
ABC - A New Framework for Block Ciphers

Uri Avraham1? Eli Biham1? Orr Dunkelman2

1Computer Science Department,
Technion - Israel Institute of Technology,

Haifa 32000, Israel.
Email: uria@cs.technion.ac.il, biham@cs.technion.ac.il

2Computer Science Department,
The Weizmann Institute of Science,

Rehovot 76100, Israel.
Email: orr.dunkelman@weizmann.ac.il

Abstract. We suggest a new framework for block ciphers named Advanced Block Cipher, or shortly ABC. ABC has
additional non-secret parameters that ensure that each call to the underlying block cipher uses a different pseudo-
random permutation. It therefore ensures that attacks that require more than one block encrypted under the same secret
permutation cannot apply. In particular, this framework protects against dictionary attacks, and differential and linear
attacks, and eliminates weaknesses of ECB and CBC modes. This new framework shares a common structure with
HAIFA [3], and can share the same logic with HAIFA compression functions. We analyze the security of several modes
of operation for ABCs block ciphers, and suggest a few instances of ABCs.

1 Introduction

Block ciphers are widely used in a large variety of modern applications. Traditionally, a block cipher is an
algorithm that accepts a plaintext block and a key as inputs, and outputs a ciphertext block. To encrypt long
messages, modes of operation are used to iterate the block cipher operation. Several modes of operation were
designed to supply encryption with various desirable properties, such as being stateful and disabling an adver-
sary who commits a chosen-plaintext attack from controlling the plaintext input of the block cipher. However,
all these modes of operation, even when combined with an ideal block cipher, have their pitfalls. In particular,
the ciphetexts are usually distinguishable from random sequences. Moreover, an adversary that obtains many
ciphertext blocks may still gain some information on the corresponding plaintext, that she should not be able to
gain in an ideal situation.

In this paper we suggest a new framework for block-ciphers aimed to prevent such pitfalls when used
properly. Our framework introduces two additional input parameters to the underlying block cipher – a salt
and a counter. By avoiding repeated key-salt-counter combinations, we guarantee that each permutation is used
(at most) once, and thus many known attacks, such as dictionary attack, differential attack, and linear attack
become inapplicable.

Our new frameworks also eliminates known weaknesses of ECB and CBC modes. For example, in ECB,
two equal ciphertext blocks indicate two equal plaintext blocks. In CBC, one can learn the XOR result of two
plaintext blocks if their corresponding ciphertext blocks are equal. These weaknesses disappear when replacing
the underlying block cipher in the mode of operation with an ABC and when using the ABC properly (i.e.,
never repeating the same key-salt-counter combination). Later in this paper we discuss modes of operations for
ABCs.

This work can be seen as a sibling of the HAIFA framework for hash functions [3], which fixes many of
the pitfalls of traditional hash functions. In our work we borrow these new parameters introduced in HAIFA
(i.e., a salt and a counter) to the world of block ciphers in order to protect against many security pitfalls. The
ability to borrow new ideas from the world of hash functions and to implement them in the world of block
ciphers naturally leads to a discussion about the correlation between the two worlds. We discuss the possibility
of building a compression function based on an ABC, taking advantage of their similar APIs.
? This work was supported in part by the Israel MOD Research and Technology Unit.

1.1 Related Work

Seeds for some of our new ideas can be found in [14], where the authors suggest a block cipher that has
an additional input called a tweak. This tweak is used to provide some variability to the encryption, without
necessarily ensuring that each block uses a different permutation. In [14], the authors suggest several modes
of operation for their new framework, of which one is the Tweakable Authenticated Encryption mode (TAE)
where the concatenation of a nonce and the block index is used as a tweak. In our work the nonce (salt) and the
index (counter) parameters are separated. This separation is natural due to the difference in the functionality of
these two parameters. The salt should be a fixed value in all the ABC calls that are required for an encryption
of a single message while the counter should be unique in every such call. The salt value can either be defined
by the protocol or chosen by the encrypting party, while the counter value in every ABC call is defined by the
protocol and the encrypting party cannot control it. Our framework also has better security than the security of
tweakable block ciphers in some of the cases.

A major part of our work is investigating the security of our framework. For this analysis we adapt some
security notions that were previously defined in [2].

1.2 Outline of This Paper

In Section 2 we describe our new ABC framework. In Section 3 we introduce the notations and definitions
that we use throughout the paper. In Section 4 we define some security notions and provide security proofs
for various properties. In Section 5 we discuss the similarity between stream ciphers and encryption schemes
that are based on our new framework, and in Section 6 we discuss the relation of our new framework to hash
functions. Finally, in Section 7 we suggest several instances for ABC block ciphers that conform to the new
framework and examine these implementations.

2 The Framework

2.1 The ABC Block Ciphers

Definition 1 A salt S is a non-secret parameter that can be considered as defining a family of block ciphers.

The salt value should be chosen by the encrypting party or defined by the protocol (e.g., increased by one
for every message).

Definition 2 A counter t is a counter or a dithering, intended to introduce diversity between blocks.

The idea is that, when using an ABC as a building block for an encryption scheme (such as a mode of
operation), the counter values for the instances of the ABC will be chosen by the encryption scheme and not by
the encrypting party. This way, the counter is a parameter which is not subjected to manipulation by any of the
parties.

Our new ABC framework introduces the use of a block counter and a salt as inputs to the underlying block
cipher and defined as follows:

Definition 3 An advanced block cipher (or shortly an ABC) is a function of the form:

E : {0, 1}n︸ ︷︷ ︸
plaintext

×{0, 1}k︸ ︷︷ ︸
key

×{0, 1}s︸ ︷︷ ︸
salt

×{0, 1}c︸ ︷︷ ︸
counter

→ {0, 1}n︸ ︷︷ ︸
ciphertext

,

such that the ciphertext block is computed by C = EK,S,t(M), where E is an ABC, K is the secret key, S is a
salt, and t is a counter.

2

The ABC framework aims at avoiding attacks that take advantage of the iteration of the encryption permu-
tation by making sure that the same combination of key, salt and counter will never repeat. To achieve this, we
demand that the same key-salt combination will never repeat for different messages, and that the same counter
value will not repeat in two different ABC calls that are made while encrypting a single message. This demand
limits the maximal length of an encrypted message to 2c blocks, but for sufficiently large values of c this is not
expected to be a problem.

As said, the salt should be defined by the protocol or chosen by the encrypting party in a way that ensures
that the same key-salt combination never repeats. This requirement allows salt values to be reused as long as
the keys are different. An even stronger requirement would never allow a salt value repeat for two different
messages (even if the keys that are used to encrypt these messages are different). Such a requirement provides
an even better security.

Note that like block ciphers, or any other kind of cryptographic primitives, ABCs are not necessarily secure,
e.g., the identity ABC defined by EK,S,t(M) = M for every K, S and t, is clearly insecure. In this paper we
assume that the ABCs and the (traditional) block ciphers are secure, and discuss the security features of such
primitives when combined in modes of operation.

When discussing the security of modes of operations for ABCs, we assume that the underlying ABCs are
ideal, and when we develop ABCs we try to make them as close as possible to ideal ABCs.

Definition 4 An ideal block cipher is a family of random permutations E : {0, 1}k × {0, 1}n → {0, 1}n such
that for every keyK ∈ {0, 1}k the permutationEK(·) is chosen uniformly at random from the set of all possible
permutations over {0, 1}n.

Definition 5 An ideal ABC is a family of random permutations such that for every (K,S, t) combination the
permutation EK,S,t(·) is chosen uniformly at random from the set of all possible permutations over {0, 1}n.

2.2 Using the New Cipher in Modes of Operation

Modes of operation are used for the encryption of long messages. A mode of operation makes use of several
calls to an underlying block cipher. ABCs can also be used in modes of operation, and in this section we discuss
a family of modes of operation for ABCs.

Definition 6 An advanced mode of operation (or shortly AMode) is a mode of operation in which the under-
lying cipher of the mode is an ABC, and when encrypting a single multi-block message under the mode of
operation, all the calls to the underlying ABC get the same salt input, and each call gets a different counter.

Notation 1 Let X be a conventional mode of operation. We denote by AXK,S the AMode that has the same
structure as X but in which the underlying cipher is an ABC that gets S as the salt of all calls to the ABC, and
the block index as the counter of each ABC.

Example 1 AECBK,S is the AMode in which the i’th block satisfies: Ci = EK,S,i(Mi).

Example 2 ACBCK,S is the AMode in which C0 = IV and Ci = EK,S,i(Mi)
⊕
Ci−1 for every i = 1, ...,m,

where m is the number of blocks.

As we show in Section 4, the AECB mode is indistinguishable from a random permutation when the un-
derlying ABC it uses is ideal. Therefore, it looks like for “good” ciphers, there is no security motivation to use
AModes with feedback. In particular, in the new framework, we get rid of the main pitfall of the ECB mode
– encryption of the same plaintext block under the same key always results with the same ciphertext block.
One might still want to use AModes with feedbacks for different purposes. For example, AOFB might be de-
sirable for its fast online computations, and ACBC might be desirable for those that wish to mix feedbacks
into encryption, and for transforming the cipher into a MAC. We show that, in our framework, these modes of
operation are also secure.

3

2.3 Reasonable Modes of operation and Reasonable AModes

We are specifically interested in a family of modes of operation and a family of AModes that we call reasonable
modes and reasonable AModes.

Definition 7 Let X be a mode of operation. Let E be any block cipher. We say that X is a reasonable mode if
it fulfills all of the following requirements:

1. X is length preserving (the ciphertext is of the same length as the plaintext), and both plaintext and cipher-
text have the same number of blocks, where the length of each block is n bits (recall that n is the block size
of E).

2. The number of E encryptions performed calculated while encrypting a message M under XE
K is equal

to the length of M in blocks. In particular, there exist some functions f1(·, ..., ·) and f2(·, ..., ·) such that
Ci = f2(EK(f1(IV, i,M1, ...,Mi, C1, ..., Ci−1)), IV, i,M1, ...,Mi, C1, ..., Ci−1), where:
(a) f2(·; IV, i,M1, ...,Mi, C1, ..., Ci−1) is a permutation over {0, 1}n for every possible combination of

IV, i,M1, ...,Mi, C1, ..., Ci−1.
(b) Ci is a permutation of Mi, i.e., the encryption under XE

K is invertible and therefore the ciphertext can
be decrypted. Formally, the function hE,K,IV,i,M1,...,Mi−1,C1,...,Ci−1(Mi)
= f2(EK(f1(IV, i,M1, ...,Mi, C1, ..., Ci−1)), IV, i,M1, ...,Mi, C1, ..., Ci−1) is a permutation over
{0, 1}n for every possible combination of E,K, IV, i,M1, ...,Mi−1, C1, ..., Ci−1.

We associate every instance of E with a block number i, and we denote the plaintext input and the ciphertext
output of the i’th instance of E by (xi, yi), respectively.

The above definition deals with modes of operation in which the block size is the same for all blocks. This
definition can be trivially extended to deal with modes of operation in which the block size varies, as long as
|Mi| = |Ci| for any i. This extended definition covers all the standard cases where the last block can be shorter
than n bits.

The conditions in Definition 7 might seem complicated, but most of the widely used modes of operation,
such as ECB, CBC, OFB, and CTR, fulfill these conditions and therefore considered to be reasonable modes.

Example 3 ECB is a reasonable mode where f1(IV, i,M1, ...,Mi, C1, ..., Ci−1) = Mi and
f2(yi, IV, i,M1, ...,Mi, C1, ..., Ci−1) = yi.

Example 4 CBC is a reasonable mode where f1(IV, i,M1, ...,Mi, C1, ..., Ci−1) = Ci−1
⊕
Mi (for i > 1)

and f2(yi, IV, i,M1, ...,Mi, C1, ..., Ci−1) = yi.

Example 5 OFB is a reasonable mode where f1(IV, i,M1, ...,Mi, C1, ..., Ci−1) = Ci−1
⊕
Mi−1 and

f2(yi, IV, i,M1, ...,Mi, C1, ..., Ci−1) = yi
⊕
Mi.

Definition 8 An AMode X is a reasonable AMode if it satisfies all of the conditions of Definition 7, where the
block cipher EK is substituted by the ABC EK,S,t, for a key K, a salt S, and a counter t.

Lemma 1 Let X be a reasonable mode. Then AX is a reasonable AMode.

The proof of Lemma 1 is given in Appendix A.

3 Notations and Definitions

Table 1 lists the notations that we use in this paper.
We define three kinds of symmetric encryption schemes.

4

K Key
k Key size in bits
S Salt
s Salt size in bits
t Counter
c Counter size in bits
M Plaintext message
m number of blocks of a message M . (M = M1||...||Mm)
C Ciphertext

Mi, Ci The i’th block of the plaintext M , or the ciphertext C
|Y | Length in bits of the string Y

XE
K(M) The encryption of the message M under the block cipher E using the key K and the mode of operation X

XE
K
−1(C) The decryption of the ciphertext C under the block cipher E using the key K and the mode of operation X

XE
K,S(M) The encryption of the message M under the ABC E using the key K, the salt S and the AMode X

XE
K,S
−1(C) The decryption of the ciphertext C under the ABC E using the key K, the salt S and the AMode X

a
R←− A The operation of choosing an item a uniformly at random out of a set A.

Table 1. Notations

Definition 9 A traditional symmetric encryption scheme is a pair of deterministic algorithms (E ,D), that ac-
cept a key and plaintext/ciphertext as parameters. Formally E and D are defined as:

E :M×K → C ; D : C × K →M,

whereK is the key space,M is the message space and C is the ciphertext space. We demand that for anyK ∈ K
and M ∈M it holds that DK(EK(M)) = M.

The traditional symmetric encryption schemes discussed in this paper are traditional block-ciphers and tradi-
tional modes of operations.

Definition 10 A salted-countered symmetric encryption scheme is a pair of deterministic algorithms (E ,D),
that accept as parameters (on top of the key and the plaintext/ciphertext) also a counter and a salt. Formally E
and D are defined as:

E :M×K× S × T → C ; D : C × K × S × T →M,

where S is the salts space and T is the counter space. We demand that for any K ∈ K,S ∈ S , t ∈ T and
M ∈M it holds that DK,S,t(EK,S,t(M)) = M.

The salted-countered symmetric encryption schemes discussed in this paper are ABCs.

Definition 11 A salted symmetric encryption scheme is a pair of deterministic algorithms (E ,D), that accept
as parameters (on top of the key and the plaintext/ciphertext) also a salt but no counter. Formally E and D are
defined as:

E :M×K× S → C ; D : C × K × S →M,

We demand that for any K ∈ K,S ∈ S and M ∈M it holds that DK,S(EK,S(M)) = M.

The salted-countered symmetric encryption schemes discussed in this paper are AModes.
For each of the definitions above, we note that E (and similarlyD) uniquely define the symmetric encryption

scheme. We will therefore use E to describe the encryption scheme – it will be apparent from the context
whether E represents the encryption scheme or the encryption function itself.

5

4 Security

In this section we discuss the security of ABCs and AModes. We analyze the security of our framework against
known generic attacks, and we measure the security of AModes according to some widely-used security no-
tions. In order to examine the security features of the AModes, we assume that the underlying ABC is ideal and
that any security pitfall results from the mode itself. Nevertheless, we also consider in some cases a realistic
ABC and prove that if the ABC is “secure enough” then the AMode using it is also “secure enough”.

The proofs for all the theorems that appear in this section are given in Appendix A.

4.1 Security Against Generic Attacks

As discussed in the introduction, the ABC framework is secure against generic attacks that require many plain-
texts encrypted under the same secret permutation. Examples for such attacks are the dictionary attack, differ-
ential attack, linear attack and time-memory tradeoff attacks.

In the dictionary attack the adversary collects pairs of plaintext blocks and their respective ciphertexts. She
gains information about the encryption permutation without necessarily learning anything about the secret key.
Later on she can use the knowledge that she had gained to decrypt ciphertexts or to encrypt plaintexts. This
kind of attack is useless against protocols that use ABCs properly, since in such protocols the proper use of the
salt and counter inputs ensures that no encryption permutation is used more than once. Thus, any information
that the adversary has gained is useless for future encryption or decryption of plaintexts/ciphertexts.

The differential and linear attacks require a large amount of data encrypted under the secret encryption
permutation EK(·). These attacks are inapplicable for the ABC framework since a proper use ensures that an
encryption permutation is never used more than once, and since in the ideal case, the different permutations used
by the ABC for different values of salt-counter combinations are independent. Note that for realistic underlying
ABCs, as for block ciphers, the security analysis should consider differential and linear attacks on the particular
design. Moreover, it should consider the possibility of extending these attacks using the new parameters, the
salt and the counter. In Section 7, where we suggest some instances of ABCs, we make this kind of analysis.

In time-memory tradeoff attacks [12], a large amount of pre-computation, equivalent to exhaustive search,
can be used for breaking the encryption many times in the future. As discussed in Section 2, the salt might be
reused with different keys. If this is the case (e.g., every time the key is changed the salt is reset to zero) then
the pre-computation will be amortized among many instances of the attack, and thus the time-memory tradeoff
attack will work against the framework just as they do for traditional block ciphers. On the other hand, if the salt
is never reused (not even after changing the key) then the pre-computation cannot be amortized, and therefore
time-memory tradeoffs become as inefficient as an exhaustive search.

4.2 Security Notions

Goldwasser and Micali [11] were the first to formally define security notions for encryption schemes. In [2]
security notions for symmetric encryption were defined and examined. We adapt some of these notions to ABCs
and their extra arguments while we use some of the ideas introduced in [16].

The security notions we consider are indistinguishability from random bits (defined in Section 4.2.2) and
semantic security (defined in Section 4.2.3). We consider the security of AModes in the terms of the security
notions mentioned above, both in the chosen-plaintext model (CPA), where the adversary is allowed to ask for
encryption of messages and in the chosen-ciphertext model (CCA) where the adversary is allowed to ask for
decryptions of ciphertexts.

We examine the security of our model in the information-theory sense (rather than in the computational
sense). I.e., the adversaries that we consider are limited by the amount of information that they are allowed to
have rather than in the time complexity of their computations.

Definition 12 Let E be a symmetric encryption scheme. An E-CPA adversary is an adversary that has access to
an oracle that answers queries of one of three forms: (M) – if E is a traditional symmetric encryption scheme,

6

(M,S) – if E is a salted symmetric encryption scheme, or (M,S, t) – if E is a salted-countered symmetric
encryption scheme (where M ∈M, S ∈ S and t ∈ T).

Definition 13 An E-CCA adversary is an adversary that has access to an oracle that answers queries of one
of three forms: (C) – if E is a traditional symmetric encryption scheme, (C, S) – if E is a salted symmetric
encryption scheme, or (C, S, t) – if E is a salted-countered symmetric encryption scheme (where C ∈ C, S ∈ S
and t ∈ T).

As stated in Section 2, the salt is chosen either by the encrypting party or by the protocol, and the counter
is selected by the AMode. For our analysis, we let the adversary to have more power by letting her choose the
salt as long as the same salt never repeats. Similarly, if she attacks an ABC rather than an AMode, we let her
chose the salt and the counter as long as the same combination of salt-counter never repeats.

Definition 14 LetE be an ABC. AnE-CPA adversary is said to be salt-counter-respecting when no two queries
it calls have the same salt-counter combination.

Definition 15 Let E be an ABC. Let X be an AMode. An XE-CPA adversary is said to be salt-respecting
when no two queries it calls have the same salt.

We note that the above definitions hold only for encryption queries and not for decryption queries. A
good practice is to make sure that every message is encrypted using a unique key-salt combination, but if for
some reason different messages were encrypted using the same key-salt combination then it should be possible
to decrypt the resulting ciphertexts. Therefore, we allow a CCA adversary to use the same salt for different
queries.

4.2.1 Distinguishers for ABCs An advanced block cipher is a family of permutationsE : {0, 1}n×{0, 1}k×
{0, 1}s × {0, 1}c → {0, 1}n. By fixing a key K ∈ {0, 1}k, an ABC defines a salted-countered-family of
permutations of the form: EK : {0, 1}n × {0, 1}s × {0, 1}c → {0, 1}n. By fixing a key K, a salt S and a
counter t we define a single permutation EK,S,t : {0, 1}n → {0, 1}n.

Let SCPerm(s, c, n) be the set of all possible salted-countered-families of permutations of the form:
Π : {0, 1}n × {0, 1}s × {0, 1}c → {0, 1}n.

We adapt the definitions of the advantage of a block-cipher distinguisher defined in [2] to our needs. Let
E : {0, 1}n × {0, 1}k × {0, 1}s × {0, 1}c → {0, 1}n be an ABC. Let A be an adversary that has access to
a salted-countered-family of permutations π : {0, 1}n × {0, 1}s × {0, 1}c → {0, 1}n. The advantage of an
adversary A in distinguishing E from a random family of permutations is defined as:

Advprp
E (A) , Pr

[
AEK(·,·,·)∣∣K R←− {0, 1}k

]
− Pr

[
Aπ(·,·,·)∣∣π R←− SCPerm(s, c, n)

]
.

We denote by Secprp
E (q, t) the maximum advantage of any salt-counter-respecting adversary A that is allowed

to make queries to a salted-countered-family of permutations, that makes no more than q queries, and whose
running time is bounded by t. Denote by Ascrq,t the set of all salt-counter-respecting adversaries that make no
more than q queries, and whose running time is bounded by t. The maximum is taken over all possible such
adversaries, i.e., Secprp

E (q, t) , maxA∈Ascrq,t Advprp
E (A).

We later show that if E is an ABC for which Secprp
E (q, t) is small then using a reasonable AMode in which

the underlying ABC is E results with a secure encryption scheme.

4.2.2 Indistinguishability from Random Bits This security notion evaluates the ability of an adversary
to distinguish the encryption (decryption) of a message from the encryption (decryption) of an equal length
random string of bits.

Let E be a traditional symmetric encryption scheme. Consider the following two oracles, both answer
queries of the form Q = (M) with a string C ∈ {0, 1}|EK(M)|. The first oracle is the real encryption oracle

7

OEK that answers the query Q = (M) with C = EK(M). The second is a fake encryption oracle OER that
answers the same query Q with a random string of |EK(M)| bits.

The ind− CPA advantage of an E − CPA adversary A is defined as:

Advind−CPA
E (A) , Pr

[
AOEK (·) = 1

∣∣K R←− K
]
− Pr

[
AO

E
R(·) = 1

]
.

For the CCA variant of this notion, consider two other oracles, both answer queries of the form Q = (C)
with a string M ∈ {0, 1}|DK(C)|. The first is the real decryption oracle, ODK that answers the query Q = (C)
with M = DK(C). The second is a fake decryption oracle, ODR that answers the same query Q with a random
string of |DK(C)| bits.

The ind− CCA advantage of an adversary A against an encryption scheme E is defined as:

Advind−CCA
E (A) , Pr

[
AODK (·) = 1

∣∣K R←− K
]
− Pr

[
AO

D
R (·) = 1

]
.

We adapt these security notions also to the salted-symmetric encryption scheme, in which the queries are
of the form Q = (M,S). Thus, if E is a salted-symmetric encryption scheme, then

Advind−CPA
E (A) , Pr

[
AOEK (·,·) = 1

∣∣K R←− K
]
− Pr

[
AO

E
R(·,·) = 1

]
,

Advind−CCA
E (A) , Pr

[
AODK (·,·) = 1

∣∣K R←− K
]
− Pr

[
AO

D
R (·,·) = 1

]
.

It is important to note that the adversary A must not repeat the same query twice (or otherwise it will be
trivial to distinguish between the real and the random oracles). When discussing AModes, this demand is being
respected automatically in the CPA variant of the notion since we consider only salt-respecting adversaries.
Since CCA adversaries are allowed to repeat the same salt, we have to explicitly prohibit them from repeating
the same query more than once.

We use the abbreviated notations of OE for the oracle OEK or ODK with a random key K, and OR for OER
or ODR , where it is clear from the context whether the attack is a chosen-plaintext attack or a chosen-ciphertext
attack.

We denote by Secind−CPA
E (σ) the maximum advantage taken over all E-CPA salt-respecting adversaries

that use no more than a total of σ blocks in their queries. Similarly, we denote by Secind−CCA
E (σ) the maximum

advantage taken over all E-CCA adversaries that use no more than a total of σ blocks in their queries. Denote
byAσ the set of all adversaries that use no more than a total of σ blocks in their queries, and denote byAsrσ the
set of all salt-respecting adversaries that use no more than a total of σ blocks in their queries. Formally,

Secind−CPA
E (σ) , max

A∈Asrσ
Advind−CPA

E (A) ; Secind−CCA
E (σ) , max

A∈Aσ
Advind−CCA

E (A).

The following lemmas examine the ind-CPA security AECB and ACBC AModes.

Lemma 2 Let E be an ideal ABC. Every possible total length of queries, σ that allows the adversary to be
salt-respecting (i.e., σ ≤ 2c+s) satisfies Secind−CPA

AECBE (σ) = 0.

Lemma 3 Let E be an ideal ABC. Every possible total length of queries σ that allows the adversary to be
salt-respecting satisfies Secind−CPA

ACBCE (σ) = 0.

The same result can be achieved for any reasonable AMode, as discussed in the following theorem and
conclusion.

Theorem 1 Let X be a reasonable AMode. Let E be an ABC. Every possible total length of queries σ that
allows the adversary to be salt-respecting satisfies Secind−CPA

XE (σ) ≤ Secprp
E (σ).

Following Theorem 1 and Lemma ??, we conclude the following conclusion:

8

Conclusion 1 If E is an ideal ABC, and X is a reasonable AMode, then Secind−CPA
XE (σ) = 0 for every σ that

allows the adversary to be salt-respecting.

As seen in Conclusion 1, our framework achieves perfect indistinguishability security against chosen-
plaintext attacks when the underlying ABC is ideal. This is not the case when considering chosen-ciphertext
attacks because of the ability of the adversary who employs the attack to repeat the same salt-counter combina-
tion more than once in its queries to the decryption oracle. A CCA adversary can simply ask for a decryption
of C = C1||C2 and C ′ = C1, both with the same salt value S, and return ‘1’ if and only if the corresponding
messages, M,M ′ begin with the same block. This attack works for every reasonable AMode.

However, we claim that the indistinguishability security against chosen-ciphertext attacks of our framework
is not worse than the security against chosen-ciphertext attacks of the conventional framework. In particular,
the following theorem proves that the ind-CCA security of AECB is not worse than the ind-CCA security of
ECB.

Theorem 2 Let Ẽ be an ideal ABC and letE be an ideal block cipher. For every σ it holds that Secind−CCA
ECBE

(σ) ≥
Secind−CCA

AECBẼ
(σ).

4.2.3 Semantic Security The semantic security notion was defined first in [11] and was adapted to the
symmetric scheme in [2]. This security notion evaluates the ability of an adversary to learn something on
a plaintext from its corresponding ciphertext. We adapt this security notion to the parameterized encryption
scheme. Let (E ,D) be a salted-symmetric encryption scheme. Let A be an adversary. For the CPA variant of
the notion, we consider an E-CPA adversary, and for the CCA variant we consider an E-CCA adversary.

The adversary plays a game of two stages: In the first stage, after A calls its oracle(s) with its queries,
it defines some valid distribution function over the message space such that all the messages with non-zero
probability are of the same length. In the second stage, A is provided with a salt S∗ chosen uniformly at
random, from all the salts that A has not used in its queries, and a ciphertext C∗ = EK,S∗(M∗) for some
plaintext M∗ chosen at random from the message space according to the distribution function defined by A.
The adversary then outputs a pair (α, f), where f is a function, defined for all non-zero-probability messages,
that can be computed by the adversary. A wins if α = f(M∗). Let M ′ be a message chosen at random from the
message space, according to the distribution function defined byA and independently fromM∗. The advantage
of an adversary A is defined in this case as:

Advsem−ATK
E (A) , Pr

M∗,K,A
[α = f(M∗)

∣∣C∗]− Pr
M ′,K,A

[α = f(M ′)],

where ATK = CPA if A employs a chosen-plaintext attack and ATK = CCA if A employs a chosen-
ciphertext attack.

We denote by Secsem−ATK
E (σ) the maximum advantage taken over all E − ATK adversaries that use no

more than a total of σ blocks in their queries. Formally,

Secsem−ATK
E (σ) , max

A∈Aσ
Advsem−ATK

E (A).

Theorem 3 Let X be a reasonable AMode, and let E be an ideal ABC. Then Secsem−ATK
XE (σ) = 0, where

ATK ∈ {CPA,CCA}.

4.3 Security Pitfalls of Conventional Modes of Operation

Many of the conventional modes of operation are distinguishable from random permutations even when the
underlying block cipher is indistinguishable from a random permutation. Moreover, the following distinguishers
allow an adversary who obtains a ciphertext, to gain some information on the corresponding plaintext. Ideally,
the adversary should not gain such information.

9

4.3.1 ECB Obviously, The conventional ECB mode does not provide the indistinguishability security notion
defined in Section 4.2.2. In the simplest attack the adversary A asks for the encryption of M = M1||M2 where
M1 = M2 and gets C = C1||C2. It returns ‘1’ if C1 = C2 and ‘0’ otherwise. Therefore every underlying block
cipher E satisfies Advind−CCA

ECBE
(A) = 1−2−n, and the adversary can achieve even a higher advantage by using

longer messages. In practice, this means that an adversary that obtains a ciphertext in which two blocks are
equal learns that the two corresponding blocks of the plaintext are equal as well.

4.3.2 CBC The conventional CBC mode provides no security against chosen-ciphertext attacks in the in-
distinguishability sense (ind-CCA). Consider the following attack: The adversary A asks for the decryption of
C = C1||C1 and gets M = M1||M2 as an answer. It returns ‘1’ if M1

⊕
M2 = C1

⊕
IV and ‘0’ otherwise.

The advantage of A is Advind−CCA
CBCE

(A) = 1−2−n, and the adversary can get even a higher advantage by using
longer ciphertexts.

The CBC mode does not provide good ind-CPA security as well. When encrypting a message longer than
2n/2 blocks, it is expected (due to the birthday paradox) that two of the ciphertext blocks will collide (i.e.,
Ci = Cj for some i 6= j), and thus an adversary that has access only to an encryption oracle, can check whether
Mi
⊕
Mj = Ci−1

⊕
Cj−1 and distinguish between the encryption and random bits with high probability.

4.3.3 TBC In [14], the authors suggest several modes of operation for tweakable block ciphers. In one of
them, called TAE, the tweak is used as a concatenation of a nonce (that has the same functionality as our salt)
and a counter. This mode is equivalent to our AECB, and therefore provides the same security properties. But
the tweak is not limited to this kind of usage, and when it is used differently the result can be an insecure mode.
An example for this is the Tweakable Block Chaining (TBC) mode, suggested in [14]. The TBC mode is illus-
trated in Figure 1. The indistinguishability security of reasonable AModes is better than the indistinguishability
security of TBC in some cases, and not worse in the others.

M1

C1

ẼK

M2

C2

ẼK

M3

C3

ẼK

Mm

Cm

ẼKT0

Fig. 1. TBC mode of operation

Let Ẽ be an ideal tweakable block cipher, letE be an ideal ABC, and letX be a reasonable AMode. An ind-
CPA adversary that attacks TBCẼ can ask for the encryption of a message M = M1||...||Mm, where all the
message blocks are equal. If m ≥ 2n/2, it is excepted that there exist some 1 ≤ i < j ≤ m such that Ci = Cj .
If the output is a result of a real TBC encryption, rather than a random string, then for every 1 ≤ l ≤ m − j
it holds that Ci+l = Cj+l. If this is the case then the adversary can guess that she is facing the real encryption
oracle. Otherwise, she is definitely facing the random oracle. Therefore, following Conclusion 1, for every
σ ≥ 2n/2 it holds that Secind−CPA

TBCẼ
(σ) > Secind−CPA

XE (σ).

An ind-CCA adversary Ã that attacks TBCẼ and is limited to a total of two blocks in its queries can ask for
the decryption of the message T0||T0, where T0 is also the initial tweak, and obtain the oracle’s answer – M =
M1||M2. Ã outputs ‘1’ if M1 = M2, and ‘0’ otherwise. The advantage of Ã is given by Advind−CCA

TBCẼ
(Ã) =

10

1− 2−n. When an ind-CCA adversary A that attacks XE is limited to a total of two blocks in its queries, then
the two blocks must be decrypted with a different salt-counter combination. Therefore, Advind−CCA

XE (A) = 0,
and thus, Secind−CCA

TBCẼ
(2) > Secind−CCA

XE (2).

5 Comparison with Stream Ciphers and CTR Mode

A main requirement for our framework is that the same combination of key, salt, and counter should never
be used twice. Apparently, if this requirement is fulfilled, then there is no reason that the function EK,S,t(·)
will be a pseudo-random permutation. It is enough to demand that for every combination of S, t and M , the
function fS,t,M : {0, 1}k → {0, 1}n, defined by fS,t,M (K) = EK,S,t(M), is a pseudo-random function.
For example, assume that we have a pseudo-random function g : {0, 1}k × {0, 1}s × {0, 1}c → {0, 1}n,
and define fS,t,M (K) = g(K,S, t)

⊕
M . Thus, the AECB encryption using the underlying ABC defined by

EK,S,t(M) = g(K,S, t)
⊕
M can be viewed as a stream cipher in which the message M is XORed with the

stream g(K,S, t). Under the assumption that the same (K,S, t) combination is never used more than once,
this encryption is secure, but if these assumptions do not hold for some reason then it is no longer secure since
an adversary who holds a single (M,C) pair is able to calculate the appropriate g(K,S, t) for every block of
M and therefore can encrypt (decrypt) any message (ciphertext) with the same K and S values. Therefore,
constructing an ABC which is a pseudo-random permutation for every (K,S, t) combination provides us with
a system that is more tolerant for misuse and guarantees some security even when the same (K,S, t) is used
more than once.

A good example is the CTR mode [7]. In the CTR mode, the message is XORed with a stream generated by
encrypting a counter block. Formally, C = C1||...||Cm where Ci = Mi

⊕
EK(ctr + i) for some number ctr.

In [9] it is suggested that the ` least significant bits of the counter block are used as a counter while the other
n − ` bits are used as a nonce. In this particular case, the CTR mode can be seen as a special case of AMode
where its encryption function ECTR

K,S,t(M) = M
⊕
EK(S+ t), where S is a multiply of 2`, 0 ≤ t < 2`, and the

maximal length of a message is 2l blocks.
We note, however, that our framework with the explicit separation of the salt and the counter has some

advantages over the CTR mode and other stream ciphers:

1. Tolerance for misuse — In CTR mode, just as in any stream cipher, a reuse of the same stream (i.e., a
reuse of the same nonce and counter) results with an immediate compromise of the security. When the same
stream is used for two different messagesM1,M2 thenM1

⊕
M2 can be calculated from the corresponding

ciphertexts C1, C2. Moreover, an adversary who has a pair (M,C) of plaintext-ciphertext blocks for a
specific nonce S and a specific counter t can calculate the encryption of any other message with the same
nonce and counter.

2. Time-memory-data tradeoffs — Time memory-data tradeoffs are widely discussed for stream ciphers. If
the salt values are reused every time the key is changed, then the security of our framework against these
attacks is the same as for stream ciphers. In the more strict version in which the salt is never repeated (not
even after changing the key) then these attacks become inapplicable.

3. The security of our framework is a little bit better than the security of the CTR mode (particularly in
the indistinguishability and semantic senses). This is because of the fact that in CTR mode, for every
message M = M1||...||Mm and for every 1 ≤ i < j ≤ m it is certain that Ci

⊕
Cj 6= Mi

⊕
Mj . For

example, an ind-CPA adversary can take advantage of this fact. The adversary asks for the encryption of
a message M = M1||...||M2n/2 in which all of the 2n/2 blocks are identical (i.e., Mi = Mj for every
1 ≤ i < j ≤ 2n/2). If the adversary receives an answer from the real encryption oracle it is guaranteed that
Ci 6= Cj for every 1 ≤ i < j ≤ 2n/2. If the adversary receives a random string as an answer then it is
expected that there are some 1 ≤ i < j ≤ 2n/2 such that Ci = Cj .

11

6 The Relation to Hash Functions

In [3] the HAIFA framework for cryptographic hash function is presented. This framework introduces the idea
of salt and bits-counter for compression functions. A natural question to ask is how can these new compres-
sion functions and block ciphers relate. In this section we discuss the possibility of using a single underlying
primitive to build both ABCs and compression functions. We focus on the well known Davies-Meyer construc-
tion [5]. Other possible constructions were studied in [15] – some of them could be used for our purpose as
well.

6.1 Using Davies-Meyer Construction

The Davies-Meyer construction is used for building a compression function, CDM using a block cipher E.
Given a block cipher E : {0, 1}n × {0, 1}k → {0, 1}n, the compression function CDM : {0, 1}n × {0, 1}k →
{0, 1}n is defined as: CDM (h,M) = EM (h)

⊕
h. Here, k is the length of the message block for the compres-

sion function and n is the length of the chaining value.
A major drawback of the Davies-Meyer construction is that it is easy to find fixpoints. One can find a

fixpoint (h∗,M∗) simply by fixing a message block M∗ and decrypting the zero constant by h∗ = E−1
M∗(0).

Such a fixpoint can be used for a second-preimage attack as shown in [6].
We note that with our new block cipher framework and the HAIFA framework, this problem is fixed.

We can use a Davies-Meyer construction to build a HAIFA compression function CHAIFADM : {0, 1}n ×
{0, 1}b × {0, 1}s × {0, 1}c → {0, 1}n (where n is the length of the chaining value and b = k is the
block size) using an ABC, E. Such a compression function will be defined as CHAIFADM (h,M, S,#bits) =
EM,S,f(#bits)(h)

⊕
h, for some function f that outputs a unique counter value for every possible #bits value

(typically, f = d#bitsn e). The #bits parameter of the compression function (t parameter in E) prevents attacks
that take advantage of the easy-to-find fixpoints. It is still possible to find a tuple (h∗,M∗, S∗,#bits∗) such that
CDM (h∗,M∗, S∗,#bits∗) = h∗, but for any #bits′ 6= #bits∗ (and specifically for the value of #bits′ that
matches the next block) it holds, with a very high probability, that CDM (h∗,M∗, S∗,#bits′) 6= h∗. Moreover,
it is difficult to find a message blockM ′ such that CDM (h∗,M ′, S∗,#bits′) = h∗. Therefore, a fixpoint cannot
be used to expand the message and create a second preimage.

It might be better, for performance reasons, to use the message block of the compression function as the salt
of the ABC and not as the key, so the key scheduling algorithm is not re-executed for every block. However,
the Davies-Meyer construction might not be practical since it demands that the key size (or salt size) of the
cipher equals the size of compression function’s message block and that the size of the compression function’s
chaining value equals the size of the cipher’s block. This is not the case with today’s compression functions
and symmetric block ciphers. The typical size for message blocks in hash functions today is much larger than
the typical key size of block ciphers and the typical size of a chaining value is much larger than the typical size
of ciphers’ block. The size of the chaining value of a compression function should be large enough so finding
collisions will be difficult, and the size of the compression function’s message block should be large enough
for performance reasons. Increasing the lengths of the block cipher’s key and message block would increase
the complexity of the block cipher’s execution (in particular the key schedule), and will influence especially on
encryption of short messages.

7 Simple ABCs Based on AES

In this section we describe three AES-based ABCs, all of which with 128-bit keys, 128-bit salts and 64-bit
counters.

7.1 ABC1

Our first ABC uses AES [17] as a black-box and is implemented as follows:

ABC1K,S,t(M) = AES-128K′(AES-128K(AES-128K′(M)⊕ t′)⊕ t′),

12

where K ′ = AES-128K(S) and t′ = t||t.

7.2 ABC2

ABC2 modifies the key scheduling algorithm of AES-256 to allow a mixing of the salt and the counter. The key
scheduling algorithm is modified as follows: given a 128-bit keyK and a 128-bit salt S, an intermediate 256-bit
key K ′ is computed by K ′ = K||AES-128K(S). The intermediate key K ′ is then expanded using the original
AES-256 key scheduling algorithm, to the (15) round keysRK1[0], ..., RK1[14]. The counter is mixed into five
of these round keys – RK1[2], RK1[4], RK1[7], RK1[10], and RK1[12]: each time the counter is mixed into a
round key it is XORed into two consecutive (cyclicly) columns of the round key, when the counter is represented
as big endian. The counter is mixed into the following round keys: columns 0,1 of RK1[2]; 1,2 of RK1[4]; 2,3
of RK1[7]; 3,0 of RK1[10] and 0,1 of RK1[12]. The result is another set of round keys RK2. Encryption is
performed using the AES-256 encryption algorithm with the resulting round keys RK2[0], ..., RK2[14]. Note
that an efficient implementation of ABC2 does not have to compute the key scheduling for every counter.
Instead, it computes RK1 once and XORs the counter into the right locations during the encryption process.

In order to allow a full diffusion of a counter before the next counter mixing occurs, we selected to have at
least two AES rounds between consecutive counter mixings. A full diffusion of a counter mixing ensures that
all of the bytes of the state are influenced by the counter. The next counter mixing, changes only two of the four
columns of the state, while keeping the other two unchanged.

7.3 ABC3

ABC3 modifies the key scheduling algorithm of AES-128 to allow a mixing of the salt and the counter. The
key scheduling algorithm is modified as follows: given a 128-bit key K and a 128-bit salt S, three temporary
keys K1,K2, and K3 are calculated. Each of the temporary keys is expanded by the original key scheduling
algorithm of AES-128 into the (11) round keys. Then, a fourth set of round keys is calculated as the XOR of
the three sets of round keys. Formally,

K1 = K ; RK1 = KS(K1)
K2 = AES-128K1(S) ; RK2 = KS(K2)
K3 = AES-128RK1⊕RK2(K) ; RK3 = KS(K3)
RK4 = RK1 ⊕RK2 ⊕RK3,

where KS is the key scheduling algorithm of AES-128. The notation AES-128RK , where RK is a set of round
keys rather than a key, refers to the AES algorithm that uses the round keys RK instead of deriving them from
a 128-bit key.

The counter is then mixed into five round keys of RK4 – columns 0,1 and columns 2,3 of RK4[1]; 1,2
of RK4[3]; 2,3 of RK4[5]; 3,0 of RK4[7]; and columns 0,1 and columns 2,3 of RK[9]. The result is another
set of round keys RK5. Encryption is performed using the AES-128 encryption algorithm with the round keys
RK5[0], ..., RK5[10]. As in ABC2, an efficient implementation of ABC3 does not have to compute the key
scheduling for every counter. Instead, it computes RK4 once and XORs the counter into the right locations
during the encryption process.

7.4 Security of ABC1, ABC2 and ABC3

The main motivation behind the ABC framework is to provide security against attacks that take advantage
of a repeating permutation. We claim that, for any of the ABCs suggested above, equivalent key-salt-counter
combinations do not exist and therefore these ABCs really provide this kind of security. We also analyze the
security of the ABCs suggested above against a variety of known attacks.

13

7.4.1 Equivalent Keys In an ideal ABC it is very unlikely that two different key-salt-counter combinations
(K1, S1, t1) 6= (K2, S2, t2) specify the same permutation. Therefore, like in block ciphers, the design of an
ABC should result with permutations that do not collide.

In ABC1 the AES algorithm is used three times. Due to the use of K in the middle encryption, every pair
of (K,S) generates a unique set of round keys for the triple encryption. Therefore, we claim that there are
no pairs (K1, S1) 6= (K2, S2) and a counter t for which ABC1K1,S1,t(M) = ABC1K2,S2,t(M) for every M .
Moreover, we claim that there do not exist different key-salt-counter combinations (K1, S1, t1) 6= (K2, S2, t2)
for which ABC1K1,S1,t1(M) = ABC1K2,S2,t2(M) for every M .

In ABC2, for two different key-salt pairs (K1, S1) 6= (K2, S2) the derived keys K ′1,K
′
2 are necessarily

different. Therefore, there is a difference in at least one of the first two round keys. Such a difference diffuses
to other round keys. In case that (K1, S1) = (K2, S2) but t1 6= t2 then there is necessarily a difference in
round keys 2, 4, 7, 10, and 12, that are influenced by the counter. Thus, every two different key-salt-counter
combinations (K1, S1, t1) 6= (K2, S2, t2) necessarily produce a different set of round keysRK2. We claim that
there are no two such different key-salt-counter combinations that define the same permutation.

In ABC3 every key-salt pair generates a unique set of round keys (RK1, RK2). We claim that every key-
salt pair generates a unique set of round keys (RK1, RK2, RK3), and that RK4 = RK1 ⊕ RK2 ⊕ RK3 is
also unique for each key-salt pair. Moreover, we claim that every key-salt-counter combination results with a
unique set of round keys RK5, which specifies a unique permutation.

7.4.2 Security of ABC1 Against Any Known or Chosen Plaintext Attack We show a reduction from
any known/chosen plaintext attack on ABC1 to a known/chosen plaintext attack on AES. We conclude that
the security of ABC1 against known/chosen plaintext attacks (e.g., differential attack, linear attack and time-
memory tradeoff attacks) is similar to the security of AES against these attacks.

Consider a known/chosen plaintext attack A on ABC1. We build an attack B on AES-128 using the attack
A. Whenever A asks for the encryption of a plaintext block M , with a salt S, and with a counter t, B asks
for K ′ = AES-128K(S). Then B computes V1 = AES-128K′(M) ⊕ t′, asks for V2 = AES-128K(V1), and
computesC = AES-128K′(V2⊕t′), thus receivingC = ABC2K,S,t(M). OnceA announces the recovered key
K (or any information on the key), B announces the same key K (or the same information that A announced).
Therefore, B learns exactly the same information on the key as A does.

7.4.3 Security of ABC2 and ABC3 Against Linear Attacks ABC2 and ABC3 are based on the AES al-
gorithm and use its S Box. The maximal bias of a linear approximation of this S Box, as shown in [4], is 2−3.
Using a computer program we found that the lower bound of active S Boxes in a linear characteristic is 80
for ABC2, and 55 for ABC3. Therefore, the bias of any linear approximation of the full ABC2 and ABC3 is
bounded by 2−240 and 2−165, respectively. We note that the introduction of the counter might allow the ad-
versary to attack the cipher using a shorter characteristic of 12 rounds in ABC2, or 9 rounds in ABC3. The
number of active S Boxes in 12 rounds of ABC2 is lower bounded by 75 and the number of active S Boxes
in 9 rounds of ABC is lower bounded by 51. Therefore the bias of a linear approximation of 12 rounds of
ABC2 or 9 rounds of ABC3 are bounded by 2−225 and 2−151, respectively. These biases would require over
2300 known plaintexts for a linear attack while there are only 2128 plaintexts in the whole block space, which
makes this attack impossible. We note that in our model an adversary can use more than 2128 plaintext-counter
combinations for a linear attack, but the number of encryptions required for such an attack is larger than 2128 –
the number of encryptions required for an exhaustive search, and therefore such an attack is also unapplicable.

7.4.4 Security of ABC2 and ABC3 Against Extended Differential Attacks Unlike traditional differential
attacks, in differential attacks on ABCs the adversary is not limited to introduce the differences through the
plaintext. She can also introduce the differences through the salt or through the counter.

14

ABC1 ABC2 ABC3 AES
Key scheduling avg speed (in cpu cycles) 545.25 625.62 924 162.14
Key scheduling standard deviation 3.19 2.53 4.87 3.06
Key scheduling speed median (in cpu cycles) 541 627 925 162
Encryption avg speed (in cpu cycles) 825.82 385.47 326.11 240.32
Encryption speed standard deviation 35.05 1.09 9.41 6.64
Encryption speed median (in cpu cycles) 808 385 322 238

Table 2. Performance of the different implementations

Definition 16 We use the term extended differential characteristic for a differential characteristic that may
include a salt difference and/or a counter difference in addition to the plaintext difference. An attack that uses
an extended differential characteristic is called extended differential attack.

We note that using an extended differential characteristic that has a salt difference is useless when attacking
ABC2 or ABC3, since in both ABCs the salt is encrypted by the secret key before it is used. Thus, an adversary
who uses such a characteristic has no information about the differential that is actually in use. Therefore, we
limit our analysis to the case where there is no salt difference. Obviously, a counter difference can partially “fix”
a plaintext difference and slow down the diffusion of the difference. Therefore, we expect that the diffusion of
differences will be slightly slower in ABC2 and ABC3 than in AES. Nevertheless, we claim that both ABCs are
still secure against extended differential attacks, and indeed, a simulation that checks all possible differential
trails shows that after six rounds of ABC2 and after seven rounds of ABC3 there are always at least 25 active
S Boxes. In a full run of 14 rounds of ABC2 there are at least 53 active S Boxes, and in a full run of 10 rounds
of ABC3 there are at least 30 active boxes. Thus, ABC2 does not have any extended differential characteristic
(without a salt-difference) that has probability higher than (2−6)53 = 2−318. Similarly, ABC3 does not have
such an extended differential characteristic that has probability higher than (2−6)30 = 2−180.

7.5 Performance of Our ABCs

In order to check the performance of our suggested ABCs, we used an Intel Xeon E5540 processor with a
2.53GHz CPU and cache size of 8192KB that runs a Red Hat Enterprise Linux Server release 5.5. We used
parts of the AES code of Brian Gladman [10] for our ABCs implementations. The results are summarized in
Table 2 along with the performance results of Gladman’s AES-128 code for comparison.

15

Bibliography

[1] Mihir Bellare, John Black, Philip Rogaway, OCB: A Block-Cipher Mode of Operation, ACM Transactions
on Information and System Security (TISSEC), vol. 6, no. 3, pp. 365-403, August 2003. Earlier version
in Eighth ACM Conference on Computer and Communications Security (CCS-8), ACM Press, 2001.

[2] Mihir Bellare, Anand. Desai, Eron Jokipii, Philip Rogaway, A Concrete Security Treatment of Symmetric
Encryption, proceedings of the 38th Annual Symposium on Foundations of Computer Science, IEEE,
1997, pp. 394–403.

[3] Eli Biham, Orr Dunkelman, A Framework for Iterative Hash Functions - HAIFA, Second NIST Crypto-
graphic Hash Workshop, 2006.

[4] Joan Daemen and Vincent Rijmen, AES Proposal: Rijndael NIST AES proposal, 1998.
[5] D. W. Davies and W. L. Price, The Application of Digital Signatures Based on Public-Key Cryptosystems,

Proceeding of Fifth International Computer Communications Conference, pp. 525–530, 1980.
[6] Richard Drews Dean, Formal Aspects of Mobile Code Security, Ph.D Dissertation, Princeton University,

January 1999.
[7] Whitfield Diffie and Martin Edward Hellman, Privacy and Authentication: An Introduction to Cryptog-

raphy, Proceedings of the IEEE, Vol. 67, No. 3, pp. 397-427, March 1979.
[8] Danny Dolev, Cynthia Dwork, Moni Naor, Non-Malleable Cryptography, SIAM Journal on computing,

Vol. 30, No. 2, pp. 391–437, 2000.
[9] Morris Dworkin, Recommendation for Block Cipher Modes of Operation - Methods and Techniques,

NIST Special Publication 800-38A, 2001.
[10] Brian Gladman, AES Source Code, http://www.gladman.me.uk/.
[11] Shafi Goldwasser and Silvio Micali, Probabilistic Encryption, Special issue of Journal of Computer and

Systems Sciences, Vol. 28, No. 2, pp. 270-299, April 1984.
[12] Martin E.Hellman, A Cryptanalytic Time-Memory Tradeoff, IEEE Transactions on Information Theory,

Vol. 26, pp. 401-406, July 1980.
[13] John Kelsey and Bruce Schneier, Second Preimages on n-Bit Hash Functions for Much Less than 2n

Work, EUROCRYPT 2005, pp. 474-490.
[14] Moses Liskov, Ronald L. Rivest, David Wagner, Tweakable Block Ciphers, Advances in Cryptology –

CRYPTO 2002, Lecture Notes in Computer Science 2442, pp. 31–46, Springer-Verlag, 2002.
[15] Bart Preneel, René Govaerts and Joos Vandewalle, Hash Functions Based on Block Ciphers: A Synthetic

Approach, Crypto 1993, pp. 368-378.
[16] Philip Rogaway, Nonce-Based Symmetric Encryption, Fast Software Encryption (FSE) 2004, Lecture

Notes in Computer Science vol. 3017, pp. 348-359, Springer, 2004.
[17] US National Institute of Standards and Technology, Advanced Encryption Standard, Federal Information

Processing Standards Publications No. 197, 2001.

A Security Proofs

A.1 Proof of Lemma 1

Lemma 1 Let X be a reasonable mode. Then AX is a reasonable AMode.

Proof. AX is built by replacing the instances of a block cipher in X with instances of an ABC. Let Ẽ be an
ABC with a block size of n bits, and let E be a block cipher with a block size of n bits. We show that AX
fulfills all the conditions of a reasonable AMode.

1. X is a reasonable mode of operation and therefore, XE
K(·) is a length preserving encryption for every key

K. Therefore, AXẼ
K̃,S

, by its definition, is also a length preserving encryption for every key K and a salt S.

The number of plaintext blocks in AXẼ
K̃,S

is equal to the number of plaintext blocks in XE
K and the number

of ciphertext blocks in AXẼ
K̃,S

is equal to the number of ciphertext blocks in XE
K . Therefore, the number of

plaintext blocks in AXẼ
K̃,S

equals the number of ciphertext blocks. Moreover, all the plaintext and ciphertext

blocks of AXẼ
K̃,S

are n-bits blocks.
2. Let f1 and f2 be the functions such that

Ci = f2(EK(f1(IV, i,M1, ...,Mi, C1, ..., Ci−1)), IV, i,M1, ...,Mi, C1, ..., Ci−1).

By its definition, AX is the AMode in which

Ci = f2(ẼK,S,i(f1(IV, i,M1, ...,Mi, C1, ..., Ci−1)), IV, i,M1, ...,Mi, C1, ..., Ci−1).

(a) By its definition, f2(·; IV, i,M1, ...,Mi, C1, ..., Ci−1) is a permutation over {0, 1}n.
(b) Denote gE,K,IV,i,M1,...,Mi−1,C1,...,Ci−1(Mi)

= f2(EK(f1(IV, i,M1, ...,Mi, C1, ..., Ci−1)), IV, i,M1, ...,Mi, C1, ..., Ci−1),
and denote g̃Ẽ,K,S,IV,i,M1,...,Mi−1,C1,...,Ci−1

(Mi)

= f2(ẼK,S,i(f1(IV, i,M1, ...,Mi, C1, ..., Ci−1)), IV, i,M1, ...,Mi, C1, ..., Ci−1). Let Ẽ(S,i) be the block
cipher that is defined by Ẽ(S,i)

K (M) = ẼK,S,i(M). Now we can write:

g̃Ẽ,K,S,IV,i,M1,...,Mi−1,C1,...,Ci−1
(Mi) = gẼ(S,i),K,IV,i,M1,...,Mi−1,C1,...,Ci−1

(Mi).

The function on the right of the last equation is a permutation. The function on the left side of the
equation (g̃) equals the i’th block of AXẼ

K̃,S
. Thus in AX, Ci is a permutation of Mi.

QED.

A.2 Proof of Theorem 1
Theorem 1 Let X be a reasonable AMode. Let E be an ABC. Every possible total length of queries σ that
allows the adversary to be salt-respecting satisfies Secind−CPA

XE (σ) ≤ Secprp
E (σ).

Proof. Let A be an ind-CPA adversary against XE that uses q queries of total length of σ blocks and that
achieves the maximal advantage such an adversary can achieve, i.e., Advind−CPA

XE (A) = Secind−CPA
XE (σ). We

build an adversary B against E that uses σ queries and such that Advprp
E (B) = Advind−CPA

XE (A).
Let OB be the oracle that answers B’s queries (OB can be either EK(·, ·, ·) or π(·, ·, ·)). B simulates an

oracle O for A. O works as follows: whenever A makes a query Q = (S,M = M1||...||Mm) to O, B makes
m queries to its own oracle OB: Qi = (S, i, xi) for 1 ≤ i ≤ m, and gets an answer yi, where xi is the plaintext
input of the i’th instance of E in X (note that B is able to calculate xi when necessary). From the answers it
gets for its queries, B calculates Ci = f2(yi, IV, i,M1, ...,Mi, C1, ..., Ci−1) and returns C = C1||...||Cm. B
lets A run on O and answers as A.

First, we notice that when OB = EK(·, ·, ·) then O = OXE
K

(·, ·). This follows immediately from the

building ofO. Second, we claim that whenOB = π(·, ·) thenO = OX
E

R (·, ·). This is becauseX is a reasonable
mode and as such, Ci is a permutation of yi which is a random string in that case. Therefore, for every 1 ≤ i ≤
m,Ci is actually chosen uniformly at random from {0, 1}n and thus,C is a random string of length |XE

K,S(M)|.
Now, we can write:

Advprp
E (B) = Pr

[
BEK(·,·,·) = 1

∣∣K R←− {0, 1}k
]
− Pr

[
Bπ(·,·,·) = 1

∣∣π R←− SCPerm(s, c, n)
]

= Pr
[
A
O
XE
K

(·,·)
= 1
∣∣K R←− {0, 1}k

]
− Pr

[
Aπ(·,·) = 1

]
= Advind−CPA

XE (A).

QED.

17

A.3 Proof of Theorem 2

Theorem 2 Let Ẽ be an ideal ABC and letE be an ideal block cipher. For every σ it holds that Secind−CCA
ECBE

(σ) ≥
Secind−CCA

AECBẼ
(σ).

In order to prove Theorem 2 we need to prove the following two lemmas.

Lemma 4 Let E be an ideal ABC. Let A be an ind-CCA adversary against AECBE that uses no more than a
total of σ blocks in its queries. Then there exists a deterministic ind-CCA adversary A′ that uses no more than
a total of σ blocks in its queries and such that Advind−CCA

AECBE
(A) ≤ Advind−CCA

AECBE
(A′).

Proof. Consider a representation of A as a decision tree. Let v be a state in the decision tree where A performs
a coin-flip. Let u1, ..., um be the children of v, so upon arriving to state v, A flips a coin and, according to the
result, decides to which one of v’s children it should move. Let Av be the event in which A reaches state v. The
advantage of A can be written as

Advind−CCA
AECBE (A) = Pr

[
AAECBE

K(·,·) = 1
∣∣∣K R←− {0, 1}k

]
− Pr

[
AOR(·,·) = 1

]
=Pr

[
AO(·,·) = 1

∣∣∣O = OE

]
− Pr

[
AO(·,·) = 1

∣∣∣O = OR

]
=Pr

[
AO(·,·) = 1

∣∣∣O = OE ∧Av

]
· Pr

[
Av

∣∣∣OE

]
+ Pr

[
AO(·,·) = 1

∣∣∣O = OE ∧ ¬Av

]
· Pr

[
¬Av

∣∣∣OE

]
− Pr

[
AO(·,·) = 1

∣∣∣O = OR ∧Av

]
· Pr [Av|OR]− Pr

[
AO(·,·) = 1

∣∣∣O = OR ∧ ¬Av

]
· Pr

[
¬Av

∣∣∣OR

]
.

We note that Pr
[
AO(·,·) = 1

∣∣∣Av] =
∑m

i=1 Pr
[
ui

∣∣∣Av] · Pr
[
AO(·,·) = 1

∣∣∣Aui].
Define

j = arg max
1≤i≤m

{Pr
[
Av

∣∣∣O = OE

]
· Pr

[
AO(·,·) = 1

∣∣∣O = OE ∧Aui

]
− Pr

[
Av

∣∣∣O = OR

]
· Pr

[
AO(·,·) = 1

∣∣∣O = OR ∧Aui

]
}.

Now, consider the adversary A(v) of which decision tree is identical to the decision tree of A, besides the fact
that upon reaching the state v, A(v) does not flip a coin, but moves to uj .

For any statew, denote byOwE the event in whichO = OE and the adversary (which can be eitherA orA(v)

– according to the context) reaches state w. Denote by O¬wE the event in which O = OE and the adversary does
not reach state w. Similarly, denote by OwR and O¬wR the events in which O = OR and the adversary reaches or
not, respectively, state w.

Obviously, A(v) performs one flip-coin less then A and

18

Advind−CCA
AECBE (A(v)) = Pr

[
A(v)O(·,·)

= 1
∣∣O = OE

]
− Pr

[
A(v)O(·,·)

= 1
∣∣O = OR

]
=Pr

[
A(v)O(·,·)

= 1
∣∣Ov

E

]
· Pr

[
A(v)

v

∣∣OE

]
+ Pr

[
A(v)O(·,·)

= 1
∣∣O¬vE] · Pr

[
¬A(v)

v|OE

]
− Pr

[
A(v)O(·,·)

= 1
∣∣Ov

R

]
· Pr

[
A(v)

v

∣∣OR

]
− Pr

[
A(v)O(·,·)

= 1
∣∣O¬vR] · Pr

[
¬A(v)

v

∣∣OR

]
=Pr

[
A(v)O(·,·)

= 1
∣∣Ouj

E

]
· Pr

[
A(v)

v

∣∣OE

]
− Pr

[
A(v)O(·,·)

= 1
∣∣Ouj

R

]
· Pr

[
A(v)

v

∣∣OR

]
+ Pr

[
A(v)O(·,·)

= 1
∣∣O¬vE] · Pr

[
¬A(v)

v

∣∣OE

]
− Pr

[
A(v)O(·,·)

= 1
∣∣O¬vR] · Pr

[
¬A(v)

v

∣∣OR

]
≥

m∑
i=1

Pr
[
ui
∣∣Av

]
·
(
Pr
[
Av

∣∣OE

]
· Pr

[
AO(·,·) = 1

∣∣Oui
E

]
− Pr

[
Av

∣∣OR

]
· Pr

[
AO(·,·) = 1

∣∣O = Oui
R

])
+ Pr

[
A(v)O(·,·)

= 1
∣∣O¬vE] · Pr

[
¬A(v)

v

∣∣OE

]
− Pr

[
A(v)O(·,·)

= 1
∣∣O¬vR] · Pr

[
¬A(v)

v

∣∣OR

]
=

m∑
i=1

Pr
[
ui
∣∣Av

]
· Pr

[
Av

∣∣OE

]
· Pr

[
AO(·,·) = 1

∣∣Oui
E

]
−

m∑
i=1

Pr [ui|Av] · Pr [Av|OR] · Pr
[
AO(·,·) = 1|Oui

R

]
+ Pr

[
A(v)O(·,·)

= 1
∣∣O¬vE] · Pr

[
¬A(v)

v

∣∣OE

]
− Pr

[
A(v)O(·,·)

= 1
∣∣O¬vR] · Pr

[
¬A(v)

v

∣∣OR

]
=Pr

[
AO(·,·) = 1

∣∣Ov
E

]
· Pr

[
Av

∣∣OE

]
+ Pr

[
AO(·,·) = 1

∣∣O¬vE] · Pr
[
¬Av

∣∣OE

]
− Pr

[
AO(·,·) = 1

∣∣Ov
R

]
· Pr

[
Av

∣∣OR

]
− Pr

[
AO(·,·) = 1

∣∣O¬vR] · Pr
[
¬Av

∣∣OR

]
=Advind−CCA

AECBE (A).

By induction, we can create an adversaryA′ which does not perform any flip-coins and for which Advind−CCA
AECBE

(A′) ≥
Advind−CCA

AECBE
(A).

QED.

Definition 17 The sequence of queries made by an ind-CCA adversary A to an oracle O, and the answers
received for them is denoted by stream.

When discussing a deterministic adversary A, the output of the adversary in a single run depends only
on the stream generated by A’s run (and since this is a deterministic adversary, the output actually depends
only on the answers received by the oracle). Thus, the contribution of a single stream u that A accepts to the
advantage of A is the difference between the probability of getting u when A runs on OE and the probability
of getting u when A runs on OR. Formally, denote by U the set of all streams upon which A outputs ‘1’. Then,
Advind−CCA

E (A) =
∑

u∈U (Pr[u|O = OE]− Pr[u|O = OR]).

Lemma 5 LetX be a reasonable AMode. LetE be an ideal ABC. LetA be a deterministic ind-CCA adversary
against XE that uses no more than a total of σ blocks in its queries, and such that Advind−CCA

XE (A) ≥ 0. If
there are 1 ≤ ` streams that A accepts (outputs ‘1’) then there exists a deterministic adversary B that uses
no more than a total of σ blocks in its queries, accepts 2n ≤ `′ streams and such that Advind−CCA

XE (B) ≥
Advind−CCA

XE (A).

Proof. If 2n ≤ ` then B = A and we are done. If 1 ≤ ` < 2n then let u be a stream that A accepts and
such that Pr[u|O = OE] − Pr[u|O = OR] ≥ 0 (obviously, there is at least one such stream). Let S1 be the
first salt in u and let C1 be the answer to the first block of the first query in u. Let π be a permutation over
{0, 1}n. Consider the stream uπ which is identical to u accepts that every answer block c to a query block
with S = S1, t = 1 in u is replaced with π(c) in uπ. Since E is an ideal ABC then for each key, K, the
permutation EK,S1,1(·) is chosen uniformly at random. Therefore, Pr[uπ|O = OE] = Pr[u|O = OE]. Of
course, Pr[uπ|O = OR] = Pr[u|O = OR] = 2−|u|·n, where |u| is the number of blocks in the queries of u. We
obtain that Pr[uπ|O = OE]− Pr[uπ|O = OR] = Pr[u|O = OE]− Pr[u|O = OR] ≥ 0.

19

Now, let UA be the set of streams thatA accepts. Let {πi}2
n

i=1 be a set of 2n permutations such that πi(C1) 6=
πj(C1) for every i 6= j. Let UB = UA

⋃2n

i=1 uπi and let B be the adversary that accepts the streams that are in
UB and rejects the other streams. B accepts at least 2n streams and

Advind−CCA
XE (B) =

∑
u∈UB

(Pr[u|O = OE]− Pr[u|O = OR])

=
∑
u∈UA

(Pr[u|O = OE]− Pr[u|O = OR]) +

≥0︷ ︸︸ ︷∑
u∈UB\UA

(Pr[u|O = OE]− Pr[u|O = OR])

≥Advind−CCA
XE (A)

QED.

Now we can prove Theorem 2.

Proof. Let A be an ind-CCA adversary against AECBẼ that uses no more than a total of σ blocks in
its queries. W.l.g., A is deterministic (following Lemma 4). In case A does not accept any streams then
Advind−CCA

AECBẼ ,A
= 0. In case that there are streams that A accepts then w.l.g., there are at least 2n such streams

(following Lemma 5).
Every sequence that A accepts is generated by OR with probability of at least 2−nσ and therefore, in case

that there are sequences that A accepts, Pr[AOR(·,·) = 1] ≥ 2−n(σ−1). Therefore, we can write

Advind−CCA

AECBẼ
(A) = Pr

[
AO(·,·) = 1

∣∣∣O = OE

]
− Pr

[
AO(·,·) = 1

∣∣∣O = OR

]
≤ 1− 2−n(σ−1),

and conclude that Secind−cca
AECBẼ

(σ) ≤ 1− 2−n(σ−1).

Now, consider an ind-CCA adversary B that works against ECBE and is defined as follows: B asks a
single query of σ blocks, all equal and accepts (outputs ‘1’) if and only if all σ blocks of the answer are equal.

Obviously, Pr[BOE(·) = 1] = 1 and Pr[BOR(·) = 1] = 2−n(σ−1). Therefore we get

Secind−CCA
ECBE

(σ) ≥ Advind−CCA
ECBE

(B) = 1− 2−n(σ−1) ≥ Secind−CCA

AECBẼ
(σ).

QED.

A.4 Proof of Theorem 3

Theorem 3 Let X be a reasonable AMode, and let E be an ideal ABC. Then Secsem−ATK
XE (σ) = 0, where

ATK ∈ {CPA,CCA}.

In order to prove Theorem 3 we need to prove the following lemmas.

Lemma 6 LetX be a reasonable AMode. LetE be an ideal ABC. Then, for every messageM = M1||...||Mm,
and every 1 ≤ i ≤ m, c ∈ {0, 1}|Mi|, K ∈ {0, 1}k, S ∈ {0, 1}s, it holds that Pr[Ci = c] = 2−|Mi|, where
C = XE

K,S(M) and when the randomness results from choosing the random permutations EK,S,t for different
counter values t.

Proof. Since E is an ideal ABC then EK,S,i is a random permutation chosen uniformly from the permutation
spaces. Therefore, for every possible xi ∈ {0, 1}|Mi| and for every y ∈ {0, 1}|Mi| we get that Pr[yi = y] =
Pr[EK,S,i(xi) = y] = 2−|Mi|.

Since X is a reasonable AMode in which Ci is a permutation of yi then for every c ∈ {0, 1}|Mi| we get that
Pr[Ci = c] = 2−|Mi|.

20

QED.

Lemma 7 Let X be a reasonable AMode. Let E be an ideal ABC. Then, for every message M , and every
c ∈ {0, 1}|M |, K ∈ {0, 1}k, S ∈ {0, 1}s, it holds that Pr[C = c] = 2−|M |, where C = XE

K,S(M) and when
the randomness results from choosing the random permutations EK,S,t for different counter values t.

Proof. According to Lemma 6, Pr[Ci = ci] = 2−|Mi| for every 1 ≤ i ≤ m, (where m is the number of blocks
in M) and for every ci ∈ {0, 1}|Mi|. Since X is a reasonable AMode then all the instances of E in X define
independent permutations and therefore,

Pr[C = c] =
m∏
i=1

Pr[Ci = ci] =
m∏
i=1

2−|Mi| = 2−
∑m
i=1 |Mi| = 2−|M |.

QED.

Lemma 8 Let X be a reasonable AMode, let E be an ideal ABC, and let M be a message chosen at random
according to some valid distribution function γ (i.e., γ gives non-zero probability only to messages of length
` = |M |).

Then, for every m, c ∈ {0, 1}`, K ∈ {0, 1}k, S ∈ {0, 1}s, it holds that Pr[M = m|C = c] = γ(m), where
C = XE

K,S(M) and when the randomness results from choosing the random permutations EK,S,t for different
counter values t.

Proof. In Lemma 7 we show that Pr[C = c] = 2−|M | for every message M , and every c ∈ {0, 1}|M |,
K ∈ {0, 1}k, S ∈ {0, 1}s. Therefore, we can write Pr[C = c|M] = 2−|M |. By applying Bayes’ law, and
following that Pr[C = c] 6= 0:

Pr[M = m|C = c] =
Pr[M = m] · Pr[C = c|M = m]

Pr[C = c]
=
γ(M) · 2−`

2−`
= γ(M).

QED.

Now we can prove Theorem 3.

Proof. For every (α, f) that A can output it holds that

Pr[α = f(M∗)|C∗] =
∑

m:γ(m)>0,
f(m)=α

Pr[m|C∗] =
∑

m:f(m)=α

γ(m).

On the other hand,
Pr[α = f(M ′)] =

∑
m:γ(m)>0,
f(m)=α

γ(m) = Pr[α = f(M∗)|C∗].

QED.

21

