205 179 0 0 205 122 57 0 0 0

75.6 76 180 256 0 0 180 133 123 0 0 0

75.8 20 122 370 0 0 122 146 224 0 0 0

76.0 158 190 163 0 0 190 129 34 0 0 0

76.2 27 116 368 0 0 116 184 184 0 0 0

76.4 40 128 344 0 0 128 197 147 0 0 0

76.6 26 68 413 5 0 68 156 257 0 4 1

76.8 17 62 391 34 8 62 138 253 0 16 18



77.0 0 20 429 47 16 20 68 361 0 23 24

77.2 0 0 336 123 53 0 16 320 0 32 91

77.4 0 2 313 101 96 2 21 292 0 31 70

77.6 0 1 298 123 90 1 9 288 1 46 77

77.8 0 12 409 71 20 12 42 367 0 42 29

78.0 15 59 415 22 1 59 107 308 0 19 3

78.2 0 2 210 160 140 2 12 198 0 62 98

78.4 0 5 365 94 48 5 26 339 0 36 58

78.6 0 4 296 126 86 4 11 285 0 50 76

78.8 0 0 133 110 269 0 0 133 0 27 83

79.0 0 0 144 112 256 0 6 138 0 20 92

79.2 0 0 150 114 248 0 0 150 0 28 86

79.4 0 0 21 20 471 0 0 21 0 4 16

79.6 0 0 18 24 470 0 0 18 0 3 21

79.8 0 0 14 21 477 0 0 14 0 2 19

80.0 0 0 0 0 512 0 0 0 0 0 0


