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Abstract. Buchberger’s algorithm for computing Gröbner bases was introduced in 1965, and
subsequently there have been extensive efforts in improving its efficiency. Major algorithms include
F4 (Faugère 1999), XL (Courtois et al. 2000) and F5 (Faugère 2002). F5 is believed to be the
fastest algorithm known in the literature. Most recently, Gao, Guan and Volny (2010) introduced an
incremental algorithm (G2V) that is simpler and several times faster than F5. In this paper, a new
algorithm is presented that can avoid the incremental nature of F5 and G2V. It matches Buchberger’s
algorithm in simplicity and yet is more flexible. More precisely, given a list of polynomials, the new
algorithm computes simultaneously a Gröbner basis for the ideal generated by the polynomials and
a Gröbner basis for the leading terms of the syzygy module of the given list of polynomials. For any
term order for the ideal, one may vary signature orders (i.e. the term orders for the syzygy module).
Under one signature order, the new algorithm specializes to the G2V, and under another signature
order, the new algorithm is several times faster than G2V, as indicated by computer experiments on
benchmark examples.
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1. Introduction. Polynomial systems are ubiquitous in mathematics, science
and engineering. Gröbner basis theory is one of the most powerful tools for solving
polynomial systems and is essential in many computational tasks in algebra and al-
gebraic geometry. Buchberger introduced in 1965 the first algorithm for computing
Gröbner bases, and it has been implemented in most computer algebra systems (e.g.,
Maple, Mathematica, Magma, Sage, Singular, Macaulay 2, CoCoA, etc).

There has been extensive effort in finding more efficient algorithms for computing
Gröbner bases. In Buchberger’s original algorithm (1965, [2]), one has to reduce many
useless S-polynomials (i.e., those that reduce to 0 via long division), and each reduc-
tion is time consuming. It is natural to avoid useless reductions as much as possible.
Buchberger [3, 4] discovered two simple criteria for detecting useless S-polynomials.
Note that a reduction of an S-polynomial to 0 corresponds to a syzygy (for the ini-
tial list of polynomials). Möller, Mora and Traverso (1992, [16]) go a step further to
present an algorithm using the full module of syzygies, however, their algorithm is
not very efficient. Faugère (2002, [10]) introduced the idea of signatures and rewriting
rules that can detect many useless S-polynomials, hence saving a significant amount
of time that would be used in reducing them. In fact, for a regular sequence of poly-
nomials, his algorithm F5 detects all useless reductions. By computer experiments,
Faugère showed that his algorithm F5 is many times faster than previous algorithms.
In fact, Faugère and Joux (2003, [11]) solved the first Hidden Field Equation (HFE)
Cryptosystem Challenge which involves a system of 80 polynomial equations with 80
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variables over the binary field (1996, [17]). Since F5 seems difficult to understand,
there have been several papers trying to simplify and improve F5, see Eder and Perry
(2009, [7]), Sun and Wang (2009, [18]), and Hashemi and Ars (2010, [13]).

In another direction of research, one tries to speed up the reduction step. Lazard
(1983, [15]) pointed out the connection between Gröbner bases and linear algebra,
that is, a Gröbner basis can be computed by Gauss elimination of a Sylvester matrix.
The XL algorithm of Courtois et al. (2000, [5]) is an implementation of this Sylvester
matrix, which is recently improved by Ding et al. (2008, [6]). A more clever approach is
the F4 algorithm of Faugère (1999, [9]). F4 is an efficient method for reducing several
S-polynomials simultaneously where the basic idea is to apply fast linear algebra
methods to the submatrix of the Sylvester matrix consisting of only those rows that
are needed for the reductions of a given list of S-polynomials. This method benefits
from the efficiency of fast linear algebra algorithms. The main problem with this
approach, however, is that the memory usage grows quickly (compared to, say, F5),
even for medium systems of polynomials.

Recently, Gao, Guan and Volny [12] presented an algorithm (G2V) that is incre-
mental in the same fashion as F5 and F5C but is much simpler and faster (in the range
of 2 to 10 times faster on some benchmark problems). Incremental algorithms (like
F5 and G2V), however, are at a disadvantage as the order of the input generators
can have a profound effect on the complexity of the intermediate bases. It some-
times happens that intermediate Gröbner bases are exponential in size yet the final
basis is small. In this case, any incremental algorithm will be extremely slow. Our
contribution in this paper is to develop a new algorithm (GVW) that can avoid the
incremental nature of F5 and G2V. It matches Buchberger’s algorithm in simplicity
yet is much faster. This new algorithm uses signatures in a similar fashion as F5 and
G2V, but allows arbitrary orderings of the signatures (i.e. term orders of the syzygy
modules). In this way, a Gröbner basis for 〈g1, . . . , gm〉 can be computed in one-shot,
incrementally, or as a hybrid of the two. Moreover, just as reductions to zero in G2V
provide information about the colon ideal (and thus saving further computations),
the present algorithm uses reductions to zero to discover more information about the
(g1, . . . , gm)-syzygy module in order to prevent later reductions to zero.

Upon termination, our algorithm computes a Gröbner basis for the ideal generated
by g1, . . . , gm as well as a list of minimal leading terms for the (g1, . . . , gm)-syzygy
module. Unless one needs to compute the syzygy module under a certain term order,
one is free to choose the term order of the syzygy module to maximize performance.
A POT order corresponds to an incremental style algorithm while non-elimination
orders correspond to one-shot algorithms. In fact, in the incremental mode, our new
algorithm specializes to the G2V algorithm, but we find that the one-shot mode can
be much faster (another 2 to 10 times faster than incremental mode and therefore
several times faster than F5 and F5C).

The paper is organized as follows. In Section 2, we introduce the basic con-
cepts and theory for our algorithm. In particular, we define signatures, regular top-
reductions, super top-reductions, and the concept of eventually super top-reducibility.
We also introduce J-pairs that are in some sense similar to S-polynomials. Then we
characterize Gröbner bases in terms of J-pairs in a similar fashion as Buchberger’s
characterization in terms of S-polynomials. Our characterization goes a step further,
that is, it also tells us when we have a Gröbner basis for the corresponding syzygy
module. In Section 3, we present our algorithm and prove its correctness, which proves
the correctness of G2V as a special case. The problem of finite termination of our
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algorithm is left open in this paper, but Huang [14] has completely characterized for
which signature orders our algorithm have a finite termination. We present computer
experiments of our algorithm that shows how the algorithm performs under different
term orders for the syzygy module. Finally, in Section 4, we show how our algorithm
can be adapted to compute Gröbner bases for modules and for polynomials over quo-
tient rings, which would allow one to design more flexible incremental algorithms. In
the conclusion section, we mention some recent related papers after the current paper
was initially submitted.

2. Theory. Let R = F[x1, . . . , xn] be a polynomial ring over a field F with n
variables. Given polynomials g1, . . . , gm ∈ R, we wish to compute a Gröbner basis for
the ideal

I = 〈g1, . . . , gm〉 = {u1g1 + · · ·+ umgm : u1, . . . , um ∈ R} ⊆ R (2.1)

with respect to some term order on R. Define

H = {(u1, . . . um) ∈ Rm : u1g1 + · · ·+ umgm = 0} , (2.2)

called the syzygy module of g = (g1, . . . , gm). We would like to develop an algo-
rithm that computes Gröbner bases for both I and H. Note that elements of Rm are
viewed as row vectors and are denoted by bold letters say g,u etc. We consider the
following R-submodule of Rm ×R:

M =
{

(u, v) ∈ Rm ×R : ugt = v
}
. (2.3)

We define Ei ∈ Rm to be the ith standard unit vector. Note that a monomial (or a
term) in R is of the form

xα =

n∏
i=1

xaii

where α = (a1, . . . , an) ∈ Nn is any vector of non-negative integers, and a term in Rm

is of the form

xαEi

where 1 ≤ i ≤ m and α ∈ Nn. We say xαEi divides xβEj if i = j and xα divides
xβ , with the quotient being (xβEi)/(x

αEj) = xβ/xα ∈ R. Also, the R-module M is
generated by

(E1, g1), (E2, g2), . . . , (Em, gm). (2.4)

Fix any term order ≺1 on R and any term order ≺2 on Rm. We emphasize that
the order ≺2 may or may not be related to ≺1 in the theory below, though ≺2 is
usually an extension of ≺1 to Rm in implementation. For the sake of convenience, we
shall use the following convention for leading terms:

lm(v) = lm≺1
(v), lm(u) = lm≺2

(u)

for any v ∈ R and u ∈ Rm. Note that, for v ∈ R, lm(v) is a monomial xα, while,
for u ∈ Rm, lm(u) is a term xαEi for some α ∈ Nn and 1 ≤ i ≤ m. We make the
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convention that if v = 0 then lm(v) = 0; similarly for lm(u). This should not cause
any confusion, but the reader should keep the two different orders in mind.

For any (u, v) ∈ Rm × R, we call lm(u) the signature of (u, v). In comparison,
F5 defines a signature for a polynomial v ∈ I = 〈g1, . . . , gm〉 to be lm(u) for any
u ∈ Rm so that (u, v) ∈ M , hence v may have many signatures. Our definition of
signatures for pairs avoids this ambiguity of multiple signatures.

We now define top-reduction, similar to the top-reduction in F5. Let p1 =
(u1, v1), p2 = (u2, v2) ∈ Rm × R be any two pairs. When v2 is nonzero, we say
p1 is top-reducible by p2 if the following two conditions are satisfied:

(i) v1 is nonzero and lm(v2) divides lm(v1); and
(ii) lm(tu2) � lm(u1) where t = lm(v1)/lm(v2).

The corresponding top-reduction is then

p1 − ctp2 = (u1 − ctu2, v1 − ctv2), (2.5)

where c = lc(v1)/lc(v2). The effect of a top-reduction is that the leading monomial
in the v-part is canceled without increasing the signature of p1. Such a top-reduction
is called regular, if

lm(u1 − ctu2) = lm(u1),

and super otherwise. So the signature of p1 remains the same under a regular top-
reduction but becomes smaller under a super top-reduction. A super top-reduction
happens if

lm(tu2) = lm(u1) and
lc(u1)

lc(u2)
=

lc(v1)

lc(v2)
.

When v2 = 0, we say that p1 is top-reducible by (u2, 0) if u1 and u2 are both
nonzero and lm(u2) divides lm(u1). In this case, we could use (u2, 0) to top-reduce
p1 by setting t = lm(u1)/lm(u2) and c = lc(u1)/lc(u2) in the equation (2.5). Such a
top-reduction will decrease the signature of p1 without increasing the leading term of
v1 (even if v1 = 0) and is therefore always called super. We note that a pair (u1, 0)
is never top-reducible by (u2, v2) with v2 6= 0.

In our algorithm below, we only detect super top-reductions of the two kinds
defined here, but never actually perform super top-reductions. We should mention
that the top-reductions used in F5 correspond to regular top-reductions in our sense,
but some of our regular top-reductions are not allowed in F5 (e.g. when lm(u1) =
t lm(u2)).

We need a concept of J-pairs, similar to S-polynomials in Buchburger’s algorithm.
Suppose p1 = (u1, v1), p2 = (u2, v2) ∈ Rm × R are two pairs with v1 and v2 both
nonzero. We form a joint pair from them as follows. Let

t = lcm(lm(v1), lm(v2)), t1 =
t

lm(v1)
, t2 =

t

lm(v2)
.

Let c = lc(v1)/lc(v2) and T = max(t1lm(u1), t2lm(u2)), say T = tilm(ui) where
i ∈ {1, 2}. Suppose

lm(t1u1 − ct2u2) = T. (2.6)

Then T is called the J-signature of p1 and p2, while tipi is called the J-pair of p1
and p2. We do not define any J-pair for p1 and p2 when lm(t1u1− ct2u2) ≺ T , which
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happens if

t1lm(u1) = t2lm(u2), and
lc(u1)

lc(u2)
=

lc(v1)

lc(v2)
.

In comparison to Buchburger’s algorithm, the S-polynomial of v1 and v2 is t1v1−ct2v2.
In terms of pairs, this corresponds to a reduction:

t1p1 − ct2p2 = (t1u1 − ct2u2, t1v1 − ct2v2). (2.7)

When (2.6) holds, (2.7) is a regular top-reduction of tipi by the other pair, namely
t3−ip3−i. This means that the J-pair of p1 and p2 is defined if and only if (2.7) is a
regular top-reduction. Hence the J-pair of p1 and p2 is always regular top-reducible
by p1 or p2. We point out that, in the case of S-polynomials, the goal is to cancel the
leading terms of v’s. In our J-pair, the leading terms of v’s are not cancelled, but will
be cancelled in later top-reductions. Also, we never define the J-pair of p1 = (u1, v1)
and p2 = (u2, v2) when v1 or v2 is zero.

Lemma 2.1. Let t be a monomial in R and p1 = (u1, v1), p2 = (u2, v2) ∈ Rm×R.
If tp1 is regular top-reducible by p2, where both v1 and v2 are nonzero, then t1p1 is a
J-pair of p1 and p2, where

t1 =
lcm(lm(v1), lm(v2))

lm(v1)
=

lm(v2)

gcd(lm(v1), lm(v2))

and t1 is a divisor of t. Furthermore, t1p1 is regular top-reducible by p2.
Proof. Since tp1 is regular top-reducible by p2 and both v1 and v2 are nonzero,

there is a monomial s such that

t lm(v1) = s lm(v2), t lm(u1) = lm(tu1 − csu2), (2.8)

where c = lm(v1)/lm(v2). Let

t2 =
lcm(lm(v1), lm(v2))

lm(v2)
=

lm(v1)

gcd(lm(v1), lm(v2))
.

Then the first equation of (2.8) implies that, for some monomial w,

t =
lm(v2)

gcd(lm(v1), lm(v2))
w = t1w, and

s =
lm(v1)

gcd(lm(v1), lm(v2))
w = t2w.

Hence the second equation of (2.8) implies that t1 lm(u1) = lm(t1u1 − ct2u2). This
shows that t1p1 is the J-pair of p1 and p2, and t1p1 is regular top-reducible by p2.

A subset G of M is called a strong Gröbner basis for M if every pair M is
top-reducible by some pair in G.

Proposition 2.2. Suppose that G = {(u1, v1), (u2, v2), . . . , (uk, vk)} is a strong
Gröbner basis for M (where k could be infinite). Then

1. G0 = {ui : vi = 0, 1 ≤ i ≤ k} is a Gröbner basis for the syzygy module of
g = (g1, . . . , gm), and

2. G1 = {vi : 1 ≤ i ≤ k} is a Gröbner basis for I = 〈g1, . . . , gm〉.
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Proof. For any u = (u1, . . . , um) in the syzygy module of g, we have (u, 0) ∈M .
By our assumption, (u, 0) is top-reducible by some pair (ui, vi) in G. Then we must
have vi = 0, thus ui ∈ G0 and lm(u) is reducible by lm(ui). This proves that G0 is a
Gröbner basis for the syzygy module of g.

Now suppose v ∈ I and is nonzero. Then there exists u = (u1, . . . , um) ∈ Rm

so that ugt = v, hence (u, v) ∈ M . Among all such u, we pick one so that lm(u) is
minimum. Since (u, v) ∈ M , it is top-reducible by some (ui, vi) where 1 ≤ i ≤ k. If
vi = 0, then we could use (ui, 0) to reduce (u, v) to get a u′ so that u′gt = v and
lm(u′) is smaller than lm(u), contradicting to the minimality of lm(u). So vi 6= 0 and
lm(vi) divides lm(v). Hence G1 is a Gröbner basis for I.
Remark. Note that M ⊂ Rm × R has a Gröbner basis in the usual sense as a
submodule of Rm+1 where the leading term of (u, v) is lm(v)Em+1 if v 6= 0 and
lm(u) if v = 0. The above proposition implies that a strong Gröbner basis for M is
a Gröbner basis for M as a submodule of Rm+1, but the converse may not be true
for an arbitrary submodule M of Rm+1 (as our regular top-reduction must preserve
signatures). This is why we call our basis a strong Gröbner basis.

Let S be any set of pairs in Rm × R. We say that a pair (u, v) ∈ Rm × R is
regular top-reducible by S if it is regular top-reducible by at least one pair in S. We
call (u, v) eventually super top-reducible by S if there is a sequence of regular
top-reductions of (u, v) by pairs in S that reduce (u, v) to a pair (u′, v′) that is no
longer regular top-reducible by S but is super top-reducible by at least one pair in S.

Theorem 2.3. Suppose G is a subset of M such that, for any term T ∈ Rm,
there is a pair (u, v) ∈ G and a monomial t such that T = t lm(u). Then the following
are equivalent:

(a) G is a strong Gröbner basis for M ,
(b) every J-pair of G is eventually super top-reducible by G,
(c) for every J-pair (u, v) of G, there is a pair (u1, v1) ∈ G so that lm(u1) divides

lm(u) and t lm(v1) ≺ lm(v) where t = lm(u)/lm(u1).
Proof. (a) ⇒ (b) Let p = (u, v) be any J-pair of G. Then p is in M , hence

top-reducible by G. We can perform regular top-reductions to p as much as possible,
say to get p′ = (u′, v′) which is not regular top-reducible. Since p′ is still in M ,
it is top-reducible by G, hence must be super top-reducible by G. Therefore, p is
eventually super top-reducible by G.

(b) ⇒ (c) Let p = (u, v) be any J-pair from G. Since p is eventually super
top-reducible by G, after a sequence of regular top-reductions of p by G, we can get
a p0 = (u0, v0) ∈ M such that p0 is not regular top-reducible by G but is super
top-reducible by some pair p1 = (u1, v1) ∈ G.

If v1 = 0, then lm(u1) | lm(u0) = lm(u) and tv1 = 0 is smaller than lm(v). So we
may assume that v1 6= 0. Then

lm(v0)

lm(v1)
=

lm(u0)

lm(u1)
,

which is denoted by t. Note that every J-pair can be regular top-reduced by G, so we
have lm(v0) < lm(v) and lm(u0) = lm(u), the latter implies that

t lm(v1) = lm(v0) ≺ lm(v).

Hence we have lm(u1) | lm(u0) and t lm(v1) ≺ lm(v) as desired. This shows that (c)
is satisfied.
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(c)⇒ (a). We prove by contradiction. Assume that there is a pair p = (u, v) ∈M
that is not top-reducible by any pair in G. Among all such pairs p we pick one with
minimal signature T = lm(u). Note that T 6= 0. Next, we select a pair p1 = (u1, v1)
from G such that

(i) T = t lm(u1) for some monomial t, and
(ii) t lm(v1) is minimal among all p1 ∈ G satisfying (i).
We claim that t(u1, v1) is not regular top-reducible by G. To prove this claim,

we suppose that t(u1, v1) is regular top-reducible by some p2 = (u2, v2) ∈ G, so
both v1 and v1 are nonzero. We want to derive a contradiction to the condition (ii).
By Lemma 2.1, the J-pair of p1 and p2 is t1(u1, v1) and that t1p1 is still regular
top-reducible by p2, where

t1 =
lcm(lm(v1), lm(v2))

lm(v1)
, and t = t1w

for some monomial w. As t1p1 is a J-pair of G, there is a pair p3 = (u3, v3) ∈ G so
that t3lm(v3) ≺ t1lm(v1), where t3 = t1lm(u1)/lm(u3) is a monomial. Then we have

T = t lm(u1) = wt1lm(u1) = wt3lm(u3),

and

wt3lm(v3) ≺ wt1lm(v1) = t lm(v1).

This violates the condition (ii) for the choice of p1 in G.
Hence we may assume that t(u1, v1) is not regular top-reducible by G. Consider

(u, v) = (u, v)− ct(u1, v1), (2.9)

where c = lc(u)/lc(u1) so that lm(u) ≺ lm(u) = T . Note that lm(v) 6= t lm(v1), since
otherwise (u, v) would be top-reducible by p1 contradicting the choice of (u, v). Also,
as (u, v) ∈ M and lm(u) ≺ T , we have that (u, v) is top-reducible by G. If (u, v) is
top-reducible by some pair p2 = (u2, v2) ∈ G with v2 = 0, then we can reduce (u, v)
repeatedly by such pairs to get a new pair (ũ, v) that is not top-reducible by any pair
in G with v-part being zero. Note that (ũ, v) is still in M and lm(ũ) ≺ T . Hence (ũ, v)
is top-reducible by some pair p2 = (u2, v2) ∈ G with v2 6= 0. As lm(v) 6= t lm(v1), we
consider two cases:

• lm(v) ≺ t lm(v1). Then lm(v) = t lm(v1), hence t(u1, v1) is regular top-
reducible by (u2, v2) (as lm(ũ) ≺ t lm(u1)). Since t(u1, v1) is not regular
top-reducible by any pair in G, this case is impossible.

• lm(v) � t lm(v1). Then lm(v) = lm(v), and (u, v) is regular top-reducible by
(u2, v2), contradicting the fact that (u, v) is not top-reducible by any pair in
G.

Therefore such a pair (u, v) does not exist in M , so every pair in M is top-reducible
by G. This proves (a).
Remarks. (i) In the original version of this paper, Theorem 2.3 had only (a) and
(b). Later, in early November 2010, Huang [14] discovered (c) in a slightly different
form as M-pair Criterion, and in December 2010, Arri and Perry [1] discovered (c) as
F5 Criterion where the polynomials in G must be S-irreducible in M (not just in G).
We decided to include (c) here for three reasons: (1) (c) was actually proved in the
original proof of the equivalence of (a) and (b) (the current proof is just a rewording
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of that proof), (2) our statement and proof are much simpler (compare with Theorem
18 in [1]), and (3) Theorem 2.3 allows J-pairs to be processed in any order, not just in
increasing signature order; which is not true for the algorithms of Huang [14] and Arri
[1]. For more details, see the comments on related recent works in the last paragraph
in Section 5.

(ii) For a subset G of M , there are usually many J-pairs of G with the same
signature T . We don’t need to check the condition (b) or (c) for every such J-pair.
Instead, we just store one J-pair whose v-part is minimal and check if this J-pair
satisfies (c), which would imply that all other J-pairs also satisfy (c).

(iii) Suppose a final strong Gröbner basis for M is

(u1, v1), . . . , (uk, vk). (2.10)

At any intermediate step of computation, we only know

(u1, v1), . . . , (up, vp) (2.11)

for some p < k. In general, a pair (u, v) may be eventually super top-reducible by
(2.11) but not by (2.10). How can one decide whether (u, v) is eventually super top-
reducible by (2.10) when only (2.11) is known? Similarly for the condition (c). Our
strategy is to always pick the J-pair with minimal signature to reduce. Then a pair
that is eventually super top-reducible by an intermediate basis is always eventually
super top-reducible by the final basis. A more detailed argument will be given in the
next section.

3. Algorithm, Term Orderings and Time Comparison. Algorithm and
Its Correctness. Our algorithm is based on Theorem 2.3. The basic idea is as
follows. Initially, we have the pairs in (2.4) in our Gröbner basis. So the condition of
the theorem is satisfied. From these pairs, we form all J-pairs, keeping only one J-pair
for each J-signature (the one whose v-part is minimal). We then take the smallest
J-pair from the list of J-pairs. Check if the condition (c) is satisfied for this pair. If
yes, discard this J-pair; otherwise, repeatedly perform regular top-reductions to this
pair until it is no longer regular top-reducible, say to get (u, v). If the v part of the
resulting pair is zero, then the u part is a syzygy in H, and we store this vector. If
the v part is nonzero, then add this (u, v) pair to the current Gröbner basis and form
new J-pairs. Repeat this process until the list of J-pairs is empty.

We make two improvements on this basic algorithm. First, storing and updating
syzygies u ∈ H are expensive. In our computation, we shall make all pairs (u, v)
monic, namely, the leading coefficient of u is 1. Now suppose (u1, v1) and (u2, v2) are
any two monic pairs. Then a top-reduction (regular or super) is determined only by
lm(u1), lm(u2), v1 and v2. The other terms of u1 and u2 are not used at all. Let
T1 = lm(u1) and T2 = lm(u2), the signatures of (u1, v1) and (u2, v2), respectively.
Suppose we store only (T1, v1) and (T2, v2). Then (T1, v1) is regular top-reducible
by (T2, v2) when v2 6= 0, lm(v1) is divisible by lm(v2), tT2 ≺ T1, or tT2 = T1 but
lc(v1) 6= lc(v2). The corresponding top-reduction is

v := v1 − ctv2

where t = lm(v1)/lm(v2) and c = lc(v1)/lc(v2), and furthermore, if tT2 = T1 then we
update v as

v := v/(1− c),
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to keep the u-part monic of (u, v) where T1 = lm(u). Then (T1, v) is the resulting pair
of the reduction, and it replaces (T1, v1). Our algorithm below will perform regular
top-reductions in this fashion.

Another improvement is to use trivial syzygies. We will store the leading terms
of known syzygies in a list called H. Let (T1, v1) and (T2, v2) be any two pairs from
the Gröbner basis computed so far, where v1 and v2 are both nonzero. Then, for
1 ≤ i ≤ 2, there are ui ∈ Rm such that lm(ui) = Ti and (ui, vi) ∈M . Then we have

v2(u1, v1)− v1(u2, v2) = (v2u1 − v1u2, 0) ∈M.

Hence v2u1 − v1u2 is a syzygy of (g1, . . . , gm). Its leading term is

T = max(T1lm(v2), T2lm(v1)),

provided that T1lm(v2) 6= T2lm(v1) or T1lm(v2) = T2lm(v1) but lc(v1) 6= lc(v2).
When T1lm(v2) = T2lm(v1) and lc(v1) = lc(v2), the leading terms in v2(u1, v1) and
v1(u2, v2) cancel each other. In that case, we don’t know the leading term of the
syzygy, so we just ignore such a syzygy. In all other cases, our algorithm will add T
to the list H. The benefit of H is in detecting useless reductions. That is, whenever
a J-pair has a signature that is divisible by a term in H, it is always eventually super
top-reducible and hence discarded, thus saving time.

The algorithm is described more precisely in Figure 3.1 below. As mentioned
above, we use H to record leading terms of syzygies. In addition to H, our algorithm
uses two more lists to store the pairs (T1, v1), (T2, v2), . . . , (Tk, vk) with vi 6= 0 for
1 ≤ i ≤ k. This list will be stored as

U = [T1, T2, . . . , Tk], V = [v1, v2, . . . , vk].

Then [U, V ] represents the whole list (T1, v1), (T2, v2), . . . , (Tk, vk).
Theorem 3.1. If the algorithm in Figure 3.1 terminates, then V is a Gröbner

basis for I = 〈g1, g2, . . . , gm〉 and H is a Gröbner basis for the leading terms of the
syzygy module of (g1, g2, . . . , gm).

Proof. To prove the correctness of the algorithm, we need to show the following:
(i) One can delete J-pairs in Steps 4a, and 4b whose signatures are divisible by

lm(u), where u ∈ H.
(ii) A pair that is eventually super top-reducible by an intermediate basis will

always be eventually super top-reducible by the final basis.
(iii) One just needs to keep one J-pair for each signature, which follows directly

from Theorem 2.3(c).
Our current basis consists of pairs in [U, V ] and [H, 0]. For (i), let (u, v) be any

pair whose signature lm(u) is divisible by lm(u′) for some u′ ∈ H. Then (u, v) is
top-reducible by (u′, 0). Any regular top-reduction of (u, v) won’t change lm(u), so
the pair obtained from (u, v) by any sequence of regular top-reductions will be super
top-reducible by (u′, 0). Hence (u, v) is eventual super top-reducible by the current
basis. This means that we don’t need to reduce (u, v), and so we simply discard it.

To see (ii), suppose the final Gröbner basis computed for M is

(u1, v1), . . . , (uk, vk), (3.1)

while at any intermediate step, we only know

(u1, v1), . . . , (up, vp) (3.2)
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Algorithm for computing Gröbner bases
Input: g1, . . . , gm ∈ R = F[x1, . . . , xn] and term orders for R and Rm

Output: A Gröbner basis for I = 〈g1, . . . , gm〉 and a Gröbner basis for
lm(H), the leading terms of the syzygy module

Variables: U a list of terms Ti, representing signatures of (ui, vi) ∈M ,
V a list of polynomials for vi for (ui, vi) ∈M ,
H a list for lm(u) were u ∈ Rm is a syzygy found so far,
JP a list of pairs (xαTi, x

αvi), where xα is a monomial so that
xα(ui, vi) is a J-pair of (ui, vi) and (uj , vj) for some j 6= i.

Step 0. U = [ ], V = [ ], and H = [ ] are all empty lists.
JP = [(E1, g1), . . . , (Em, gm)].

Step 1. Take a minimal (in signature) pair (T, v1) from JP , and delete it
from JP .

Step 2. If (T, v1) satisfies Theorem 2.3(c) with G = [U, V ], then discard
(T, v1) and go to step 5.

Step 3. Reduce the pair (T, v1) repeatedly and as much as possible by the
pairs in [U, V ] using only regular top-reductions, say to get (T, v).

Step 4a. If v = 0, then append T to H, and delete every J-pair (T2, v2) in
JP whose signature T2 is divisible by T .

Step 4b. If v 6= 0 and (T, v) is not super top-reducible by [U, V ], then
i) Add the leading terms of the principle syzygies, vTj − vjT for

1 ≤ j ≤ |U |, to H,
ii) Form new J-pairs of (T, v) and (Tj , vj), 1 ≤ j ≤ |U |,
iii) Insert into JP all such J-pairs whose signatures are not re-

ducible by H (storing only one J-pair for each distinct signature
T , the one with v-part minimal), and

iv) Append T to U and v to V .
Step 5. While JP is not empty, go to step 1.
Return: V and H.

Fig. 3.1. Main algorithm

for some p < k. Suppose that the smallest J-pair from JP is (t, i) (i.e., t(ui, vi)). If
t(ui, vi) is eventually super top-reducible by (3.2), then t(ui, vi) remains eventually
super top-reducible by (3.1), as all (uj , vj), j > p, have strictly larger signature than
t(ui, vi). If t(ui, vi) is not eventually super top-reducible by (3.2), then the basis (3.2)
is augmented by a new pair (up+1, vp+1), which is obtained from t(ui, vi) via regular
top-reductions by (3.2). Hence the J-pair t(ui, vi) is eventually super top-reducible
by the new basis

(u1, v1), . . . , (up, vp), (up+1, vp+1). (3.3)

Note that (up+1, vp+1) has the same signature as the J-pair t(ui, vi). All new J-pairs
formed using (up+1, vp+1) will have strictly greater signature than that of (up+1, vp+1)
(this is true exactly when (up+1, vp+1) is fully regular top-reduced with respect to
(3.2)). Hence (up+1, vp+1) can not be top-reducible by any pair (uj , vj), j > p + 1,
so the J-pair t(ui, vi) remains eventually super top-reducible by (3.1). Therefore, any
pair that is eventually super top-reducible by our current basis remains so by the final
basis.

Remark. If, in Step 4b, the super top-reducibility of (T, v) is not checked, then
one can process J-pairs in any order, not necessarily in increasing signature order.
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The correctness of the algorithm follows directly from Theorem 2.3.
Finite termination. Our algorithm allows arbitrary term orders ≺1 on R and

and ≺2 on Rm. However, it is not clear when it has finite termination. We left this
as an open problem in the original version. Later, Huang [14] proved the following
nice result.

Theorem 3.2 (Huang [14]). The algorithm in Figure 3.1 terminates in finitely
many steps if and only if the term orders ≺1 on R and ≺2 on Rm are compatible,
which means that xα ≺1 x

β if and only if xαEi ≺2 x
βEi for all 1 ≤ i ≤ m.

For more details, the interested reader is referred to Huang’s paper. Also, we
would like to mention that the proofs of finite termination in Hashemi and Ars [13]
and Arri and Perry [1] have flaws. In [13], the proof of Proposition 4.1 assumes that
the each time a new polynomial is added to the current Gröbner basis, the ideal
generated by its leading terms strictly increases (just like Buchburger’s algorithm).
This is not true in general, as a polynomial may be reducible by the current Gröbner
basis in the sense of Buchburger’s algorithm but such a reduction may not preserve
signature hence not allowed in F5 algorithm.

In [1], they claim finite termination for any term orders ≺1 on R and ≺2 on Rm.
That is not correct by Huang’s result. Assuming that the two orders are compatible,
their proof of Proposition 14 is still flawed. More precisely, they assumed that if an
R-module N of R×Rm is generated by a set of elements of the form

(xαj , xβjEij ), j = 1, 2, . . . ,

then, for every element (v,u) ∈ N , the element (lm(v), lm(u)) is divisible by one of
the generators, that is, there is a monomial t ∈ R and some j so that

(lm(v), lm(u) = t (xαj , xβjEij ).

This is not true in general. Here’s a counterexample. Let R = F[x, y] under lex
with x > y and R2 under POT order with E1 = (1, 0) > E2 = (0, 1). Consider the
R-submodule N generated by

(x,E1), (x,E2), (y,E2).

Then (y,E1) = (x,E1)− (x,E2) + (y,E2) ∈ N , but (y,E1) is not divisible by any of
the three generators.

Gröbner bases for the syzygy module. Our algorithm as presented in Figure
3.1 only calculates the leading terms of the syzygy module. While one has the option
of modifying the algorithm to compute syzygies instead of leading terms of syzygies,
there is a more efficient way. Suppose that the algorithm terminates with lists U, V
and H, then we can compute a minimal Gröbner basis for the syzygy module as
follows. The m pairs (Ei, gi), 1 ≤ i ≤ m, are already in M . Among these pairs, we
need to perform regular top-reductions until no one is regular top-reducible by any
others. Then we have m pairs

(u1, v1), . . . , (um, vm) ∈M

whose signatures are E1, . . . ,Em, respectively, and none of them is regular top-
reducible by others in the list. Now order the signatures in U \ {E1, . . . ,Em} in
increasing order, say

Tm+1, . . . , T`.
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For i from m+ 1 to `, find j < i and a monomial t so that Ti = t lm(uj) and t lm(vj)
is minimal, and perform regular top-reductions of t(uj , vj) by

(u1, v1), . . . , (um, vm), . . . , (ui−1, vi−1),

until it is not regular top-reducible. Denote the resulted pair by (ui, vi) and proceed
to the next i. By the end of this loop, we get ` pairs

(u1, v1), (u2, v2), . . . , (um, vm), . . . , (u`, v`) (3.4)

in M , whose signatures are exactly those in U .
To get a Gröbner basis for the syzygy module, just do the following. For each

term T in H, we recover the u such that ugt = 0 and lm(u) = T . Find a pair (ui, vi),
1 ≤ i ≤ `, so that T = t lm(ui) and t lm(vi) is minimal. Then perform regular top-
reductions of t(ui, vi) by (3.4) until the v-part is zero and the u-part is a syzygy with
leading term equal to T . If T comes from a trivial syzygy, then no reductions are
required. All these syzygies form a minimal Gröbner basis for the (g1, . . . , gm)-syzygy
module with respect to ordering ≺2.

This algorithm takes advantage of the signatures already computed in U and H,
thus saving time that would be used in processing J-pairs and reducing J-pairs that
are eventually super top-reducible.

Term Orders. Now we discuss choices of term orders. We use ≺1 to represent
a term ordering on R and ≺2 to represent a term ordering on Rm. While computing
Gröbner bases for both 〈g1, . . . , gm〉 and H, one should set ≺1 and ≺2 to the appro-
priate term orderings for the Gröbner bases desired. Often, however, the Gröbner
basis for H is not needed. Then we only need the leading terms of H to speed up the
computation of 〈g1, . . . , gm〉. In this case, we have tremendous freedom in the choice
of ≺2.

There are many ways that we can construct a term ordering on Rm. We consider
four extreme cases below. Let ≺ be some term order on R. We extend ≺ to Rm as
follows.
(POT) The first is called position over term ordering (POT). We say that xαEi ≺

xβEj if i < j or i = j and xα ≺ xβ .
(TOP) The second is the term over position ordering (TOP). We say that xαEi ≺

xβEj if xα ≺ xβ or xα = xβ and i < j.
(g1) Next is the g-weighted degree followed by TOP. We say that xαEi ≺ xβEj if

deg(xαgi) < deg(xβgj) or deg(xαgi) = deg(xβgj) and xαEi ≺top xβEj , where
deg is for total degree.

(g2) Finally, we have g-weighted ≺ followed by POT. We say that xαEi ≺ xβEj
if lm(xαgi) ≺ lm(xβgj) or lm(xαgi) = lm(xβgj) and xαEi ≺pot xβEj .

These signature orders are compatible with the order in R, hence our algorithm
has finite termination by Huang’s result [14]. We remark that, under the POT order,
our new algorithm closely corresponds to the G2V algorithm presented in [12]. The
reason being that this new algorithm always first picks J-pairs with signatures con-
taining E1, then those with E2, etc. This means that it computes Gröbner bases for
〈g1〉, 〈g1, g2〉, . . ., 〈g1, g2, . . . , gm〉, just like G2V and F5. The only difference is that
the intermediate bases may not be reduced and non-leading terms are not reduced as
in the computing of normal forms.

Another remark is that our algorithm under the g1 order roughly corresponds to
the behavior of the F4 and XL algorithms [5]. In the XL algorithm, one performs row
reductions on a matrix whose rows correspond to all polynomials xαgi, 1 ≤ i ≤ m,
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Test Case (#generators) F5 F5C G2V

Katsura5 (22) 1.48 0.93 0.36
Katsura6 (41) 2.79 2.34 0.37
Katsura7 (74) 30.27 22.76 4.64
Katsura8 (143) 290.97 177.74 29.88

Schrans-Troost (128) 1180.08 299.65 21.34
F633 (76) 30.93 29.87 2.06

Cyclic6 (99) 28.44 22.06 5.65
Cyclic7 (443) 4591.20 2284.05 732.33

Table 3.1
Runtimes in seconds comparing F5, F5C and G2V (GVW under POT ordering) for various

test cases in Singular 3110 on an Intel Core 2 Quad 2.66 GHz. This table is reproduced from [12].

Test Case F5 F5C G2V POT TOP g1 g2

Katsura5 (22) 79 66 64 67 64 64 39
Katsura6 (41) 103 77 69 73 97 97 55
Katsura7 (74) 280 218 216 224 189 189 101
Katsura8 (143) 691 492 439 448 368 368 191
Schrans-T (128) 1379 813 461 398 208 208 220

F633 (76) 420 362 288 164 237 225 150
Cyclic 6 (99) 451 338 411 163 1209 1209 216
Cyclic 7 (443) 3905 2581 3108 785 9322 9322 974

Table 3.2
Counts of the J-pairs or S-polynomials processed by F5, F5C (as in [7]), G2V (as in [12]), and

GVW under POT, TOP, g1 and g2 orders

with total degree of xαgi smaller than some bound. Our algorithm basically works
with only some of those rows that correspond to J-signatures. So our algorithm needs
much less storage.

Performance Comparison. For ease of exposition, we refer to our algorithm as
GVW. We implemented GVW in C++ so that 〈g1, . . . , gm〉 is computed in one-shot,
that is, non-incrementally. Because our C++ implementation is vastly different than
our F5/C and G2V implementations, we did not compare timings as we did in [12]
(see Table 3.1, reproduced here1 for comparison purposes). Instead, table 3.2 lists
the counts of J-pairs or S-polynomials processed by each algorithm. Within Table
3.2, we distinguish between the G2V (as in [12], without theorem 2.3(c)) and GVW
under the POT order. But as mentioned earlier, GVW under POT is nearly the G2V
algorithm except for the interreduction between increments and theorem 2.3(c).

Just as in [12], various benchmark examples (from [7]) were run for comparison.
We collected data from each example under each term ordering for comparison. Table
3.4 list the runtimes in seconds of GVW for each of the four term orderings. In
examining the timings, we find that g2 seems to be a clear winner among the four
term orders.

A more computer independent measure would be a count of J-pairs processed
and the number of extraneous generators produced. Table 3.2 lists the total number
of J-pairs processed for each term ordering. It’s analogous to counting the number

1with permission from ACM.
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Test Case (# gen) POT/G2V TOP g1 g2

Katsura5 (22) 0 0 0 0
Katsura6 (41) 0 0 0 0
Katsura7 (74) 0 0 0 0
Katsura8 (143) 0 0 0 0

Schrans-Troost (128) 0 0 0 0
F633 (76) 0 0 0 0

Cyclic 6 (99) 0 0 0 0
Cyclic 7 (443) 0 0 0 0

Table 3.3
A count of the super top-reductions (all discarded)

of S-polynomials processed in F5 or Buchberger’s algorithm. As with the timings,
g2 seems to be the most efficient. We remark that in [12], it was observed that
G2V and F5 performed very similarly in terms of J-pairs/S-polynomials processed.
Therefore, GVW under the g2 order with theorem 2.3(c) tends to process fewer J-
pairs/S-polynomials.

Table 3.5 lists the sizes of the Gröbner bases produced by GVW with each term
ordering. These are the Gröbner bases produced by the algorithm before any interre-
duction occurs to produce a reduced Gröbner basis. We believe this measure to be
significant since fewer extraneous generators means quicker reductions. Again, we
see that g2 produces less redundancy than the other orderings. In fact, the paren-
thetical values of each table shows the size of a minimal Gröbner basis for the ideal
〈g1, . . . , gm〉. Table 3.5 shows that GVW under POT is producing Gröbner bases that
are close to minimal. Finally, we mention that as presented in table 3.3, there were
no super top-reductions for the examples considered.

One might make the observation that in [12] (or Table 3.1), G2V outperformed F5
and F5C by runtimes of 2 to 10 times2, while with the present algorithm, GVW under
the g2 ordering outperforms G2V (GVW under the POT ordering) by another factor
of 2 to 10 times. This comparison shows that if GVW under g2 were implemented
comparably to F5 or F5C, it would compute Gröbner bases around 4 to 20 times
faster.

4. Algorithm for Quotient Rings and Modules. Quotient Rings. Let F
be any field and R = F[x1, . . . , xn] be a polynomial ring. Let J be an ideal of R
with Gröbner basis G = {f1, . . . , fk}. Suppose I is an ideal of R/J generated by
{g1, . . . , gm} where each gi is already in normal form with respect to G. We wish to
compute a Gröbner basis for I = 〈g1, . . . , gm〉, and the (g1, . . . , gm)-syzygy module.

We represent polynomials in R/J in normal form modulo G. This means that,
for any g ∈ R, we have

g ≡
∑̀
i=1

cix
αi (mod G) (4.1)

where no term xαi is divisible by any leading term of G. This expression can be

2We mention that while F5 and F5C require homogeneous input polynomials, G2V and GVW
do not. In all the tables presented throughout, including table 3.1, G2V and GVW were also given
the same homogeneous input polynomials as F5 and F5C. In retrospect, it may have been more fair
to G2V and GVW to remove the homogenizing variable from the input polynomials.
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Test Case (# gen) POT/G2V TOP g1 g2

Katsura5 (22) 0.00 0.00 0.00 0.01
Katsura6 (41) 0.02 0.04 0.04 0.04
Katsura7 (74) 0.46 0.36 0.36 0.34
Katsura8 (143) 4.20 2.97 2.99 2.82

Schrans-Troost (128) 1.54 3.72 3.75 3.94
F633 (76) 0.07 0.43 0.36 0.06

Cyclic 6 (99) 0.04 0.66 0.64 0.07
Cyclic 7 (443) 5.40 253.75 252.02 7.49

Table 3.4
Runtimes in seconds using our C++ implementation on an Intel Core 2 Quad 2.66 GHz processor

Test Case (# gen) POT/G2V TOP g1 g2

Katsura5 (22) 67 64 64 27
Katsura6 (41) 73 91 91 44
Katsura7 (74) 224 175 175 80
Katsura8 (143) 448 343 343 151

Schrans-Troost (128) 398 133 133 134
F633 (76) 135 184 170 106

Cyclic 6 (99) 155 1189 1189 188
Cyclic 7 (443) 749 9237 9237 846

Table 3.5
Sizes of Gröbner bases before any interreduction for different term orders

obtained from g by long division via G. When g ∈ R is viewed as a polynomial in
R/J , the leading term of g is the maximal xαi that appears in the normal form (4.1)
of g. So the leading term of g ∈ R/J is never divisible by any leading term of G.

We begin by defining a Gröbner basis for an ideal I ⊂ R/J . We say that a
generating set {g1, . . . , gm} ⊂ R/J is a Gröbner basis for I = 〈g1, . . . , gm〉 in R/J if
for any h ∈ I, the leading monomial of h is divisible by the leading monomial of one
of the generators, that is

lm(gi) | lm (h) for some 1 ≤ i ≤ m.

In other words, if {g1, . . . , gm} is a Gröbner basis for I ⊂ R/J and {f1, . . . , fk}
is a Gröbner basis for J ⊂ R, then {g1, . . . , gm, f1, . . . , fk} is a Gröbner basis for
〈g1, . . . , gm, f1, . . . , fk〉 ⊂ R.

The syzygy module for g = (g1, . . . , gm) ∈ (R/J)m is defined as

H = {(u1, . . . , um) ∈ (R/J)m : u1g1 + · · ·+ umgm = 0 in R/J}.

If viewed in the original ring R, every (g1, . . . , gm)-syzygy in (R/J)m can be extended
to an (g1, . . . , gm, f1, . . . , fk)-syzygy in Rm+k, which may vary depending on how
u1g1 + · · · + umgm is reduced to 0 by G. In our computation, we only need to store
the leading term of (u1, . . . , um) ∈ H where no terms in the ui’s are divisible by the
leading terms of G.

Figure 4.1 describes a slight modification to the GVW algorithm that produces
a Gröbner basis for 〈g1, . . . , gm〉 ⊂ R/J and a Gröbner basis for the leading terms of
the syzygy module H, which can be used to calculate an actual Gröbner basis for H.
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Test Case (# gen) POT/G2V TOP g1 g2

Katsura5 (22) 5.16 4.92 4.95 4.62
Katsura6 (41) 5.73 6.44 6.45 5.41
Katsura7 (74) 14.48 13.72 13.70 8.34
Katsura8 (143) 53.17 45.56 46.14 22.94

Schrans-Troost (128) 55.75 17.84 17.84 18.89
F633 (76) 7.91 10.09 8.89 6.05

Cyclic 6 (99) 5.88 26.55 26.86 6.06
Cyclic 7 (443) 43.36 2772.00 2764.00 42.06

Table 3.6
Maximal amount of memory used (MiB) for different term orders

This version of GVW can be used to compute Gröbner bases incrementally, each
time adding m polynomials. For example, to compute a Gröbner basis for an ideal
I = 〈g1, . . . , gt〉 ⊂ R, one can first compute a Gröbner basis G for J = 〈g1, . . . , gk〉 ⊂ R
where k < t. Then compute a Gröbner basis G1 for 〈gk+1, . . . , gt〉 in the quotient ring
R/J . Then G ∪ G1 is a Gröbner basis for I. And in the process, G is used in the
reduction of many polynomials (e.g., the v part of every J-pair). By interpreting any
polynomial in R/J as having already been reduced to normal form modulo G, we keep
the number of terms in each polynomial to a minimum, thus reducing computational
and storage requirements. Also, as the choice for k and m are arbitrary, one can
design an algorithm that can compute Gröbner bases in one-shot, incrementally, or
some hybrid of the two. This provides a flexible strategy for computing Gröbner bases
for large systems of polynomials.

Calculating reduced Gröbner bases at intermediate steps is another advantage
to running the algorithm in this mode. The biggest performance difference (after
part (c) of theorem 2.3) between G2V and GVW under POT is that G2V is able to
calculate a reduced Gröbner basis between each iteration. In fact, this is the advantage
provided by F5C [7]. Our quotient ring version of GVW is able to do the same. For
this reason, whenever an elimination order is used on Rm, this quotient ring version
should improve performance.

Modules. Let F be a field and R = F[x1, . . . , xn] be a polynomial ring. Let
g1, . . . ,gm be elements in Rs. We define an R-linear operator T : Rm → Rs, uniquely
determined by g1, . . . ,gm, given by

(f1, . . . , fm) 7−→ (f1, . . . , fm)


g1

g2

...
gm

 .
We wish to determine the image space and kernel of T . Note that the image is the
R-submodule I generated by {g1, . . . ,gm} in Rs while the kernel of T corresponds to
the (g1, . . . ,gm)-syzygy module H in Rm.

We fix term orders ≺1 on Rs and ≺2 on Rm, and let u = (f1, . . . , fm) ∈ Rm and
v = T (u) ∈ Rs. We redefine M as an R-submodule of Rm ×Rs so that

M = {(u,v) ∈ Rm ×Rs : T (u) = v}.

We continue to use Ei, 1 ≤ i ≤ m as the ith unit vector in Rm, but to avoid confusion
we use Fj , 1 ≤ j ≤ s as the jth unit vector in Rs. And now, the R-module M is
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Algorithm for computing Gröbner bases in quotient rings
Input: G = {f1, . . . , fk} a Gröbner basis for an ideal J ⊂ R, g1, . . . , gm

polynomials in R in normal form modulo G, and term orders for R
and Rm.

Output: A Gröbner basis for 〈g1, . . . , gm〉 ∈ R/J and a Gröbner basis for
lm(H), the leading terms of the syzygy module.

Variables: U a list of terms Ti, representing signatures of (ui, vi) ∈M .
V a list of polynomials vi for (ui, vi) ∈M ,
H a list of lm(u) where u ∈ Rm is a syzygy found so far,
JP a list of pairs (xαTi, x

αvi), where xα is a monomial so that
xα(ui, vi) is a J-pair of (ui, vi) and (uj , vj) for some j 6= i.

Step 0. U = [0, . . . ,0] with length k, and V = [f1, . . . , fk],
JP = [(E1, g1) . . . , (Em, gm)] and H = [ ], the empty list.

Step 1. Take a minimal (in signature) pair (T, v1) from JP , and delete it
from JP .

Step 2. If (T, v1) satisfies theorem 2.3(c) with G = [U, V ] (comparisons
with respect to normal forms by G), then discard (T, v1) and go to
step 5.

Step 3. Reduce the pair (T, v1) repeatedly and as much as possible by the
pairs in [U, V ] using only regular top-reductions, say to get (T, v).

Step 4a. If v = 0, then append T to H, and delete every J-pair (T2, v2) in
JP whose signature T2 is divisible by T .

Step 4b. If v 6= 0 and (T, v) is not super top-reducible by [U, V ], then
i) Add the leading terms of the principle syzygies, vTj − vjT for

1 ≤ j ≤ |U |, to H,
ii) form new J-pairs of (T, v) and (Tj , vj), 1 ≤ j ≤ |U |,
iii) insert into JP all such J-pairs whose signatures are not re-

ducible by H (storing only one J-pair for each distinct signature
T , the one with v-part minimal), and

iv) append T to U and v to V ,
Step 5. While JP is not empty, go to step 1.
Return: V and H.

Fig. 4.1. Algorithm for quotient rings

generated by

(E1,g1), (E2,g2), . . . , (Em,gm).

By now it should be clear that the GVW algorithm is a special case of this
situation where s = 1 and is immediately applicable. The only differences that arise
in this general case are in dealing with the leading monomials of the v part. Suppose
(u1,v1) and (u2,v2) are two pairs in Rm × Rs, with xαFj = lm(v1) and xβFk =
lm(v2). We consider (u2,v2) as a candidate to top-reduce (u1,v1) only if j = k.
Also, we only calculate the J-pair between (u1,v1) and (u2,v2) if j = k. In this case,
assuming v1,v2 6= 0, we have

t = lcm(xα, xβ), t1 =
t

xα
, t2 =

t

xβ
,

and if tiui = max {t1u1, t2u2}, then ti(ui,vi) is a J-pair. Everything else proceeds as
before.
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5. Conclusions and related recent works. We have presented a new algo-
rithm for computing Gröbner bases for ideals and modules (including syzygy modules).
In terms of simplicity, our algorithm is as simple as Buchberger’s algorithm in the
sense that we form J-pairs and perform reductions. We can detect useless J-pairs us-
ing syzygies and eventual super top-reducibility. Our algorithm is more flexible than
F5 and our previous algorithm G2V [12] in that we allow a Gröbner basis to be com-
puted incrementally, in one-shot, or a hybrid of the two. It is in this flexibility that
we achieve an efficiency boost over G2V as some signature orderings perform better
than others. Indeed, the g2 ordering performs better than others and is suggested for
general implementation of Gröbner basis algorithms. Also, we believe that F4 style
fast reductions are possible within the context of our algorithm, but the question
remains as to how to implement it efficiently.

After our paper was submitted in October 2010, several related papers have ap-
peared. Eder and Perry [8] provide a detailed comparison on F5, G2V and Arri’s
algorithm. As mentioned earlier, Huang [14] have completely characterized when
our algorithm has finite termination, and his proof works also for our algorithm for
quotient rings and general modules. Sun and Wang [19] generalized the GVW algo-
rithm further and they allow J-pairs be processed in any order, not just in increasing
signature orders, which will provide more flexibility in implementation. Huang [14]
characterize Gröbner bases in terms of TRB and TRP pairs, while Arri and Perry
[1] characterize Gröbner bases in terms of S-irreducible polynomials and S-primitive
polynomials. TRB pairs are equivalent to S-irreducible polynomials, and TRP pairs
are equivalent to S-primitive polynomials. We note that, in our language, that a pair
(u, v) is a TRB pair if it is not regular top-reducible by any pair in the module M
in (2.3), and a TRB pair is a TRP pair if it is not super top-reducible by another
TRB pair whose signature is strictly smaller. To be able to check such a property for
(u, v) by a current G, G must contain all TRP pairs whose signatures are smaller than
lm(u). The condition (c) of Theorem 2.3 is stated in Huang [14] as M-pair criterion in
terms of TRP pairs and in Arri and Perry [1] as F5 Criterion in terms of S-primitive
polynomials. Their algorithms must process J-pairs or S-polynomials in increasing
signature order. If J-pairs are processed in increasing order, their algorithms are very
similar to ours. We believe that our approach is much simpler, and as remarked after
the proof of Theorem 3.1, our algorithm can be easily modified so that J-pairs can be
processed in any order, not necessarily in increasing order.

REFERENCES

[1] A. Arri and J. Perry, The F5 criterion revised, CoRR, arXiv:1012.3664v3 (2010).
[2] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes

nach einem nulldimensionalen Polynomideal, PhD thesis, Leopold-Franzens University,
1965.

[3] B. Buchberger, A criterion for detecting unnecessary reductions in the construction of
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ISSAC ’92: Papers from the international symposium on Symbolic and algebraic compu-
tation, New York, NY, USA, 1992, ACM, pp. 320–328.

[17] J. Patarin, Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new
families of asymmetric algorithms, in EUROCRYPT’96: Proceedings of the 15th annual
international conference on Theory and application of cryptographic techniques, Berlin,
Heidelberg, 1996, Springer-Verlag, pp. 33–48.

[18] Y. Sun and D. Wang, A new proof of the F5 algorithm, CoRR, arXiv:1004.0084 (2010).
[19] Y. Sun and D. Wang, A generalized criterion for signature related Gröbner basis algorithms,
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