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Abstract. In this paper we give more insights on the security of blockcipher-
based hash functions. We give a very simple criterion to build a se-
cure large class of Single-Block-Length (SBL) or double call Double-
Block-Length (DBL) compression functions based on (kn, n) blockci-
phers, where kn is the key length and n is the block length and k is
an integer.

This criterion is simpler than previous works in the literature. Based on
the criterion, we can get many results from this criterion, and we can get
a conclusion on such class of blockcipher-based hash functions. We solved
the open problem left by Hirose. Our results show that to build a secure
double call DBL compression function, it is required k >= m + 1 where
m is the number of message blocks. Thus, we can only build rate 1/2
secure double DBL blockcipher-based compression functions if k == 2.

At last, we pointed out flaws in Stam’s theorem about supercharged
functions and gave a revision of this theorem and added another condi-
tion for the security of supercharged compression functions.

1 Introduction

Cryptographic hash function, which is defined as an admissible algorithm that
uniformly maps arbitrary length inputs to fixed length outputs, is widely used
as a pivotal primitive for ensuring the integrity of information. A hash func-
tion usually consists of iteration of a compression function with fixed input and
output length. One first design a fixed domain compression function and then
extend the domain to an arbitrary domain by iterating the compression function
several times.

As flaws in popular classic hash functions MD5 [25] and SHA-1 [3] have been
attacked [30,29], NIST has launched the competition for a new hash function
standard SHA-3. Actually, the popular design of hash functions are from the
idea design of block ciphers, either explicitly such as MDC-2 [12] and other
schemes [19] or implicity such as MD5. In the five finalists of the SHA-3 compe-
tition, 2 of them (BLAKE, Skein) are blockcipher-based design, the other three
are permutation-based design, which are related to blockciphers [22]. Thus, hash
functions composed of blockciphers are very important and worth of study.

Currently blockcipher-based hash functions are classified into single block
length (SBL) hash functions and double block length (DBL) hash functions. For



SBL hash functions, the length of output is equal to that of the blockcipher, while
for DBL hash functions, the length of the output is twice larger than that of the
underlined blockcipher. For a typical blockcipher such as AES, the block length is
128 bits, thus a hash function with 128-bit output is no longer secure against the
birthday attack. Thus, more and more works start to focus on blockcipher-based
functions with larger output of length [5,6,7,8,9,10,11,13,14,15,17,20,21,23,26,28].

In [24], Preneel, Govaerts, and Vandewalle (PGV) systematically study SBL
blockcipher-based hash functions. They regarded 12 out of 64 PGV schemes
as secure. They focused on attacks, not on proofs. Later in [1], Black et al.
systematically studied SBL blockcipher-based hash functions in the ideal cipher
model. They proved that the 12 schemes considered by PGV really are secure,
furthermore, they found an additional 8 of the PGV schemes are just as collision
resistant in the iteration. After that, to prove the collision resistance or preimage
resistance of a blockcipher-based hash function in the ideal model became the
standard way of research.

In [27], Stam considered generalizations of PGV functions gave a conclusive
discussion on SBL blockcipher-based functions. Stam proposed criterions for a
secure blockcipher-based compressions and secure blockcipher-based functions
in the iteration, though the compression function is not that secure. Stam also
studied chopped, overloaded and supercharged compression functions.

For double call DBL hash functions, Knudsen et al. [13] discussed the security
of DBL hash functions with rate 1 based on (n, n) blockciphers. Hohl et al. [11]
discussed the security of compression functions of DBL hash functions with rate
1/2. Satoh et al. [26] and Hattori et al. [6] and Hirose [9,10] discussed DBL hash
functions with rate 1 based on (n, 2n) blockciphers. Fleischmann et al. [5,4]
address the collision resistance of two old DBL constructions known as Abreast-
DM and Tandem-DM [15,14].

Özen and Stam [23] proposed a novel framework for DBL blockcipher-based
hash functions. For single call DBL blockcipher-based hash functions, Lucks [17]
first proposed a collision resistant single call DBL blockcipher-based hash func-
tion in the iteration. Later, Stam [27] proposed a single call rate-1 DBL blockcipher-
based supercharged compression that is opimally collision resistant up to a log-
arithmic factor.

In this paper we give more insights on the security of blockcipher-based
hash functions. We give a very simple criterion to build a large class of secure
SBL or DBL compression functions based on (kn, n) blockciphers. We gave a
new definition (security rate) for blockcipher-based hash functions. This new
definition is different from the efficiency rate which only measures the efficiency
of a blockcipher-based hash functions.

This criterion is simpler than previous works in the literature. We classified
such a large class of blockcipher-hash functions into Type-1, Type-2, Type-3,
Type-4 compression functions. Based on this criterion, we counted the exact
number of optimum security .

There are 12 Type-1, 672 Type-2, 7676928 Type-3 optimum secure com-
pression functions and we proved their security in the ideal cipher model. We



pointed out that Abreast-DM, Tandem-DM and Hirose’s Schemes are just special
cases of Type-3 compression functions. Thus they are optimum secure (collision
resistance and preimage resistance) in the ideal cipher model.

Based on the criterion, there doesn’t exist any Type-4 optimum secure com-
pression functions. We also found collision attacks on Type-4 hash functions in
the iteration with complexity much lower than the birthday complexity. Thus
we solved the open problem left by Hirose that if there exists optimum collision
resistant Type-4 hash functions in the iteration.

Our results show that to build a secure double call DBL compression function,
it is required k >= m+1 where m is the number of message blocks. Thus, we can
only build rate 1/2 secure double DBL blockcipher-based compression functions
if k == 2.

At last, we pointed out flaws in Stam’s theorem about supercharged functions
and gave a revision of this theorem and added another condition for the security
of supercharged compression functions.

Through our analysis, it seems optimum collision resistance and (2nd) preim-
age resistance Rate-1 DBL compression functions doesn’t exist.

2 Preliminaries

Lemma 1. [16] The number of m× r matrices of rank r over GF (2) is:

N(m, r) = 2r(r−1)/2
r−1∏
i=0

(2m−i − 1).

Definition 1. A compression function F is optimum secure if it is optimum
against (second) preimage attack and collision attack.

Definition 2. Let F be a compression function composed of block ciphers, m is
number of message blocks in terms of the block length of the underlined blockci-
pher, N is the number of cipher calls in F , the efficiency rate r defined below is
an index of efficiency:

r =
m

N
.

The original definition of hash rate is in [13]. We realized that this definition
only related to the efficiency of hash. It has no relationship with the key length
of the underlined blockcipher. We can modify it to a more accurate definition
we called security rate:

Definition 3. Let F be a compression function composed of blockciphers, m
is the number of message blocks in terms of the block length of the underlined
blockcipher, N is the number of cipher calls in F , K is the key length of the
blockcipher and L is the output length of F , the security rate R defined below is
an index of security:

R =
m · L
N ·K

.



The security rate of a compression function F can be seemed as an index of
the security of compression function. Its security related to the input and output
length of F , the key length of the underlined blockciphers and the number of
cipher calls. This definition is more generic than the efficiency rate. The security
rate of a classical Davies-Meyer compression function [24] based on a (n, n)
blockcipher is 1, and the security rate will still be 1 even it is based on a (2n, n)
blockcipher. This definition can also be applied to DBL block-cipher-based hash
functions and thus reduces the complexity of categories of block-cipher-based
hash functions.

If F only makes one call to the underlined blockcipher, then it is a single-call
compression function. If F makes two calls to the underlined blockcipher, it is a
double-call compression function. In the following we classify the block-cipher-
based compression function into different types.

Definition 4. Types of Block-Cipher-Based Compression Functions:

– Type-1: For a single-call Rate-1 SBL compression function based on a (n, n)
blockcipher E, we use the PGV model [24]. The compression function f(Hi−1,Mi)
= EA(B)⊕C, where (A,B,C) is a linear composition of {Hi−1,Mi}. Namely, A

B
C

 = L1

(
Hi−1

Mi

)
and L1 is a 3 × 2 {0, 1}-matrix. Here we neglect the constant in the PGV
model since it is not related to the security.

– Type-2: For a single-call Rate-1 SBL compression function based on a (2n, n)
blockcipher E, we write the compression function f as: f(Hi−1,M

1
i ,M2

i ) =
EA‖B(C)⊕D, where 

A
B
C
D

 = L2

Hi−1

M1
i

M2
i


and L2 is a 4× 3 {0, 1}-matrix.

– Type-3: For a double-call Rate- 1
2 DBL compression function based on two

independent (2n, n) blockciphers EU and EL, we write the compression func-
tion (Hi, Gi) = F (Hi−1, Gi−1,Mi) as:{

Hi = f(Hi−1, Gi−1,Mi) = EU
A‖B(C)⊕D

Gi = g(Hi−1, Gi−1,Mi) = EL
W‖X(Y )⊕ Z

where 
A
B
C
D

 = U

Hi−1

Gi−1

Mi

 ,


W
X
Y
Z

 = L


Hi−1

Gi−1

Mi

Y





where Y = EU
A‖B(C) and U is a 4× 3 {0, 1}-matrix and L is a 4× 4 {0, 1}-

matrix.
– Type-4: For a double-call Rate-1 DBL compression function based on two

independent (2n, n) blockciphers EU and EL, we write the compression func-
tion (Hi, Gi) = F (Hi−1, Gi−1,M

1
i ,M2

i ) as:{
Hi = f(Hi−1, Gi−1,M

1
i ,M2

i ) = EU
A‖B(C)⊕D

Gi = g(Hi−1, Gi−1,M
1
i ,M2

i ) = EL
W‖X(Y )⊕ Z

where


A
B
C
D

 = U


Hi−1

Gi−1

M1
i

M2
i

 ,


W
X
Y
Z

 = L


Hi−1

Gi−1

M1
i

M2
i

Y


where Y = EU

A‖B(C) and U is a 4× 4 {0, 1}-matrix and L is a 4× 5 {0, 1}-
matrix.

There are some other types such as double-call Rate-1 DBL compression func-
tion based on (n, n) block ciphers [13] and its security has been analyzed care-
fully. In the next section we will show that there doesn’t even exist an optimum
secure double-call Rate-1 DBL compression function based (2n, n) blockciphers,
let alone it is based on (n, n) block ciphers.

3 A Criterion for Block-Cipher-Based Compression
Functions

In this section we propose a simple criterion for building optimum secure Type-
1, Type-2, Type-3, Type-4 compression functions.

Theorem 1. To build an optimum secure Type-1, Type-2, Type-3, Type-4
compression functions, it is required that after elementary column operations on
matrix L1, L2, U , all the matrix L1, L2, U can be transformed into the following
form:


0 0 · · · 1
0 · · · 1 0
...

. . .
...

1 0 · · · 0
1 ? · · · ?


where ′?′ can be either 0 or 1.



We will prove this theorem in the next section. Here we explain this theorem
by analysis of Type-1 compression functions. To build an optimum preimage re-
sistant and collision resistant compression function based on a (n, n) blockcipher,
Preneel, Govaerts and Vandewalle stated that 12 compression functions are se-
cure against attacks [24]. Here we show there are at most 12 secure compression
functions.

Corollary 1. There are at most 12 optimum secure Type-1 compression func-
tions.

Proof. According to Theorem 1, for each secure Type-1 compression function,
it can be transformed into the following matrix form after elementary column

operations on the matrix:

0 1
1 0
1 ?

 .

From the matrix operations in Theorem 1, we can compute the matrix for
each optimum secure Type-1 compression function by right-multiplying L1 by
a full rank 2×2 {0, 1}-matrix. According to Lemma 1, there are 22(2−1)/2 · (22−
1) · (21 − 1) = 6 such matrices, since ′?′ can be either 0 or 1, so there are totally
at most 2 · 6 = 12 optimum secure Type-1 compression functions. ut

Corollary 2. There are at most 672 optimum secure Type-2 compression func-
tions.

Proof. According to Theorem 1, for each optimum secure Type-2 compression
function, it can be transformed into the following matrix form after elementary
column operations on the matrix: 

0 0 1
0 1 0
1 0 0
1 ? ?


For Type-2 compression functions, L2 is a 4× 3 {0, 1}-matrix, we can com-

pute the matrix for each optimum secure Type-2 compression function by right-
multiplying L2 by a full rank 3× 3 {0, 1}-matrix. According to Lemma 1, there
are 23(3−1)/2 · (23−1)·(22−1) ·(21−1) = 168 such matrices, so there are totally
at most 22 · 168 = 672 secure Type-2 compression functions. ut

Corollary 3. There are at most 7676928 secure Type-3 compression functions.

Proof. For Type-3 compression functions, U is a 4 × 3 {0, 1}-matrix and L is
a 4 × 4 {0, 1}-matrix. The upper blockcipher and the lower block cipher are
independent. The matrix U can be transformed into the following form after
elementary column operations:


0 0 1
0 1 0
1 0 0
1 ? ?

 .



Thus we can right-multiply U by a full rank 3 × 3 {0, 1}-matrix. According
to Lemma 1, there are 168 full rank 3 × 3 {0, 1} matrices and we can have
22 · 168 = 672 cases of U .

It is harder to compute the cases of L, since
W
X
Y
Z

 = L


Hi−1

Gi−1

Mi

Y


and thus F can be either parallel or serial [13].

We consider the following two cases of L after elementary matrix operations


W
X
Y
Z

 =


0 0 1 0
0 1 0 0
1 0 0 0
1 ? ? 0




Y
Gi−1

Mi

Hi−1

 or


W
X
Y
Z

 =


0 0 1 ?
0 1 0 ?
1 0 0 ?
1 ? ? ?




Hi−1

Gi−1

Mi

Y


where in the first case the vector (X, Y, Z,W ) is effected by Hi−1 indirectly
through Y and in the second case the vector (X, Y, Z,W ) is effected by Hi−1

directly and Y is an option. If L cannot be transformed into the above two cases,
we can find an attack which is in the proof of the criterion in the next section.

Thus there are (22+26)·168 = 11424 cases of L and 672 cases of U . There are
at most 672 × 11424 = 7676928 cases of secure Type-3 compression functions.
ut

Corollary 4. There are no optimum secure Type-4 compression functions.

Proof. For Type-4 compression functions, U is a 4× 4 matrix. A 4× 4 matrix
cannot be transformed into the form in Theorem 1, so there doesn’t exist any
optimum secure Type-4 compression function. ut

4 Proof of the Criterion

In this section, we will prove Theorem 1. Without loss of generality, we first con-
sider Type-2 compression functions, where Hi = f(Hi−1, M1

i ,M2
i ) = EA‖B(C)⊕

D and 
A
B
C
D

 = L2

Hi−1

M1
i

M2
i

 .

Proof of Theorem 1 in Type-2 Compression Functions:

1. Fixed Point: Let Y = EA‖B(C), we call that there exist a fixed point in f if
Y is not affected by a linear composition of (Hi−1,M

1
i ,M2

i ).
If a fixed point exists in f , let S is the linear composition of (Hi−1,M

1
i ,M2

i )
such that Y is not affected by S, then it is trivial to find a (second) pre-image
or collision:



– Given Hi, we random choose an input (Hi−1,M
1
i ,M2

i ), compute Y =
EA‖B (C), H ′

i = Y ⊕ D, A,B,C is not affected by S since Y is not
affected by S.

– Then we fixed Y , and change the value of S, it is trivial to deduce
(H

′

i−1,M
1′

i ,M2′

i ) from {Y, Hi,H
′
i,A,B,C} such that f(H

′

i−1,M
1′

i ,M2′

i ) =
Hi. Thus a collision is also trivial to be found.

To build a secure Type-2 compression functions, it is required such fixed
point doesn’t exit. That is to say, A,B,C will be affected by any linear com-
position of {Hi−1,M

1
i ,M2

i }. In the form of matrix, this means the submatrix
of L2 without the last row of L2 has rank = 2. After elementary column op-
erations on the submatrix of L2 without the last row it can be a submatrix
in the form Theorem 1 without the last row.

2. Onewayness: It doesn’t guarantee the onewayness of the compression func-
tion if there doesn’t exist fixed points. However, onewayness can be easily
achieved if we make a little restriction on the last row in L2.
Assume that after elementary column operations on L2, it is a matrix in the
form of Theorem 1. If the first entry in the last row of L2 is 1, it is easy to
show the one-way property can be hold. We can easily prove it in the ideal
cipher model [1,2].

3. Collision Resistance and (Second) Preimage Resistance: A collision consists
of two pairs (Hi−1,M

1
i ,M2

i ) and (H ′
i−1,M

1′

i ,M2′

i ) will collide in the same
value and the adversary has made the relevant queries to E and/or D. The
ideal cipher maintains the query lists.
We show that any forward or inverse query will add at most one item to the
query list.
For a forward query (A,B,C), there is a unique (Hi−1,M

1
i ,M2

i ) corre-
sponding to this query. Y = EA‖B(C) is close to uniform in {0, 1}n, thus
Hi = Y ⊕D is also close to uniform. Since a blockcipher is a permutation,
For the q-th fresh query, the output is random chosen from 2n − (q − 1)
values.
Similarly, for a q-th fresh inverse query (A,B, Y ), the ideal cipher outputs a
value C chosen from 2n− (q− 1) values. From (A,B,C) we obtain a unique
(Hi−1,M

1
i ,M2

i ). Since the first entry in the last row of L2 is 1, thus Hi is
linear dependent with C and randomly chosen in 2n − (q − 1) values.
Thus, the probability of a collision after q queries can be bounded by 1

2q(q +
1)/(2n − q).
Similarly, the probability of a (second) preimage can be found after q queries
can be bounded by q/(2n − q). ut

We can also easily prove Theorem 1 in the case of Type-1 compression
functions based on the above analysis.

Proof of Theorem 1 in Type-3 Compression Functions:
It is a little harder to prove Theorem 1 in Type-3 compression functions

since there are two independent blockciphers.
For Type-3 compression functions, the output length is 2n while the block

length of the underlined blockcipher is n. (Hi, Gi) = F (Hi−1, Gi−1,Mi) is:



{
Hi = f(Hi−1, Gi−1,Mi) = EU

A‖B(C)⊕D

Gi = g(Hi−1, Gi−1,Mi) = EL
W‖X(Y )⊕ Z

where 
A
B
C
D

 = U

Hi−1

Gi−1

Mi

 ,


W
X
Y
Z

 = L


Hi−1

Gi−1

Mi

Y


where Y = EU

A‖B(C) and U is a 4×3 {0, 1}-matrix and L is a 4×4 {0, 1}-matrix.
First we show that F is not optimum collision resistance if U cannot be

transformed into the matrix form in Theorem 1. Since U is a 4×3 {0, 1}-matrix,
if it is not in the form in Theorem 1 after elementary column operations, then
it can be either of the following two cases after elementary column operations:

1. The submatrix of U without the last row of U is not full rank. In this case,
there exist fixed points, thus it is trivial to find collisions. After we find
2n/2 collisions in Hi, we input these collisions to the lower part of F and a
collision can be found in Gi with probability 0.39.

2. The first entry in the last row is ′0′. In this case, the function f is not
oneway and thus it is trivial to find collisions of f . Thus we can easily attack
F similarly as the above case.

Thus it is required that the matrix U can be transformed into the matrix
form in Theorem 1.

It is harder to analyze the cases of the matrix L, since
W
X
Y
Z

 = L


Hi−1

Gi−1

Mi

Y


and thus F can be either parallel or serial [13].

We consider the following two cases of L after elementary matrix operations


W
X
Y
Z

 =


0 0 1 0
0 1 0 0
1 0 0 0
1 ? ? 0




Y
Gi−1

Mi

Hi−1

 or


W
X
Y
Z

 =


0 0 1 ?
0 1 0 ?
1 0 0 ?
1 ? ? ?




Hi−1

Gi−1

Mi

Y


where in the first case the vector (X, Y, Z,W ) is effected by Hi−1 indirectly
through Y and in the second case the vector (X, Y, Z,W ) is effected by Hi−1

directly and Y is an option.
If L can not be transformed into the above two cases after elementary column

operations, there exist fixed points such that if we fix the linear composition of
(Hi−1, Gi−1,Mi), then Hi is fixed, thus it is trivial to find collisions.



Collision Resistance and (Second) Preimage Resistance:

(Hi, Gi) = F (Hi−1, Gi−1,Mi) = f(Hi−1, Gi−1, Mi) ‖ g(Hi−1, Gi−1, Mi).
The upper cipher EU in f and lower cipher EL in g are independent. If

L can be transformed into the first case, we can rewrite F as F (x1, x2, x3) =
f(x1, x2, x3) ‖ g(f(x1, x2, x3)⊕ x1, x2, x3) where (x1, x2, x3) = (Hi−1, Gi−1,Mi)
and f , g are two independent compression functions.

If f and g are Davies-Meyer structure, we can prove the collision resistance
and (second)preimage resistance bound in the ideal cipher model as in [10].

It is even easier to analyze the collision resistance and (second) preimage
resistance in the ideal cipher model when L can be transformed into the second
case, thus we omit it here.

Thus for compression function F , the probability of a collision after q queries
can be bounded by q2/(2n− q)2. and the probability of a (second) preimage can
be found after q queries can be bounded by q/(2n − q)2.

ut
For Type-4 compression functions, the matrix U is a 4× 4 matrix. A 4× 4

matrix cannot be transformed into the form in Theorem 1, so there doesn’t exist
any optimum secure Type-4 compression function.

Although the compression functions are not optimum secure against collision
attack and (second)preimage attack, one can build a collision resistant hash
function by iterating the compression function. In [28], Steinberger proves a
strong security bound for MDC-2. Although there exists a collision attack on
the compression function needs 2n/2 queries, after the iteration, the collision
resistance can be improved to 23n/5 queries. The compression function of MDC-
2 is not any type we discussed above, since it splits the upper value and lower
value and diffuse them.

In the next section, we will show that Type-4 hash functions are not optimum
collision resistance even in the iteration, thus we solve Hirose’s open problem that
there may exist some Type-4 hash functions are optimum collision resistance
through iteration [9].

5 Attacks on Type-4 Hash functions in the Iteration

In this section we find attacks on Type-4 Hash functions in the Iteration. The
initial value is randomly chosen and fixed. We answer the open problem proposed
by Hirose [9] that there does not exist optimum collision resistant Type-4 hash
functions through iteration.

Theorem 2. If we iterated Type-4 compression function in the Merkle-Damgard
model and fixed the initial value, there exist 2nd preimage and preimage attacks
with complexity of about 4×2n. Furthermore, there exists a collision attack with
complexity of about 3× 23n/4.



Proof. For Type-4 compression functions,
A
B
C
D

 = U


Hi−1

Gi−1

M1
i

M2
i


U is a 4× 4 matrix and cannot be converted into the form in Theorem 1. There
must exist a linear composition of {Hi−1, Gi−1,M

1
i ,M2

i } that don’t effect the
value of A,B,C. If the initial value H0, G0 is fixed in the Merkle-Damg̊ard iter-
ation, we have the following meet-in-the-middle attacks, which is from Knudsen
et al.’s idea [13]:

– The attacks searches for the four message blocks (M1
1 ,M2

1 ) and (M1
2 ,M2

2 )
such that the hash result is hit in (H2, G2) (in the case of a (2nd) preimage
attack) or for a pair of four correcting blocks which yield a collision.

– The (2nd) preimage attack:
1. Backward step: choose 2n values of (A,B, Y ), query to the blockcipher

EU and obtain C and compute H ′
1, G

′
1,M

1′

2 ,M2′

2 from A,B,C, Y ,H2,
this requires at most 2n queries to the upper blockcipher EU .
It should be noted that there exists a special case that the adversary
needs to query 2n times to find a correct (A,B, Y ) corresponding to H2,
but after that, the attacker can find 2n preimages to H2 without any
additional queries. For example, if H2 = EU

M1
1 ‖M2

1
(H1 ⊕G1)⊕H1 ⊕G1,

(A,B,C, Y ) = (M1
1 , M2

1 , H1⊕G1, H1⊕G1⊕H2), given H2, the attacker
needs to query 2n times to find a correct (A,B,C, Y ) to satisfy the
condition that Y = C ⊕H2.
But if we obtain such a pair (A,B,C) satisfies the condition, it is trivial
to find 2n preimages to H2 without any additional queries to EU , since
there are 2n choices of H1 and G1 such that C = H1 ⊕G1.

2. Forward step: choose 2n values for (M1
1 ,M2

1 ) and compute (H1, G1) from
(H0, G0).

3. Find matches H1
1 = H ′

1. For every match we compute the corresponding
value of G2. The quantities in the meet-in-middle attack are n bits long,
so it gives about 2n×2n

2n = 2n values of (H1, G1,M
1
2 ,M2

2 ) all hitting the
same value of H2. Thus, G2 will be found with probability about 0.63;
the total number of operations is about 4× 2n.

– The collision attack:
1. Backward step: choose 23n/4 values of (A,B,C) and compute H ′

1, G′
1,

M1′

2 , M2′

2 from A,B, C, H2.
It should be noted that there exists special cases just discussed in (2nd)
preimage attack. For such cases, it is trivial to find many collisions which
lead to a same value without any queries to the blockcipher EU . Take
the same example above, the attacker can fixed H1 ⊕G1 but change H1

or G1, the hash value H2 will never change. In this case, one just choose
23n/4 values of H ′

1 and G′
1 with the same (M1′

2 ,M2′

2 ).



2. Forward step: choose 23n/4 values for (M1
1 ,M2

1 ) and compute (H1, G1)
from (H0, G0).

3. Find matches H1
1 = H ′

1. For every match we compute the correspond-
ing value of G2. The quantities in the meet-in-middle attack are n bits
long, so it gives about 23n/4×23n/4

2n = 2n/2 values of (H1, G1,M
1
2 ,M2

2 ) all
hitting the same value of H2. Thus, a collision of G2 will be found with
probability about 0.39; the total number of operations is about 3×23n/4.

ut

In [9], Hirose left an open problem that if the following two compression
functions are optimally collision resistant in the iteration:
Case 1:

Hi = EU
M1

i ‖M2
i
(Hi−1 ⊕Gi−1)⊕Hi−1 ⊕Gi−1.

Gi = EL
M1

i ‖M2
i
(Hi−1)⊕Hi−1.

Case 2:

Hi = EU
M1

i ‖M2
i
(Hi−1)⊕Gi−1.

Gi = EL
M1

i ‖M2
i
(Gi−1)⊕Hi−1.

Based on the proof in Theorem 2, there exist a 3× 23n/4 collision attack on
these two DBL hash functions in the iteration.

Improve the collision resistance in the Iteration:
If we modify the compression function slightly, just as the MDC-2 design,

that is, we write Hi = H1
i ‖ H2

i , Gi = G1
i ‖ G2

i , where H1
i ,H2

i , G1
i , G

2
i are

n/2 bits, the final output of the compression function is (H1
i ‖ G1

i ,H
2
i ‖ G2

i ),
the attack in Theorem 2 failed. Thus we think such slightly modifications can
improve the collision resistance of the hash function in the iteration.

DBL Constructions Based on one Blockcipher: For DBL compression
functions discussed above, only Type-3 constructions can achieve the optimum
security and two independent blockciphers are needed. However, it is practi-
cal to use only one blockcipher. There exists many ways to construct another
(pseudo) independent blockcipher from a blockcipher EK(X), such as EK⊕c(X),
EK(X ⊕ c) where c is a nonzero constant. This method has been adopted
in the design of Abreast-DM [15] and Hirose’s Scheme [10]. In the design of
Tandem-DM [15], we can assume the upper blockcipher and lower blockcipher
are (pseudo) independent except a negligible probability since the input to the
key of the lower blockcipher cannot be chosen by the adversary but determined
by the output of the upper blockcipher.

6 A Problem in Stam’s Theorem

In [27], Stam proposed a Rate-1 compression function that is optimally collision
resistant up to a logarithmic factor. Stam’s construction only based on a single



block cipher and only nees one cipher call. He named this construction as the
supercharging construction. He proposed the following definition:

Supercharged compression function. A single call blockcipher based com-
pression function HE is called supercharged single call Type-I with overlap γ iff
s ≥ n, m + s = n + k and the following three hold:

1. The preprocessing CPRE is bijective.
2. For all M,V the postprocessing CPOST (M,V, ·) is injective, with effective

range RPOST,(M,V ).
3. For all K, Y the modified postprocessing CAUX(K, ·, Y ) is injective, with

effective range RAUX,(K,Y ).

Where the overlap γ is defined as: γ = max|RZ∩RZ′ | : Z,Z ′ ∈ {POST,AUX}×
0, 1k+n, Z 6= Z ′.

Based on this definition, Stam proposed a theorem about the collision resis-
tance of the supercharged compression function and the following corollary:

Stam’s Corollary: Let HE be a supercharged single call Type-I compression
function with overlap γ. Then for q < 2n−1/γ

1
2 the probability of finding a

collision can be upper bounded by Advcoll
H (q) ≤ 2max (2eγ

1
2 , m+n+s+2)q/2n.

Here we proposed a counterexample which is a superchareged single call
blockcipher based compression with overlap 3 and m = n, s = k = 2n. Based
on Stam’s Theorem, the collision resistance of such compression functions is: for
q ≤ 2n− 3

2 ,

Advcoll
H (q) ≤ (n +

1
2
)q/2n−3.

A Counterexample: Let (+, ·) be the addition and multiplication over F2n .
For a (2n, n) ideal blockcipher E, we construct a DBL compression function
(W1,W2) = F (V1, V2,M) as follows:

1. Set K ← (V1, V2) and X ←M .
2. Compute Y ← EK(X).
3. Compute W1 ← Y + M and W2 ← M ·W 2

1 + V1 ·W1; output (W1,W2).

Now we see that this construction is a supercharged single call Type-I com-
pression function with overlap γ = 3:

1. CPRE(M,V1, V2) = (V1 ‖ V2,M) is bijective.
2. For all M,V1, V2 the postprocessing CPOST (M,V1, V2, y) = (y +M,M · (y +

M)2 + V1 · (y + M)) is injective in y.
3. For all K, Y the modified postprocessing CAUX(K, x, Y ) = (Y + x, x · (Y +

x)2 + V1 · (Y + x)) is injective in x.
4. It is easy to see

RPOST,(M,V1,V2) = {(W,M ·W 2 + V1 ·W )|W ∈ {0, 1}n}



and with a little bit more effort, using that M = Y +W and K = (K1,K2) =
(V1, V2),

RAUX,(K1,K2,Y ) = {(W,W 3 + Y ·W 2 + K1 ·W )|W ∈ {0, 1}n}

As a result, for (W1,W2) to be the intersection of RPOST and RAUX , we
require W1 to be a root of the difference of the two polynomials that define
W2 for RPOST and RAUX . It can be readily verified that the relevant two
polynomials are distnct, and the resulting difference is a non-zero polynomial
of degree at most three. It will therefore have at most three roots over F2n ,
thus γ = 3.

Based on Stam’s corollary, for q ≤ 2n− 3
2 , the upper bound for collision resis-

tant is
Advcoll

H (q) ≤ (n +
1
2
)q/2n−3.

However, it is easy to see that there exists a collision attack only needs 2n/2

queries. The attacker fixes M,V1 and randomly choose 2n/2 values of V2, with
probability 0.39 he obtains a collision (M,V1, V2) and (M,V1, V

′
2) collide on W1,

since W2 = M ·W 2
1 +V1 ·W1 which is not effected by V2 and V ′

2 , he also obtains
a collision at W2. The attacker only needs 2n/2 queries, which is much less than
Stam’s corollary.

Through this counterexample, one can see that there exists flaws in Stam’s
definition of Supercharged compression function. The three conditions in
the definition are not enough to guarantee the collision bound claimed by Stam.
Here we add another condition:

The 4th condition: If the the supercharged compression function can be write
as:

W1 = F1(V1, V2,M)
W2 = F2(V1, V2,M,W1)

there should not exist fixed points, that is, W1 is effected by any linear com-
position of (V1, V2,M) and W2 is also effected by any linear composition of
(V1, V2,M) even if W1 is fixed.

Combined this condition with Stam’s conditions, one can easily use Stam’s
proof to prove the collision bound for supercharged compression functions, which
is the same as Stam’s work.

Through on our analysis, one should be very careful when he claimed to give
a security proof to a construction. Although the theorem is right sometimes, the
proof has flaws, just as stated in [18].

7 Conclusion

In this paper We gave a new definition (security rate) for blockcipher-based
hash functions. This new definition is different from the efficiency rate which



only measures the efficiency of a blockcipher-based hash functions. We proposed
a criterion for the optimum security of blockcipher-based hash functions and this
criterion is simpler than previous work in the literature. Based on this criterion,
we counted the exact number of optimum security Type-1, Type-2, Type-3,
Type-4 compression functions.

There are 12 Type-1, 672 Type-2, 7676928 Type-3 optimum secure com-
pression functions and we proved their security in the ideal cipher model. We
pointed out that Abreast-DM, Tandem-DM and Hirose’s Scheme are just special
cases of Type-3 compression functions. Thus they are optimum secure in the
ideal cipher model.

Based on the criterion, there doesn’t exist any Type-4 optimum secure com-
pression functions. We also found collision attacks on Type-4 hash functions in
the iteration with complexity much lower than the birthday complexity. Thus
we solved the open problem left by Hirose that if there exists optimum collision
resistant Type-4 hash functions in the iteration.

At last, we pointed out a flaw in Stam’s theorem and added another condition
for the security of supercharged compression functions. Through our analysis, it
seems optimum collision resistance and (2nd) preimage resistance Rate-1 DBL
compression functions doesn’t exist.
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23. O. Özen and M. Stam. Another glance at double-length hashing. In Cryptography
and Coding, 12th IMA International Conference, Cryptography and Coding 2009,
volume LNCS 5921, pages 176–201. Springer-Verlag, Berlin, 2009.

24. B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers:
A synthetic approach. In D.R. Stinson, editor, Advances in Cryptology - Proc.
Crypto’93, volume LNCS 773, pages 368–378. Springer-Verlag, Berlin, 1993.

25. R. L. Rivest. The MD5 message digest algorithm. In Request for Comments (RFC)
1321. Internet Activities Board, Internet Privacy Task Force, 1992.

26. Takashi Satoh, Mio Haga, and Kaoru Kurosawa. Towards secure and fast hash
functions. IEICE TRANSACTIONS on Fundamentals of Electronics, Communi-
cations and Computer Sciences, E82-A(1):55–62, 1999.

27. M. Stam. Block cipher based hashing revisited. In Fast Software Encryption 2009,
volume LNCS 5665, pages 67–83. Springer, Berlin, 2009.

28. John P. Steinberger. The collision intractability of MDC-2 in the ideal-cipher
model. In Advances in Cryptology-Proceedings of EUROCRYPT 2007, volume
LNCS 4515 of Lecture Notes in Computer Science, pages 34–51, Barcelona, Spain,
2007. Springer Verlag, Berlin.

http://eprint.iacr.org/


29. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRPTO’05, volume
LNCS 3621, pages 17–36, Santa Barbara, CA, USA, 2005. Springer-Verlag.

30. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT’05, volume LNCS
3494, pages 19–35, Aarhus, Denmark, 2005. Springer-Verlag.


	More Insights on Blockcipher-Based Hash Functions 
	Yiyuan Luo, Xuejia Lai 

