
On the correct use of the negation map
in the Pollard rho method

Daniel J. Bernstein1, Tanja Lange2, and Peter Schwabe2

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org, peter@cryptojedi.org

Abstract. Bos, Kaihara, Kleinjung, Lenstra, and Montgomery recently
showed that ECDLPs on the 112-bit secp112r1 curve can be solved in an
expected time of 65 years on a PlayStation 3. This paper shows how to
solve the same ECDLPs at almost twice the speed on the same hardware.
The improvement comes primarily from a new variant of Pollard’s rho
method that fully exploits the negation map without branching, and
secondarily from improved techniques for modular arithmetic.

Keywords: Elliptic curves, discrete-logarithm problem, negation map,
branchless algorithms, SIMD.

1 Introduction

The purpose of this paper is to tell people something that is stated already in
textbooks. ← Suppressed introduction [18].

In July 2009, Bos, Kaihara, Kleinjung, Lenstra, and Montgomery announced
breaking a discrete-logarithm problem on an elliptic curve over a 112-bit prime
field using a cluster of 214 PlayStation 3 (PS3) game consoles. The initial an-
nouncement was [3]; more details on the same computation were published in [5],
[4], and [6]. The overall attack costs were estimated to be about 60 PS3 years.
This computation was, and still is, the largest ECDLP for which a successful
solution has been publicly announced.

Our main result is that discrete-logarithm problems on the same curve (or
any other curve of the form y2 = x3 − 3x + b over the same field) can be
solved at almost twice the speed on exactly the same hardware. We performed
extensive computational experiments to verify our scalability and performance
claims; details of these experiments appear in Section 6.

This work was supported by the National Science Foundation under grant ITR–
0716498, by the European Commission under Contract ICT-2007-216499 CACE, and
by the European Commission under Contract ICT-2007-216646 ECRYPT II. Com-
puter time was provided by the Jülich and Barcelona supercomputer centers. Perma-
nent ID of this document: dde51a91feeb8d746756566ac14323d1. Date: 2011.01.02.

2 D. J. Bernstein, T. Lange, P. Schwabe

This result combines several different optimizations. A large part of our work
consists of faster algorithms for arithmetic modulo the prime (2128 − 3)/76439
that defines this field; these algorithms use a different approach from the previ-
ous papers, and we describe this approach in detail. We also introduce several
smaller refinements in rho computations, often co-designing our choice of iter-
ation function with our lower-level optimizations. However, the largest part of
our improvement, gaining a factor of almost

√
2, comes from careful use of the

negation map.
The conventional wisdom is that the negation map has been known for ten

years and trivially gains a factor of
√

2. However, [3] said “We did not use the
common negation map since it requires branching and results in code that runs
slower in a SIMD environment.” SIMD (single instruction, multiple data) is a
critical feature of modern CPU designs, including the Cell processor used in the
PS3.

Similarly, [5] said that the benefit of negation was outweighed by “the con-
ditional branches required to check for fruitless cycles.” The paper [6] observed
that most of the negating rho algorithms stated in the literature were non-
functional (i.e., had negligible chance of succeeding in the claimed amount of
time); considered a huge array of 126 different combinations of negation options;
and concluded that the best option did save time for non-SIMD architectures,
but with a speedup far below

√
2. The paper continued to dispute the possibility

of a negation speedup for SIMD architectures:

If the Pollard rho method is parallelized in SIMD fashion, it is a challenge
to achieve any speedup at all. . . . Dealing with cycles entails adminis-
trative overhead and branching, which cause a non-negligible slowdown
when running multiple walks in SIMD-parallel fashion. . . . [This] is a
major obstacle to the negation map in SIMD environments.

This paper resolves this dispute by explaining how to use the negation map
without branching and without significant overhead handling cycles. We demon-
strate a speedup very close to

√
2 on the PS3. We comment that the speedup

on non-SIMD architectures would be even closer to
√

2.

2 Review of Pollard’s rho method

This section gives an overview of Pollard’s rho method. In this paper we will
use this method to compute discrete logarithms on elliptic curves but the first
subsections apply to any finite cyclic group G = 〈P 〉 and Q ∈ G. Computing the
discrete logarithm of Q to the base P means computing an integer k such that
Q = kP . The integer k is unique modulo ` where ` is the order of P ; we assume
for simplicity that ` is an odd prime.

The generic rho method. Pollard’s rho method [23] is a low-memory algo-
rithm that finds a discrete logarithm by finding a collision in the map

(a, b) 7→ aP + bQ where a, b ∈ Z.

On the correct use of the negation map in the Pollard rho method 3

Finding a collision usually reveals the discrete logarithm k of Q to the base P :
if aP + bQ = a′P + b′Q and b 6≡ b′ (mod `) then k ≡ (a− a′)/(b′ − b) (mod `).

A generic way to find this collision is to iterate this function. Define maps a
and b from 〈P 〉 to Z and compute Wi+1 = f(Wi) = a(Wi)P + b(Wi)Q, starting
from some initial combination W0 = a0P + b0Q. If any Wi and Wj collide then
also Wi+1 = Wj+1, Wi+2 = Wj+2, etc. This means that the sequence enters a
cycle. This can be detected efficiently using, e.g., Floyd’s cycle-finding method.

If the functions a(R) and b(R) are random modulo ` then the iterations per-
form a random walk in 〈P 〉. The random walk can be modeled as drawing ob-
jects with repetition from an urn containing ` elements. A collision corresponds
to drawing the same element twice. A standard birthday-paradox calculation
implies that a collision occurs after approximately

√
π`/2 iterations on average.

Use of group automorphisms. If the functions a and b are chosen such that
f(Wi) = f(−Wi) then the walk is actually defined on equivalence classes under
±. There are only d`/2e different classes. This reduces the average number of
iterations by a factor of almost exactly

√
2.

More generally, Pollard’s rho method can be combined with any easily com-
puted group automorphism σ of small order. One chooses a and b so that
f(Wi) = f(σ(Wi)) = f(σ2(Wi)) = · · · . The walk is then defined on equivalence
classes under the automorphisms, reducing the average number of iterations
accordingly. However, for most elliptic curves the only easily computed group
automorphism of small order is the negation map.

The parallel rho method. To spread the computations in Pollard’s rho method
across multiple computers one replaces the long walk by a collection of short
walks, as proposed by van Oorschot and Wiener in [22]. Some fixed subset of
〈P 〉 is declared to be the set of distinguished points. Whenever a walk reaches a
distinguished point it reports this to a central server and the server stores the
distinguished point along with the values for a and b. If two walks reach the
same distinguished point the server notices a collision.

This parallelization requires the server to receive, store, and sort all distin-
guished points. Tradeoffs are possible. If distinguished points are chosen to be
rare then a small number of very long walks will be performed, reducing the
number of distinguished points sent to the server but increasing the delay before
a collision is recognized. If distinguished points are frequent then many shorter
walks will be performed.

Additive walks. The generic rho method described above requires two scalar
multiplications for each iteration. One can merge the two scalar multiplications
into a 2-scalar multiplication, and further merge the 2-scalar multiplications
across several parallel iterations, to reduce the number of group additions re-
quired for each iteration; but it is much simpler to use an additive walk, requiring
only one addition for each iteration.

An additive walk is defined as Wi+1 = f(Wi) = Wi + Rh(Wi). Here h maps
from 〈P 〉 to {0, 1, . . . , r − 1}, and R0, R1, . . . , Rr−1 are precomputed as known
combinations of P and Q: say Rj = cjP + djQ for each j ∈ {0, 1, . . . , r − 1}.

4 D. J. Bernstein, T. Lange, P. Schwabe

One then also knows that Wi = aiP + biQ, where a and b are defined recursively
as follows: ai+1 = ai + ch(Wi) and bi+1 = bi + dh(Wi).

Additive walks have disadvantages. The walks are noticeably nonrandom and
need more iterations than the generic rho method to find a collision. This effect
disappears as r grows, but if r is large then the precomputed table R0, . . . , Rr−1
does not fit into fast memory. Additive walks also have trouble with automor-
phisms; see the discussion of fruitless cycles below.

Pollard’s original proposal was to use r = 3. Instead of 3 different precom-
puted points, Pollard mixed 2 points with a doubling Wi+1 = 2Wi; note that
Pollard was computing discrete logarithms in multiplicative groups, where a dou-
bling (i.e., a squaring) is faster than a general addition (i.e., a multiplication).
Experiments by Teske in [27] showed that larger values of r, such as r = 20,
are much closer to random walks. A general heuristic due to Brent and Pollard
implies that nonrandomness slows down this type of walk by a factor

√
1− 1/r;

for further discussion of such heuristics see, e.g., [1].

Eliminating coefficients. In all of the discrete-logarithm computations de-
scribed above, coefficients ai, bi are stored and used to compute the final dis-
crete logarithm. In the parallel rho method these coefficients are communicated
along with each distinguished point sent from a client to the server. Computing
these coefficients in additive walks requires each client to implement arithmetic
modulo ` or at least to allocate space for counters to keep track of how often
each Rj is used.

An alternative approach, introduced recently as part of the ECC2K-130 attack
[1], eliminates the coefficients ai and bi. Clients compute Wi without keeping
track of ai and bi. When a client encounters a distinguished point Wi, it reports
the point (or a hash of the point) along with a seed identifying the start of
the walk, and then starts a new walk. This saves code in the clients, storage in
the clients, communication between the clients and the server, and storage on
the server. When the server encounters a collision, it recomputes the two walks
involved in the collision, starting from the same seeds but now computing ai and
bi. This is done only rarely, ideally just once.

Fruitless cycles. Fast negation on elliptic curves reduces the number of iter-
ations in the generic rho method by a factor

√
2, as discussed above. However,

a non-negating additive walk is faster than a negating generic walk: the extra
speed of each iteration in the non-negating additive walk outweighs the smaller
number of iterations in the negating generic walk.

One might think that a negating additive walk combines the advantages of a
small number of iterations and a very fast iteration function. It is easy to make
a canonical choice |Wi| between Wi and −Wi; to define h(Wi) as a function of
|Wi|, so that h(Wi) = h(−Wi); and to define f(Wi) = |Wi|+Rh(Wi). Then f is a
walk on equivalence classes under ±, and computing f takes only one addition.

The problem is that a negating additive walk does not behave randomly:
it quickly enters short fruitless cycles. For example, if |Wi+1| = −Wi+1 and
h(Wi+1) = h(Wi) then Wi+2 = f(Wi+1) = −Wi+1 + Rh(Wi) = −(|Wi| +
Rh(Wi)) + Rh(Wi) = −|Wi| so |Wi+2| = |Wi|. One expects this to occur with

On the correct use of the negation map in the Pollard rho method 5

probability 1/(2r) at each step, and if it does occur then the walk enters a 2-
cycle. Subsequent iterations will not proceed to a distinguished point; subsequent
computations will be wasted.

It is also possible to have fruitless cycles of larger lengths, although these are
less frequent. Heuristics are given in [12]. Choosing a larger r reduces the chance
of entering fruitless cycles, but for large-scale computations the cycles will occur
and will occur frequently.

There are many different attempts in the literature to work around this prob-
lem. The first proposals were introduced independently by Harley and Singer
in [16], Wiener and Zuccherato in [29], and Gallant, Lambert, and Vanstone
in [14]; further analyses appeared in [12] and much more recently in [6]. See
Appendix A for a detailed review of these proposals. Some of the proposals are
successful in eliminating fruitless cycles, but all of these proposals involve fre-
quent conditional operations and, as stated in [6], perform poorly in a SIMD
environment.

3 How to use negation in Pollard’s rho method

This section presents an efficient branchless negating rho algorithm to compute
elliptic-curve discrete logarithms. For simplicity we restrict to curves of the form
y2 = x3 − 3x+ b over large prime fields Fp.

This algorithm uses, on average, (1 + o(1))
√
π`/4 iterations for a group of

prime order `, assuming standard heuristics; here o(1) means something that
converges to 0 as `→∞. Each iteration uses 5 multiplications mod p, 1 squaring
mod p, and an asymptotically negligible amount of extra work.

We emphasize that we use a branchless sequence of iterations, always per-
forming the same operations in the same order. This is of theoretical interest:
any bounded-time algorithm can be made branchless by standard conversions,
but these conversions usually lose efficiency. This is also of practical interest: the
algorithm is well suited for modern SIMD CPUs such as the Cell CPU in the
PS3, as discussed in subsequent sections of the paper.

We also emphasize that the number of iterations is (1 + o(1))
√
π`/4, not

(1 + o(1))
√
π`/2. We use the fast elliptic-curve negation map to save a factor

of
√

2; we do this without branching, and we do it with asymptotically zero
compromise in iteration speed.

Eliminating fruitless cycles. We begin with the simplest type of negating
additive walk stated in the literature. The walk starts at the point W0 = |b0Q|
where b0 is chosen randomly, and then computes W1,W2, . . . by the rule Wi+1 =
|Wi + Rh(Wi)|. Here |(x, y)| means (x, y) for y ∈ {0, 2, 4, . . . , p− 1} or (x,−y)
for y ∈ {1, 3, 5, . . . , p− 2}; the hash function h maps points to elements of
{0, 1, 2, . . . , r − 1}; and the points R0, R1, . . . , Rr−1 are known multiples of P .

We modify this walk by occasionally checking for fruitless cycles of length
2. Specifically, for a sparse pattern of indices i discussed below, we change the
definition of Wi as follows. After computing Wi−1, we check whether Wi−1 =

6 D. J. Bernstein, T. Lange, P. Schwabe

Wi−3. In the common case that Wi−1 6= Wi−3, we define Wi = Wi−1. In the
unusual case that Wi−1 = Wi−3, we define Wi = |2 min{Wi−1,Wi−2}|, where
min means lexicographic minimum and 2 means doubling.

We further modify this walk by occasionally, with even lower frequency, check-
ing for fruitless cycles of length 4. Specifically, for an even more sparse pattern
of indices i discussed below, we redefine Wi as Wi−1 if Wi−1 6= Wi−5, and we
redefine Wi as |2 min{Wi−1,Wi−2,Wi−3,Wi−4}| if Wi−1 = Wi−5.

We continue with analogous modifications for fruitless cycles of lengths 6, 8,
etc., up to the smallest even length that exceeds (log `)/(log r).

Eliminating branches. The sequence of iterations described above might seem
to include branches: a branch to replace y by −y if y is odd, for example, and a
branch to conditionally compute Wi = |2 min{Wi−1,Wi−2}|. However, one can
easily simulate all of these branches by a straight-line program with negligible
loss of efficiency, as described in the following paragraphs.

First, |(x, y)| is the same as (x, (1 − 2ε)y) where ε = y mod 2. The implicit
reduction modulo p here is not an asymptotic bottleneck: it takes linear time
(even without branching), while all known multiplication algorithms take super-
linear time. We prefer to make the implicit reduction explicit, computing |(x, y)|
as (x, y + ε(p− 2y)); the addition and subtraction take linear time.

Second, we amortize min computations such as min{Wi−1,Wi−2,Wi−3,Wi−4}
across all relevant iterations: after computing Wi−3 we initialize a running min-
imum Wmin as min{Wi−4,Wi−3}, then replace it with min{Wmin,Wi−2} after
computing Wi−2, then replace it with min{Wmin,Wi−1} after computing Wi−1.
These computations are performed for only a small fraction of all indices i, so
the loss of efficiency is negligible. See below for a more detailed cost analysis.

Third, we compute doublings such as Di = 2 min{Wi−1,Wi−2,Wi−3,Wi−4} =
2Wmin for all of the selected indices, whether or not the doublings will actually
be used. We then compute Wi without branches by selecting between Wi−1 and
|Di|, the same way that |(x, y)| selects between (x, y) and (x,−y). The selection
bit is the output of a branch-free comparison between Wi−1 and Wi−5, or in
general between Wi−1 and Wi−1−c for detecting fruitless cycles of length c.

Note that each of these selections and comparisons takes linear time per iter-
ation, and is therefore asymptotically negligible compared to a multiplication.

Eliminating inversions. The bottleneck in each iteration is now exactly one
elliptic-curve operation: usually an elliptic-curve addition, but an elliptic-curve
doubling for occasional iterations.

The standard formulas for elliptic-curve addition in affine coordinates are as
follows. Let P = (x1, y1), R = (x2, y2) with x1 6= x2. Then P+R = (x3, y3) where
λ = (y1 − y2)/(x1 − x2), x3 = λ2 − x1 − x2, and y3 = λ(x1 − x3) − y1. These
formulas use 1 inversion, 2 multiplications, 1 squaring, and 6 subtractions. The
formulas for a doubling, where R = P , are very similar; only the computation
of λ = 3(x21 − 1)/(2y1) is different. We ignore, without further comment, the
extraordinarily unlikely event that R = −P .

Inversions are the most expensive operations in finite fields. Standard practice
in rho computations is to perform m independent walks in parallel, and to use

On the correct use of the negation map in the Pollard rho method 7

Montgomery’s trick [21], which computes a batch of m inversions using just 1
inversion and 3(m− 1) multiplications.

We choose a branchless inversion method, specifically computing the (p−2)nd
power using O(lg p) multiplications. We then choose m to grow asymptotically
more quickly than lg p: in other words, lg p ∈ o(m). A batch of m elliptic-curve
additions then costs 5m− 3 multiplications, m squarings, 6m subtractions, and
1 inversion. The subtractions and inversion are negligible, so each elliptic-curve
addition costs 5 multiplications and 1 squaring.

A batch of m elliptic-curve doublings is slightly more expensive (costing m
extra squarings), but occurs for only a small fraction of iterations, as discussed
below. Each iteration therefore uses 5 multiplications and 1 squaring.

Analysis and optimization. Fruitless cycles of length 2 appear with prob-
ability approximately 1/(2r). These cycles persist after they appear, wasting
subsequent iterations (in the sense that new points and new collision opportuni-
ties do not occur), until we check for them. If we check every w iterations then
we expect a cycle to appear with probability approximately w/(2r), and for it
to waste approximately w/2 iterations on average if it does appear.

This does not mean that w should be chosen as small as possible. If a cycle
has not appeared then checking for it wastes an iteration. The overall loss is
approximately 1 +w2/(4r) iterations out of w. To minimize the quotient 1/w+
w/(4r) we take w ≈ 2

√
r.

More generally, fruitless cycles of small length 2c appear with probability ap-
proximately proportional to 1/rc, so the optimal checking frequency is approxi-
mately proportional to 1/rc/2. The loss here rapidly disappears as c increases.

To summarize, fruitless cycles slow down this algorithm by a factor 1 +
Θ(1/

√
r). This negation overhead Θ(1/

√
r) is on a larger scale than the overhead

Θ(1/r) from the nonrandomness of r-adding walks, but both overheads become
asymptotically negligible if r is chosen so that r →∞ as p→∞.

As an illustration of these optimizations, our PS3 software takes r = 2048,
checks for 2-cycles every 48 iterations, and checks for larger cycles much less
frequently. To simplify the software we unify the checks for 4-cycles and 6-cycles
into a check for 12-cycles every 49152 iterations. If we had instead taken r = 512
then we would have checked for 2-cycles every 24 iterations. In general, the
Θ(1/

√
r) asymptotic means that the negation overhead approximately doubles

when the table size is reduced by a factor of 4.

Storage reduction. The storage overhead for detecting and escaping a fruitless
cycle consists of storing Wmin and Wi−1−c. For the latter it is enough to store
one of the coordinates.

We further reduce storage by avoiding having all iterations check for cycles at
the same time. For example, with a batch of 224 iterations running in parallel,
we have just 14 iterations checking for 2-cycles and consuming extra space.
All iterations perform 2 addition steps, and then these 14 iterations perform a
masked doubling while the remaining 210 iterations perform another addition.
We then rotate the batch so that the next 14 iterations check for 2-cycles.

8 D. J. Bernstein, T. Lange, P. Schwabe

4 Low-cost arithmetic in Z/(2128 − 3)

Elements of the prime field Fp, where p = (2128 − 3)/76439, can be represented
redundantly as elements of the ring Z/(2128 − 3). Instead of reducing sums and
products modulo p one reduces them modulo 2128 − 3. This representation re-
quires about 15% more space per field element, but the sparsity of 2128−3 makes
reductions much faster.

The prime p was chosen with this small sparse multiple precisely to allow this
speedup for cryptographic operations on the secp112r1 curve; see [10, page 3,
bottom, and page 6, bottom]. The same type of redundant representation can
of course also be used by the cryptanalyst attacking the ECDLP on secp112r1,
as in [3], [5], [4], and this paper. The critical problem is then to perform fast
arithmetic modulo 2128 − 3.

This section explains how to efficiently decompose multiplications and squar-
ings modulo 2128− 3 into operations on 16-bit integers and 32-bit integers. Here
a b-bit integer is an integer in the interval [−2b−1, 2b−1 − 1]. The next section
applies this decomposition to the Cell, obtaining faster arithmetic than [3] et al.

Model of computation. This section uses a simplified model of computa-
tion that counts 16 × 16 → 32 multiplications and certain other operations.
Specifically, algorithms in this section are branchless sequences of the following
operations:

– multiplication: a, b 7→ ab where a, b are 16-bit integers and ab is a 32-bit
integer;

– multiply-add: a, b, c 7→ ab+ c where a, b are 16-bit integers and c, ab+ c are
32-bit integers;

– 16-bit addition: a, b 7→ a+ b where a, b, a+ b are 16-bit integers;
– 32-bit addition: a, b 7→ a+ b where a, b, a+ b are 32-bit integers;
– 32-bit subtraction: a, b 7→ a− b where a, b, a− b are 32-bit integers;
– 32-bit right shift by 12 bits: a 7→

⌊
a/212

⌋
where a is a 32-bit integer;

– 32-bit right shift by 13 bits: a 7→
⌊
a/213

⌋
where a is a 32-bit integer;

– 32-bit mask clearing 12 bits: a 7→ 212
⌊
a/212

⌋
where a is a 32-bit integer; and

– 32-bit mask clearing 13 bits: a 7→ 213
⌊
a/213

⌋
where a is a 32-bit integer.

We assign cost 1 to each of these operations, except that we assign cost 0.5 to
the 16-bit addition operation. The next section explains how this cost model is
related to PS3 speed.

Note that these operations are not defined for all pairs of inputs. For example,
32-bit addition is not permitted to add 230 to 230, because 231 is too large to be a
32-bit integer. One could of course define an extended 32-bit addition operation
that handles all cases, working modulo 232 to handle overflows, but there are
no overflows in the algorithms in this section. One could also define shifts (and
masks) for distances other than 12 and 13, but the only distances used in this
section are 12 and 13.

Representing integers modulo 2128 − 3. We represent an element f of the
ring Z/(2128 − 3) as a sequence of 10 coefficients (f0, . . . , f9) such that f =

On the correct use of the negation map in the Pollard rho method 9∑
0≤i≤9 fi2

di·12.8e; i.e.,

f = f0 + f1213 + f2226 + f3239 + f4252 + f5264 + f6277 + f7290 + f82103 + f92116.

Note that the exponents 0, 13, 26, 39, 52, 64, 77, 90, 103, 116 are not exactly evenly
spaced. Our non-integer radix 212.8 follows the use of radix 225.5 by Bernstein in
[2], and follows ideas from Costigan and Schwabe in [11] on making best use of
SIMD instructions.

We call a coefficient fi reduced if |fi| ≤ 1.01 · 212. We call (f0, . . . , f9) reduced
if all coefficients are reduced.

Polynomial multiplication and polynomial reduction. It is easy to check
that if f =

∑
0≤i≤9 fi2

di·12.8e and g =
∑

0≤i≤9 gi2
di·12.8e then the product fg

equals
∑

0≤i≤9 ri2
di·12.8e in Z/(2128 − 3) where

r0 = f0g0+3(2f9g1+2f8g2+2f7g3+2f6g4+ f5g5+2f4g6+2f3g7+2f2g8+2f1g9),

r1 = f1g0+ f0g1+3(2f9g2+2f8g3+2f7g4+ f6g5+ f5g6+2f4g7+2f3g8+2f2g9),

r2 = f2g0+ f1g1+ f0g2+3(2f9g3+2f8g4+ f7g5+ f6g6+ f5g7+2f4g8+2f3g9),

r3 = f3g0+ f2g1+ f1g2+ f0g3+3(2f9g4+ f8g5+ f7g6+ f6g7+ f5g8+2f4g9),

r4 = f4g0+ f3g1+ f2g2+ f1g3+ f0g4+3(f9g5+ f8g6+ f7g7+ f6g8+ f5g9),

r5 = f5g0+2f4g1+2f3g2+2f2g3+2f1g4+ f0g5+3(2f9g6+2f8g7+2f7g8+2f6g9),

r6 = f6g0+ f5g1+2f4g2+2f3g3+2f2g4+ f1g5+ f0g6+3(2f9g7+2f8g8+2f7g9),

r7 = f7g0+ f6g1+ f5g2+2f4g3+2f3g4+ f2g5+ f1g6+ f0g7+3(2f9g8+2f8g9),

r8 = f8g0+ f7g1+ f6g2+ f5g3+2f4g4+ f3g5+ f2g6+ f1g7+ f0g8+3(2f9g9),

r9 = f9g0+ f8g1+ f7g2+ f6g3+ f5g4+ f4g5+ f3g6+ f2g7+ f1g8+ f0g9.

The factors of 2 arise from the uneven exponent spacing mentioned above: for
example, the product of f1213 and g4252 is 2f1g4264, contributing 2f1g4 to r5264.
The factors of 3 arise from reducing 2128 in Z/(2128 − 3).

If (f0, . . . , f9) and (g0, . . . , g9) are reduced then a sum of any 10 products of the
form figj can be computed with cost 10: specifically, 1 multiplication followed
by 9 multiply-add operations in any convenient order. The sums r0, r1, . . . , r9
are slightly more expensive because of the extra factors of 2 and 3. We pre-
compute 3g1, 3g2, . . . , 3g9 and 2f1, 2f2, 2f3, 2f4, 2f6, 2f7, 2f8, 2f9 (skipping 2f5);
recall that a 16-bit addition costs only 0.5, so these 26 additions cost only 13.
Each ri is then a sum of 10 products of known 16-bit quantities, costing 100, for
a total cost of 113.

Each ri, and each intermediate result in this multiplication algorithm, is
bounded in absolute value by 10 · 3 · 2 · (1.01 · 212)2 < 0.96 · 230. The same
algorithm also works if (f0, . . . , f9) is a sum or difference of two reduced vectors
while (g0, . . . , g9) is reduced: then each result is bounded in absolute value by
0.96 · 231, still safely below 231.

Coefficient reduction. The product coefficients r0, r1, . . . , r9 constructed above
are usually not reduced. Some extra work is required to compute a reduced prod-
uct suitable for use as input to subsequent multiplications.

10 D. J. Bernstein, T. Lange, P. Schwabe

For i ∈ {0, 1, 2, 3, 5, 6, 7, 8} we reduce ri by carrying from ri to ri+1. This
means changing (ri, ri+1) into (ri − 213c, ri+1 + c) where c =

⌊
(ri + 212)/213

⌋
.

This leaves the sum ri2
di·12.8e + ri+12d(i+1)·12.8e unaffected, and increases the

maximum possible ri+1 only slightly, while guaranteeing that the new ri is be-
tween −212 and 212. This costs 5: an addition, a right shift, a mask, another
addition, and a subtraction.

We similarly reduce r4 by carrying from r4 to r5. This has a slightly different
definition, to accommodate the uneven spacing of exponents: it means changing
(r4, r5) into (r4 − 212c, r5 + c) where c =

⌊
(r4 + 211)/212

⌋
. This guarantees that

the new r4 is between −211 and 211.
The most expensive step is to reduce r9 by carrying from r9 to r0. This means

changing (r9, r0) into (r9− 212c, r0 + 3c) where c =
⌊
(r9 + 211)/212

⌋
. This leaves

r0 + r92116 unaffected modulo 2128 − 3, while guaranteeing that the new r9 is
between −211 and 211. This costs 7 rather than 5: the computation of 3c uses
two extra additions.

We use the carry chain r0 → r1 → r2 → r3 → r4 → r5 → r6 → r7 →
r8 → r9 → r0 → r1 → r2: we first carry from r0 to r1, then from r1 to r2, etc.,
then from r9 to r0, then again from r0 to r1, then again from r1 to r2. Tracing
the bounds on each ri shows that the final r2 is reduced, and therefore that
(r0, r1, . . . , r9) is reduced.

This carry chain costs 62. The complete multiplication algorithm, taking re-
duced representations of f and g as input and producing a reduced representation
of fg as output, costs 175.

Squaring. Squaring in Z/(2128 − 3) is very similar to multiplication except
that several intermediate results are reused: for example, f1g0 + f0g1 becomes
just 2f0f1. We begin with a cost-10 computation of 2f0, . . . , 2f9; 3f5, . . . , 3f9;
6f5, . . . , 6f9. We then obtain r0, . . . , r9 straightforwardly at cost 55, and apply
the same carry chain as for multiplication. The complete squaring algorithm
costs 127.

5 Fast iterations on the PlayStation 3

This section analyzes and optimizes the performance of rho iterations modulo
p = (2128 − 3)/76439 on the PS3. This optimization makes some changes to
the iteration function; we take advantage of the flexibility of co-designing our
iteration function with our arithmetic algorithms.

The Cell SPEs. The CPU in the PS3 is the Cell Broadband Engine. The main
computational power of the Cell is in 8 Synergistic Processor Elements (SPEs).
These SPEs are arranged around a central 64-bit PowerPC core. The PS3 makes
only 6 of these SPEs available for computations.

We report the performance that we achieve with 6 SPEs, leaving the central
PowerPC core mostly idle. This does not make full use of the Cell—performing
some iterations on the PowerPC core would noticeably reduce the overall com-
putation time—but it simplifies comparisons: the speeds reported for the same
ECDLP in [3], [5], and [4] also left the central PowerPC core mostly idle.

On the correct use of the negation map in the Pollard rho method 11

Our implementation runs independently on each SPE. Each SPE has 256 KB
of fast local storage; this storage holds all code and data, including a batch of
parallel walks and a table of precomputed points. Communication between the
SPE and main memory is very small in this algorithm: a few words of data for
every million iterations. Performance is therefore determined almost completely
by how well we make use of the computational power of the SPE.

Arithmetic on the SPE. The following description summarizes only the SPE
features that are relevant to our implementation. See [19] and [25] for more
information about the SPE.

The SPE has a register file consisting of 128 128-bit vector registers. Typi-
cal arithmetic instructions are SIMD instructions operating on these registers
as vectors of 4 independent 32-bit integers or vectors of 8 independent 16-bit
integers. There is a multiplication instruction that multiplies 4 pairs of 16-bit
integers in parallel, producing 4 32-bit integers. There is also a fused multiply-
add instruction that adds the results into another vector of 4 32-bit integers.

Each SPE cycle carries out at most one of these arithmetic instructions: i.e., 4
32-bit operations or 8 16-bit operations. An algorithm that costs n in the model
of Section 4 therefore uses at least n/4 cycles on the SPE. There are, however,
several reasons that the SPE can take many more cycles than this:

– In-order execution. An arithmetic instruction must wait until 1 cycle after
the previous arithmetic instruction in the program.

– Arithmetic latency. An instruction cannot begin until its results are ready.
The result of an arithmetic instruction is not ready until several cycles later.

– Load latency. Loads are handled by a separate instruction pipeline but can
still delay arithmetic instructions that use the load results.

There are also various function-call overheads, typically consuming 70 cycles
per function call. One can eliminate these overheads by inlining and merging
functions, but this also increases code size, putting pressure on the SPE’s local
storage.

Digitsliced multiplication on the SPE. We use 8-way vectorization of our
iterations: we repeat our inputs, computations, and outputs 8 independent times.
We store 8 independent elements of the ring Z/(2128 − 3) in 10 128-bit vector
registers r0, . . . , r9, where coefficient i of ring element j is in 16-bit component j
of register ri. We convert each 16-bit operation into a 128-bit vector operation,
and we convert each 32-bit operation into two 128-bit vector operations.

Scheduling instructions carefully then works around all arithmetic latency.
The multiplication algorithm fits comfortably into the SPE registers: loads and
stores are not a bottleneck. (Replacing 8-way vectorization with 16-way vector-
ization would remove the need for careful instruction scheduling but would put
more pressure on registers and, more importantly, would cut in half the number
of walks that fit easily into local storage without reshuffling.) The 32-bit results
at the end of the algorithm are known to be reduced, so they fit into 16 bits; 10
extra instructions are required to shuffle the results into 10 vectors of 8 16-bit in-

12 D. J. Bernstein, T. Lange, P. Schwabe

tegers, but these extra instructions are handled by the SPE’s load/store pipeline
and are effectively free when they are interleaved with arithmetic instructions.

Overall our software for vectorized multiplication of 8 pairs of ring elements
takes exactly 350 SPE arithmetic instructions, i.e., 43.75 arithmetic instructions
per multiplication (1/4 of the cost 175 in the previous section). Our software
for vectorized squaring of 8 ring elements uses exactly 254 SPE arithmetic in-
structions, i.e., 31.75 arithmetic instructions per squaring. Each of our iterations
performs 5 multiplications and 1 squaring, in total consuming 250.5 arithmetic
instructions, at least 250.5 cycles.

Inversion. To invert modulo p = (2128−3)/76439 we simply compute a (p−2)nd
power. Our addition chain for p − 2 uses 107 squarings and 32 multiplications.
Essentially the same speed would also be achieved by an addition chain for the
larger but sparser exponent 2128 − 76443 = p − 2 + 76439(p − 1), using 126
squarings and just 18 multiplications.

Of course, we actually perform 8 independent inversions in parallel, using
8 · 107 squarings and 8 · 32 multiplications modulo 2128 − 3. Each inversion uses
107 · 31.75 + 32 · 43.75 = 4797.25 arithmetic instructions, consuming at least
4797.25 cycles.

Our 8-inversion function actually uses 43293 cycles, i.e., 5411.625 cycles per
inversion. The gap is almost entirely explained by the overhead of 64 function
calls, half to multiplication and half to an n-squaring function that computes
r ← r2

n

for variable n.
To reduce code size we rejected the possibility of more complicated Euclid-

type inversion as used in [5]. In context (see below) inversion is already quite
fast, only 6.6% of our final iteration cost.

Canonicalizing the y-coordinate. Redundant representations cause trouble
for two parts of the algorithm stated in Section 3. First, because y ∈ Fp has
multiple representations, checking whether y ∈ {0, 2, 4, . . . , p− 1} is not a simple
matter of inspecting the bottom bit of the representation of y. Second, because
x ∈ Fp has multiple representations, finding the hash of x is not a simple matter
of extracting bits from the representation of x.

We address both problems by canonicalizing y. We use the canonicalized ver-
sion of y to decide whether to negate y. Rather than canonicalizing and hashing
x, we extract some bits from the canonicalized version of y as a table index.
Note that there can be as many as 3 points having the same y-coordinate, but
hashing all of those points to the same table index does not merge walks. We
also use the canonicalized version of y to define distinguished points.

The most obvious way to canonicalize y is to replace it with y mod p; but
reductions modulo p are expensive. We instead compute s = 76439y mod (2128−
3). One can think of this s as a unique representative y mod p, but represented
as 76439(y mod p). An alternative is to use Montgomery reduction to compute
y · 2−16 (mod p) with precomputed 2−16 (mod p), as in [4].

To compute s we multiply y by the cofactor 76439 and then perform a slightly
longer reduction chain than the one we use after multiplication. The polynomial-
multiplication step here, producing unreduced coefficients s0, s1, . . . , s9, uses only

On the correct use of the negation map in the Pollard rho method 13

5 arithmetic instructions (cost 20) instead of 25 (cost 100), because 76439 is
represented in just two reduced coefficients: 76439 = 2711 + 9 · 213. The usual
precomputations of 3g1, 2f1, etc. also disappear: all we need are the constants
5422 = 2 · 2711 and 16266 = 6 · 2711.

To reduce the result we carry s6 → s7 → s8 → s9 → s0 → s1 → s2 →
s3 → s4 → s5 → s6 → s7 → s8 → s9 → s0 → s1. This uses 19.75 arithmetic
instructions. The overall cost of canonicalization is 24.75 arithmetic instructions
per iteration.

We do not claim that the resulting (s0, s1, . . . , s9) is always completely de-
termined by the image of y in Fp. What matters is that the probability of non-
uniqueness for random y’s is so small that two colliding walks have negligible
probability of diverging before they hit a distinguished point. We computer-
verified this as explained in Section 6.

Subtraction. The easy part of subtracting two ring elements is performing 10
subtractions of 16-bit integers. The problem is that the output is usually not
reduced. Carries would reduce the output but would make subtraction much
more expensive.

We use two standard techniques to avoid carries after subtractions. First, we
skip unnecessary reductions before multiplications; recall from Section 4 that
the multiplication algorithm can safely multiply f by g − g2, where f, g, g2 are
reduced. The elliptic-curve addition formulas involve three subtractions of this
type: the denominator x − x2, which is multiplied by a reduced product inside
Montgomery’s batch-inversion method (except for one product at the beginning
of a batch); the numerator y− y2, which is multiplied by the reduced reciprocal
of x− x2; and x2 − x3, which is multiplied by the reduced quotient λ.

Second, we combine multiply-reduce-subtract-reduce into multiply-subtract-
reduce. In particular, to compute λ2 − x − x2, we first add x to x2, and then
subtract the sum from λ2 before reducing the coefficients of λ2. Similarly, we
subtract y2 from λ(x2 − x3) before reducing the coefficients of λ(x2 − x3). This
makes the subtractions more expensive (32-bit instead of 16-bit), but still much
less expensive than extra carries.

Overall these 6 subtractions use 10 arithmetic instructions: 5 instructions for
40 subtractions of 16-bit integers, and another 5 instructions for 20 subtractions
of 32-bit integers.

Table lookups. Our iteration function uses a precomputed table of 2048 mul-
tiples of P . Each multiple uses 16 bytes for an x-coordinate and 16 bytes for a
y-coordinate, for a total of 64 KB of local storage. If we were concerned with
defining an iteration function to perform well on many platforms simultaneously
then we would use a smaller table, say 16 KB, to avoid L1 cache misses on
typical CPUs. However, the analysis in Section 3 shows that this would slightly
increase the number of iterations. In this paper our goal is purely to maximize
Cell performance, so we keep r = 2048.

Normally a precomputed x-coordinate in reduced form (x0, x1, . . . , x9) would
occupy 20 bytes. We instead represent each precomputed x-coordinate in reduced
form (x0, x1, . . . , x7, 0, 0), stored as a contiguous 16-byte vector (x0, x1, . . . , x7).

14 D. J. Bernstein, T. Lange, P. Schwabe

Each y-coordinate is stored similarly. The final zeros mean that this represen-
tation is limited to approximately 2103 different integers; it cannot handle all
elements of Z/(2128 − 3), or even all elements of Fp. We find 2048 representable
multiples of P by generating approximately 400 million random multiples of P ;
this precomputation has negligible cost.

This table representation also allows lookups with very little arithmetic (but
with many load/store instructions, which we carefully interleave with other com-
putations), as explained in the following paragraph. We could further compress
the table entries in several ways, but we are not aware of further compression
techniques that avoid extra arithmetic. We comment that scaling the same type
of precomputation to larger ECDLPs, squeezing the precomputed points as far
as we can with a negligible precomputation, reduces the space for rho tables by
asymptotically 25%.

The table entry for a point (x, y) has index s0 mod 2048 where (s0, s1, . . . , s9)
is the canonicalization of y. We perform 8 table lookups in parallel as follows.
We perform one arithmetic instruction to obtain 8 parallel table indices; this
instruction is a mask of the vector (2047, 2047, 2047, 2047, 2047, 2047, 2047, 2047)
with a vector of canonicalizations. We shift the result left by 5 bits (since table
entries have 32 bytes) to obtain 8 addresses in memory; this 128-bit shift is
handled by the SPE’s load/store pipeline. We then shuffle the result into 8
separate registers, perform 8 x-coordinate loads, and perform 8 y-coordinate
loads. Finally we use 24 shuffle instructions to convert to digitsliced format.

Batching inversions. We use Montgomery’s trick to batch the inversions in 224
independent iterations, replacing them by 669 multiplications and 1 inversion.
This batching is on top of the 8-way parallelism of all of our arithmetic opera-
tions. Overall the SPE handles 1792 = 224 · 8 walks at once. At each moment
we watch 1/16th of the walks for fruitless cycles.

Each walk uses 70 bytes of storage: 20 for x, 20 for y, 20 for s, 8 for the
seed used to start the walk, and 2 for a table index. Each watched walk uses an
extra 102 bytes of storage: 20 for the first s to detect a cycle, 60 for the smallest
(s, x, y) to escape a cycle, 20 as extra storage needed for conditional doubling,
and 2 for a flag indicating whether the walk needs a doubling to escape a cycle.
Overall the walks use 1792(70 + 102/16) = 136864 bytes of local storage.

Overall performance. The most important arithmetic instructions in each
iteration are as follows:

– 5 multiplications: 218.75 arithmetic instructions (43.75 each);
– 1 squaring: 31.75 arithmetic instructions;
– 1 canonicalization: 24.75 arithmetic instructions;
– 6 subtractions: 10.00 arithmetic instructions;
– 1/224 inversion minus 3/224 multiplications:≈ 20.83 arithmetic instructions.

These add up to 306.08 arithmetic instructions per iteration, implying a lower
bound of 306.08 cycles per iteration for our software. Our software actually takes
362 cycles per iteration, about 18% more than this lower bound.

On the correct use of the negation map in the Pollard rho method 15

Under 4% of the cycles per iteration are spent on operations that can be
blamed on negation: specifically, negating s and y, detecting fruitless cycles, and
resolving fruitless cycles by doubling. The rest of the gap between 306 and 362
is explained by detection of distinguished points, loop control, and function-call
overhead.

There is, outside the iterations, an extra cost for communicating the occasional
distinguished points that do appear (and in setting up replacement points). We
made no effort to optimize this cost, since it is multiplied by the distinguished-
point probability. With the rather large distinguished-point probability used in
our experiments, namely 2−20, and with all 6 SPEs running in parallel and com-
peting for communication resources, this cost effectively added 15 cycles to each
iteration, slowing the computation down by about 4%. A smaller distinguished-
point probability would reduce this penalty below 1%.

Comparison to previous work. Bos, Kaihara, Kleinjung, Lenstra, and Mont-
gomery state in [4, Appendix A] that they use 456 SPE cycles per iteration for
the same ECDLP, including 322 cycles for 6 multiplications, 30 cycles for 6
subtractions, 12 cycles for 1/400 inversions, 24 cycles for canonicalization (with
Montgomery reduction), and 68 cycles for miscellaneous overhead. Bos, Kaihara,
and Montgomery report 453 cycles per iteration in [5, Section 5], with 318 cy-
cles instead of 322 for the multiplications, and 69 cycles instead of 68 for the
miscellaneous overhead.

Each of our multiplications is faster than the multiplications in [4] and [5], by
a factor of approximately 1.23. This speedup can be traced directly to our use of
the non-integer radix 212.8, while [4] et al. used the conventional radix 216. Most
of our other operations are also faster than the operations in [4]. We pay a slight
penalty for negation but overall gain the same factor of approximately 1.23 in
the number of cycles per iteration. Our overall speedup in solving the ECDLP
is much larger, because we use far fewer iterations, as discussed in Section 6.

6 Experimental results and evaluation

We do not have access to the cluster of 1284 SPEs used for many months by the
authors of [3], [4], [5], and [6]. However, a few SPEs at the Jülich and Barcelona
supercomputer centers were enough for us to perform some reasonably large
discrete-logarithm experiments, demonstrating clearly that our code works and
runs at the expected speed. This section presents the details of our experiments.

Scaling elliptic-curve challenges without changing the prime. Our soft-
ware is dedicated to the prime p = (2128 − 3)/76439, and is designed to break
the ECDLP on the curve secp112r1 over Fp. However, the same software works
without modification for points P,Q on any curve of the form y2 = x3 − 3x+ b
over this Fp.

By counting points on y2 = x3 − 3x + b for various b we found group orders
having many different prime divisors. For example, there are points

– of prime order 1195174242772417 ≈ 1.0615 · 250 on y2 = x3 − 3x+ 2382;

16 D. J. Bernstein, T. Lange, P. Schwabe

– of prime order 36817627222637377 ≈ 1.0219 · 255 on y2 = x3 − 3x + 3722;
and

– of prime order 1186848158152955759 ≈ 1.0294 · 260 on y2 = x3 − 3x+ 2402.

For each of these prime-order groups we generated a challenge P,Q and then
repeatedly solved the challenge, collecting statistics on the distribution of the
time needed to solve the challenge.

Distinguished points per second. We used the same distinguished-point
property for all of the challenges, inspecting 20 bits of s4 and s9. The probability
of a point being distinguished is almost exactly 2−20.

We predicted that we would need slightly more than 220 iterations on av-
erage to find a distinguished point, for two reasons. The first reason is that a
small percentage of the iterations are wasted by fruitless cycles, as discussed in
Section 3. This percentage is under 1% and is independent of the group order `.

The second reason is that a walk can enter a long cycle that does not contain a
distinguished point. We predicted that this would occur with probability roughly
240/` for each seed, i.e., roughly once for every `/240 seeds: certainly not an issue
for a single-shot experiment with ` ≈ 2112, but a serious concern for a careful
statistical analysis studying many seeds with ` ≈ 250.

To prevent our software from running forever in case of long cycles, we added
a few lines of code to abort each walk after approximately 47 · 218 iterations. A
walk that is not in a long cycle has probability only about 2−17 of surviving for
so many iterations and of therefore being aborted. We could also have modified
our software to extract discrete logarithms from the long cycles, but there would
have been no cryptanalytic benefit from doing so, since long cycles disappear as
` grows.

We also reduced our batch size from 224 to 192 (watching 12 instead of 14)
to make room in local storage for keeping track of various statistics. This made
each iteration slightly slower, 366 cycles instead of 362 cycles. The extra cost
of communicating distinguished points adds 15 cycles per iteration as discussed
in the previous section, so we predicted that 6 SPEs running in parallel would
produce 6 · 3.192 · 109/(381 · 220) ≈ 47.94 distinguished points per second.

We ran 6 SPEs on the original curve secp112r1 and found 48134 distinguished
points in 1000 seconds, with no aborted walks. We also ran various experiments
on our 50-bit, 55-bit, and 60-bit challenge curves, and in each case found dis-
tinguished points at the expected rate. We found 1 aborted walk for every 212.9

distinguished points for the 55-bit challenge curve y2 = x3 − 3x + 3722 with
` ≈ 1.0219 · 255.

The number of distinguished points needed for a discrete logarithm. We
performed the following experiment for our 50-bit challenge. Take a seed, and
find the corresponding distinguished point. Take the next seed, and find the cor-
responding distinguished point. Continue this process until finding two colliding
distinguished points. Compute a discrete logarithm from this collision, and ver-
ify that it matches the secret scalar used to generate the challenge in the first
place.

On the correct use of the negation map in the Pollard rho method 17

0 5 ×103 1.0 ×104 1.5 ×104 2.0 ×104 2.5 ×104 3.0 ×104 3.5 ×104
0

20

40

60

80

100

120

140

experiment

di
st

in
gu

is
he

d
po

in
ts

 to
 c

ol
lis

io
n

Fig. 6.1. Distribution of the number of distinguished points required to find a collision
in 32237 independent experiments in a subgroup of size ≈ 1.0615 · 250 of the curve
y2 = x3−3x+2382. The experiments were retroactively reordered so that experiment 1
used the smallest number d1 of distinguished points, experiment 2 used d2 distinguished
points with d2 ≥ d1, etc. A point (i, di) on this graph means that experiment i, in this
retroactive ordering, used di distinguished points.

Our software handles many seeds at once and produces distinguished points
out of order, so we sorted the outputs back into the original order of seeds.
Skipping this step would have introduced a bias into our experiment, favoring
distinguished points that use relatively few iterations.

We then performed this experiment again, starting from the first seed that
was not used in the first experiment. We continued in the same way through
32237 experiments, using disjoint seeds for each experiment. We did not verify
the discrete logarithms for every experiment, but we verified it for a large random
sample of experiments, and encountered no failures. The number of distinguished
points used in the experiments was on average 31.526 ≈ 1.0789

√
π`/4/220, with

standard deviation 0.558
√
π`/4/220. The median was 29 ≈ 1.0565

√
` log 2/220.

The complete distribution is shown in Figure 6.1.
We then ran 257241 experiments for our 55-bit challenge. The number of

distinguished points was on average 163.37 ≈ 1.0074
√
π`/4/220, with standard

18 D. J. Bernstein, T. Lange, P. Schwabe

0 5 ×104 1.0 ×105 1.5 ×105 2.0 ×105 2.5 ×105 3.0 ×105
0

100

200

300

400

500

600

700

experiment

di
st

in
gu

is
he

d
po

in
ts

 to
 c

ol
lis

io
n

Fig. 6.2. Distribution of the number of distinguished points required to find a collision
in 257241 independent experiments in a subgroup of size ≈ 1.0219 · 255 of the curve
y2 = x3 − 3x + 3722. See Figure 6.1 for an explanation of how the distribution is
graphed.

deviation 0.527
√
π`/4/220. The median was 152 ≈ 0.9977

√
` log 2/220. The com-

plete distribution is shown in Figure 6.2.
We similarly ran 33791 experiments for our 60-bit challenge. The number

of distinguished points was on average 920.36 ≈ 0.9996
√
π`/4/220, with stan-

dard deviation 0.525
√
π`/4/220. The median was 864 ≈ 0.9989

√
` log 2/220. The

complete distribution is shown in Figure 6.3.

Performance extrapolations. On the basis of these experiments we confi-
dently predict that our software would solve the secp112r1 ECDLP in, on aver-
age, 37.3 years on a PS3, using 235.71 distinguished points, requiring under 1 ter-
abyte of storage. Here 235.71 is calculated as

√
π`/4/220 with ` ≈ p ≈ 2128/76439,

and 37.3 is calculated as
√
π`/4/(220 · 47.94 · 86400 · 365.25).

The software runs in parallel on many PS3s without trouble, and will easily
scale beyond the size of the cluster used in [5]. The computation time is inversely
proportional to the number of machines, except for a few minutes at the end
of the computation (by all machines while the final collision walks towards a

On the correct use of the negation map in the Pollard rho method 19

0 5 ×103 1.0 ×104 1.5 ×104 2.0 ×104 2.5 ×104 3.0 ×104 3.5 ×104
0

1000

2000

3000

4000

experiment

di
st

in
gu

is
he

d
po

in
ts

 to
 c

ol
lis

io
n

Fig. 6.3. Distribution of the number of distinguished points required to find a collision
in 33791 independent experiments in a subgroup of size ≈ 1.0294 · 260 of the curve
y2 = x3 − 3x + 2402. See Figure 6.1 for an explanation of how the distribution is
graphed.

distinguished point, and by a central machine recomputing the walks involved
in the collision).

One can trivially reduce the storage and communication requirements by, e.g.,
a factor of 16 by changing the definition of distinguished points to use 24 bits
instead of 20. This increases the final few minutes by a factor of 16, but it also
saves almost 15 cycles of communication cost for each iteration, as discussed in
the previous section, reducing the total time to just 35.6 years on a PS3.

Comparison to previous work. Our speed is directly comparable to, and
almost twice as fast as, the speed previously reported by Bos, Kaihara, Kleinjung,
Lenstra, and Montgomery.

Specifically, [4, Appendix A.5] reports that the expected number of iterations
“is
√
πq/2 ≈ 8.4 · 1016, where q is the prime group order”, to solve a secp112r1

ECDLP; each iteration consumes 456 cycles, totalling “about 60 PS3 years”.
This iteration count (also appearing in [5, Section 5.3]) is slightly too optimistic:
the additive walk in [3] uses r = 16, creating a noticeable nonrandomness penalty
of approximately 1/

√
1− 1/16. The Cell runs at 3.192 GHz, so a better estimate

20 D. J. Bernstein, T. Lange, P. Schwabe

is
456
√
π`/2

6 · 3.192 · 109 · 86400 · 365.25 ·
√

1− 1/16
≈ 65.16

PS3 years. We have shown how to solve the same ECDLP using just 35.6 PS3
years.

References

[1] Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner, Joppe W.
Bos, Hsieh-Chung Chen, Chen-Mou Cheng, Gauthier Van Damme, Giacomo de
Meulenaer, Luis Julian Dominguez Perez, Junfeng Fan, Tim Güneysu, Frank
Gürkaynak, Thorsten Kleinjung, Tanja Lange, Nele Mentens, Ruben Nieder-
hagen, Christof Paar, Francesco Regazzoni, Peter Schwabe, Leif Uhsadel, An-
thony Van Herrewege, Bo-Yin Yang, Breaking ECC2K-130 (2010). URL: http://
eprint.iacr.org/2009/541/. Citations in this document: §2, §2.

[2] Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records, in PKC 2006
[30] (2006), 207–228. URL: http://cr.yp.to/papers.html#curve25519. Cita-
tions in this document: §4.

[3] Joppe W. Bos, Marcelo E. Kaihara, Thorsten Kleinjung, Arjen K. Lenstra, Pe-
ter L. Montgomery, PlayStation 3 computing breaks 260 barrier; 112-bit prime
ECDLP solved (2009). URL: http://lacal.epfl.ch/112bit_prime. Citations in
this document: §1, §1, §4, §4, §5, §6, §6.

[4] Joppe W. Bos, Marcelo E. Kaihara, Thorsten Kleinjung, Arjen K. Lenstra, Peter
L. Montgomery, On the security of 1024-bit RSA and 160-bit elliptic curve cryp-
tography: version 2.1 (2009). URL: http://eprint.iacr.org/2009/389/. Cita-
tions in this document: §1, §4, §5, §5, §5, §5, §5, §5, §6, §6.

[5] Joppe W. Bos, Marcelo E. Kaihara, Peter L. Montgomery, Pollard rho on the
PlayStation 3, Workshop record of SHARCS’09 (2009), 35–50. URL: http://www.
hyperelliptic.org/tanja/SHARCS/record2.pdf. Citations in this document: §1,
§1, §4, §5, §5, §5, §5, §6, §6, §6.

[6] Joppe W. Bos, Thorsten Kleinjung, Arjen K. Lenstra, On the use of the negation
map in the Pollard rho method, in ANTS 2010 [15] (2010), 66–82. Citations in
this document: §1, §1, §2, §2, §6, §A, §A, §A, §A, §A, §A, §A.

[7] Certicom Research, Certicom ECC challenge (1998). URL: http://

web.archive.org/web/19981207032405/www.certicom.com/chal/download/

chall_wd.doc. Citations in this document: §A.
[8] Certicom Research, Speeding up the parallelized Pollard lambda attack

on binary anomalous curves (Koblitz curves), 2 December 1998 archive
(1998). URL: http://web.archive.org/web/19981202004435/www.certicom.

com/chal/note.htm. Citations in this document: §A.
[9] Certicom Research, Exercise lists and challenge lists (1998). URL: http://web.

archive.org/web/19981203005914/www.certicom.com/chal/ch4.htm. Citations
in this document: §A.

[10] Certicom Research, SEC 2: Recommended elliptic curve domain parameters
(2000). URL: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=
53B19EF2A189CAA598D073BAAAAD959B?doi=10.1.1.128.27&rep=rep1&type=pdf.
Citations in this document: §4.

http://eprint.iacr.org/2009/541/
http://eprint.iacr.org/2009/541/
http://cr.yp.to/papers.html#curve25519
http://lacal.epfl.ch/112bit_prime
http://eprint.iacr.org/2009/389/
http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf
http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf
http://web.archive.org/web/19981207032405/www.certicom.com/chal/download/chall_wd.doc
http://web.archive.org/web/19981207032405/www.certicom.com/chal/download/chall_wd.doc
http://web.archive.org/web/19981207032405/www.certicom.com/chal/download/chall_wd.doc
http://web.archive.org/web/19981202004435/www.certicom.com/chal/note.htm
http://web.archive.org/web/19981202004435/www.certicom.com/chal/note.htm
http://web.archive.org/web/19981203005914/www.certicom.com/chal/ch4.htm
http://web.archive.org/web/19981203005914/www.certicom.com/chal/ch4.htm
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=53B19EF2A189CAA598D073BAAAAD959B?doi=10.1.1.128.27&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=53B19EF2A189CAA598D073BAAAAD959B?doi=10.1.1.128.27&rep=rep1&type=pdf

On the correct use of the negation map in the Pollard rho method 21

[11] Neil Costigan, Peter Schwabe, Fast elliptic-curve cryptography on the Cell Broad-
band Engine, in Africacrypt 2009 [24] (2009), 368–385. URL: http://cryptojedi.
org/users/peter/#celldh. Citations in this document: §4.

[12] Iwan M. Duursma, Pierrick Gaudry, François Morain, Speeding up the discrete
log computation on curves with automorphisms, in Asiacrypt 1999 [20] (1999),
103–121. Citations in this document: §2, §2, §A, §A, §A, §A.

[13] Adrian Escott, Implementing a parallel Pollard rho attack on ECC
(1998). URL: http://www.cacr.math.uwaterloo.ca/conferences/1998/ecc98/
escott.ps. Citations in this document: §A, §A, §A.

[14] Robert P. Gallant, Robert J. Lambert, Scott A. Vanstone, Improving the paral-
lelized Pollard lambda search on anomalous binary curves., Mathematics of Com-
putation 69 (2000), 1699–1705. Citations in this document: §2, §A, §A, §A, §A,
§A, §A, §A.

[15] Guillaume Hanrot, François Morain, Emmanuel Thomé (editors), Algorithmic
number theory, 9th international symposium, ANTS-IX, Nancy, France, July 19–
23, 2010, proceedings, Lecture Notes in Computer Science, 6197, Springer, 2010.
See [6].

[16] Robert J. Harley, Solution to Certicom’s ECC2K-95 problem (email
message) (1998). URL: http://cristal.inria.fr/~harley/ecdl5/ECC2K-95.

submission.text. Citations in this document: §2, §A, §A, §A.
[17] Robert J. Harley, Big calculations (email message) (1999). URL: http://www.

xent.com/FoRK-archive/sept99/0000.html. Citations in this document: §A.
[18] E. T. A. Hoffmann, Lebens-Ansichten des Katers Murr nebst fragmentarischer

Biographie des Kapellmeisters Johannes Kreisler in zufälligen Makulaturblättern,
Dümmler, 1820–1822. URL: http://gutenberg.spiegel.de/etahoff/murr1/

book.xml. Citations in this document: §1.
[19] IBM DeveloperWorks, Cell Broadband Engine Programming Hand-

book, Including the PowerXCell 8i Processor (version 1.11), 2008.
URL: https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

1741C509C5F64B3300257460006FD68D. Citations in this document: §5.
[20] Kwok-Yan Lam, Eiji Okamoto, Chaoping Xing (editors), Advances in

cryptology — ASIACRYPT ’99, international conference on the theory and ap-
plications of cryptology and information security, Singapore, November 14–18,
1999, proceedings, Lecture Notes in Computer Science, 1716, Springer, 1999. See
[12].

[21] Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factor-
ization, Mathematics of Computation 48 (1987), 243–264. ISSN 0025–5718. MR
88e:11130. URL: http://links.jstor.org/sici?sici=0025-5718(198701)48:

177<243:STPAEC>2.0.CO;2-3. Citations in this document: §3.
[22] Paul C. van Oorschot, Michael Wiener, Parallel collision search with cryptana-

lytic applications, Journal of Cryptology 12 (1999), 1–28. ISSN 0933–2790. URL:
http://members.rogers.com/paulv/papers/pubs.html. Citations in this docu-
ment: §2.

[23] John M. Pollard, Monte Carlo methods for index computation mod p, Mathematics
of Computation 32 (1978), 918–924. ISSN 0025–5718. MR 58:10684. Citations in
this document: §2.

[24] Bart Preneel (editor), Progress in cryptology — AFRICACRYPT 2009, second in-
ternational conference on cryptology in Africa, Gammarth, Tunisia, June 21–25,
2009, proceedings, Lecture Notes in Computer Science, 5580, Springer, 2009. See
[11].

http://cryptojedi.org/users/peter/#celldh
http://cryptojedi.org/users/peter/#celldh
http://www.cacr.math.uwaterloo.ca/conferences/1998/ecc98/escott.ps
http://www.cacr.math.uwaterloo.ca/conferences/1998/ecc98/escott.ps
http://cristal.inria.fr/~harley/ecdl5/ECC2K-95.submission.text
http://cristal.inria.fr/~harley/ecdl5/ECC2K-95.submission.text
http://www.xent.com/FoRK-archive/sept99/0000.html
http://www.xent.com/FoRK-archive/sept99/0000.html
http://gutenberg.spiegel.de/etahoff/murr1/book.xml
http://gutenberg.spiegel.de/etahoff/murr1/book.xml
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/1741C509C5F64B3300257460006FD68D
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/1741C509C5F64B3300257460006FD68D
http://links.jstor.org/sici?sici=0025-5718(198701)48:177<243:STPAEC>2.0.CO;2-3
http://links.jstor.org/sici?sici=0025-5718(198701)48:177<243:STPAEC>2.0.CO;2-3
http://members.rogers.com/paulv/papers/pubs.html

22 D. J. Bernstein, T. Lange, P. Schwabe

[25] Sony Corporation, Cell Broadband Engine architecture, Version 1.01, 2006. URL:
http://cell.scei.co.jp/pdf/CBE_Architecture_v101.pdf. Citations in this
document: §5.

[26] Stafford Tavares, Henk Meijer (editors), Selected areas of cryptography 1998, Lec-
ture Notes in Computer Science, 1556, Springer, 1999. See [29].

[27] Edlyn Teske, On random walks for Pollard’s rho method, Mathematics of Com-
putation 70 (2001), 809–825. Citations in this document: §2.

[28] Michael J. Wiener, Robert J. Zuccherato, Faster attacks on elliptic curve cryp-
tosystems (1998); see also newer version [29]. URL: http://grouper.ieee.org/
groups/1363/Research/contributions/attackEC.ps. Citations in this docu-
ment: §A, §A, §A.

[29] Michael J. Wiener, Robert J. Zuccherato, Faster attacks on elliptic curve cryp-
tosystems, in SAC 1998 [26] (1999), 190–200; see also older version [28]. Citations
in this document: §2, §A, §A, §A, §A.

[30] Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), Public key
cryptography — 9th international conference on theory and practice in public-key
cryptography, New York, NY, USA, April 24–26, 2006, proceedings, Lecture Notes
in Computer Science, 3958, Springer, 2006. See [2].

A How not to use negation in Pollard’s rho method

The literature on the negation map contains many concrete proposals for using
the negation map in Pollard’s rho method, combining several ideas for avoiding,
detecting, and escaping fruitless cycles. This section reviews and compares the
proposals.

Pre-history. Solutions to Certicom’s first five ECDLP challenges, ECCp-79,
ECC2-79, ECCp-89, ECC2-89, and ECCp-97, were completed by Harley et al. on
6 December 1997, 16 December 1997, 12 January 1998, 7 February 1998, and 16
March 1998 respectively. The first publication of a negation method, as far as
we know, was after all five of these computations were completed.

Multiplicative walks. One way to exploit negation while avoiding fruitless
cycles is to use a multiplicative walk: hash Wi to a small set of scalars such
as {2, 3, 5, 7, 11, 13, 17, 19}, and multiply the resulting scalar by Wi to obtain
Wi+1. This walk is defined on equivalence classes modulo negation, and has
negligible probability of entering fruitless cycles (if the set of scalars has no
short multiplicative relations), so it reduces the average number of iterations
from (1 + o(1))

√
π`/2 to (1 + o(1))

√
π`/4.

This negating multiplicative walk is still not competitive with non-negating
additive walks. The problem is that a typical step, such as multiplying a curve
point by 7, is much more expensive than a single curve addition, outweighing
the negation speedup.

However, a Koblitz curve allows multiplications by 1 + σ, 1 + σ2, etc. at the
same speed as a single curve addition, where σ is the Frobenius endomorphism.
Even better, the multiplicative walk is defined on equivalence classes modulo{
±1,±σ,±σ2, . . .

}
, producing an overall speedup close to

√
2d for a Koblitz

curve over F2d .

http://cell.scei.co.jp/pdf/CBE_Architecture_v101.pdf
http://grouper.ieee.org/groups/1363/Research/contributions/attackEC.ps
http://grouper.ieee.org/groups/1363/Research/contributions/attackEC.ps

On the correct use of the negation map in the Pollard rho method 23

The solution of ECC2K-95 by Harley et al., completed on 21 May 1998 and
announced in [16], was the first successful application of automorphisms to an
ECDLP challenge. The 2 April 1998 update of Harley’s software says

Put in multiplicative pseudo-random iteration on orbits under the

involution [-1] and the Frobenius endomorphism [w] = [(-1+sqrt(-7))/2].

- Does 125 K iterations per second with "gcc -O4" + Linux + 500Mhz Alpha

(down from 205 K but number needed is less by factor sqrt(194)).

This software hashed Wi to some j ∈ {0, 4, 10, 11, 12} and then multiplied Wi by
1 +σj to obtain Wi+1. This was joint work by Harley and Ari Singer in January
1998, according to [17].

In the meantime, an independent investigation by Gallant, Lambert, and Van-
stone had prompted Certicom to suddenly reduce its published attack-time es-
timates for ECC2K-95 and other Koblitz curves by an order of magnitude. The
reduction factor was

√
2 · 97 for ECC2K-95,

√
2 · 109 for ECC2K-108,

√
4 · 131

for ECC2K-130,
√

4 · 163 for ECC2K-163,
√

4 · 239 for ECC2K-238, and
√

2 · 359
for ECC2K-358; compare [9] to [7, Section 15].

An accompanying web page [8], dated 23 March 1998, claimed a
√

2d speedup
for Koblitz curves from normalizing x-coordinates of distinguished points modulo
powers of σ, and a

√
2 speedup for general curves from normalizing x-coordinates

of distinguished points modulo negation. However, as pointed out in [28, Section
6] two weeks later, these normalizations do not actually produce any speedup
unless the walk is also modified to be compatible with the action of σ.

According to [16], the Certicom web page was subsequently updated to add a
preprint of the paper [14], presenting a suitable multiplicative walk for Koblitz
curves. However, as discussed above, multiplicative walks do not produce a

√
2

speedup for general curves. Harley stated in [16] that a multiplicative walk “can
be used with any curve but only rarely gives a speedup”; Certicom did not apply
a
√

2 reduction to its published attack-time estimates for most curves.

Additive walks with 2-cycle detection and hash modification. In [28]
Wiener and Zuccherato independently claimed a speedup of

√
2 for arbitrary

curves, and
√

2d for Koblitz curves over F2d , using an additive walk. See also
the more recent version [29].

Wiener and Zuccherato pointed out that 2-cycles appear frequently in the
simplest negating additive walk, Wi+1 = |Wi+Rh(Wi)|. They suggested detecting
and escaping these 2-cycles as follows. Check whether h(Wi+1) matches h(Wi).
If it does, then retroactively adjust h by incrementing h(Wi), and go back to the
computation of Wi+1. If r is not very small then this adjustment will not have
to be repeated more than a few times for each i.

Duursma, Gaudry, and Morain showed in a followup analysis [12, Appendix A]
that 2-cycles occur with probability Θ(1/r), that 4-cycles occur with probability
Θ(1/r2), etc. Wiener and Zuccherato do not consider, detect, or escape 4-cycles,
so a cycle can be expected to occur within Θ(r2) iterations: e.g., millions of
iterations for r = 2048.

We comment that this is not necessarily a disaster. Setting a reasonable upper
limit on walk length in parallel collision search was standard practice at the

24 D. J. Bernstein, T. Lange, P. Schwabe

time of [28]; all walks that enter cycles, fruitless or otherwise, are aborted. If
the distinguished-point frequency is much larger than 1/r2 then almost all of
the Wiener–Zuccherato walks terminate with a distinguished point and the time
wasted by aborted walks is very small. Presumably this is what happened in the
successful experiment reported in [29, Section 5, last four lines].

However, being forced to use a distinguished-point frequency much larger than
1/r2 means that there will be many more than

√
`/r2 distinguished points by the

end of the computation. This poses increasingly severe communication problems
and storage problems as ` grows, and those problems mean that for large ` the
Wiener–Zuccherato method is unable to compete with non-negating walks.

Wiener and Zuccherato also suggested the possibility of “looking ahead two
steps instead of just one” to further reduce the frequency of cycles. A detailed
discussion of this possibility, without credit to [29], appeared much later in [6,
page 75].

Frequent doublings and cycle detection. A few months later, in slides [13,
pages 23–27] presented at ECC’98 in September 1998, Escott suggested explicitly
checking for cycles of any length.

Escott detected cycles by comparing points, rather than comparing hash val-
ues. For example, Escott detected 2-cycles by comparing Wi to Wi−2, while
Wiener and Zuccherato would have skipped the computation of Wi if h(Wi−1) =
h(Wi−2). The Wiener–Zuccherato approach saves time when a 2-cycle is found,
but loses time in the equally common case that Wi −Wi−1 = Wi−1 −Wi−2. On
the other hand, one could sort and compare hash values together with signs to
robustly check for 2-cycles, 4-cycles, etc.

Escott used a mixed walk that includes doublings, and checked for cycles only
back to the most recent doubling, using the heuristic that “No small useless cycle
includes a double.” (The statement “A cycle with at least one doubling is most
likely not fruitless” appeared much later in [6] without credit to Escott.) This
still leaves many comparisons: for example, if the 16 operations corresponding
to 16 hash values are 15 additions of precomputed points and 1 doubling, then
there will typically be 10 or 20 points after the most recent doubling, and thus 10
or 20 comparisons to those points. Eliminating branches would obviously make
this computation even more expensive.

Escott escaped a cycle by walking to a new point computed from the points in
the cycle. Escott emphasized the importance of rotational symmetry, having the
new point be independent of where the cycle was entered, so that “no collisions
are lost.” It is not clear exactly which new point was used for the successful
experiments reported in [13, page 27]. Previous comments in [13] seem to suggest
simply adding the points in the cycle, but this is highly nonrandom; for example,
adding W to −W −Rj produces −Rj , no matter what W is.

Delayed cycle detection. Another discussion of fruitless cycles appeared in
the paper [14, Sections 5–6] by Gallant, Lambert, and Vanstone, submitted for
publication in June 1998 and revised in October 1998.

To detect cycles in “labels” (e.g., cycles in x-coordinates), Gallant, Lambert,
and Vanstone proposed to “intermittently save labels and detect repetitions by

On the correct use of the negation map in the Pollard rho method 25

comparing new labels against these stored ones.” They suggested that the “save
interval” I be small, perhaps 10 or 20, since longer cycles are unlikely to occur.
Saving the current label every I iterations, and comparing the new label to the
saved label every iteration, detects all cycles of length at most I.

Note that the Gallant–Lambert–Vanstone method often needs more iterations
than the Escott method to detect a cycle. For example, a length-2 cycle is de-
tected after just 2 steps if it includes the saved label, but otherwise it waits for
the next label, continuing to cycle for nearly I extra iterations. The compen-
sating advantage is that each iteration is faster, involving only 1 comparison.
The paper also suggests that one can store “different numbers of past values” at
“different intervals” but does not elaborate.

Gallant, Lambert, and Vanstone recommended escaping a cycle by applying
a “modified iteration” to the “lexicographically least label” in the cycle. The
lexicographically least label has the obvious virtue of being easy to compute.
The subsequent paper [6] says that the modified iteration in [14] consists of
adding a precomputed point (from another pool of points, not the points used in
unmodified iterations), and that this has a good chance of returning to the same
cycle, rendering the method non-functional. However, [14] is actually much more
vague than this; it does not specify a modified iteration. There exist modified
iterations that work correctly, but [14] certainly does not make clear that the
success of the method depends heavily on the choice of the iteration.

Statistical cycle detection and escape by doubling. Duursma, Gaudry,
and Morain in [12, pages 109–110] proposed sorting the elements of a cycle,
obtaining C1 ≤ C2 ≤ · · · ≤ Ct, and then walking to 2C1 + 5C2 + · · ·+ (tt + 1)Ct.
Walking simply to 2C1 was proposed much later in [6], without credit to [12].
Neither method suffers from recurring cycles.

Combining the detection method from [14] with the escape method from [12]
would have produced a reasonably efficient negating rho method. However, it still
would not have produced a reasonably efficient branchless negating rho method;
the possibility of having to escape a cycle at any moment causes trouble for
SIMD architectures.

The same paper suggested detecting cycles by checking whether “the number
of distinguished points” does not “evolve as prescribed by the theory.” This
suggestion, like the Wiener–Zuccherato algorithm, is not competitive for large
`: it cannot be efficient unless the distinguished-point frequency is large.

More possibilities. The much more recent paper [6] by Bos, Kleinjung, and
Lenstra is the first paper on this topic that does not claim a

√
2 speedup. The

paper reports a table of 126 different non-SIMD implementation results: specif-
ically, 21 different combinations of cycle-detection methods, hash-modification
methods, and cycle-escape methods for 6 different values of r.

The most efficient algorithm identified in [6] is the following: compare and
modify hash values as in [29] to reduce the frequency of 2-cycles; “after α steps
record a length β sequence of successive points and compare the next point to
these β points” (miscredited to [14]) to detect any remaining cycle; escape any
remaining cycle by doubling the smallest element of the cycle.

26 D. J. Bernstein, T. Lange, P. Schwabe

The comparison and potential modification of hash values at each iteration
makes this algorithm perform quite poorly on SIMD architectures. Eliminating
those modifications, and relying solely on the α-β cycle-detection mechanism,
would also perform poorly: 2-cycles would arise frequently, so α would have to
be small to avoid excessive delays in detecting 2-cycles, while β would have to
be at least 4 to catch 4-cycles, requiring frequent comparisons and conditional
operations along with several stored labels for each walk.

Given the history surveyed above, it was not unreasonable of [6] to dispute
the speedup claims made in the earlier literature, and to question the possibility
of any speedup on SIMD architectures.

