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Abstract. This paper deals with the security of MISTY structure with SPN round func-
tion. We study the lower bound of the number of active s-boxes for differential and linear
characteristics of such block cipher construction. Previous result shows that the differential
bound is consistent with the case of Feistel structure with SPN round function, yet the
situation changes when considering the linear bound. We carefully revisit such issue, and
prove that the same bound in fact could be obtained for linear characteristic. This result
combined with the previous one thus demonstrates a similar practical secure level for both
Feistel and MISTY structures. Besides, we also discuss the resistance of MISTY structure
with SPN round function against other kinds of cryptanalytic approaches including the in-
tegral cryptanalysis and impossible differential cryptanalysis. We confirm the existence of
6-round integral distinguishers when the linear transformation of the round function employs
a binary matrix (i.e., the element in the matrix is either 0 or 1), and briefly describe how to
characterize 5/6/7-round impossible differentials through the matrix-based method.
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1 Introduction

1.1 Backgrounds

Differential cryptanalysis [7] (DC) and linear cryptanalysis [27] (LC) are the two most powerful
known attacks on block ciphers. Accordingly, for a new proposed algorithm, the designers should
evaluate its security against DC and LC, or even prove its resistance against these two attacks.
In general, there are two strategies for achieving this goal. The first one is the provable secure
approach, and the second one is the practical secure approach. The provable secure approach1 is
introduced in [32, 31], where the concepts of differential [23] and linear hull [31] are used to prove
an upper bound of maximum differential (linear) probability. This bound should be sufficiently low
in order to make the whole cipher be theoretically invulnerable to DC and LC. This condition is

1 Note that, for some ciphers, see e.g. [3, 4], the theory of decorrelation [41] can provide a tool for the
proof of provable security against DC and LC.



usually achieved by imposing a (relative hard) restriction on the round function. Another approach
is the practical secure approach [19], which concentrates on the differential characteristic and linear
characteristics, other than the differential and linear hull. According to this approach, if the upper
bound of the maximum differential and linear characteristic probabilities are less than (usually)
the security threshold, the whole cipher is said to be practically secure against DC and LC.

High-level structures play an essential role in designing block ciphers resisting DC and LC.
There are many well-known block cipher structures, including SPN structure, Feistel structure,
MISTY structure, Lai-Massey structure, etc. Since most of these block cipher structures can pro-
vide their provable security proofs against DC and LC based on some assumptions of the round
function, choosing which kind of round function becomes a key step in the design of a secure block
cipher. SPN-type round functions attract more attentions in recent years, since they can provide
good performance, and meanwhile without lost of security. Many block ciphers, such as Camellia,
CLEFIA, SMS4, etc. adopt such kind of round functions.

1.2 Related Works

Both provable and practical approaches have been widely adopted to demonstrate the security of
various block cipher structures. For instance, using the idea of provable security, the upper bound
of differential and linear hull probabilities for Feiste structure are obtained in [2, 32, 31], and the
result for SPN structure are shown in [15, 16, 33]. While using the notation of practical security, the
upper bound of probabilities of differential and linear characteristic of Feistel ciphers are obtained
in [19].

It is believed that for most block cipher structures, if the round function is SPN-type, the
maximum probability of differential and linear characteristic can usually be converted to the least
number of active differential and linear s-boxes. Thus when considering the practical security
aspects, the method of counting (or providing the lower bound of) the number of active s-boxes
becomes a well used technique. For SPN structure, this approach had been formalized as the wide
trail strategy [10], which is widely used in many block cipher designs [11, 12, 34]. For Feistel structure
with SPN round function, a similar result is obtained by Kanda in [22], followed by some advanced
results using the technique of diffusion switching mechanism to avoid the difference cancellation
as shown in [36–38]. Recently, many results are also obtained for generalized Feistel structureswith
SPN round function, see e.g. [8, 42, 35, 39].

MISTY structure is another well-known block cipher structure that is introduced by Matsui in
[29] and is recommended as an alternative scheme of Feistel structure, due to its provable security
against DC and LC. In [13], Gilbert and Minier formalize the standard MISTY structure as the
L-scheme and refer the dual structure as the R-scheme and provide the proof of (super) pseudo-
randomness. Another advantage of MISTY structure is that it allow parallel computations in the
encryption direction. Due to this, MISTY structure has been chosen as the underlying high-level
structure of the block cipher MISTY2 [30], and meanwhile, as the basic low-level structure of the
round function and the component in block ciphers MISTY1 [30], MISTY2, and KASUMI [40].

1.3 Main Results and Outline of This Paper

This paper mainly concentrates the practical security of MISTY structure when the round function
is SPN-type. Let Bd (resp. Bl) be the differential (resp. linear) branch number of the linear trans-
formation. Previous result [44] shows that the number of differential active s-boxes in 4r rounds is
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at least Bd×r+⌊r/2⌋. This lower bound for differential characteristic is consistent with the case of
Feistel structure with SPN round function [22]. However, as the authors mentioned, the situation
changes when considering the linear characteristic.

We carefully revisit such issue, and prove that the same bound in fact could be obtained for
linear characteristic. That is to say the number of active s-boxes in any linear characteristic over
4r rounds is at least Bl × r+ ⌊r/2⌋. This result combined with the previous one thus demonstrate
a similar practical secure level for both Feistel and MISTY structures. Besides, we also discuss
the resistance of MISTY structure with SPN round function against other kinds of cryptanalytic
approaches including the integral cryptanalysis and the impossible differential cryptanalysis. We
confirm the existence of 6-round integral distinguishers when the linear transformation of the round
function employs a binary matrix, and briefly describe how to characterize 5/6/7-round impossible
differentials through the matrix-based method.

All of the above results can be applied to the block cipher p-Camellia that is proposed in [44].
For instance, the least number of active s-boxes for 16-round linear characteristic can be improved
from 15 to 22, which demonstrates the practical resistance of p-Camellia against LC. Meanwhile,
6/7-round integral distinguishers and 5/6/7-round impossible differentials can be constructed (pre-
vious known results are only 4-round), which significantly improve the distinguishing bounds of
p-Camellia (See Appendix A).

The outline of this paper is as follows: some preliminaries are introduced in Section 2. Section
3 revisits the practical security of MISTY structure with SPN round function against DC and LC.
Section 4 discusses the resistance of such block cipher construction against other kinds of crypt-
analytic approaches including the integral cryptanalysis and impossible differential cryptanalysis.
Finally, Section 5 concludes this paper.

2 Preliminaries

2.1 Notations

Let X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn) ∈ Fn
2d , where d and n are some integers, then the

following notations are used throughout this paper.

∆X : difference of X and X ′, ∆X = X ⊕X ′

ΓY : mask value of Y
X ⊕ Y : bitwise exclusive-OR (XOR) of X and Y
Y · ΓY : parity of bitwise product Y and ΓY
X∥Y : concatenation of X and Y

2.2 MISTY Structure

Consider any block cipher that employs a MISTY structure (see Fig.1). Let (Xi−1, Xi) be the
input of the i-th round, then the output is (Xi, Xi+1) satisfying

Xi+1 = F (Xi−1,Ki)⊕Xi,

where F (·, ·) is the round function and Ki is the round key. In order to make MISTY structure
invertible, for any fixed round key Ki, F (·,Ki) must be bijective. Assume the plaintext is (X0, X1),
then after iterating the above round transformation r times, the ciphertext is defined as (Xr+1, Xr).
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Fig. 1. The i-th round of MISTY structure

In this paper, we focus on MISTY structure with SPN round function, that is F (X,K) =
P (S(X ⊕K)), where the input X is first XORed with the round key K known as the round key
addition layer, and then the result is fed into a substitution layer defined as a non-linear bijective
transformation S over Fn

2d by n parallel S-boxs on F2d , followed by a diffusion layer which employs

an invertible linear transformation P defined over Fn×n
2d

. More precisely,

S : Fn
2d → Fn

2d , X = (x1, x2, . . . , xn) 7→ Z = S(X) = (s1(x1), s2(x2), . . . , sn(xn)),

P : Fn
2d → Fn

2d , Z = (z1, z2, . . . , zn) 7→ Y = P (Z) = (y1, y2, . . . , yn).

In the following sections, we will use Xi−1 (resp. Yi−1) to denote the input (resp. output) of
the i-th round function, i.e. Yi−1 = F (Xi−1 ⊕Ki). Let Zi−1 denote the intermediate variable after
the substitution layer in the i-th round function, thus Zi−1 = S(Xi−1 ⊕Ki) and Yi−1 = P (Zi−1).

It is worth noting that we will neglect the effect of the round key addition layer when considering
the provable or practical security evaluation of block ciphers, since in these situations we assume
that the round-key consists of independent and uniform random bits and is bitwise XORed with
the data, i.e. Y = F (X⊕K)

.
= F (X) = P (S(X)). One can discriminate those situations according

to the context.

2.3 Definitions

In this subsection, we give some definitions used in the following sections.

Definition 1. Given ∆x,∆z, Γx, Γz ∈ Fd
2, the differential and linear probabilities of each s-box

are defined as

DP si(∆x → ∆z) =
#{x ∈ Fd

2|si(x)⊕ si(x⊕∆x) = ∆z}
2d

LP si(Γz → Γx) =

(
2× #{x ∈ Fd

2|x · Γx = si(x) · Γz}
2d

− 1

)2
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Definition 2. The maximum differential and linear probability of s-boxes are defined as:

ps = max
i

max
∆x̸=0,∆z

DP si(∆x → ∆z)

qs = max
i

max
Γx,Γz ̸=0

LP si(Γz → Γx)

Thus, ps (resp. qs) is the upper bound of the maximum of differential (resp. linear) probabilities
for all s-boxes.

Definition 3. A differential active s-box is defined as an s-box whose input difference is non-zero.
Similarly, a linear active s-box is defined as an s-box whose output mask value is non-zero. Note
that if the s-box is bijective, then such s-box given a non-zero output difference (resp. input mask
value) is also a differential (resp. linear) active s-box.

Definition 4. Let X = (x1, x2, . . . , xn) ∈ Fn
2d , then the bundle weight of X is defined by

Hw(X) = #{i|xi ̸= 0}.

For convenience, given a linear transformation P : Fn
2d → Fn

2d , we will simply use P to denote
its matrix representation and PT to denote the transpose of P . Then the differential/linear branch
number [9, 12] is defined as follows:

Definition 5. The differential branch number of P is defined as

Bd = min
∆X ̸=0

(Hw(∆X) +Hw(P ·∆X)) .

Definition 6. The linear branch number of P is defined as

Bl = min
ΓY ̸=0

(Hw(ΓY ) +Hw(P
T · ΓY )).

3 Practical Security Evaluation Against DC and LC

To evaluate the practical security of Feistel ciphers with SPN round function against DC and
LC, Kanda presents the following result, which implies that clarifying the upper bound of the
maximum differential (resp. linear) characteristic probability is equivalent to showing the lower
bound of minimum number of differential (resp. linear) active s-boxes. In general 2, this result can
be applied to many other kinds of block cipher constructions.

Proposition 1. 3 Assume Feistel ciphers with SPN round function, let D(r) and L(r) be the mini-
mum number of active s-boxes over any r-round differential and linear characteristics, then r-round

differential and linear characteristic probability p
(r)
d and p

(r)
l satisfy the following relationship:

p
(r)
d ≤ pD

(r)

s and p
(r)
l ≤ qL

(r)

s .

2 For a counterexample, one can refer the kind of unbalanced Feistel structure with contracting MDS
diffusion as shown in [8].

3 This proposition is presented as Definition 8 and Definition 10 in [22].
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Kanda also demonstrates that for Feistel ciphers with SPN round function, if the linear trans-
formation is bijective, the cipher can be transformed into a Feistel cipher with PSN round function.
Thus, according to the duality [5, 28] between DC and LC of Feistel structure, one only needs to
give the lower bound of the number of active s-boxes for differential characteristic.

However, Kanda’s approach cannot be extended to the case of MISTY structure with SPN
round function due to the fact that MISTY structure and its dual structure is not the same. Thus
we must study the lower bound of minimum number of active s-boxes for differential and linear
characteristics respectively. For convenience, we will still use D(r) and L(r) to represent be the
minimum number of differential and linear active s-boxes over r-round MISTY structure with SPN
round function.

3.1 Lower Bound of the Number of Differential Active S-boxes

In this subsection, we just list the result for the lower bound of then number of differential active
s-boxes over 4r-round MISTY structure with SPN round function. Remind that in [44], MISTY
structure is referred as 2-cell GF-NLFSR.

Proposition 2. [44] The minimum number of differential active s-boxes for 4r-round 2-cell GF-
NLFSR cipher with SPN round function satisfies

D(4r) ≥ Bd × r + ⌊r/2⌋.

Note that this differential bound is consistent with the case of Feistel structure with SPN round
function.

3.2 Lower Bound of the Number of Linear Active S-boxes

In this subsection, we revisit the practical security of MISTY structure with SPN round function
against LC. Previous result4 only gives a lower bound of the number of linear active s-boxes for
some consecutive rounds when Bl = 5, and the bound is far from tight. We present a new bound
for the general case by carefully studying the relationship of the mask values between different
rounds.

To this end, the propagation rule of the mask value should be investigated. As discussed in
[5, 28], for Feistel structure, there exists a duality between differential characteristic and linear
characteristic. For MISTY structure, this duality can be described as shown in Fig. 2. Thus,
for differential characteristic, we have ∆Yi−1 = ∆Xi ⊕ ∆Xi+1, where i ≥ 1, while for linear
characteristic, we have ΓXi = ΓYi−2 ⊕ ΓYi−1, where i ≥ 2.

Note that for MISTY structure with SPN round function, the minimum number of linear active
s-boxes over r-round is defined by

L(r) = min
(ΓY0,ΓY1,...,ΓYr+1 )̸=(0,0,...,0)

r−1∑
i=0

Hw(ΓZi).

We first present the following lemma.

4 This result is obtained in [44], where MISTY structure is referred as 2-cell GF-NLFSR. It is shown that,
when Bl = 5, the lower bound of the number of linear active s-boxes is 3 for 4 rounds, 7 for 8 rounds,
11 for 12 rounds and 15 for 16 rounds.
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Fig. 2. MISTY structure (Left) and its Dual structure (Right)

Lemma 1. Let ΓXi−1, and ΓYi−1 ̸= 0 be the mask value of the input Xi−1 and output Yi−1 in
the i-th round, where i ≥ 1 then

Hw(P
T · ΓXi−1) +Hw(P

T · ΓYi−1) ≥ Bl.

Proof. Let Zi−1 be the intermediate value after the substitution layer in the i-th round and ΓZi−1

be the mask value of Zi−1, then Zi−1 = S(Xi−1) and Yi−1 = P · Zi−1.
Assume Xi−1 = P · Vi−1, then ΓVi−1 = PT · ΓXi−1. Further from Yi−1 = P · Zi−1, we get

ΓZi−1 = PT · ΓYi−1, thus

Hw(P
T · ΓXi−1) +Hw(P

T · ΓYi−1)

= Hw(ΓVi−1) +Hw(ΓZi−1)

= Hw(ΓVi−1) +Hw(ΓXi−1)

≥ Bl. ⊓⊔

To further facilitate our proof, we introduce the following useful definition.

Definition 7. For MISTY structure with SPN round function, let Or = (Yi, Yi+1, . . . , Yi+r−1) be
the output of the (i + 1)-th, (i + 2)-th, . . . , (i + r)-th round functions, and ΓOr = (ΓYi, ΓYi+1,
. . . , ΓYi+r−1) be the corresponding mask value of Or, then the truncated form (or pattern) of ΓOr

is defined by a binary sequence (ai, ai+1, . . . , ai+r−1), where ai+j = 0 if ΓYi+j = 0, and ai+j = 1 if
ΓYi+j ̸= 0, where j = 0, 1, . . . , r − 1. Similarly, the truncated form (or pattern) of the mask value
of the input Xi, and the intermediate value Zi of the round function can also be defined.

Lemma 2. The minimum number of linear active s-boxes in any three consecutive rounds satisfies
L(3) ≥ 2.

Proof. Without loss of generality, let’s consider the first three rounds. We can divide the minimum
number of linear active s-boxes into 23 − 1 = 7 cases (the trivial (all zero) pattern is out of
considering) according to the patterns of the output mask values.
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Table 1. The minimum number of linear active s-boxes in 3-round

(a0, a1, a2) minimum number of linear active s-boxes

(0,1,1) L(3)
1 ≥ Bl

(1,0,1) L(3)
2 ≥ Bl

(1,1,1) L(3)
3 ≥ Bl

(1,1,0) L(3)
4 ≥ 2

Table 2. The minimum number of linear active s-boxes in 4-round

(a0, a1, a2, a3) minimum number of linear active s-boxes

(0,1,1,0) L(4)
1 ≥ Bl

(0,1,1,1) L(4)
2 ≥ Bl + 1

(1,0,1,1) L(4)
3 ≥ Bl + 1

(1,1,1,0) L(4)
4 ≥ Bl

(1,1,1,1) L(4)
5 ≥ Bl + 1

(1,1,0,1) L(4)
6 ≥ Bl + 1

Note that if (a0, a1, a2) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)}, then it is an impossible pattern, thus we
only need to consider 7− 3 = 4 possible patterns, whose corresponding linear bounds are listed in
Table 1. The details are explained as follows:

If (a0, a1, a2) = (1, 1, 1), according to Lemma 1,

Hw(ΓZ0) +Hw(ΓZ1) +Hw(ΓZ2)

= Hw(P
T · ΓY0) +Hw(P

T · ΓY1) +Hw(P
T · ΓY2)

≥ Hw(P
T · (ΓY0 ⊕ ΓY1)) +Hw(P

T · ΓY2)

= Hw(P
T · ΓX2) +Hw(P

T · ΓY2)

≥ Bl,

thus L(3)
3 ≥ Bl.

Similarly, if (a0, a1, a2) = (0, 1, 1) or (1, 0, 1), we can obtain L(3)
1 ≥ Bl and L(3)

2 ≥ Bl. While

(a0, a1, a2) = (1, 1, 0), Hw(ΓZ0) +Hw(ΓZ1) ≥ 1 + 1 = 2, thus L(3)
4 ≥ 2.

In total, we have L(3) ≥ 2. ⊓⊔

Lemma 3. The minimum number of linear active s-boxes in any four consecutive rounds satisfies
L(4) ≥ Bl.

Proof. Similarly, let’s consider the first four rounds. Now that any three consecutive round has
only 4 possible patterns, thus in total we need only to study 4× 2 = 8 possible patterns by adding
one round after the first three rounds, among which two patterns (1, 0, 1, 0) and (1, 1, 0, 0) are
impossible, due to the impossibility of the sub-patterns (0, 1, 0) and (1, 0, 0). For those 8 − 2 = 6
possible patterns, the corresponding bounds are listed in Table 2.

In fact, these bounds can be directly obtained based on the 3-round case.

(1) If (a0, a1, a2, a3) = (0, 1, 1, 0), then L(4)
1 = L(3)

1 ≥ Bl.
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(2) If (a0, a1, a2, a3) = (0, 1, 1, 1), then L(4)
2 ≥ L(3)

1 + 1 ≥ Bl + 1.

(3) If (a0, a1, a2, a3) = (1, 0, 1, 1), then L(4)
3 ≥ L(3)

2 + 1 ≥ Bl + 1.

(4) If (a0, a1, a2, a3) = (1, 1, 1, 0), then L(4)
4 = L(3)

3 ≥ Bl.

(5) If (a0, a1, a2, a3) = (1, 1, 1, 1), then L(4)
5 ≥ L(3)

3 + 1 ≥ Bl + 1.

(6) If (a0, a1, a2, a3) = (1, 1, 0, 1), then L(4)
6 ≥ 1 + L(3)

2 ≥ Bl + 1.

In total, we have L(4) ≥ Bl. ⊓⊔

Using a similar technique as shown in Lemma 3, we can obtain the minimum number of linear
active s-boxes in any six consecutive rounds.

Table 3. The minimum number of linear active s-boxes in 6-round

(a0, a1, a2, a3, a4, a5) minimum number of linear active s-boxes

(0,1,1,0,1,1) L(6)
1 ≥ 2× Bl

(0,1,1,1,0,1) L(6)
2 ≥ 2× Bl

(0,1,1,1,1,0) L(6)
3 ≥ Bl + 2

(0,1,1,1,1,1) L(6)
4 ≥ 2× Bl

(1,0,1,1,0,1) L(6)
5 ≥ 2× Bl

(1,0,1,1,1,0) L(6)
6 ≥ Bl + 2

(1,0,1,1,1,1) L(6)
7 ≥ 2× Bl

(1,1,0,1,1,0) L(6)
8 ≥ Bl + 2

(1,1,0,1,1,1) L(6)
9 ≥ Bl + 3

(1,1,1,0,1,1) L(6)
10 ≥ 2× Bl

(1,1,1,1,0,1) L(6)
11 ≥ 2× Bl

(1,1,1,1,1,0) L(6)
12 ≥ Bl + 2

(1,1,1,1,1,1) L(6)
13 ≥ 2× Bl

Lemma 4. The minimum number of linear active s-boxes in any six consecutive rounds satisfies
L(6) ≥ Bl + 2.

Proof. The six-round encryption can be treated as a concatenation of two three-round encryptions,
thus we have to consider 4×4 = 16 cases, among which three patterns (1, 0, 1, 0, 1, 1), (1, 1, 0, 0, 1, 1)
and (1, 1, 0, 1, 0, 1) are impossible, due to the impossible sub-patterns (0, 1, 0), (1, 0, 0) and (0, 1, 0).

The bounds for the other 13 patterns are listed in Table 3, based on which one can deduce that
L(6) ≥ Bl + 2. ⊓⊔

Lemma 5. The minimum number of linear active s-boxes in any eight consecutive rounds satisfies
L(8) ≥ 2× Bl + 1.

Proof. From Table 2, L(4) ≥ Bl if and only if the corresponding pattern

(a0, a1, a2, a3) = (0, 1, 1, 0) or (1, 1, 1, 0).

And in the other cases, L(4) ≥ Bl + 1.
Let’s discuss how the above two patterns can be concatenated to form a 8-round pattern. The

process can be divided into the following four cases:
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(1) (a0, a1, . . . , a7) = (0, 1, 1, 0, 0, 1, 1, 0) = (0, 1, 1, 0, 0, 1, 1, 0).

This is an impossible pattern since the sub-pattern (1, 0, 0) is impossible.
(2) (a0, a1, . . . , a7) = (0, 1, 1, 0, 1, 1, 1, 0) = (0, 1, 1, 0, 1, 1, 1, 0).

In this situation,

L(8)
1 ≥ L(3)

1 + L(3)
1 + 1 ≥ 2× Bl + 1.

(3) (a0, a1, . . . , a7) = (1, 1, 1, 0, 1, 1, 1, 0) = (1, 1, 1, 0, 1, 1, 1, 0).

In this situation,

L(8)
1 ≥ L(3)

3 + L(3)
1 + 1 ≥ 2× Bl + 1.

(4) (a0, a1, . . . , a7) = (1, 1, 1, 0, 0, 1, 1, 0) = (1, 1, 1, 0, 0, 1, 1, 0).

This is an impossible pattern since the sub-pattern (1, 0, 0) is impossible.

From (1)(2)(3)(4), we get L(8) ≥ 2 × Bl + 1 for these two possible patterns. While for all the
other possible patterns, we have L(8) ≥ Bl + (Bl + 1) = 2× Bl + 1, which ends the proof. ⊓⊔

Lemma 6. The minimum number of linear active s-boxes in any twelve consecutive rounds satisfies
L(12) ≥ 3× Bl + 1.

Proof. The lower bound of the linear active s-boxes in any twelve consecutive rounds can be
deduced as follow:

L(12) ≥ max{4× L(3), 2× L(6),L(8) + L(4)}
≥ max{8, 2× Bl + 4, 3× Bl + 1}
≥ 3× Bl + 1. ⊓⊔

Now we have obtained the lower bound of the linear active s-boxes for consecutive 4, 8, and 12
rounds. In general, we can obtain the follow theorem:

Theorem 1. The minimum number of linear active s-boxes for 4r-round MISTY structure with
SPN round function satisfies

L(4r) ≥ Bl × r + ⌊r/2⌋.

Proof. From Lemma 3 and Lemma 5, we have L(4) ≥ Bl and L(8) ≥ 2Bl+1. Note that lcm(4, 8) = 8,
thus we let 4r = 4r − 8m+ 8m, where m ≥ 0 is an integer. Let m = ⌊r/2⌋, then r − 2m ≥ 0. Now
we get

L(4r) = L(4r−8m+8m)

≥ L(4(r−2m)) + L(8m)

≥ Bl × (r − 2m) + (2Bl + 1)×m

= Bl × r +m

= Bl × r + ⌊r/2⌋. ⊓⊔

Remark 1. Theorem 1 shows that the practical secure bound against LC for MISTY structure with
SPN round function is also consistent with the case of Feistel structure with SPN round function.
Thus both MISTY and Feistel structures possess a similar practical secure level from the viewpoint
of resisting DC and LC.
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From Theorem 1, we can revisit the practical security of p-Camellia against LC. The maxi-
mum differential probability of the s-box is ps = 2−6 and the linear branch number of the linear
transformation is Bl = 5, thus L(16) ≥ 4× 5 + 2 = 22 which implies that the 16-round linear char-

acteristic probability p
(16)
l ≤

(
2−6

)22
= 2−132 < 2−128. This follows that the full round (18-round)

p-Camellia is practically secure against LC.

4 Resistance to Other Attacks

There are several cryptanalytic approaches that should be considered other than DC and LC when
designing a secure block cipher. In this section, we discuss the resistance of MISTY structure with
SPN round function against integral cryptanalysis [21] and impossible differential cryptanalysis [6,
20]. We confirm the existence of 6-round integral distinguishers when the linear transformation of
the round function employs binary matrix, and describe how to characterize 5/6/7-round impossible
differentials through the matrix-based method [17, 18, 24, 26, 43].

4.1 Notations and Known Results

In the following subsections, for convenience, we will denote MISTY structure with SPN round
function as introduced in Section 2 by E , the diffusion matrix of E by P = (pi,j)n×n and its
inversion by P−1 = (qi,j)n×n. We will also use Pj to represent the j-th column vector of P , and

P
(r)
i to represent the i-th row vector of P .

Notations for Integral Distinguisher A set {ai|ai ∈ F2d , 0 ≤ i ≤ 2d − 1} is active, if for any
0 ≤ i < j ≤ 2d − 1, ai ̸= aj . A set {ai|ai ∈ F2d , 0 ≤ i ≤ 2d − 1} is passive or constant, if for any
0 < i ≤ 2d − 1, ai = a0. A set {ai|ai ∈ F2d , 0 ≤ i ≤ 2d − 1} is balanced, if the bit-wise XOR-sum of

all elements of the set is 0, that is
⊕2d−1

i=0 ai = 0.
We use A to denote a active set, C to denote a passive or constant set, and B to denote a

balanced set. Sometimes we will use the letter “D” to represent an unknown word, but with the
property that all D’s have the same value in the distinguisher.

Notations for Impossible Differential For MISTY structure, we will use (α1, α2) → (β1, β2) to
denote a possible differential, where (α1, α2) (resp. (β1, β2)) is the input (resp. output) difference,
and use (α1, α2) 9 (β1, β2) to represent an impossible differential.

Known Results Due to the bijective property of the round function, for any block cipher with
MISTY structure, there always exists a 4-round impossible differential (α, 0) 9 (β, β), where
α, β ∈ Fn

2d be any non-zero values and 5-round integral distinguisher (A,C) → (B, ?), where A,
B, and C denote an active state, a balanced state, and a passive state [21]. The question mark ?
denotes an unknown state, i.e. the sum of values at this position couldn’t be predicted.

4.2 Integral Distinguishers

Let’s further consider the block cipher E with additional property that the diffusion layer employs
a binary invertible matrix P ∈ Fn×n

2 . The main result of this subsection is to confirm the existence
of 6-round integral distinguishers for such a kind of block cipher.
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A Simple Notation To describe these distinguishers more clearly, we simplify the notations for
“balanced” and “unknown” states. From now on, the number “0” will be used to denote a balanced
state, and “1” will be used to denote a unknown state with the property that if there are several
“1”s in the distinguishers, they are of the same value.

For example, assume n = 8, and consider the following integral distinguisher

((C,C,C,C,C,C,C,C), (C,C,A,C,C,C,C,C)) → ((D,B,D,D,B,D,D,B), (?, ?, ?, ?, ?, ?, ?, ?))

Then within the above notation, such distinguisher can be simply denoted as

(LC , R3) → ((1, 0, 1, 1, 0, 1, 1, 0), ?),

where LC denotes that the left half is fixed to a constant, while R3 represents that the third compo-
nent of the right half of the input is active. The main convenience is to represent (D,B,D,D,B,D,D,B)
simply by (1, 0, 1, 1, 0, 1, 1, 0).

6-Round Integral Distinguishers To confirm the existence of 6-round integral distinguisher of
E when the linear transformation employs binary matrix, the following lemma is needed. Let’s use
Xi,l to denote the l-th component of Xi.

Lemma 7. Let (X0, X1) = ((c, c, . . . , c), (c, . . . , c, x, c, . . . , c)) ∈ Fn
2d × Fn

2d be the input of E, where
x ∈ F2d is a variable in the j-th position of the right part of the input, and all c’s are constants in
F2d and they are not necessary to be identical. Assume the intermediate values after application of
the non-linear transformations S in the (i+1)-th round is Zi = (Zi,1, Zi,2, . . . , Zi,n). If x takes all
values in F2d , then

– if pj,j = 0, we have for any 0 ≤ i ≤ 4, 1 ≤ t ≤ n, Zi,t is balanced.
– if pj,j = 1, we have for i = 0, 1, 2, 1 ≤ t ≤ n, Zi,t is balanced, while for i = 3, 4, and

1 ≤ t ≤ n, t ̸= j, Zi,t is balanced.

Proof. Let (X0, X1) = ((c, c, . . . , c), (c, . . . , c, x, c, . . . , c)) ∈ Fn
2d × Fn

2d be the input of E , where
x ∈ F2d is a variable in the j-th position of the right part of the input, and all c’s are constants in
F2d , then from the encryption procedure, we have

X2 = (c, . . . , c, x⊕ c, c, . . . , c),

from which it’s easy to show the balanced property for each word of Z0, Z1 and Z2.
The cases for Z3 and Z4 are a little involved, in fact, we can calculate them as follows:

Z3 = S(X3 ⊕K4)

= S(Y1 ⊕ Y0 ⊕X1 ⊕K4)

= S(P (Z1)⊕X1 ⊕ C ′), (1)

where C ′ = Y0 ⊕K4 = P (S(X0 ⊕K1))⊕K4 is some dn-bit unknown constant.

Z4 = S(X4 ⊕K5)

= S(Y2 ⊕ Y1 ⊕ Y0 ⊕X1 ⊕K5)

= S(P (Z2)⊕ P (Z1)⊕X1 ⊕ C ′′), (2)
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where C ′′ = Y0 ⊕K5 = P (S(X0 ⊕K1))⊕K5 is some dn-bit unknown constant.
Note that

Z1 = S(X1 ⊕K2) = (c, . . . , c, sj(x⊕ k2,j), c, . . . , c) , (c, . . . , c, z1,j , c, . . . , c), (3)

and

Z2 = S(X2 ⊕K3) = (c, . . . , c, sj(x⊕ c⊕ k3,j), c, . . . , c) , (c, . . . , c, z2,j , c, . . . , c). (4)

Let [X]t represent the t-th component of X. Below will deal with the cases for Z3 and Z4

according to the value of pj,j .

The Case for Z3. If pj,j = 0, then according to Eq. (3), the t-th (1 ≤ t ≤ n) component of
P (Z1)⊕X1 has the following form:

[P (Z1)⊕X1]t =

{
c or z1,j ⊕ c, if t ̸= j
x⊕ c, if t = j

Since z1,j = sj(x⊕ k2,j), according to Eq.(1), each component of Z3 is balanced.
While if pj,j = 1, the t-th (1 ≤ t ≤ n) component of P (Z1)⊕X1 has the following form:

[P (Z1)⊕X1]t =

{
c or z1,j ⊕ c, if t ̸= j
z1,j ⊕ x⊕ c, if t = j

Since z1,j = sj(x ⊕ k2,j), according to Eq. (1), each component of Z3, except the j-th one, is
balanced.

The Case for Z4. If pj,j = 0, then according to Eq. (4), the t-th (1 ≤ t ≤ n) component of
P (Z2)⊕ P (Z1)⊕X1 has the following form:

[P (Z2)⊕ P (Z1)⊕X1]t =

{
c or z1,j ⊕ z2,j ⊕ c, if t ̸= j
x⊕ c, if t = j

Since z1,j ⊕ z2,j = sj(x⊕ c⊕ k2,j)⊕ sj(x⊕ k3,j) represents the output difference of the S-box sj(·),
each possible value of z1,j ⊕ z2,j appears even times. According to Eq.(2), each component of Z4

is balanced.
Similarly, if pj,j = 1, then the t-th (1 ≤ t ≤ n) component of P (Z2) ⊕ P (Z1) ⊕ X1 has the

following form:

[P (Z2)⊕ P (Z1)⊕X1]t =

{
c or z1,j ⊕ z2,j ⊕ c, if t ̸= j
z1,j ⊕ z2,j ⊕ x⊕ c, if t = j

Since z1,j ⊕z2,j = sj(x⊕ c⊕k2,j)⊕sj(x⊕k3,j), according to Eq.(2), each component of Z4, except
the j-th one, is balanced. ⊓⊔

Now let’s define the multiplication between a binary value a and a binary vector V = (v1, v2, . . . , vn)
by a ·V = (a ·v1, a ·v2, . . . , a ·vn), where a ·vi means the multiplication of the two binary variables,
then based on the above lemma, the following theorem can be obtained.
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Theorem 2. If the diffusion matrix of E is a binary invertible matrix P , then there always exists
6-round integral distinguisher in E of the following form:

(LC , Rj) → (pj,j · PT
j , ?),

where PT
j denotes the transpose of Pj.

Proof. Let the input of 6-round E be

(X0, X1) = ((c, c, . . . , c), (c, . . . , c, x, c, . . . , c)),

where the active position is j, then according to the encryption procedure, the l-th component of
the left output, 1 ≤ l ≤ n , after 6 rounds is

X6,l = Y4,l ⊕ Y3,l ⊕ Y2,l ⊕ Y1,l ⊕ Y0,l ⊕X1,l

= P
(r)
l · (Z4 ⊕ Z3 ⊕ Z2 ⊕ Z1 ⊕ Z0)⊕X1,l.

Let’s further divide the proof into the following two cases:

Case 1: pj,j = 0. In this situation, Lemma 1 tells that each component of Z0, Z1, Z2, Z3 and Z4

is balanced, thus X6,l is balanced.

Case 2: pj,j = 1. In this situation, Lemma 1 shows that each component of Z0, Z1 and Z2 is
balanced, and meanwhile, for 1 ≤ t ≤ n, t ̸= j, Z3,t and Z4,t are also balanced. Thus⊕

x∈F
2d

X6,l =
⊕

x∈F
2d

(
P

(r)
l · (Z4 ⊕ Z3 ⊕ Z2 ⊕ Z1 ⊕ Z0)⊕X1,l

)
=

⊕
x∈F

2d

P
(r)
l · (Z4 ⊕ Z3)

=
⊕

x∈F
2d

n⊕
t=1

pl,t · (Z4,t ⊕ Z3,t)

=
⊕

x∈F
2d

pl,j · (Z4,j ⊕ Z3,j) (5)

From the definition of P , pl,j = 0 will imply that for these positions l, X6,l are balanced.
Now the index 1 ≤ l ≤ n such that pl,j = 1 should be considered. In these situations, pl,j = 1,

and Eq.(5) becomes ⊕
x∈F

2d

X6,l =
⊕

x∈F
2d

(Z4,j ⊕ Z3,j).

Thus, the sum of X6,l are all equal to the sum of Z4,j ⊕Z3,j . From the calculation of Z4,j and Z3,j

as described in the proof of Lemma 7, the sum of Z4,j ⊕Z3,j over x ∈ F2d is indeed only dependent
on the constants of the inputs corresponding to the passive components and the unknown round-
keys. ⊓⊔
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4.3 Impossible Differentials

The matrix-based method has been utilized to find the impossible differentials of SPN ciphers
[24] as well as Feistel ciphers with SP or SPS round function [43]. This technique concentrates
on the property of the matrix in the diffusion layer, and can apply the theory of linear algebra
to detect truncated impossible differentials. Motivated by this approach, in this subsection, we
discuss how to characterize the impossible differentials of E . Remind that the diffusion matrix of
E is P = (pi,j)n×n and its inversion is P−1 = (qi,j)n×n.

As will be shown later, the process for finding impossible differentials of E resembles at a large
extent the case of SPN ciphers, and all proofs of the proposed criteria are similar as that of [24],
thus the details are omitted. For consistency, we use the same notations as in [24]. Particulary,
we use ej to denote an n-word state with the j-th position being non-zero and all other positions
being zero.

Assume the input difference of E is (α, 0) with α ̸= 0, then according to the encryption proce-
dure, the output differences in the first h1 rounds, where h1 = 1, 2, 3, 4, can be described as

( α , 0 )
( 0 , P ◦ S(α) )
( P ◦ S(α) , P ◦ S(α) )
( P ◦ S(α) , P ◦ S ◦ P ◦ S(α)⊕ P ◦ S(α))
(P ◦ S ◦ P ◦ S(α)⊕ P ◦ S(α) , ? )

where ? denotes some unknown difference that is not considered by us.
Similarly, assume the output difference of E is (β, β) with β ̸= 0, then from the decryption

direction, the output differences in the last h2 rounds, where h2 = 1, 2, 3, can be described as

( S−1 ◦ P−1 ◦ S−1 ◦ P−1(β) , S−1 ◦ P−1(β))
( S−1 ◦ P−1(β) , 0 )
( 0 , β )
( β , β )

The above two evolutional properties of the differences are very useful for our study on the
impossible differentials of MISTY structure with SPN round function.

5-round Impossible Differentials If we choose h1 = 3 and h2 = 2, and let α = ei, β = ej , then
we can use the following equation

P ◦ S(ei) = S−1 ◦ P−1(ej) (6)

to present a criterion to characterize 5-round impossible differentials of E .

Proposition 3. If there exists a k ∈ {1, 2, . . . , n}, such that Hw(pk,i, qk,j) = 1, then (ei, 0) 9
(ej , ej) is a 5-round impossible differential of E.

6-round Impossible Differentials If we choose h1 = 3 and h2 = 3, and let α = ei, β = ej , then
the following equation

S−1 ◦ P−1 ◦ S−1 ◦ P−1(ej) = P ◦ S(ei) (7)

could be used to analyze the case of 6-round impossible differentials of E . The criteria can be
further divided into the following cases:
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Proposition 4. For any 1 ≤ i, j ≤ n, let Ui = {r|pr,i = 0} = {r1, r2, . . . , ru}, Vj = {t|qt,j ̸= 0} =
{t1, t2, . . . , tv}, and

Mi,j = (qra,tb)u×v =


m1

m2

...
mu

 ,

where each ma is the a-th row vector of Mi,j, a = 1, 2, . . . , u. If Ui, Vj ̸= ∅, and there exists an
l ∈ {1, 2, . . . , u}, such that Hw(ml) = 1, then (ei, 0) 9 (ej , ej) is a 4-round impossible differential
of E.

Proposition 5. For any 1 ≤ i, j ≤ n, let Ui = {r|pr,i = 0} = {r1, r2, . . . , ru}, Vj = {t|qt,j ̸= 0} =
{t1, t2, . . . , tv} and

Mi,j = (qra,tb)u×v = (m1,m2, . . . ,mv),

where each mb is the b-th column vector of Mi,j, b = 1, 2, . . . , v. If Ui, Vj ̸= ∅, and there exists an
l ∈ {1, 2, . . . , v}, such that rank{{m1,m2, . . . ,mv}\{ml}} < rank{m1,m2, . . . ,mv}, then (ei, 0) 9
(ej , ej) is a 6-round impossible differential of E.

Proposition 6. For any 1 ≤ i, j ≤ n, let Ui = {r|pr,i = 0} = {r1, r2, . . . , ru}, Wi = {s|ps,i ̸=
0} = {s1, s2, . . . , sw}, Vj = {t|qt,j ̸= 0} = {t1, t2, . . . , tv}, and

Mi,j = (qra,tb)u×v =


m1

m2

...
mu

 , M ′
i,j = (qsa,tb)w×v =


m′

1

m′
2
...

m′
w

 ,

where each ma (resp. m′
a) denotes the a-th row vector of Mi,j (resp. M ′

i,j). If Ui,Wi, Vj ̸= ∅, and
there exists an l ∈ {1, 2, . . . , w}, such that rank{m1,m2, . . . ,mu,m

′
l} = rank{m1,m2, . . . ,mu},

then (ei, 0) 9 (ej , ej) is a 6-round impossible differential of E.

We remind here that, if α = ei, β = P (ej), then Eq.(7) becomes the following

S−1 ◦ P−1 ◦ S−1(ej) = P ◦ S(ei) (8)

based on which, finding 6-round impossible differentials of the form (ei, ei) 9 (P (ej), P (ej)) could
be degenerated into the 5-round impossible differentials.

Proposition 7. If there exists a k ∈ {1, 2, . . . , n}, such that Hw(pk,i, qk,j) = 1, then (ei, 0) 9
(P (ej), P (ej)) is a 6-round impossible differential of E.

7-Round Impossible Differentials If we choose h1 = 4 and h2 = 3, then the following equation

P ◦ S ◦ P ◦ S(α)⊕ P ◦ S(α) = S−1 ◦ P−1 ◦ S−1 ◦ P−1(β),

which is equivalent to

P−1 ◦ S−1 ◦ P−1 ◦ S−1 ◦ P−1(β) = S ◦ P ◦ S(α)⊕ S(α) (9)
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could be used to analyze 7-round impossible differentials of E . Let α = ei and β = P (ej), the
7-round case could be degenerated into the 6-round case as follow

P−1 ◦ S−1 ◦ P−1 ◦ S−1(ej) = S ◦ P ◦ S(ei)⊕ S(ei), (10)

based on which, we can obtain similar criteria as [24] but with slight modification.

Proposition 8. For any 1 ≤ i, j ≤ n, let Ui = {r ̸= i|pr,i = 0} = {r1, r2, . . . , ru}, Vj = {t|qt,j ̸=
0} = {t1, t2, . . . , tv}, and

Mi,j = (qra,tb)u×v =


m1

m2

...
mu

 ,

where each ma denotes the a-th row vector of Mij, a = 1, 2, . . . , u. If Ui, Vj ̸= ∅, and there exists
an l ∈ {1, 2, . . . , u}, such that Hw(ml) = 1, then (ei, 0) 9 (P (ej), P (ej)) is a 7-round impossible
differential of E.
Proposition 9. For any 1 ≤ i, j ≤ n, let Ui = {r ̸= i|pr,i = 0} = {r1, r2, . . . , ru}, Vj = {t|qt,j ̸=
0} = {t1, t2, . . . , tv}, and

Mi,j = (qra,tb)u×v = (m1,m2, . . . ,mv),

where each mb is the b-th column vector of Mi,j, b = 1, 2, . . . , v. If Ui, Vj ̸= ∅, and there exists an
l ∈ {1, 2, . . . , v}, such that rank{{m1,m2, . . . ,mv}\{ml}} < rank{m1,m2, . . . ,mv}, then (ei, 0) 9
(P (ej), P (ej)) is a 7-round impossible differential of E.
Proposition 10. For any 1 ≤ i, j ≤ n, let Ui = {r ̸= i|pr,i = 0} = {r1, r2, . . . , ru}, Wi = {s ̸=
i|ps,i ̸= 0} ∪ {i|pi,i = 0} = {s1, s2, . . . , sw}, Vj = {t|qt,j ̸= 0} = {t1, t2, . . . , tv}, and

Mi,j = (qra,tb)u×v =


m1

m2

...
mu

 , M ′
i,j = (qra,tb)w×v =


m′

1

m′
2
...

m′
w

 ,

where each ma (resp. m′
a) denotes the a-th row vector of Mi,j (resp. M ′

i,j). If Ui,Wi, Vj ̸= ∅, and
there exists an l ∈ {1, 2, . . . , w}, such that rank{m1,m2, . . . ,mu,m

′
l} = rank{m1,m2, . . . ,mu},

then (ei, 0) 9 (P (ej), P (ej)) is a 7-round impossible differential of E.

5 Conclusion

This paper revisits the practical security evaluation of MISTY structure with SPN round function
against linear cryptanalysis. We unify the lower bound of the number of active s-boxes for both
differential and linear characteristics. This demonstrates a similar secure level for both MISTY
structure and Feistel structure from the viewpoint of resisting DC and LC.

Meanwhile, the resistance of MISTY structure with SPN round function against other kinds of
cryptanalytic approaches such as integral and impossible differential cryptanalysis are also studied.
The existence of 6-round integral distinguisher is confirmed when the diffusion layer employs a
binary invertible matrix, and the criteria for characterizing 5/6/7-round impossible differentials
are described. These results will benefit us to understand the security level of MISTY structure.
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A Distinguishing Properties of p-Camellia

A.1 Brief Description of p-Camellia

The block cipher p-Camellia 5 shares the same round function and the FL/FL−1 transformation
as that of Camellia, except that the high-level structure is modified from Feistel to MISTY. One
can refer Fig. 3 and Fig. 4 to compare the difference between Camellia and p-Camellia.
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Fig. 4. Description of p-Camellia

The round function of p-Camellia (Camellia) is SPN type. It consists of three layers of opera-
tions: a round key addition layer, a substitution layer and a diffusion layer. The round key addition
layer is defined by the XOR of the round-key and the input. The substitution layer is a non-linear
bijective transformation S over F8

28 defined by eight parallel s-boxs on F28 as follow:

S : F8
28 → F8

28 , S(·) = (s1(·), s2(·), s3(·), s4(·), s2(·), s3(·), s4(·), s1(·)),

where s1(·), s2(·), s3(·), and s4(·) are some 8× 8 s-boxes.

5 We use the same notations as in [44]. In fact, there is a slight distinction between the basic notation for
Feistel structure in [1] and as that in [44]. However, this dose not influence our analysis.
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The diffusion layer which provides the avalanche effect employs an invertible linear transfor-
mation P defined over F8×8

2 . P and its inversion P−1 are defined by the following binary matrices

P =



1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0


, P−1 =



0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0
1 0 0 1 0 1 1 1


.

A.2 Integral Distinguishers of Reduced-Round p-Camellia

We can apply the criterion from Section 4.2 to find the 6-round integral distinguishers of p-Camellia,
all of which have been verified experimentally.

6-round Integral Distinguishers of p-Camellia

((C,C,C,C,C,C,C,C), (A,C,C,C,C,C,C,C)) → ((D,D,D,B,D,B,B,D), (?, ?, ?, ?, ?, ?, ?, ?))

((C,C,C,C,C,C,C,C), (C,A,C,C,C,C,C,C)) → ((B,D,D,D,D,D,B,B), (?, ?, ?, ?, ?, ?, ?, ?))

((C,C,C,C,C,C,C,C), (C,C,A,C,C,C,C,C)) → ((D,B,D,D,B,D,D,B), (?, ?, ?, ?, ?, ?, ?, ?))

((C,C,C,C,C,C,C,C), (C,C,C,A,C,C,C,C)) → ((D,D,B,D,B,B,D,D), (?, ?, ?, ?, ?, ?, ?, ?))

((C,C,C,C,C,C,C,C), (C,C,C,C,A,C,C,C)) → ((B,B,B,B,B,B,B,B), (?, ?, ?, ?, ?, ?, ?, ?))

((C,C,C,C,C,C,C,C), (C,C,C,C,C,A,C,C)) → ((B,B,B,B,B,B,B,B), (?, ?, ?, ?, ?, ?, ?, ?))

((C,C,C,C,C,C,C,C), (C,C,C,C,C,C,A,C)) → ((B,B,B,B,B,B,B,B), (?, ?, ?, ?, ?, ?, ?, ?))

((C,C,C,C,C,C,C,C), (C,C,C,C,C,C,C,A)) → ((B,B,B,B,B,B,B,B), (?, ?, ?, ?, ?, ?, ?, ?))

Besides the above 6-round integral distinguishers, according to the special arrangement of s-boxs
in the substitution layer, we also detect the following 7-round integral distinguishers of p-Camellia
without the FL/FL−1 transformation. The proof can be provided based on the counting methods
(see e.g. [14, 25]).

7-round Integral Distinguishers of p-Camellia without FL/FL−1

((C,C,A3, A4, A5, C, C,C), (C,C,C,C,C,C,C,C)) → ((D,D,D,B,D,B,B,D), (?, ?, ?, ?, ?, ?, ?, ?))

((A1, C, C,A4, C,A6, C, C), (C,C,C,C,C,C,C,C)) → ((B,D,D,D,D,D,B,B), (?, ?, ?, ?, ?, ?, ?, ?))

((A1, A2, C, C,C,C,A7, C), (C,C,C,C,C,C,C,C)) → ((D,B,D,D,B,D,D,B), (?, ?, ?, ?, ?, ?, ?, ?))

((C,A2, A3, C, C,C,C,A8), (C,C,C,C,C,C,C,C)) → ((D,D,B,D,B,B,D,D), (?, ?, ?, ?, ?, ?, ?, ?))

where “Ai∥Aj∥Ak” denotes an active state of 3-byte with positions being (i, j, k).

A.3 Impossible Differentials of Reduced-Round p-Camellia

According to the definition of P and P−1 in the diffusion layer, we can apply the criteria from
Section 4.3 to detect reduced-round impossible differentials in p-Camellia.
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5-round Impossible Differentials of p-Camellia From Proposition 3, for any 1 ≤ i, j ≤ 8,
(ei, 0) 9 (ej , ej) is a 5-round impossible differential of p-Camellia, since we can find a 1 ≤ k ≤ 8
such that pk,i + qk,j = 1.

6-round Impossible Differentials of p-Camellia

Case 1. From Proposition 4, we do not find 6-round impossible differentials of p-Camellia.

Case 2. Table 4 shows 6-round impossible differentials of p-Camellia found by Proposition 5.

Case 3. Table 5 shows 6-round impossible differentials of p-Camellia found by Proposition 6.

Case 4. From Proposition 7, for any 1 ≤ i, j ≤ 8, (ei, 0) 9 (P (ej), P (ej)) is a 6-round impossible
differential of p-Camellia.

Table 4. Case 2: 6-round impossible differentials ei 9 ej of p-Camellia

i j i j i j i j

1 1, 2, 5 2 2, 3, 6 3 3, 4, 7 4 1, 4, 8

Table 5. Case 3: 6-round impossible differentials ei 9 ej of p-Camellia

i j i j i j i j

1 1, 4, 6, 7 3 2, 3, 5, 8 5 1 7 3

2 1, 2, 7, 8 4 3, 4, 5, 6 6 2 8 4

The following two examples explain the procedure when utilizing Proposition 4 and 5 to detect
the 6-round impossible differential (e1, 0) 9 (e1, e1).

Example 1. Given i = j = 1, then U1 = {4, 6, 7}, and V1 = {2, 3, 4, 5, 8}, thus

M1,1 =

1 1 0 1 0
1 1 0 1 1
0 1 1 1 0

 , (m1,m2,m3,m4,m5).

One can verify that

rank{{m1,m2,m3,m4,m5}\{m5}} = 2 < 3 = rank{m1,m2, . . . ,m5},

thus (e1, 0) 9 (e1, e1) is a 6-round impossible differential of p-Camellia.
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Example 2. Given i = j = 1, then U1 = {4, 6, 7}, W1 = {1, 2, 3, 5, 8}, and V1 = {2, 3, 4, 5, 8}, thus

M1,1 =

1 1 0 1 0
1 1 0 1 1
0 1 1 1 0

 =

m1

m2

m3

 , M ′
1,1 =


1 1 1 0 1
0 1 1 1 1
1 0 1 1 1
1 0 0 1 1
0 0 1 0 1

 =


m′

1

m′
2

m′
3

m′
4

m′
5

 .

One can see that m′
2 = m1 +m2 +m3, thus

rank{m1,m2,m3,m
′
2} = rank{m1,m2,m3},

accordingly, we obtain the same 6-round impossible differential (e1, 0) 9 (e1, e1).

7-round Impossible Differentials of p-Camellia According to Proposition 8, 9, and 10, (ei, 0)
9 (P (ej), P (ej)) is a 7-round impossible differential of p-Camellia, where i, j are chosen from Table
4 and Table 5.
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