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Abstract—We present two practical frameworks for h-out-of-n oblivious
transfer (OTn

h ). The first one is secure against covert adversaries who
are not always willing to cheat at any price. The security is proven under
the ideal/real simulation paradigm (call such security fully simulatable
security). The second one is secure against malicious adversaries
who are always willing to cheat. It provides fully simulatable security
and privacy respectively for the sender and the receiver (call such
security one-sided simulatable security). The two frameworks can be
implemented from the decisional Diffie-Hellman (DDH) assumption,
the decisional N -th residuosity assumption, the decisional quadratic
residuosity assumption and so on.

The DDH-based instantiation of our first framework costs the mini-
mum communication rounds and the minimum computational overhead,
compared with existing practical protocols for oblivious transfer with
fully simulatable security against covert adversaries or malicious adver-
saries.

Though our second framework is not efficient, compared with existing
practical protocols with one-sided simulatable security against malicious
adversaries. However, it first provides a way to deal with general OTn

h

on this security level. What is more, its DDH-based instantiation is more
efficient than the existing practical protocols for oblivious transfer with
fully simulatable security against malicious adversaries.

Index Terms—oblivious transfer (OT) protocols, secure two-party com-
putation.

1 INTRODUCTION

1.1 Oblivious transfer

O BLIVIOUS transfer (OT), first introduced by [39] and
later defined in another way with equivalent effect

[14] by [15], is a fundamental primitive in cryptography
and a concrete problem in the filed of secure multi-party
computation. Considerable cryptographic protocols can
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be built from it. Most remarkable, [23], [27], [29], [41]
proves that any secure multi-party computation can be
based on a secure oblivious transfer protocol. In this
paper, we concern a variant of OT, h-out-of-n oblivious
transfer (OTnh ). OTnh deals with the following scenario.
A sender holds n private messages, m1,m2, . . . ,mn. A
receiver holds h private positive integers i1, i2, . . . , ih,
where i1 < i2 < . . . < ih 6 n. The receiver expects to
get the messages mi1 ,mi2 , . . . ,mih without leaking any
information about his private input, i.e., the h positive
integers he holds. The sender expects all new knowledge
learned by the receiver from their interaction is at most
h messages. Obviously, the OT most literature refer to is
OT 2

1 and can be viewed as a special case of OTnh .

It is known that, by using Goldreich’s compiler [21],
[23], we can gain a protocol for OTnh with security
against malicious adversaries (a malicious adversary
act in any arbitrary malicious way to learn as much
extra information as possible) from a protocol for OTnh
with security against semi-honest adversaries (a semi-
honest adversary, on one side, honestly does everything
told by a prescribed protocol; on one side, records the
messages he sees to deduce extra information which is
not supposed to be known to him), which can be built
from any collection of enhanced trapdoor permutations
[21]. The security of the resulting protocol can be proven
under the real/ideal simulation paradigm. The paradigm
requires that for any adversary in the real world, there
exists a corresponding adversary in the ideal world who
can simulate him, where the ideal world holds desirable
security level. That is, for any malicious adversary, he
can not do more harm in the real world than in the ideal
world, which implies that the proven protocol is secure.
However, the mentioned resulting protocol for OTnh is
prohibitive expensive for practical use, because it is
embedded with so many invocations of zero-knowledge
proof for NP and invocations of commitment scheme.
Thus, directly constructing the protocol based on specific
intractable assumptions seems more feasible.
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1.2 Our Contribution

In this paper, we aim to construct practical and effi-
cient frameworks for OTnh which can be instantiated
from the decisional Diffie-Hellman (DDH) assumption,
the decisional N -th residuosity (DNR) assumption, the
decisional quadratic residuosity (DQR) assumption and
so on. To this end, compared with the security mentioned
above (for simplicity, we call this security standard secu-
rity), the security we guarantee is relaxed to some extent.
Specifically, we construct two frameworks respectively
with the following two security level.

• Security against covert adversaries. This security,
presented by [3], guarantees that in case a adversary
commits an effective cheating, then the adversary
can be caught with probability at least ε, where ε
is called the deterrence factor. By effective cheating,
we refer to a cheating in which a adversary learning
new knowledge is possible. The security definition
follows the real/ideal simulation paradigm. There-
fore, compared with the standard security, the only
relaxed point in this security is that it does not re-
quire to rule out any possibility that the adversaries
learns new knowledge in an execution of a protocol.
In any setting that the malicious adversaries are not
always willing to cheat at any price, this security
makes sense.
In our first framework, in case a adversary is caught
in committing an effective cheating, he will learn no
new knowledge. What is more, the deterrence factor
can be set to be very close to 1, e.g., ε = 1− 7.25×
10−12.

• Security against malicious adversaries based on one-
sided simulation. This security, called the security
based on half-simulation by [25] and also called the
security based on half-simulation by [7], guarantees
that, in case one party is corrupted, it provides pri-
vacy to the honest party; in case another party is cor-
rupted, it provides standard security to the honest
party. Specifically, in case one party is corrupted, the
security only requires to prove that the adversary
controlling the corrupted party can’t distinguish his
views obtained in the different interactions with the
honest party who uses different privates inputs; in
case another party is corrupted, the security proof
requires as same as the standard security does.
Therefore, compared with the standard security,
the properties correctness and the independence of
private inputs are not guaranteed any more in this
security. However, this security indeed is useful in
the computation in which only one party receives
a output. For example, [16], [25], [28], [35] take
this security definition to design efficient protocols.
In these works, the party receiving a output is
provided with the privacy, and the other party
is provided with the full security. In our second
framework, this is also the case.

To our best knowledge, our first framework is the first
known framework for OTnh with security against covert
adversaries. Though a framework for OT 2

1 with security
against malicious against malicious adversaries based on
one-sided simulation is by [28], to our best knowledge,
our second framework is the first known framework for
general OTnh with this security level.

Our two frameworks have the following features.
First, practical. On one side, the securities of our

frameworks are obtained without restoring to a random
oracle. Though the schemes presented by [26], [37] are
efficient, their security is proven under the Random Or-
acle Model. However, the Random Oracle Model seems
risky. [10] shows that a scheme is secure in the Random
Oracle Model does not necessarily imply that a particular
implementation of it (in the real world) is secure, or even
that this scheme does not have any ”structural flaws”.
[10] also shows efficient implementing the random oracle
is impossible. Later, [30] finds that the random oracle
instantiations proposed by Bellare and Rogaway from
1993 and 1996, and the ones implicit in IEEE P1363 and
PKCS standards are weaker than a random oracle. What
is worse, [30] shows that how the defects of the random
oracle instantiations deadly damage the securities of the
cryptographic schemes presented in [5], [6]. Therefore,
considering practical use, our frameworks are better.

On one side, the securities of our frameworks are ob-
tained without restoring to a trusted common reference
string (CRS). Though the framework for OT 2

1 presented
by [38] and its adaptive instantiations presented by [18]
hold higher level that is secure against malicious ad-
versaries even under universal composition, they don’t
work without a trusted CRS. How to provide a trusted
CRS before the protocol run still is a unsolved problem.
The existing possible solutions, such as natural process
suggested by [38], are only conjectures without formal
proofs. What is worse, [9], [11] show that even given a
authenticated communication channel, implementing a
universal composable protocol providing useful trusted
CRS in the presence of malicious adversaries is impossi-
ble. Therefore, considering practical use, our frameworks
are better.

Second, efficient. Our first framework costs four com-
munication rounds. Fixing the deterrence factor to be 1

2 ,
this framework costs n public key encryption operations,
h public key decryption operations. Compared with
the existing practical protocols for OT with standard
security or with security against covert adversaries, i.e.
the protocols presented by [3], [7], [24], [31], [42], the
DDH-based instantiation of our first framework is the
most efficient one in the sense that it costs the minimum
number of communication rounds and costs the mini-
mum computational overhead. Please see Section 3.4 and
Section 3.5 for the detailed comparisons.

Our second framework costs four communication
rounds. To be securely used in practice, our framework,
in the worst case, costs the sender 40 · n public key
encryption operations and costs the receiver 40 ·h public
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key decryption operations. Compared with the existing
practical protocols for OT with the security based on
one-sided simulation, i.e. the protocols presented by [2],
[28], [33]–[36], our second framework is not efficient.
However, it still makes sense since it does not require
k is far less than n and is the first framework/protocol
dealing with general OTnk on this security level. Com-
pared with the existing practical protocols for OT with
standard security, i.e. the protocols presented by [7], [24],
[31], [42], the DDH-based instantiation of our second
framework is the most efficient one in the sense men-
tioned above. Please see Section 4.3 and Section 4.4 for
the details.

Third, abstract and modular. The framework is de-
scribed using only one high-level cryptographic tool, i.e.,
a variant of smooth projective hash presented by [42]
(for simplicity, refer to it as SPHDHCt,h. This allows a
simple and intuitive understanding of its security.

Fourth, generally realizable. [42] shows that
SPHDHCt,h are realizable from a variety of known
specific assumption, such as DDH, DNR, DQR. We
remark that SPHDHCt,h also is possible to be realized
from future assumptions. This makes our framework
generally realizable. Considering the future progress
in breaking a specific intractable problem, generally
realizability is vital to make framework live long. If
this considered case happen, replacing the instantiation
based on the broken problem with that based on a
unbroken problem suffices.

1.3 Construction Overview
Our first framework is described with high-level as
follows.

1) Let K, g be two predetermined positive integers.
The receiver generates hash parameters and K
instance vectors, then sends them to the sender
after disordering each vector.

2) The receiver chooses g instance vectors at random
to open.

3) The receiver opens the chosen instances and en-
codes his private input by reordering each uncho-
sen vector.

4) The sender checks that the chosen vectors are
generated in the legal way which guarantees that
the receiver learns at most h message. If the check
pass, the sender encrypts his private input (i.e., the
n messages he holds) using the hash system, and
sends the ciphertext together with some informa-
tion to the receiver which is conductive to decrypt
some ciphertext.

5) The receiver decrypts the ciphertext and gains the
messages he expects.

Intuitively speaking, the receiver’s security is im-
plied by the property hard subset membership of
SPHDHCt,h. This property guarantees that the receiver
can securely encode his private input by reordering
each unchosen instance vector. The sender’s security is

implied by the cut-and-choose technique, which guaran-
tees that the probability that the adversaries controlling
a corrupted receiver learns new knowledge is small
enough.

Our second framework is obtained by modifying the
first framework by letting K be a polynomial in security
parameter and granting the sender to uniformly choose
arbitrary many instance vectors to open.

In some sense, our frameworks are based on the
framework presented in [28] for OT 2

1 with security based
on one-sided simulation. However, the technique and
tool we use are very different. In our frameworks, we
use cut-and-choose to guarantee the sender’s security
rather than use the property verifiability of a tool. What
is more, the tool we uses is different from the smooth
projective hash [28] uses. These differences are keys to
make our first framework fully simulatable. With the
help of cut-and-choose, the property feasible cheating
and distinguishability of SPHDHCt,h respectively en-
able the simulator to extract the adversary’s real input
in case the sender is corrupted and in case the receiver
is corrupted. The differences also are keys to make
our second framework able to deal with OTnh . Since
SPHDHCt,h can directly manipulate n instances and
provide a novel way to guarantee the sender’s security.

1.4 Related Work

The first step to construct practical and efficient protocol
for OT is independently made by [35] and [2]. The pro-
tocols are for OT 2

1 , based on the DDH assumption, with
security based on one-sided simulation. Later, using the
tool smooth projective hash, [28] generalizes the ideas
of the two previous works and presents a framework
for OT 2

1 . [28] shows the framework can be instantiated
from not only the DDH assumption but also the DNR
assumption and the DQR assumption.

There are some work aiming to build protocols for
OTnh from known protocols for OT 2

1 with security based
on one-sided simulation. [33] shows how to implemen-
tation OTnh using log n invocation of OT 2

1 with security
based on one-sided simulation. A similar implemen-
tation for adaptive OTnh can be seen in [34]. These
mentioned works later are described in [36]. With the
help of a random oracle, [26] shows how to extend
k oblivious transfers (for some security parameter k)
into many more, without much additional effort. [37]
proposes an efficient adaptive h-out-n oblivious transfer
(denoted by OTnh×1 in related literature) schemes under
Random Oracle Model.

The protocols for oblivious transfer with standard se-
curity is first presented by [7]. This protocol is for OTnk×1

and based on q-Power Decisional Diffie-Hellman and q-
Strong Diffie-Hellman assumptions which are not stan-
dard assumptions. Later, using a blind identity-based
encryption, [24] first presents a protocol for OTnh based
on a standard assumption with standard security. [31]
presents a DDH-based protocol for OT 2

1 with standard
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security and with efficiency over the two mentioned
works. Recently, [42] presents a framework for OTnh with
standard security, which also can be instantiated from
all the assumptions used by [28], [31]. The DDH-based
instantiation of this framework is the most efficient one
of the protocols that works in the setting that there are
no set-up assumption such as a trusted CRS available.

Under CRS model, [38] presents a framework for OT 2
1

with higher security level that the security is preserved
even other arbitrary malicious protocols concurrently
run with it. [38] shows that the framework be instan-
tiated from the DDH, DQR and worst-case lattice as-
sumption. We remark that if a trusted CRS is available,
then the DDH-based instantiation of the framework is
the most efficient protocol for OT 2

1 . Later [18] strengthen
the security of the instantiations based on DDH, DQR to
against adaptive malicious adversaries.

Using homomorphic encryption, [3] first presents a
protocol for OT 2

1 with security against covert adver-
saries.

1.5 Organization
In Section 2, we describe the notations used in this
paper, the security definitions of OTnh and a variant of
smooth projective hash which is the basic tool we use.
In Section 3, we construct the first framework for OTnh ,
prove its security and analyze its performance. In Section
4, we construct the second framework for OTnh , prove its
security and analyze its performance. In Section 5, we
discuss the technique cut-and-choose in the frameworks.

2 PRELIMINARIES

2.1 Basic Notations
We denote an unspecified positive polynomial by poly(.).
We denote the set consists of all natural numbers by N.
For any i ∈ N, [i]

def
= {1, 2, . . . , i}.

We denote security parameter used to measure secu-
rity and complexity by k. A function µ(.) is negligible
in k, if there exists a positive constant integer n0, for
any poly(.) and any k which is greater than n0 (for
simplicity, we later call such k sufficiently large k), it
holds that µ(k) < 1/poly(k). A probability ensemble
X

def
= {X(1k, a)}k∈N,a∈{0,1}∗ is an infinite sequence of

random variables indexed by (k, a), where a represents
various types of inputs used to sample the instances
according to the distribution of the random variable
X(1k, a). Probability ensemble X is polynomial-time
constructible, if there exists a probabilistic polynomial-
time (PPT) sample algorithm SX(.) such that for any a,
any k, the random variables SX(1k, a) and X(1k, a) are
identically distributed. We denote sampling an instance
according to X(1k, a) by α← SX(1k, a).

Let X
def
= {X(1k, a)}k∈N,a∈{0,1}∗ and Y

def
=

{Y (1k, a)}k∈N,a∈{0,1}∗ be two probability ensembles.
They are computationally indistinguishable, denoted
X

c
= Y , if for any non-uniform PPT algorithm D with

an infinite auxiliary information sequence z = (zk)k∈N
(where each zk ∈ {0, 1}∗), there exists a negligible
function µ(.) such that for any sufficiently large k, any
a, it holds that

|Pr(D(1k, X(1k, a), a, zk) = 1)−
Pr(D(1k, Y (1k, a), a, zk) = 1)| 6 µ(k)

They are same, denoted X = Y , if for any sufficiently
large k, any a, X(1k, a) and Y (1k, a) are defined in the
same way. They are equal, denoted X ≡ Y , if for any
sufficiently large k, any a, the distributions of X(1k, a)
and Y (1k, a) are identical. Obviously, if X = Y then X ≡
Y ; If X ≡ Y then X

c
= Y .

Let ~x be a vector (note that arbitrary binary string can
be viewed as a vector). We denote its i-th element by
~x〈i〉, denote its dimensionality by #~x, denote its length
in bits by |~x|. For any positive integers set I , any vector
~x, ~x〈I〉 def= (~x〈i〉)i∈I,i≤#~x.

Let M be a probabilistic (interactive) Turing machine.
By Mr(.) we denote M ’s output generated at the end of
an execution using randomness r.

Let f : D → R. Let D′ ⊆ {0, 1}∗. Then f(D′)
def
=

{f(x)|x ∈ D′ ∩D}, Range(f)
def
= f(D).

Let x ∈χ Y denotes sampling an instance x from do-
main Y according to the distribution law (or probability
density function ) χ. Specifically, let x ∈U Y denotes
uniformly sampling an instance x from domain Y .

2.2 Security Against Covert Adversaries

Security against covert adversaries is presented by [3].
The key observation of this security is that in many
real-world setting, such as business, political settings
and playing remote games, the assumption that the
adversaries are always ready to do cheating at any
price and under any circumstance, implicitly used in
traditional model of secure multiparty computation [8],
[21], is overly pessimistic and unnecessary. Therefore,
using great amount of resource to preclude such covert
adversaries from commenting cheating seems unneces-
sary. Instead, this security aims at catching the cheating
of the covert adversaries with some probability, called
deterrence factor and denoted ε, rather than aims at elim-
inating any successful cheating of covert adversaries. [3]
presents three versions of covert security. In this paper,
we deals with the strongest one, which implies the other
two versions of covert security. For clarity and simplicity,
we tailor it to the need of dealing with OTnh .

[3] shows that if 1 − ε is negligible, then this secu-
rity turns to be the standard security against malicious
adversaries; if ε ≥ 1/poly(k), then this security implies
the security against semi-honest adversaries. It is easy
to deduce that, if ε ∈ (0, 1) is a constant value, then this
security also implies the security against semi-honest
adversaries.
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2.2.1 Functionality Of OTnh

OTnh involves two parties, party P1 (i.e., the sender)
and party P2 (i.e., the receiver). OTnh ’s functionality is
formally defined as follows

f : N× {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗

f(1k, ~m,H) = (λ, ~m〈H〉)

and also be denoted by

(~m,H) 7→ (λ, ~m〈H〉)

for simplicity, where

• k is the public security parameter.
• ~m ∈ ({0, 1}∗)n is P1’s private input, and each |~m〈i〉|

is same.
• H ∈ Ψ

def
= {B|B ⊆ [n], #B = h} is P2’s private

input.
• λ denotes a empty string and is supposed to be got

by P1. That is, P1 is supposed to get nothing.
• ~m〈H〉 is supposed to be got by P2.

Note that, the length of all parties’ private input have
to be identical in SMPC (please see [21] for the reason
and related discussion). This means that |~m| = |H| is
required. Without loss of generality, in this paper, we
assume |~m| = |H| always holds, because padding can be
easily used to meet such requirement.

Intuitively speaking, the security of OTnh requires that
P1 can’t learn any new knowledge — typically, P2’s
private input — from the interaction at all, and P2 can’t
learn more than h messages held by P1. To capture
the security in a formal way, the concepts such as
adversary, trusted third party, the ideal world, real world
were introduced. Since the security target here is to be
secure against non-adaptive covert adversaries, we only
referred to concepts related to this case in the following.

2.2.2 Non-Adaptive Covert Adversary

Before running OTnh , the adversary A has to corrupt all
parties listed in I ⊆ [2]. In case Pi ∈ {P1, P2} is not
corrupted, Pi will strictly follow the prescribed protocol
as an honest party. In case party Pi is corrupted, Pi will
be fully controlled by A as a corrupted party. In this
case, Pi will have to pass all his knowledge to A before
the protocol runs and follows A’s instructions from then
on — so there is a probability that Pi arbitrarily deviates
from prescribed protocol. In fact, afterA finishes corrupt-
ing, A and all cheating parties have formed a coalition
led by A to learn as much extra knowledge, e.g. the
honest parties’ private inputs, as possible. From then on,
they share knowledge with each other and coordinate
their behavior. Without loss of generality, we can view
this coalition as follows. All cheating parties are dummy.
A receives messages addressed to the members of the
coalition and sends messages on behalf of the members.

2.2.3 OTnh In the ideal world
In the ideal world, there is an incorruptible trusted
third party (TTP). All parties hand their private inputs
to TTP. TTP computes f and sends back f(.)〈i〉 to Pi.
An execution of OTnh with deterrence factor ε ∈ (0, 1]
proceeds as follows.

1) Initial Inputs. All entities know the public security
parameter k. Party P1 holds a private input ~m ∈
({0, 1}∗)n. Party P2 holds a private input H ∈ Ψ.
Adversary A holds a name list I ⊆ [2], a random-
ness rA ∈ {0, 1}∗ and an infinite auxiliary input
sequence z = (zk)k∈N, where zk ∈ {0, 1}∗. Before
proceeding to the next stage, A corrupts parties
listed in I and learns ~x〈I〉, where ~x

def
= (~m,H).

2) The parties submitting inputs to TTP. Each honest
party Pi submits ~x〈i〉 to TTP. A submits arbitrary
string based on his knowledge to TTP for cheating
parties. The inputs TTP receives, denoted by ~y, can
be described as follows.

~y〈i〉 =

{
~x〈i〉 if i /∈ I ,
αi if i ∈ I.

where
αi ← A(1k, I, rA, zk, ~x〈I〉, i)

αi ∈ {~x〈i〉} ∪ {0, 1}|~x〈i〉| ∪ {aborti} ∪ {corruptedi}
∪ {cheati}

Obviously, there is a probability that ~x 6= ~y.
3) TTP computing f . TTP checks ~y and takes the

following actions in order.
a) In case ∃i(~y〈i〉 = aborti). For i ∈ I , ~w〈i〉 ← λ;

for i ∈ [n] − I , ~w〈i〉 ← aborti. If there are
multiple abortis, TTP chooses the one whose
i is the smallest. TTP deals with multiple
corruptedis and cheatis, which will meet later,
in a similar way.

b) In case ∃i(~y〈i〉 = corruptedi). For i ∈ I , ~w〈i〉 ←
λ; for i ∈ [n]− I , ~w〈i〉 ← corruptedi.

c) In case ∃i(~y〈i〉 = cheati). TTP does nothing.
d) In other cases, ~w ← f(1k, ~y).

4) TTP delivering results to the parties.
a) In case ∃i(~y〈i〉 = aborti) or in case ∃i(~y〈i〉 =

corruptedi). TTP sends each ~w〈i〉 to each hon-
est party Pi(i ∈ [n]− I). Finally, TTP halts.

b) In case ∃i(~y〈i〉 = cheati).
• With probability ε, TTP sends corruptedi

to A and honest parties. That is, TTP sets
~w〈i〉 ← (corruptedi, corruptedi). TTP sends
each ~w〈i〉 to each honest party Pi(i ∈ [n]−I)
, sends ~w〈I〉 to A. Finally, TTP halts.

• With probability 1 − ε, TTP sets ~w〈I〉 ←
(~x〈[n]−I〉, undetected) and sends ~w〈I〉 to A.
On receiving ~w〈I〉, A determines the results
the honest parties will receive as follows.

cj ← A(1k, I, rA, zk, ~x〈I〉, ~w〈I〉, j)
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A sends them to TTP.
For each j ∈ [n]− I , TTP sets ~w〈j〉 ← cj and
sends ~w〈j〉 to Pj . Finally, TTP halts.

We remark that the inputs of honest parties
are leaked to A only if A commits the cheating
without being caught.

c) In other cases, TTP first sends back the cor-
rupted parties’ results, i.e., sends ~w〈I〉 to A.
A computes

β ← A(1k, I, rA, zk, ~x〈I〉, ~w〈I〉)
β ∈ {abori|i ∈ I} ∪ {continue}

and sends β to TTP.
TTP checks β. If β ∈ {abori|i ∈ I}, for each
i ∈ [n]−I , TTP sets ~w〈i〉 ← β. Then, TTP sends
each ~w〈i〉(i ∈ [n]− I) to each honest party Pi.
Finally, TTP halts.

5) Outputs. Each honest party Pi outputs ~w〈i〉. Each
corrupted party outputs nothing (i.e., λ). The ad-
versary outputs something generated by executing
an arbitrary function of the information he gathers
during the execution. Without loss of generality,
this can be assumed to be (1k, I, rA, zk, ~x〈I〉, ~w〈I〉).

The whole execution is denoted by
Idealεf,A(z),I(1

k, ~x, rA). The output of the execution
is defined by the outputs of all parties and the
adversary as follows.

Idealεf,A(z),I(1
k, ~x, rA)〈i〉

def
=


A’s output, i.e., (1k, I, rA,
zk, ~x〈I〉, ~w〈I〉),

i = 0;

Pi’s output, i.e., λ, i ∈ I;

Pi’s output, i.e., ~w〈i〉, i ∈ [n]− I.

Obviously, Idealεf,A(z),I(1
k, ~x) is a random variable

whose randomness is rA.

2.2.4 OTnh In Real World
In real world, there is no TTP. Let π be a protocol for
OTnh . A execution of OTnh proceeds as follows.

1) Initial Inputs. Initial input each entity holds in
real world is the same as in the ideal world with
following exceptions. A randomness ri is held by
each party Pi. After finishing the corrupting, in
addition to the knowledge A learns in the ideal
world, the corrupted parties’ randomness ~r〈I〉 is
also learn by A, where ~r

def
= (r1, r2).

2) Computing f . In the real world, computing f is
finished by all entities’ interaction. Each honest
party strictly follows the prescribed protocol π. The
corrupted parties have to follow A’s instructions
and may arbitrarily deviate from π.

3) Outputs. Each honest party Pi always outputs
what π instructs. Each corrupted party Pi out-
puts nothing. The adversary outputs something
generated by executing an arbitrary function of

the information he gathers during the execution.
Without loss of generality, this can be assumed
to be (1k, I, rA, ~r〈I〉, zk, ~x〈I〉) and the messages ad-
dressed to the corrupted parties (We denote these
messages by msgI ).

The whole execution is denoted by
Realπ,I,A(zk)(1

k, ~m,H, rA, ~r). The output of the execution
is defined by the outputs of all parties and the adversary
as follows.

Realπ,I,A(zk)(1
k, ~m,H, rA, ~r)〈i〉

def
=


A′s output, i.e., (1k, I, rA,
~r〈I〉, zk, ~x〈I〉,msgI),

i = 0;

P ′is output, i.e., λ, i ∈ I;

P ′is output, i.e., what
instructed by π,

i ∈ [n]− I.

Obviously, Realπ,I,A(zk)(1
k, ~m,H) is a random variable

whose randomnesses are rA and ~r.

2.2.5 Security definition
Loosely speaking, we say that protocol π securely com-
putes OTnh in the presence of covert adversaries, if and
only if, for any covert adversary A, the knowledge A
learns in the real world is not more than that he learns
in the ideal world. In other words, if and only if, for
any covert adversary A, what harm A can do in the real
world is not more than what harm he can do in the ideal
world.

Definition 1 (security for OTnh against covert adver-
saries). Let f denote the functionality of OTnh . Let π be
a concrete protocol for OTnh . Let ε ∈ (0, 1]. We say π
securely computes f in the presence of covert adversaries with
deterrence factor of ε, if and only if for any non-uniform
probabilistic polynomial-time adversary A with an infinite
sequence z = (zk)k∈N in the real world, there exists a non-
uniform probabilistic polynomial-time adversary S with the
same sequence in the ideal world such that, for any I ⊆ [2],
the following equation holds.

{Realπ,I,A(zk)(1
k, ~m,H)}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

c
=

{Idealεf,I,S(zk)(1
k, ~m,H)}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗
(1)

where the parameters input to the two probability ensembles
are same, |~m| = |H|, and each ~m〈i〉 is of the same length.
The adversary S in the ideal world is called a simulator of the
adversary A in the real world.

2.3 Security Against Malicious Adversaries Based
On One-Sided Simulation
The standard security against malicious adversaries in
the field of multi-party computation is first presented by
[8] and also can be seen in [21]. Compared with the se-
curity against covert adversaries, the essential difference
is that this security rules outs any successful cheating of
the adversaries. In other worlds, there are no choices of
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cheati and corruptedi available for the adversary in the
ideal world. Therefore, removing such choice and related
processes, we gain the execution of OTnh in the ideal
world with the security against malicious adversaries.
Similarly modifying Definition 1, we gain the definition
of this standard security.

One-sided simulation security, named by [25], is a
slightly weaker security against malicious adversaries
than the standard security. Specifically, if P2 is corrupted,
the security is proven in the same way as that under
the standard security; if P1 is corrupted, the security is
proven in a way that only guarantees that the adver-
saries know nothing about P2’s input. With respect to
OTnh , the definition is specified as follows.

Definition 2 (security for OTnh against malicious ad-
versaries under one-sided simulation). Let f denote the
functionality of OTnh . Let π be a concrete protocol for OTnh .
We say π securely computes f in the presence of malicious
adversaries under one-sided simulation, if and only if the
following holds.

1) In case P2 (i.e., the receiver) is corrupted, for any non-
uniform probabilistic polynomial-time adversary A with
an infinite sequence z = (zk)k∈N in the real world, there
exists a expected non-uniform probabilistic polynomial-
time adversary S with the same sequence in the ideal
world such that, the following equation holds.

{Realπ,{2},A(zk)(1
k, ~m,H)}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

c
=

{Idealf,{2},S(zk)(1
k, ~m,H)}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗
(2)

where the parameters input to the two probability en-
sembles are same, |~m| = |H|, and each ~m〈i〉 is of the
same length.

2) In case P1 (i.e., the sender) is corrupted, for any non-
uniform probabilistic polynomial-time adversary A with
an infinite sequence z = (zk)k∈N in the real world, the
following equation holds.

{V iewAπ,{1},A(zk)(1
k, ~m,H)}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

c
=

{V iewAπ,{1},A(zk)(1
k, ~m, H̃)}k∈N,~m∈({0,1}∗)n

H̃∈Ψ,zk∈{0,1}∗
(3)

One-sided simulation security is first considered by
[35] and later considered by [25], [28]. Both [35] and
[28] provide OT 2

1 with such security. [25] provides this
security to the problem set intersection. Compared with
standard security, some security properties, such as in-
dependence of inputs and correctness, are not guaran-
teed. However, the standard security against semi-honest
adversaries is indeed guaranteed. What is more, one-
sided simulation security enable us to construct efficient
protocol against malicious adversaries.

We point out that here we allow the simulator to
run in expected polynomial-time, rather than require
the simulator to run in strictly polynomial-time as the
one-sided simulation security considered in [25], [28],

[35]. We argue that this is justified, first, [4] shows that
constant-round proof system for sets outside BPP do
not have strict polynomial-time black-box simulators;
second, in many cases (also when strict polynomial-
time simulators exist), the expected running time of the
simulator provides a better bound than the worst-case
running time of the simulator [22].

2.4 A Variant Of Smooth Projective Hash

Basic smooth projective hash is first presented by [13].
Though it is originally used to design chosen-ciphertext
secure encryption schemes, now it and its variants are
used as tools to solve other problems, such as password-
based authenticated key exchange [19], oblivious trans-
fer [28], [42], extractable commitment [1]. In this paper,
we use the variant of smooth projective hash presented
by [42] to construct frameworks for h-out-of-n oblivious
transfer. In this section, we introduce this tool.

For clarity in presentation, we assume n = h + t
always holds and introduce additional notations. Let
R = {(x,w)|x,w ∈ {0, 1}∗} be a relation, then LR

def
=

{x|x ∈ {0, 1}∗,∃w((x,w) ∈ R)}, R(x)
def
= {w|(x,w) ∈ R}.

Π
def
= {π|π : [n]→ [n], π is a permutation}. Let π ∈ Π (to

comply with other literature, we also use π somewhere
to denote a protocol without bringing any confusion).
Let ~x be an arbitrary vector. By π(~x), we denote a vector
resulted from applying π to ~x. That is, ~y = π(~x), if and
only if ∀i(i ∈ [d] → ~x〈i〉 = ~y〈π(i)〉) ∧ ∀i(i /∈ [d] → ~x〈i〉 =

~y〈i〉) holds, where d
def
= min(#~x, n).

Definition 3 (t-smooth h-projective hash family that
holds properties distinguishability, hard subset mem-
bership, feasible cheating, SPHDHCt,h, [42]). H =
(PG, IS,DI,KG,Hash, pHash,Cheat) is an t-smooth h-
projective hash family with witnesses and hard subset mem-
bership (SPHDHCt,h), if and only ifH is specified as follows
• The parameter-generator PG is a PPT algorithm that

takes a security parameter k as input and outputs a
family parameter Λ, i.e., Λ ← PG(1k). Λ will be used
as a parameter to define three relations RΛ, ṘΛ and R̈Λ,
where RΛ = ṘΛ ∪ R̈Λ. Moreover, ṘΛ ∩ R̈Λ = ∅ are
supposed to hold.

• The instance-sampler IS is a PPT algorithm that takes a
security parameter k, a family parameter Λ as input and
outputs a vector ~a, i.e., ~a← IS(1k,Λ).
Let ~a = ((ẋ1, ẇ1), . . . , (ẋh, ẇh), (ẍh+1, ẅh+1), . . . ,
(ẍn, ẅn))T be a vector generated by IS. We call each ẋi
or ẍi an instance of LRΛ

. For each pair (ẋi, ẇi) (resp.,
(ẍi, ẅi)), ẇi (resp., ẅi) is called a witness of ẋi ∈ LṘΛ

(resp., ẍi ∈ LR̈Λ
). Note that, by this way we indeed

have defined the relationship RΛ, ṘΛ and R̈Λ here. The
properties smoothness and projection we will mention
later makes sure ṘΛ ∩ R̈Λ = ∅ holds.
For simplicity in formulation later, we introduce
some additional notations here. For ~a mentioned
above, ~x~a

def
= (ẋ1, . . . , ẋh, ẍh+1, . . . , ẍn)T ,
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~w~a
def
= (ẇ1, . . . , ẇh, ẅh+1, . . . , ẅn)T . What is more,

we abuse notation ∈ to some extent. We write
~x ∈ Range(IS(1k,Λ)) if and only if there exists a
vector ~x~a such that ~x~a = ~x and ~a ∈ Range(IS(1k,Λ)).
We write x ∈ Range(IS(1k,Λ)) if and only if there
exists a vector ~x such that ~x ∈ Range(IS(1k,Λ)) and
x is an entry of ~x.

• The distinguisher DI is a PPT algorithm that takes a
security parameter k, a family parameter Λ and a pair
strings (x,w) as input and outputs an indicator bit b,
i.e., b← DI(1k,Λ, x, w).

• The key generator KG is a PPT algorithm that takes
a security parameter k, a family parameter Λ and an
instance x as input and outputs a hash key and a
projection key, i.e., (hk, pk)← KG(1k,Λ, x).

• The hash Hash is a PPT algorithm that takes a security
parameter k, a family parameter Λ, an instance x and a
hash key hk as input and outputs a value y, i.e., y ←
Hash(1k,Λ, x, hk).

• The projection pHash is a PPT algorithm that takes a
security parameter k, a family parameter Λ, an instance
x, a witness w of x and a projection key pk as input and
outputs a value y, i.e., y ← pHash(1k,Λ, x, w, pk).

• The cheat Cheat is a PPT algorithm that takes a se-
curity parameter k, a family parameter Λ as input and
outputs n elements of ṘΛ, i.e., ((ẋ1, ẇ1), . . . (ẋn, ẇn))←
Cheat(1k,Λ).

and H has the following properties
1) Projection. Intuitively speaking, it requires that for any

instance ẋ ∈ LṘΛ
, the hash value of ẋ is obtainable with

the help of its witness ẇ. That is, for any sufficiently
large k, any Λ ∈ Range(PG(1k)), any (ẋ, ẇ) generated
by IS(1k,Λ), any (hk, pk) ∈ Range(KG(1k,Λ, ẋ)), it
holds that

Hash(1k,Λ, ẋ) = pHash(1k,Λ, ẋ, ẇ)

2) Smoothness. Intuitively speaking, it requires that for any
instance vector ~̈x ∈ Lt

R̈Λ
, the hash values of ~̈x are ran-

dom and unobtainable unless their hash keys are known.
That is, for any π ∈ Π, the two probability ensembles
Sm1

def
= {Sm1(1k)}k∈N and Sm2

def
= {Sm2(1k)}k∈N

defined as follows, are computationally indistinguish-
able, i.e., Sm1

c
= Sm2.

SmGen1(1k): Λ← PG(1k), ~a← IS(1k,Λ), ~x← ~x~a,
for each j ∈ [n] operates as follows: (hkj , pkj) ←
KG(1k,Λ, ~x〈j〉), yj ← Hash(1k,Λ, ~x〈j〉, hkj),−−−→
xpky〈j〉 ← (~x〈j〉, pkj , yj). Finally outputs (Λ,

−−−→
xpky).

SmGen2(1k): compared with SmGen1(1k), the only
difference is that yj ∈U Range(Hash(1k,Λ, ~x〈j〉, .))
for each j ∈ [n]− [h].

Smi(1
k): (Λ,

−−−→
xpky) ← SmGeni(1

k),
−̃−−→
xpky ←

π(
−−−→
xpky), finally outputs (Λ,

−̃−−→
xpky).

3) Distinguishability. Intuitively speaking, it requires that
the DI can distinguish the projective instances and
smooth instances with help of their witnesses. That is,
it requires that the DI correctly computes the following

function.

ζ : N× ({0, 1}∗)3 → {0, 1}

ζ(1k,Λ, x, w) =


0 if (x,w) ∈ ṘΛ,

1 if (x,w) ∈ R̈Λ,

undefined otherwise .

4) Hard Subset Membership. Intuitively speaking, it re-
quires that for any ~x ∈ Range(IS(1k,Λ)), ~x can
be disordered without being detected. That is, for any
π ∈ Π, the two probability ensembles HSM1

def
=

{HSM1(1k)}k∈N and HSM2
def
= {HSM2(1k)}k∈N,

specified as follows, are computationally indistinguish-
able, i.e., HSM1

c
= HSM2.

HSM1(1k): Λ ← PG(1k), ~a ← IS(1k,Λ), finally
outputs (Λ, ~x~a).
HSM2(1k): Operates as same as HSM1(1k) with an
exception that finally outputs (Λ, π(~x~a)).

5) Feasible Cheating. Intuitively speaking, it requires that
there is a way to cheat to generate a ~x which is supposed
to fall into Lh

ṘΛ
× Lt

R̈Λ
but actually falls into Ln

ṘΛ

without being caught. That is, for any π ∈ Π, for
any π′ ∈ Π, the two probability ensembles HSM2

and HSM3
def
= {HSM3(1k)}k∈N are computationally

indistinguishable, i.e., HSM2
c
= HSM3, where HSM2

is defined above and HSM3 is defined as follows.
HSM3(1k):Λ ← PG(1k), ~a ← Cheat(1k), finally
outputs (Λ, π′(~x~a)).

[42] shows that SPHDHCt,h can be instantiated un-
der various hardness assumptions, such as the decisional
Diffie-Hellman assumption, the decisional N -th resid-
uosity assumption, the decisional quadratic residuosity
assumption. Please see [42] for such instantiations.

3 CONSTRUCTING A FRAMEWORK FOR OT n
h

AGAINST COVERT ADVERSARIES

In this section, we construct a framework for OTnh
against covert adversaries. In the framework, we will use
a PPT algorithm, denoted Γ , that receiving B1, B2 ∈ Ψ,
outputs a uniformly chosen permutation π ∈U Π such
that π(B1) = B2, i.e., π ← Γ(B1, B2). We give an example
implementation of Γ as follows.

Γ(B1, B2): First, E ← ∅, C ← [n]−B1. Second, for each
j ∈ B2, then i ∈U B1, B1 ← B1 − {i}, E ← E ∪ {j 
 i}.
Third, D ← [n] − B2, for each j ∈ D, then i ∈U C, C ←
C −{i}, E ← E ∪{j 
 i}. Fourth, define π as π(i) = j if
and only if j 
 i ∈ E. Finally, outputs π.

3.1 The Detailed Framework ForOTnh Against Covert
Adversaries
• Common inputs: the public security parameter k,

a SPHDHCt,h (where n = h + t) hash system H,
the number of instance vector P2 (i.e., the receiver)
should generate K, the number of instance vector
P2 should open g, where K, g are positive integer,
g < K, and K ≤ poly(k).
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• Private Inputs: Party P1 (i.e., the sender) holds a
private input ~m ∈ ({0, 1}∗)n and a randomness r1 ∈
{0, 1}∗. Party P2 holds a private input H ∈ Ψ and a
randomness r2 ∈ {0, 1}∗. The adversary A holds a
name list I ⊆ [2] and a randomness rA ∈ {0, 1}∗.

• Auxiliary Inputs: The adversary A holds an infinite
auxiliary input sequence z = (zk)k∈N, zk ∈ {0, 1}∗.

The protocol are described as follow.
• Convention: For clarity in description, we make

conventions here about some trivial error-handlings
such as P1 refusing to send P2 some message which
is supposed to be sent, P1 sending a invalid message
that P2 can not process. Handling such errors is easy.
P2 halting and outputting abort1 suffices. P1 can
handle such errors in a similar way. In the following
description, we will not explicitly iterate such details
any more.

• Receiver’s step (R1): P2 generates hash parameters
and samples instances.

1) P2 samples K instance vectors.
P2 does: Λ ← PG(1k); for each
i ∈ [K], ~ai ← IS(1k,Λ). Without
loss of generality, we assume ~ai =
((ẋ1, ẇ1), . . . , (ẋh, ẇh), (ẍh+1, ẅh+1), . . . ,
(ẍn, ẅn))T .

2) P2 disorders each instance vector.
For each i ∈ [K], P2 uniformly chooses a
permutation π1

i ∈U Π, then ~̃ai ← π1
i (~ai).

3) P2 sends the instance vectors and the corre-
sponding hash parameters to P1.
P2 sends (Λ, ~̃x1, ~̃x2, . . . , ~̃xK), where ~̃xi

def
= ~x~̃ai

(correspondingly, ~̃wi
def
= ~w~̃ai ), to P1.

• Sender’s step (S1): P1 choose g instance vectors at
random to open.
P1 does: r ∈U {0, 1}K such that #{i|r〈i〉 = 1, i ∈
[K]} = g, and sends r to P2.
r indicates that the instance vectors whose indexes
fall into CS

def
= {i|r〈i〉 = 1, i ∈ [K]} (correspond-

ingly, CS
def
= [K]−CS) are chosen by P1 to be open.

We call such r choose indicator from now on.
• Receiver’s step (R2): P2 opens the chosen instances

to P1, encodes and sends his private input to P1.
1) P2 verifies that the choice indicator is legal, i.e.

the number of 1-bits contained in r just is g.
If r is not legal, P2 halts and outputs abort1;
otherwise, P2 proceeds to the next step.

2) P2 sends the witnesses of the chosen instances
to prove that the instances generated by him
are legal.
P2 sends ((i, j, ~̃wi〈j〉))i∈CS,j∈Ji to P1, where
Ji

def
= {j|~̃xi〈j〉 ∈ LR̈Λ

, j ∈ [n]}.
3) P2 encodes his private input and sends the

resulting code to P1.
Let Gi

def
= {j|~̃xi〈j〉 ∈ LṘΛ

, i ∈ CS}. For each
i ∈ CS, P2 does π2

i ← Γ(Gi, H), sends (π2
i )i∈CS

to P1. That is, P2 encodes his private input into

sequences such as π2
i (~̃xi) where i ∈ CS.

We comment that, to prove instances’ legality, there
is no need for P2 to send the witnesses of the
projective instances of the chosen instance vectors to
P1, since P1 only care whether each chosen instance
vector contains enough smooth instances, which we
will see later. We also comment that P2 can send
((i, j, ~̃wi〈j〉))i∈CS,j∈Ji and (π2

i )i∈CS in one step.
• Sender’s step (S2): P1 checks the chosen instances,

sends his private input after encrypting them to P2.
1) P1 verifies that each chosen instance vector is

legal, i.e., for each chosen instance vector the
number of the entries belonging to LR̈Λ

is at
least n− h.
P1 checks that, for each i ∈ CS, #Ji ≥ n − h,
and for each j ∈ Ji, DI(1k,Λ, ~̃xi〈j〉, ~̃wi〈j〉) is
1. If P2 does not send the opening or the
check fails, P1 halts and outputs corrupted2,
otherwise P1 proceeds to next step.

2) P1 reorders the entries of each unchosen in-
stance vector in the way told by P2.
For each i ∈ CS, P1 does ˜̃

~xi ← π2
i (~̃xi).

3) P1 encrypts and sends his private input to P2

together with some auxiliary messages.
For each i ∈ CS, j ∈ [n], P1 does: (hkij , pkij)←
KG(1k,Λ,

˜̃
~xi〈j〉), βij ← Hash(1k,Λ, hkij ,

˜̃
~xi〈j〉),

~βi
def
= (βi1, βi2, . . . , βin)T ,~c ← ~m ⊕ (⊕i∈CS ~βi),

−→
pki

def
= (pki1, pki2, . . . , pkin)T , sends ~c and

(
−→
pki)i∈CS to P2.

• Receiver’s step (R3): P2 decrypts the ciphertext ~c
and gains the message he want.
For each i ∈ CS, j ∈ H , P2 operates: β′ij ←
pHash(1k,Λ,

˜̃
~xi〈j〉, ˜̃

~wi〈j〉,
−→
pki〈j〉), m′j ← ~c〈j〉 ⊕

(⊕i∈CSβ′ij). Finally, P2 gains the messages (m′j)j∈H .

3.2 The Correctness Of The Framework
In our framework, the main use of the witnesses of an
instance ẋ ∈ LṘΛ

is to project and gain the hash value
of ẋ. In contrast, with respect to an instance ẍ ∈ LR̈Λ

,
the witness services as a proof of ẍ ∈ LR̈Λ

. This means
that a receiver can use the witnesses of ẍ to persuade a
sender to believe that the receiver is unable to gain the
hash value of ẍ.

Now let us check the correctness of the framework,
i.e., the framework works in case P1 and P2 are honest.
For each i ∈ CS, j ∈ H , we know

~c〈j〉 = ~m〈j〉 ⊕ (⊕i∈CS ~βi〈j〉)
m′j = ~c〈j〉 ⊕ (⊕i∈CSβ

′
ij)

Because of the projection of H, we know
~βi〈j〉 = β′ij

So we have
~m〈j〉 = m′j

This means what P2 gets is ~m〈H〉 that indeed is P2

wants.
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3.3 The Security Of The Framework

With respect to the security of the framework, we have
the following theorem.

Theorem 4 (The framework is secure against covert
adversaries). Assume that H is t-smooth h-projective hash
family that holds properties distinguishability, hard subset
membership, feasible cheating (SPHDHCt,h). Then, the
framework securely computes h-out-of-n oblivious transfer
functionality in the presence of non-adaptive covert adver-
saries with deterrence factor 1− 1/CK−gK .

Before prove Theorem 4, we first give an intuitive
analysis as a warm-up. For the security of P1, the
framework should prevent P2 from gaining more than h
messages. Using cut and choose technique, P1 can detect
with probability 1 − g

K the cheating that P2 generates
a instance vector containing more than h projective
instance. Unexpectedly, we find that the probability that
P2 cheats to obtain more than h messages may be far
less than g

K .

Theorem 5. In case P1 is honest and P2 is corrupted, the
probability that P2 cheats to obtain more than h messages is
at most 1/CK−gK .

Proof: According to the framework, there are follow-
ing necessary conditions for P2’s success in the cheating.

1) P2 has to generate at least one illegal ~xi which
contains more than h entries belonging to LṘΛ

. If
not, P2 cann’t correctly decrypt more than h entries
of ~c, because of the smoothness of H. Without loss
of generality, we assume the illegal instance vectors
are ~xl1 , ~xl2 , . . . , ~xld .

2) All illegal instance vectors are lucky not to be
chosen and all the instance vectors unchosen
just are the illegal instance vectors, i.e., CS =
{l1, l2, . . . , ld}. We prove this claim in two cases.

a) In case CS 6= {l1, l2, . . . , ld} and CS −
{l1, l2, . . . , ld} = ∅, there exists j(j ∈ [d] ∧ lj ∈
CS). So P1 can detect P2’s cheating and P2

will gain nothing.
b) In case CS 6= {l1, l2, . . . , ld} and CS −
{l1, l2, . . . , ld} 6= ∅, there exists j(j ∈ CS ∧
~xj is legal). Because of the smoothness of H,
P2 cannot correctly decrypt more than h en-
tries of ~c.

3) The number of illegal instance vectors just are
K−g, i.e., d = K−g. On one side, in the framework,
P1 choose g instance vectors to open, therefore the
number of illegal instance vectors has to be no
more than K−g to avoid being caught. On another
side, following the analysis of the secondary con-
dition, to learn extra messages for P2, the number
of illegal instance vectors has to be no less than
K−g to make possible that all d unchosen instance
vectors are illegal.

Let us estimate the probability that both the second and

the third necessary conditions are met. We have

Pr(CS = {l1, l2, . . . , ld} ∧ d = K − g) = 1/CdK

= 1/CK−gK

This means that the probability that P2 cheats to obtain
more than h messages is at most 1/CK−gK .

From the proof of Theorem 5, we know there is a
possibility that P2 commits a not effective cheating in
the sense that even if such cheating is not detected by
P1, P2 still learns no new knowledge. What is more,
such not effective cheating even diminish the amount
of knowledge P2 deserves. Therefore, the deterrence
factor is at least 1 − 1/CK−gK . Following the properties
of binomial factor, the maximum lower-bound of the
deterrence factor can be achieved by setting g to be
K − xK+1

2 y. This is in contrast to our intuition that the
more instance vectors chosen to be open, the higher
the deterrence factor is. The essential reason is that
our intuition is apt to neglect the confusion induced
by SPHDHCt,h’s property smoothness. Since K, g are
predetermined constant value, the distance between the
deterrence factor and 1 can not be negligibly small. How-
ever, a very small distance is achievable. For example,
setting K, g to be 40, 20 respectively, we gain a deterrence
factor ε = 1− 7.25× 10−12.

For the security of P2, the framework first should
prevent P1 from learning P2’s private input. There is a
possible leakage of P2’s private input in Step R2 where
P2 encodes his private input. However, SPHDHCt,h’s
property hard subset membership guarantees that for
any ~x ∈ Range(IS(1k,Λ)), any π ∈ Π, any PPT adversary
A, without being given π, the advantage of A identifying
an entry of π(~x) falling into LṘΛ

(resp., LR̈Λ
) with proba-

bility over prior knowledge h/n (resp., t/n) is negligible.
That is, seen from A, every entry of π(~x) seems the same.
This implies that the receiver encodes his private inputs
without leaking any information in our framework.

Besides cheating P2 of private input, it seems
there is another obvious attack that malicious P1

sends invalid messages, e.g. pkij that (hkij , pkij) /∈
Range(KG(1k,Λ, xij)), to P2. This attack in fact doesn’t
matter. Its effect is equal to that of P1’s altering his real
input, which is allowed in the ideal world too. Seen from
intuition, it seems that there is no way for P1 to cheat out
the inputs of P2. Indeed, our security proof later shows
this intuition is correct.

We now proceeds to prove Theorem 4 holds. For
notational clarity, we denote the parties and the adver-
sary in the real world by P1, P2, A, and denote the
corresponding entities in the ideal world by P ′1, P ′2, S.
In the light of the parties corrupted by adversaries, there
are four cases to be considered and we separately prove
Theorem 4 holds in each case.

3.3.1 In Case P1 Is Corrupted
In case P1 is corrupted, A takes the full control of P1 in
the real world. Correspondingly, A’s simulator, S, takes
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the full control of P ′1 in the ideal world, where S is
constructed as follow.
• Initial input: S holds the same k, I

def
= {1}, z =

(zk)k∈N, as A. What is more, S holds a uniform
distributed randomness rS ∈ {0, 1}∗. The parties P ′1
and P1, whom S and A respectively are to corrupt,
hold the same ~m.

• S works as follows.
– Step Sim1: S performs initialization operations

in this step. Specifically, first, S corrupts P ′1
and learns P ′1’s private input ~m. Second, let Ā
be a copy of A, i.e., Ā = A. S use Ā as a
subroutine. S fixes the initial inputs of Ā to be
his own initial input, i.e., k, I, z, with exception
that fixes the randomness of Ā to be a uniformly
distributed value. Third, S activates Ā.
We comments that, during what follows until
Ā halts, S builds an environment for Ā which
simulates the real world. That is, S simultane-
ously disguises himself as P1 and P2 to interact
with Ā.
Fourth, before engaging in the framework for
OTnh , Ā sends a message as in the real world
indicating to corrupt P1. S plays the role of P1

to supplies Ā with ~m. Now, Ā is engaging the
framework.

– Convention: In the following interactions be-
tween Ā and S, in case Ā refuses to send some
message which is supposed to be sent or Ā
sends a invalid message that S can not pro-
cess, S sends abort1 to the TTP, and halts with
outputting whatever Ā outputs. We make this
convention here, and will not explicitly iterate
such details any more.

– Step Sim2: S repeats the following procedure,
denoted Υ, until the output of Υ is λ. In each
repeating, all randomness used by S is fresh. On
finishing the repeating, S proceeds to the next
step.
∗ Procedure Υ:

1) S rewinds Ā to the beginning of Step S1
of the framework.

2) S uniformly chooses a choice indicator as
a honest party P1 does in Step S1 of the
framework. S executes receiver’s Step R1
of the framework with following excep-
tion, for each r̄〈i〉 = 1, S honestly gener-
ates instance vector ~xi; for each r̄〈i〉 = 0,
S call Cheat(1k,Λ) to generate instance
vector ~xi.

3) S receives a choice indicator r from Ā.
4) If r = r̄, α← λ; otherwise, α← ⊥. Finally

outputs α.
Remark 6. Step Sim2 is a key step to extract
Ā’s real input. Note that, in case event r = r̄
happens, then each entry of each unchosen instance
vector is projective. SPHDHCt,h’s property feasible

cheating guarantees that Ā can’t detect this cheating.
Recalling the proof of Theorem 5, we know S can
succeed in extracting Ā’s real input.

– Step Sim3: Playing the role of P2 who takes
an arbitrary element of Ψ as private input, S
honestly execute receiver’s Step R2 to interact
with Ā. On receiving ~c, (

−→
pki)i∈CS sent by Ā, S

decrypts every entry of ~c, and gains Ā’s real
input ~m′.

– Step Sim4: S sends ~m′ to TTP and receives back
a message α ∈ {abort1, corrupt1, λ}.

– Step Sim5: When Ā halts, S halts with out-
putting what Ā outputs.

Lemma 7. The simulator S is expected polynomial-time.

Proof: First, let us focus on Step Sim2. Note that the
number of legal choice indicators is CgK . So we have
Pr(r = r̄) = 1/CgK . Therefore, the expected number of
repeating Υ is CgK which is a predetermined constant
value. Then, Step Sim2 runs expected polynomial-time.

Second, let us focus on other steps of S. Obviously,
they all run strict polynomial-time. Following the above
analysis, S is expected polynomial-time.

However, the security definition requires a strictly
polynomial-time simulator. Observer that, the reason
why the above S doesn’t run strictly polynomial-time
is that the probability that Υ outputs ⊥ is relatively too
high. The following lemma guarantees that we can get a
new version of Υ that run strictly polynomial-time and
outputs ⊥ negligible probability.

Lemma 8. Given a PPT machine M that outputs ⊥ with
probability p, where p ∈ (0, 1) is a constant value, we can
have a PPT machine M̃ such that

∀x→ Pr(M̃(x) = ⊥) = µ(k)

∀x∀α→Pr(M̃(x) = α|M̃(x) 6= ⊥)

= Pr(M(x) = α|M(x) 6= ⊥)

holds.

Proof: Let v be some polynomial that v(k) > 1/p. We
construct M̃ as follows.

M̃ : on receiving input x, repeats M(x) at most v
times. If M(x) outputs something different from ⊥ in
a repetition, then sets α to be this output, and stops
repeating; otherwise, set α to be ⊥. Finally outputs α.

Let Mi(x) be the output of M(x) in i-th repetition. Let
Xi be 0/1 random variable defined as follows.

Xi
def
=

{
1, Mi(x) = ⊥;

0, Mi(x) 6= ⊥.
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Then, we know E(Xi) = p, D(Xi) = p(1− p).

Pr(M̃(x) = ⊥) = Pr(

v∑
i

Xi < 1)

= Pr(p−
∑v
i Xi

v
> p− 1

v
)

≤ Pr(|p−
∑v
i Xi

v
| ≥ p− 1

v
)

Following Chernoff Bound (can be seen in [20]), we have

Pr(M̃(x) = ⊥) ≤ 2

e
v

2σ2 (p− 1
v )2

Therefore, Pr(M̃(x) = ⊥) is negligible.
Modifying Step Sim2 as follows
• Step Sim2: S executes the new version of Υ guaran-

teed by Lemma 8. If Υ outputs ⊥, then S outputs ⊥
and halts; otherwise, S proceeds to the next step.

, we gain a new version of simulator. Combining the
proof of Lemma 7, we have

Proposition 9. The new simulator S is polynomial-time.

Note that S never sends cheat1 to TTP. Thus, we
actually construct a standard simulator for A, and so
provide a standard security against malicious adver-
saries to P2. This means we need to prove for any non-
uniform probabilistic polynomial-time adversary A with
an infinite sequence z = (zk)k∈N in the real world, the
following equation holds.

{Idealf,{1},S(zk)(1
k, ~m,H)}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

c
=

{Realπ,{1},A(zk)(1
k, ~m,H)}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗
(4)

Proposition 10. In case P1 was corrupted, i.e., I = {1}, the
equation (4) holds.

Before proving Proposition 10, we first prove the some
lemmas.

Lemma 11. The output of S in the ideal world and the output
of A in the real world are computationally indistinguishable,
i.e. the following equation holds.

{Idealf,{1},S(zk)(1
k, ~m,H)〈0〉}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

c
=

{Realπ,{1},A(zk)(1
k, ~m,H)〈0〉}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

Proof: First, we claim that the outputs of S and Ā are
computationally indistinguishable. From the construc-
tion of S, we know that the event that S doesn’t take
Ā’s output as its output arises only if the event that Υ
outputs ⊥ arises. Since the latter arises with negligible
probability, this claim holds.

Second, we claim that the views of Ā and A are
computationally indistinguishable. The only point Ā’s
view is different from A’s is that the unchosen instance
vectors Ā sees are generated by calling Cheat(1k,Λ).
SPHDHCt,h’s property feasible cheating guarantees

such instance vectors are indistinguishable from the that
generated honestly. therefore, this claim holds.

Combining the above two claims, this lemma holds.

Lemma 12. Let X def
= {X(1k, a)}k∈N,a∈{0,1}∗ and Y

def
=

{Y (1k, a)}k∈N,a∈{0,1}∗ be two polynomial-time constructible
probability ensembles, X c

= Y , F def
= (fk)k∈N, fk : {0, 1}∗ →

{0, 1}∗ is polynomial-time computable, then

F (X)
c
= F (Y )

where F (X)
def
= {fk(X(1k, a))}k∈N,a∈{0,1}∗ ,F (Y )

def
=

{fk(Y (1k, a))}k∈N,a∈{0,1}∗ .

Proof: Assume the proposition is false, then there ex-
ists a non-uniform PPT distinguisher D with an infinite
sequence z = (zk)k∈N, a polynomial poly(.), an infinite
positive integer set G ⊆ N such that, for each k ∈ G, it
holds that

|Pr(D(1k, zk, a, fk(X(1k, a))) = 1)−
Pr(D(1k, zk, a, fk(Y (1k, a))) = 1)| ≥ 1/poly(k)

We construct a distinguisher D′ with an infinite se-
quence z = (zk)k∈N for the ensembles X and Y as
follows.
D′(1k, zk, a, γ): δ ← fk(γ), finally outputs

D(1k, zk, a, δ).
Obviously, D′(1k, zk, a,X(1k, a)) =

D(1k, zk, a, fk(X(1k, a)), D′(1k, zk, a, Y (1k, a)) =
D(1k, zk, a, fk(Y (1k, a)). So we have

|Pr(D′(1k, zk, a,X(1k, a)) = 1)−
Pr(D′(1k, zk, a, Y (1k, a)) = 1)| ≥ 1/poly(k)

This contradicts the fact X c
= Y .

Now we proceed to prove Proposition 10.
Proof: First let us focus on the real world. A’s real

input can be formulated as γ ← A(1k, ~m, zk, rA, r1). Note
that in this case, P2’s output is a determinate function of
A’s real input. Since A’s real input is in its view, with-
out loss of generality, we assume A’s output, denoted
α, constains its real input. Therefore, P2’s output is a
determinate function of A’s output, where the function
is

g(α) =


abort1 if γ = abort1,

corrupted1 if γ = corrupted1,

γ〈H〉 otherwise.

Let h(α)
def
= (α, λ, g(α)). Then we have

Realπ,{1},A(zk)(1
k, ~m,H) ≡

h(Realπ,{1},A(zk)(1
k, ~m,H)〈0〉)

Similarly, in the ideal world, we have

Idealf,{1},S(zk)(1
k, ~m,H)

c
=

h(Idealf,{1},S(zk)(1
k, ~m,H)〈0〉)
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We use c
= not ≡ here because there is a negligible prob-

ability that S outputs ⊥, which makes h(.) undefined.
Let X(1k, ~m,H, zk, {1})

def
=

Realπ,{1},A(zk)(1
k, ~m,H)〈0〉, Y (1k, ~m,H, zk, {1})

def
=

Idealf,{1},S(zk)(1
k, ~m,H)〈0〉. Following Lemma 11,

X
c
= Y . Let F

def
= (h)k∈N. According to Lemma 12, the

proposition holds.

3.3.2 In Case P2 Is Corrupted
In case P2 is corrupted, A takes the full control of P2 in
the real world. Correspondingly, S takes the full control
of P ′2 in the ideal world. We construct S as follows.

• Initial input: S holds the same k, I
def
= {2}, z =

(zk)k∈N as A, and holds a uniformly distributed
randomness rS ∈ {0, 1}∗. The parties P ′2 and P2 hold
the same private input H .

• S works as follows.
– Step Sim1: In this step, S performs initialization

operations in a similar way that the simulator
does in case P1 is corrupted. That is, S corrupts
P ′2 and learns P ′2’s private input H . S takes
A’s copy Ā as a subroutine, fixes Ā’s initial
input, activates Ā, supplies Ā with H . Now, Ā
is engaging the framework.

– Convention: In the following interactions be-
tween Ā and S, in case Ā refuses to send some
message which is supposed to be sent or Ā
sends a invalid message that S can not pro-
cess, S sends abort2 to the TTP, and halts with
outputting whatever Ā outputs. We make this
convention here, and will not explicitly iterate
such details any more.

– Step Sim2: On receiving (Λ, ~̃x1, ~̃x2, . . . , ~̃xK) sent
from Ā, S rewinds Ā CgK times to knows Ā’s
distinct responses to distinct choice indicators.
Specifically, at the i-th time, S works as follows.
1) S choose a choice indicator r never used.

Note that there are just CgK choice indicators.
2) Playing the role of P1, S sends r to Ā, records
Ā’s response (i.e., a rejection or a corre-
sponding opening ((i, j, ~̃wi〈j〉))i∈CS,j∈Ji ).

3) S rewinds Ā to the beginning of Step R2 of
the framework.

– Step Sim3: Now S knows Ā’s all responses. S
proceeds as follows basing on such knowledge.
∗ Case 1, no Ā’s response will cause honest

party P1 outputting corrupted2. S proceeds
to Step Sim4.

∗ Case 2, Ā’s all responses will cause honest
party P1 outputting corrupted2. S sends
corrupted2 to TTP and receives back
corrupted2 from TTP. Then, playing the
role of P1, S honestly follows the sender’s
steps of the framework which begins from
Step S1 to interact with Ā. When Ā halts, S
halts with outputting what Ā outputs.

∗ Case 3, the number of Ā’s responses that will
cause honest party P1 outputting corrupted2

is in the domain [1, CgK − 1]. S send cheat2
to TTP. Since S knows Ā’s all responses, S
knows the the probability that Ā is being
caught in cheating by honest party P1 in the
real world. We denote this probability By ε.
It is easy to see that 0 < ε < 1.

· Case 3.1, with probability ε, TTP replies S
with corrupted2. S uniformly chooses one
of the choice indicator that will cause Ā’s
cheating to be caught and sends it to Ā.
Then, playing the role of P1, S honestly
follows the sender’s steps which begins
from Step S2 to interact with Ā.
· Case 3.2, with probability 1− ε, TTP replies
S with undetected and honest party P1’s
private input ~m. Playing the role of P1 with
private input ~m, S honestly follows the
sender’s steps which begins from Step S1
to interact with Ā.

When Ā halts, S halts with outputting what
Ā outputs.

– Step Sim4: Playing the role of P1, S honestly
follows the sender’s steps Step S1, Step S2.1,
Step S2.2 to interact with Ā. Basing on the
instances’ witnesses S records in Step Sim2 and
the codes (π2

i )i∈CS sent by Ā, S extracts Ā’s real
input H ′. Specifically, S operates as follows: for
each i ∈ CS, H ′i ← ∅; for each i ∈ CS and
j ∈ [n], if ˜̃

~xi〈j〉 is projective, then H ′i ← H ′i∪{j};
finally, H ′ ← ∩i∈CSH ′i .

– Step Sim5: S sends H ′ to TTP and receives back
~m〈H ′〉. To proceed to the interaction with Ā,
S fabricates ~m′ as follows. For each i ∈ H ′,
~m′〈i〉 ← ~m〈i〉. For each i /∈ H ′, set ~m′〈i〉 to be
an arbitrary message of appropriate length.

– Step Sim6: Playing the role of P1 with private
input ~m′, S follows Step S2.3 to complete the
interaction with Ā. When Ā halts, S halts with
outputting what Ā outputs.

Proposition 13. The simulator S is polynomial-time.

Looking at the construction of S, each step is
polynomial-time. Obviously, Proposition 13 holds.

Lemma 14. If Case 1 of Step Sim3 happens, then the output
of A in the real world and that of Ā in the ideal world are
indistinguishable.

Proof: Note that the only point makes Ā’s view dif-
ferent from A’s view is that the ciphertext ~c′ Ā receives is
generated by encrypting fabricated ~m′ rather than party
P1’s private input ~m.

In case #H ′ = h, SPWHh,t’s property smoothness
directly guarantees that Ā’s view and A’s view are
indistinguishable.
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In case #H ′ < h, Ā’s view and A’s are indistinguish-
able too. This is because SPWHh,t’s property smooth-
ness guarantees that for each j ∈ [n]− [H ′], what Ā , A
can respectively get from ~c′〈j〉, ~c〈j〉 are values uniformly
distributed over appropriate domains.

There is no case #H ′ > h, since all instance vectors
are legal.

Combining above analysis, we know that A’s output
and Ā’s output are indistinguishable.

We remark that the proof of Lemma 14 also shows that
both A’s effective private input and Ā’s are H ′.

Lemma 15. If Case 2 or Case 3 of Step Sim3 happens, then
the outputs of A in the real world and Ā in the ideal world
are identical.

Proof: Looking at the construction, we know that, in
case S receives back corruptted2 from TTP , during the
following interaction with Ā, S plays the role of honest
party P1 without the need to know ~m. In case S receives
back undetected from TTP , S knows ~m and perfectly
plays the role of honest party P1. Therefore,A’s view and
Ā’s view are identical and their outputs are identical.

Lemma 16. The output of the adversary A in the real
world and that of the simulator S in the ideal world are
computationally indistinguishable, i.e.,

{Realπ,{2},A(zk)(1
k, ~m,H)〈0〉}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

c
=

{Idealf,{2},S(zk)(1
k, ~m,H)〈0〉}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

Proof: First, we claim that the outputs of S and Ā
are identical. This follows from the fact that S always
takes Ā’s output as his own output.

Second, we claim that the outputs of A and Ā are
computationally indistinguishable. Looking at Step Sim3
and Step Sim4, the probability that each case happens is
identical to that in the real world. Following Lemma 14
and Lemma 15, this claim holds.

Combining the two claims, the proposition holds.

Proposition 17. In case P2 was corrupted, i.e., I = {2}, the
equation (1) required by Definition 1 holds.

Proof: Note that the honest parties P1 and P ′1 end
up with outputting nothing. Thus, the fact that the out-
puts of S and A are computationally indistinguishable,
which is supported by Proposition 24, directly prove this
proposition holds.

3.3.3 In Other Cases
In case both P1 and P2 are corrupted, A takes the
full control of the two corrupted parties. In the ideal
world, a similar situation also holds with respect to S,
P ′1 and P ′2. Liking in previous cases, S uses A’s copy,
Ā, as a subroutine and builds a simulated environment
for Ā. S provids Ā with P ′1 and P ′2’s initial inputs
before Ā engages in the protocol. When Ā halts, S halts
with outputting what Ā outputs. Obviously, S runs in

strictly polynomial-time and the equation (1) required
by Definition 1 holds in this case.

In case none of P1 and P2 is corrupted. The simulator
S is constructed as follows. S uses Ā, P̄1, P̄2 as subrou-
tines, where Ā, P̄1, P̄2, respectively, is the copy of A, P1

and P2. S fixes Ā’s initial inputs in the same way as
in previous cases. S chooses an arbitrary ~̄m ∈ ({0, 1}∗)n
and a uniformly distributed randomness r̄1 as P̄1’s initial
inputs. S chooses an arbitrary H̄ ∈ Ψ and a uniformly
distributed randomness r̄2 as P̄2’s initial inputs. S actives
these subroutines and make the communication between
P̄1 and P̄2 available to Ā. Note that, in case none of P1

and P2 is corrupted, what adversaries can see in real
life only is the communication between honest parties.
When Ā halts, S halts with outputting what Ā outputs.
Obviously, S runs in strictly polynomial-time and the
equation (1) required by Definition 1 holds in this case.

3.4 The Communication Rounds
Step R3 is performed without communication. Each of
the rest steps is performed in one round. Thus, the
number of the total communication rounds is four.

Seen from practical use, there is no sense to compare
our work to the works whose security are not guaranteed
in the implementation or the works that can not be
implemented at present. Therefore, we do not consider
any protocols presented by [18], [26], [37], [38] in the rest
of this paper.

Compared with existing fully-simulatable protocols
for OTnh , our framework is the most efficient one in
communications rounds. On counting the total commu-
nication rounds of a protocol, we count that of the mod-
ified version. In the modified version, the consecutive
communications of the same direction are combined into
one round. The protocol for OTnh×1 of [7] costs one,
two zero-knowledge proofs of knowledge respectively in
initialization and in transfer a message, where each zero-
knowledge proofs of knowledge is performed in four
rounds. The whole protocol costs at least ten rounds.
The protocol for OTnh of [24] costs one zero-knowledge
proof of knowledge in initialization which is performed
in three rounds at least, one protocol to extract a secret
key corresponding to the identity of a message which is
performed in four rounds, one zero-knowledge proof of
knowledge in transfer a message which is performed in
three rounds at least. We point out that the interactive
proof of knowledge of a discrete logarithm modulo a
prime, presented by [40] and taken as a zero-knowledge
proof of knowledge protocol in [24], to our best knowl-
edge, is not known to be zero-knowledge. However,
turning to the techniques of Σ-protocol, [12] make it
zero-knowledge at cost of increment of three rounds in
communication, which in turn induces the increment in
communication rounds of the protocol of [24]. Taking all
into consideration, this protocol costs at least ten rounds.
The framework for OTnh of [42] costs six rounds.

Compared with existing fully-simulatable protocols
for OT 2

1 that works without a trusted common reference
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string (CRS), our framework is also the most efficient one
in communications rounds. The protocol presented by
[31] can be viewed as a special DDH-based instantiation
of the framework in [42], though modifying the protocol
to some extent is needed. Therefore, there is no need to
considered this protocol separately. In the rest of this
paper, we will not repeat this point again. The protocol
presented by [3] is secure against covert adversaries
with deterrence factor 1

2 and costs four rounds.
We point that the protocols presented in [7], [24],

[31], [42] are secure against malicious adversaries, which
leads to the security level of the protocols are higher than
that of ours. However, as pointed out by [3], the adver-
saries are not always malicious and ready to cheat at any
price. Therefore, in such setting, the mentioned protocol
seems too pessimistic and our framework indeed makes
sense.

3.5 The Computational Overhead

We measure the computational overhead of a protocol
mainly in terms of the number of public key operations
(i.e. operations based on trapdoor functions, or similar
operations), because the overhead of public key oper-
ations, which depends on the length of their inputs,
is greater than that of symmetric key operations (i.e.
operations based on one-way functions) by orders of
magnitude. However, in comparison of two protocols,
the number of private key operations is also taken into
consideration, if their overhead of public key operations
are same. Please see [32] to know which cryptographic
operation is public key operation or private key opera-
tion.

As to our framework, the public key operations are
Hash(.) and pHash(.). In Step S2, P1 takes n · (K − g)
invocations of Hash(.) to encrypt his private input. In
Step R3, P2 takes h · (K − g) invocations of pHash(.)
to decrypt the messages he want. To compare with ex-
isting fully-simulatable protocols in computational over-
head, we instantiate our framework with the DDH-based
SPHDHCt,h presented by [42] and set K, g to be 2, 1
respectively. In the resulting DDH-based instantiation,
P1 costs n public key encryption operations, P2 costs
h public key decryption operations, and the deterrence
factor is 1

2 .
Compared with existing fully-simulatable protocols

for OTnh , our DDH-based instantiation is the most ef-
ficient one in computational overhead. The operations
of the protocol in [7] are based on the non-standard
assumptions, i.e., q-Power Decisional Diffie-Hellman and
q-Strong Diffie-Hellman assumptions. Such operations
are more expensive than DDH-based operations. The
operations of the protocol in [24] are based on Decisional
Bilinear Diffie-Hellman (DBDH) assumption. Since bilin-
ear curves are considerably more expensive than regular
Elliptic curves [17] and DDH is obtainable from Elliptic
curves, the DBDH-based operations are also consider-
ably more expensive than that based on DDH. The most

efficient instantiation of the framework presented by [42]
are DDH-based too. However, used in practice, the in-
stantiation costs P1 40n public key encryption operations
and costs P2 40h public key decryption operations in the
worst case. The computational overhead in the average
case is half of that in the worst case. Therefore, our DDH-
based instantiation are the most efficient protocol for
OTnh .

Compared with existing fully-simulatable protocols
for OT 2

1 that works without a trusted CRS, our DDH-
based instantiation for OT 2

1 is also the most efficient
one in computational overhead. The operations of the
protocol for OT 2

1 in [3] are based on homomorphic en-
cryption. Fixing the same functionality OT 2

1 , the number
of public operations of the protocol and our instantiation
are equivalent. However, to our best knowledge, there
no homomorphic encryption whose operations are more
efficient than or are as efficient as that based on DDH.

3.6 Extensions
In our original framework, we require K, g to be prede-
termined constant values. However, K, g can be relaxed
to be any functions in k with a limitation that CgK
is polynomial in k. The reason why we place such
limitation on K, g is to make sure that the simulators
runs in strictly polynomial time.

4 CONSTRUCTING A FRAMEWORK FOR OT n
h

AGAINST MALICIOUS ADVERSARIES

4.1 The Detailed Framework For OTnh Against Mali-
cious Adversaries
In this section, we present a framework for OTnh against
malicious adversaries. This framework is obtained by
modifying the framework against covert adversaries pre-
sented in Section 3.1 as follows.
• Common inputs: Remove the limitation that K is

a predetermined constant. Instead, K is relaxed to
be a function K = poly(k). Remove the parameter g
from the common inputs.

• Sender’s step (S1): Remove the limitation placed on
way of P1 choosing the choice indicator. Instead, P1

is granted to uniformly choose choice indicator over
{0, 1}K .

• Receiver’s step (R2): Remove the step that P2 checks
the legality of the choice indicator.

It is easy to verify the correctness of the framework.
So, we omit such details.

4.2 The Security Of The Framework
Theorem 18 (The framework is secure against malicious
adversaries). Assume that H is a t-smooth h-projective
hash family that holds properties distinguishability, hard
subset membership, feasible cheating (SPHDHCt,h). Then,
the protocol securely computes h-out-of-n oblivious transfer
functionality in the presence of malicious adversaries under
one-sided simulation.
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As previous, before proving Theorem 18, we first give
an intuitive analysis as a warm-up. With respect to the
security of P1, we have Theorem 19.

Theorem 19. In case P1 is honest and P2 is corrupted, the
probability that P2 cheats to obtain more than h messages is
at most 1/2K .

Proof: Compared with previous framework, the nec-
essary conditions for malicious P2’s succeeding in the
cheating here are the same ones mentioned in the proof
of Theorem 5 except the third necessary condition. Let
us estimate the probability that the second necessary
condition is met. We have

Pr(CS = {l1, l2, . . . , ld}) =
1

2d
· 1

2K−d

= 1/2K

This means that the probability that P2 cheats to obtain
more than h messages is at most 1/2K .

With respect to the security of P2, the intuitive analysis
given to the framework against covert adversary also
holds in this case. Therefore, seen from intuition, P2’s
security is guaranteed by this new framework. Now, we
proceeds to prove Theorem 18.

4.2.1 In Case P1 Is Corrupted
In case P1 is corrupted, we don’t need to provide a
simulator S for the real adversaryAwhich is required by
the ideal/real simulation paradigm. Instead, we prove
that honest party P2’s privacy is guaranteed.

Proposition 20. In case P1 was corrupted, i.e., I = {1}, the
equation (3) required by Definition 2 holds.

Proof: Looking at the framework, we know the
only difference between V iewAπ,{1},A(zk)(1

k, ~m,H) and
V iewAπ,{1},A(zk)(1

k, ~m, H̃) are the codes of honest party
P2’s private input, i.e., π2

i s and π2
i (~̃xi)s, where i ∈ CS.

First, we claim that each π2
i is uniformly distributed

over Π. Observe that π1
i is uniformly distributed. This

leads to that Gi is uniformly distributed. Therefore, for
any image j ∈ [n], its pre-image under π2

i is is uniformly
distributed. That is, π2

i is uniformly distributed.
Second, we claim that ~xi

c
= π2

i (~̃xi). Following
SPHDHCt,h’s property hard membership, we have ~xi

c
=

π1
i (~xi) = ~̃xi, and ~̃xi

c
= π2

i (~̃xi). Therefore, ~xi
c
= π2

i (~̃xi).
Combining the above two claims, we know

the codes in V iewAπ,{1},A(zk)(1
k, ~m,H) and

V iewAπ,{1},A(zk)(1
k, ~m, H̃) are indistinguishable. Thus the

proposition holds.

4.2.2 In Case P2 Is Corrupted
In case P2 is corrupted, A takes the full control of P2 in
the real world. Correspondingly, S takes the full control
of P ′2 in the ideal world. We construct S as follows.

• Initial input: S holds the same k, I
def
= {2}, z =

(zk)k∈N as A, and holds a uniformly distributed

randomness rS ∈ {0, 1}∗. The parties P ′2 and P2 hold
the same private input H .

• S works as follows.

– Step Sim1: In this step, S performs initialization
operations in a similar way that the simula-
tor for the first framework does in case P1 is
corrupted. That is, S corrupts P ′2 and learns
P ′2’s private input H . S takes A’s copy Ā as a
subroutine, fixes Ā’s initial input, activates Ā,
supplies Ā with H . Now, Ā is engaging the
framework.

– Convention: In the following interactions be-
tween Ā and S, in case Ā refuses to send some
message which is supposed to be sent or Ā
sends a invalid message that S can not pro-
cess, S sends abort2 to the TTP, and halts with
outputting whatever Ā outputs. We make this
convention here, and will not explicitly iterate
such details any more.

– Step Sim2: Playing the role of P1, S honestly
executes the sender’s steps until reaching the
beginning of Step S2.3. If Step S2.3 is reached, S
records the choice indicator r and the messages,
denoted msg, which he sends to Ā. Then S
proceeds to next step. Otherwise, S halts with
outputting what Ā outputs.

– Step Sim3: S repeats the following procedure,
denoted Ξ, until the hash parameters and the
instance vectors Ā sends in Step R1 of the
framework passes the check. In each repeating,
the randomness S uses is fresh. After the re-
peating, S records the choice indicator r̃ and
the messages Ā sent to open the chosen instance
vectors in the last repeating.
Ξ: S rewinds Ā to the beginning of Step R2, and
honestly follows sender’s steps to interact with
Ā which from Step S1 to the beginning of Step
S2.3.

– Step Sim4:

∗ Case 1, r = r̃, S outputs failure and halts;
∗ Case 2, r 6= r̃ and ∀i(r〈i〉 6= r̃〈i〉 → r〈i〉 =

1 ∧ r̃〈i〉 = 0), S runs from scratch;
∗ Case 3, r 6= r̃ and ∃i(r〈i〉 = 0 ∧ r̃〈i〉 = 1), S

records arbitrary one of these is, denotes it by
e, and proceeds to next step.

Remark 21. The aim of Step Sim3 and Sim4 is to
extract one of Ā’s possible private inputs. If Case 3
of Step Sim4 happens, then S knows which instances
in ~̃xe are smooth. What is more, ~̃xe is indeed a legal
instance vector. This is because ~̃xe passes the check
executed by S in Step Sim3. Combing π2

e received
in Step Sim2, S knows the private input of Ā which
corresponds to π2

e(~̃xe).
We stress the fact that this is one of Ā’s possible
private inputs. Because the elements in {π2

i (~̃xi)|i ∈
[K], r〈i〉 = 0} may correspond to distinct private
inputs. However, as we will see in the proof of
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Proportion 24, this inconsistence does not bring any
trouble to the correctness of our simulation because
of SPHDHCt,h’s property smoothness.
Note that, Ā’s initial input is fixed by S in Step
Sim1. So receiving the same messages, Ā responds
in the same way. Therefore, rewinding Ā to the
beginning of Step R2, sending the message sent in
Step Sim2, S can reproduce the same scenario as he
meets in Step Sim2.

– Step Sim5: S rewinds Ā to the beginning of
Step R2 of the framework, and sends msg pre-
viously recorded to Ā in order. According to the
analysis of Remark 21, S can extract one of Ā’s
possible private inputs. We denote this one by
H ′e. S does so and gets H ′e.

– Step Sim6: S sends H ′e to TTP and receives back
~m〈He〉. To proceed to the interaction with Ā,
S fabricates ~m′ as follows. For each i ∈ H ′e,
~m′〈i〉 ← ~m〈i〉. For each i /∈ H ′e, set ~m′〈i〉 to be
an arbitrary message of appropriate length.

– Step Sim7: Playing the role of P1 with private
input ~m′, S follows Step S2.3 to complete the
interaction with Ā. When Ā halts, S halts with
outputting what Ā outputs.

Lemma 22. The simulator S is expected polynomial-time.

Proof: First, let us focus on Step Sim3. In each
repetition of Ξ, the chosen instance vectors are uniformly
distributed. This leads to the probability that Ā passes
the check in each repetition is same. Denote this proba-
bility by p. The expected time of Step Sim3 is

ExpT imeSim3 = (1/p) · TimeΞ

Under the same analysis, the probability that Ā passes
the check in Step Sim2 is p too. Then, the expected time
that S runs once from Step Sim1 to the beginning of Step
Sim4 is

OncExpT imeSim1→Sim4 ≤ TimeSim1 + TimeSim2

+ p · ExpT imeSim3

= TimeSim1 + TimeSim2

+ TimeΞ

Second, let us focus on Step Sim4, especially Case 2.
Note that the initial inputs S holds is same in each trial.
Thus the probability that S runs from scratch in each
trial is same. We denote this probability by 1 − q. Then
the expected time that S runs from Step Sim1 to the
beginning of Step Sim5 is

ExpT imeSim1→Sim5 ≤ (1 + 1/q)

· (OncExpT imeSim1→Sim4

+ TimeSim4)

= (1 + 1/q) · (TimeSim1+

TimeSim2 + TimeΞ + TimeSim4)

The reason why there is 1 in (1 + 1/q) is that S has to
run from scratch at least one time in any case.

The expected running time of S in a whole execution
is
ExpT imeS ≤ ExpT imeSim1→Sim5 + TimeSim5

+ TimeSim6 + TimeSim7

= (1 + 1/q) · (TimeSim1 + TimeSim2

+ TimeΞ + TimeSim4)

+ TimeSim5 + TimeSim6 + TimeSim7

(5)

Third, let us estimate the value of q, which is the
probability that S does not run from scratch in a trial.
We denote this event by C. It’s easy to see that event
C happens, if and only if one of the following mutually
disjoint events happens.

1) Event B happens, where B denotes the even that
S halts before reaching Step Sim3.

2) Event B̄ happens and R = R̃, where R and R̃
respectively denote the random variables which are
defined as the choice indicators S records in Step
Sim2 and Step Sim3.

3) Event B̄ happens and there exists i such that R〈i〉 =
0 ∧ R̃〈i〉 = 1 .

So
q =Pr(C)

=Pr(B) + Pr(B̄ ∩R = R̃)

+ Pr(B̄ ∩ ∃i(R〈i〉 = 0 ∧ R̃〈i〉 = 1))

=Pr(B) + Pr(B̄) · (Pr(R = R̃|B̄)

+ Pr(∃i(R〈i〉 = 0 ∧ R̃〈i〉 = 1)|B̄))

(6)

Let S1
def
= {(r, r̃)|(r, r̃) ∈ ({0, 1}K)2, r = r̃}, S2

def
=

{(r, r̃)|(r, r̃) ∈ ({0, 1}K)2, r 6= r̃,∀i(r〈i〉 6= r̃〈i〉 → r〈i〉 =

1 ∧ r̃〈i〉 = 0)}, S3
def
= {(r, r̃)|(r, r̃) ∈ ({0, 1}K)2, r 6=

r̃,∃i(i ∈ [K] ∧ r〈i〉 = 0 ∧ r̃〈i〉 = 1)}. It is easy to see that
S1, S2, S3 constitute a complete partition of ({0, 1}K)2

and #S1 = 2K , #S2 = #S3 = (2K · 2K − 2K)/2.
Since both R and R̃ are uniformly distributed, we have

Pr(R = R̃|B̄) = #S1/#({0, 1}K)2 = 1/2K (7)

and

Pr(∃i(R〈i〉 = 0 ∧ R̃〈i〉 = 1)|B̄) = #S3/#({0, 1}K)2

= 1/2− 1/2K+1
(8)

Combining equation (6), (7) and (8), we have

q = Pr(B) + Pr(B̄)(1/2 + 1/2K+1)

= 1/2 + 1/2K+1 + Pr(B)/2 + Pr(B̄)/2K+1

> 1/2

(9)

Combining equation (5) and (9), we have

ExpT imeA′ < 3(TimeSim1 + TimeSim2

+ TimeΞ + TimeSim4)

+ TimeSim5 + TimeSim6 + TimeSim7

which means the expected running time of S is bound
by a polynomial.
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Lemma 23. The probability that S outputs failure is less
than 1/2K−1.

Proof: Let X be a random variable defined as the
number of the trials in a whole execution. From the proof
of Proposition 22, we know two facts. First, Pr(X = i) =
(1 − q)i−1q ≤ 1/2i−1. Second, in each trial the event S
outputs failure is the combined event of B̄ and R = R̃,
and this event happens with probability

Pr(B̄ ∩R = R̃) = Pr(B̄)Pr(R = R̃|B̄) ≤ Pr(R = R̃|B̄)

Combining equation (7), this probability is less than
1/2K . Therefore, the probability that S outputs failure
in a whole execution is

∞∑
i=1

Pr(X = i)Pr(B̄ ∩R = R̃) < (1/2K) ·
∞∑
i=1

1/2i−1

= 1/2K−1

Lemma 24. The output of the adversary A in the real
world and that of the simulator S in the ideal world are
computationally indistinguishable, i.e.,

{Realπ,{2},A(zk)(1
k, ~m,H)〈0〉}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

c
=

{Idealf,{2},S(zk)(1
k, ~m,H)〈0〉}k∈N,~m∈({0,1}∗)n

H∈Ψ,zk∈{0,1}∗

Proof: First, we claim that the outputs of S and Ā are
computationally indistinguishable. The only point that
the output of S is different from that of Ā is S may
outputs failure. Since Lemma 23 shows that this point
arises with negligible probability, our claim holds.

Second, we claim that the outputs of A and Ā are com-
putationally indistinguishable. The only point makes Ā’s
view different from A’s view is that the ciphertext ~c′ Ā
receives is generated by encrypting fabricated ~m′ rather
than party P1’s private input ~m. This is the situation we
meet in the proof of Lemma 14. Therefore, this proof can
be done in a similar way with little modification.

Let H ′
def
= ∩i∈CSH ′i . The proof of the Lemma 14 shows

H ′ is the effective private input of Ā and A. If H ′e =
H ′, then the proof of the second claim can be done in
the same way as the proof of the Lemma 14 is done.
If H ′e ⊃ H ′, for each j ∈ H ′e − H ′, there exists π2

i (~̃xi)
whose j-th entry is a smooth instance, which leads to
both ~c〈j〉 A sees and ~c′〈j〉 Ā sees are values distributed
over appropriate domains. Therefore, A’s view and Ā’s
also are indistinguishable in this case.

Combining the above two claims, this proposition
holds.

Proposition 25. In case P2 was corrupted, i.e., I = {2}, the
equation (2) required by Definition 2 holds.

Proof: Note that the honest parties P1 and P ′1 end
up with outputting nothing. Thus, the fact that the out-
puts of S and A are computationally indistinguishable,
which is supported by Proposition 24, directly prove this
proposition holds.

4.3 The Communication Rounds

It is easy to see that this framework costs four commu-
nication rounds. Since this framework is secure against
malicious adversaries under one-sided simulation, we
only compare it with protocols that are secure with this
level, and protocols that are secure against malicious
adversaries under full simulation. Compared with the
protocols for OT 2

1 with security based on one-sided
simulation, i.e. the protocols presented by [2], [28], [35],
our framework is not efficient in communications, since
these protocols only cost two rounds. However, we argue
that our framework still makes sense. Since the known
protocols for OTnh on this security level [33], [34], [36]
are not constant-round and only work when h is far less
that n, e.g., n = 106, h ≤ 6. To our best knowledge, our
framework is the first protocol for general OTnh on this
security level.

Compared with the protocols that are secure against
malicious adversaries under full simulation, the conclu-
sions for the framework against covert adversaries still
holds for this framework. Because the two framework
cost the same number of communication rounds.

4.4 The Computational Overhead

In Step S2, P1 takes n · #CS invocations of Hash(.) to
encrypt his private input. In Step R3, P2 takes h·#CS in-
vocations of pHash(.) to decrypt the messages he want.
The value of #CS is K, K/2, respectively, in the worst
case and in the average case. Thus, fixing the problem
we tackle (i.e. fixing the values of n and h), the efficiency
only depends on the value of K. Lemma 23 shows
that the simulator may fails with probability at most
1/2K−1 in case P2 is corrupted. Thus, conditioning on the
cryptographic primitives without being broken, the real
world and the ideal world can be distinguished at most
1/2K−2. Setting K to be 40, we obtains such a probability
3.6 × 10−12, which is secure enough to be used in
practice. As a result, in the worst case, the computational
overhead mainly consists of 40n invocations of Hash()
taken by P1 and 40h invocations of pHash() taken by P2;
in the worst case, the computational overhead mainly
consists of 20n invocations of Hash() taken by P1 and
20h invocations of pHash() taken by P2.

Compared with the protocols with the same security
level, i.e., the protocols in [2], [28], [33]–[36], our frame-
work is not efficient. However, as pointed in Section 4.3,
our framework still makes sense.

Compared with the protocols for OTnh that are secure
against malicious adversaries under full simulation, our
DDH-based instantiation is the most efficient one. Fol-
lowing the analysis in Section 3.5, the operations of the
protocol in [7], [24] are far more expensive than DDH-
based operations. Though the DDH-based instantiation
in [42] costs the same amount of pubic-key operations,
it costs two additional private-key operations, i.e., two
commitment operations.
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5 DISCUSSION ON THE TECHNIQUE CUT-
AND-CHOOSE

Looking at the application of the technique cut-and-
choose in our two frameworks, it contradicts our in-
tuition that the more the instance vectors chosen to
be open, the lower the probability that P2 succeeds in
cheating. Theorem 5 and Theorem 19 show that the
minimum probability can be much less than our intuitive
value 1/K . The essential reason is that our intuition is
apt to neglect the SPHDHCt,h’s property smoothness.
This indeed inspire us that, to make the best of this
technique, something seems beyond the technique self
should be taken into account.

Comparing the two frameworks, the difference be-
tween them is the way of applying the technique cut-
and-choose, i.e., the way P1 chooses instance vectors to
open. Though this difference seems trivial, its influence
is not trivial at all. Specifically, for the framework against
covert adversary, we cannot reduce the probability of
P2’s successful cheating to be negligibly small. The rea-
son is that, on one side, the possible minimum value
of this probability always is a constant value; on one
side, to the make sure the simulator runs in strictly
polynomial time, this probability has to be noticeable.
For the framework against malicious adversary, we in-
deed solve the mentioned problem. However, we can not
provide a security proof under the ideal/real simulation
paradigm in case P1 is corrupted. Because a simulator
extracting Ā’s real input by cheating, which is the idea
used for the framework against covert adversary, needs
expected 2K times of rewinding Ā. This problem seems
unsolvable if the instance vectors to be open are only
chosen by P1. Therefore, P2’s participating in choosing
such instance vectors seems essential. In fact, [42] uses
this idea to solve this problem. However, [42] also needs
two additional tools, a perfectly hiding commitment
scheme and a perfectly binding commitment schemes.
The resulting framework costs two more communication
round and two more commitment operations.
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