
Computing Elliptic Curve Discrete Logarithms
with the Negation Map ⋆

Ping Wang and Fangguo Zhang

School of Information Science and Technology,
Sun Yat-Sen University, Guangzhou 510275, China

isszhfg@mail.sysu.edu.cn

Abstract. It is clear that the negation map can be used to speed up
the computation of elliptic curve discrete logarithms with the Pollard
rho method. However, the random walks defined on elliptic curve points
equivalence class {±P} used by Pollard rho will always get trapped in
fruitless cycles. We propose an efficient alternative approach to resolve
fruitless cycles. Besides the theoretical analysis, we also examine the per-
formance of the new algorithm in experiments with elliptic curve groups.
The experiment results show that we can achieve the speedup by a factor
extremely close to

√
2, which is the best performance one can achieve in

theory, using the new algorithm with the negation map.

Keywords: Pollard rho method, negation map, fruitless cycles, elliptic curve
discrete logarithm, random walk.

1 Introduction

The discrete logarithm problem(DLP) is an important problem in modern cryp-
tography. The security of various cryptographic systems and protocols relies on
the presumed computational difficulty of solving the discrete logarithm problem,
such as the ElGamal signature and encryption schemes [7], the U.S. governments
Digital Signature Algorithm(DSA) [8], the Schnorr signature scheme [18], etc.
Originally, they worked with multiplicative groups of finite prime fields. Once
elliptic curve cryptosystems were proposed by Koblitz [13] and Miller [15], anal-
ogous practical systems based on the DLP in groups of points of elliptic curves
over finite fields were designed [14].

For elliptic curve discrete logarithm problem(ECDLP), Pollard rho method
[17] and its parallelized variant [21] are at present known as the best generic
algorithms. These methods work for any cyclic groups and do not make use of
any additional structure present in elliptic curve groups. By exploiting the group
structure of elliptic curves over finite fields, Gallant, Lambert and Vanstone [9],
and Wiener and Zuccherato [22] pointed out that Pollard rho method can be
speedup by defining the random walk on the equivalence classes.

⋆ This work is supported by the National Natural Science Foundation of China (No.
61070168).

For point P of elliptic curves over finite fields GF (p) or binary extension fields
GF (2m), it is trivial to determine its inverse −P . Therefore, we can consider the
negation map as the equivalence relation ∼, and define the random walk on the
equivalence classes to halve the search space. Theoretically, one can achieve a
speedup by a factor of

√
2 when solving ECDLP. Furthermore, for the elliptic

curves over GF (2m) with coefficients in GF (2), called anomalous binary curves
or Koblitz curves, it is suggested to define the equivalence relation by combining
the Frobenius endomorphism and the negation map to get a speedup of

√
2m

[9] [22]. For the Jacobian group of hyperelliptic curves over finite fields, one can
obtain a speedup of

√
t if there is an automorphism of order t [6].

However, when computing ECDLP with the Pollard rho method, one define
random walks on the equivalence classes to make use of the negation map, which
always leads to fruitless cycles. Several works [3] [6] [9] [22] have analyzed the
appearance of fruitless cycles, and various methods have been proposed to deal
with them. Methods from previous works can be summarized into the following
aspects: 1) look ahead technique to reduce the short fruitless cycles, 2) iteration
functions with doubling to reduce the occurrence and recurrence of the cycles,
3) cycle detection approaches and 4) cycle escape techniques. In practice, one
may combine these methods to achieve the best performance.

The purpose of using the negation map is to obtain a speedup, hopefully by
a factor of

√
2. However, currently the general result reported in the literature is

the speedup by a factor of 1.29 [3], except for the case of combining the Frobenius
endomorphism and the negation map for the Koblitz curves. We analyze the
previously published methods to deal with the fruitless cycles, and show their
inefficiency. This may explain why it is seldom to make use of the negation map
to solve ECDLPs in practice, such as Certicom ECC challenges, except for the
cases of Koblitz curves. We note that similar efforts to achieve the speedup by
a factor close to

√
2 for SIMD (single instruction, multiple data) architectures

with similar strategy but different approach has been independently done by
Bernstein, Lange and Schwabe [2].

We describe effective alternative approaches based on cycle detection and
escape strategy to resolve fruitless cycles. More precisely, we analyze the precise
probabilities for appearance of the fruitless 2t-cycles, and discuss the previous
methods, then propose alternative iteration functions for the rho method based
on an efficient cycle detection and escape method. Besides the theoretical analy-
sis, we also compare their performances in experiments with elliptic curve groups.
The experiment results show that we can achieve the speedup by a factor ex-
tremely close to

√
2, which is the best performance one can achieve in theory,

using the new algorithm with the negation map.

The remainder of this paper is organized as follows. In Section 2, we recall
the Pollard rho method for elliptical curve discrete logarithm computation and
fruitless cycles, and also analyze the previous methods to handle these cycles. We
propose alternative iteration functions for the rho method based on an efficient
fruitless cycles detection method in section 3 and present our experiments in
section 4. We conclude the paper in section 5.

2 Preliminaries

In this section, we describe the Pollard rho method for elliptical curve discrete
logarithm computation and fruitless cycles, and then discuss the previous meth-
ods to handle these cycles.

Let E be an elliptic curve defined over a finite field Fq. Let P ∈ E be a point
of prime order n, and let ⟨P ⟩ be the prime order subgroup of E generated by
P . If Q ∈ ⟨P ⟩, then Q = kP for some integer k, 0 ≤ k < n, called the loga-
rithm of Q to the base P , denoted logPQ. The problem of finding k, given P,Q,
and the parameters of E, is known as the elliptic curve discrete logarithm prob-
lem(ECDLP). In elliptic curve cryptography, the major security consideration
is the intractability of the ECDLP.

2.1 Pollard rho Method

Pollard [17] proposed an elegant generic algorithm for the discrete logarithms
based on the Birthday Paradox and called it the rho method, which is an im-
provement over the well-known “baby-step giant-step” algorithm, attributed to
Shanks [5]. Shanks’ method allows one to compute discrete logarithms in a cyclic
group G of order n in deterministic time O(

√
n) and space for

√
n group ele-

ments. Pollard rho method also has time complexity O(
√
n) with only negligible

space requirements; it is thus preferable.
Pollard rho method works by first defining a sequence of elements that will

be periodically recurrent, then looking for a match in the sequence. The match
will lead to a solution of the discrete logarithm problem with high probability.
The two key ideas involved are the iteration function for generating the sequence
and the cycle-finding algorithm for detecting a match.

If G is any finite set and F : G → G is a mapping and the sequence (Xi) in
G is defined by the rule:

X0 ∈ G, Xi+1 = F (Xi)

this sequence is ultimately periodic. Hence, there exist unique integers µ ≥ 0 and
λ ≥ 1 such that X0, ..., Xµ+λ−1 are all distinct, but Xi = Xi+λ for all i ≥ µ. A
pair (Xi, Xj) of two elements of the sequence is called a match if Xi = Xj where
i ̸= j. Under the assumption that an iteration function F : G → G behaves
like a truly random mapping and the initial value X0 is a randomly chosen
group element, the expected number of evaluations before a match appears is
E(µ+ λ) =

√
π|G|/2 [11].

Pollard rho method can be easily generalized to compute discrete logarithms
in arbitrary finite abelian groups, such as in groups of points of elliptic curves
over finite fields. Here, we describe Teske’s r-adding walk [19], a modified version
of the rho method to compute ECDLPs.

Let P be a point of prime order n on an elliptic curve E over finite field, and
let G be the subgroup of E generated by P . For any Q ∈ G, to compute k such
that Q = kP , we divide the group G into r subsets: S1, S2, · · · , Sr of roughly

equal size, and the r-adding walk define the iteration function F : G → G as
follows:

Yi+1 = F (Yi) = Yi + (mjP + njQ) for Yi ∈ Sj and j ∈ [1, r]

where mj and nj randomly chosen from [0, n − 1] and (mjP + njQ) can be
precomputed for j = 1, 2, · · · , r. Let the initial value Y0 = a0P + b0Q where
a0 and b0 are two random numbers in [0, n − 1]. Then each Yi has the form
aiP + biQ, and the sequences of (ai) and (bi) can be updated as follows,

ai+1 = (ai +mj) mod n and bi+1 = (bi + nj) mod n.

Hence, as soon as we have a match (Yi, Yj), we have the following equation:

aiP + biQ = ajP + bjQ

Since Q = kP , this gives

ai + bik ≡ (aj + bjk) mod n

Now, if gcd(bi − bj , n) = 1, we get k = (aj − ai)(bi − bj)
−1 mod n. Due to the

method of Pohlig and Hellman [16], in practice applications the group order n
is prime, so that it is very unlikely that gcd(bi − bj , n) > 1 if n is large. Teske
[19] found experimentally that r-adding walk with r ≥ 20 perform very close to
a random walk.

2.2 Negation Map and Fruitless Cycles

Notice that given a point P = (x, y) on an elliptic curve over finite field, it is
trivial to determine its negative. That is −P = (x,−y) for the elliptic curve E
over GF (p) where p is an odd prime, and −P = (x, x+ y) for the elliptic curve
E over GF (2m). Thus, at every step of the iteration for the Pollard rho method,
both Yi and −Yi could be easily computed.

Therefore, we can consider the negation map as the equivalence relation ∼,
and define the random walk of the rho method on the equivalence classes to
reduce the size of the space that is being searched by a factor of 2. We can do
this by replacing Yi with ±Yi at each step in a canonical way. A simple way
to do this is to choose the one that has smallest y coordinate when its binary
representation is interpreted as an integer. Because the extra computational
effort in determining which of Yi and −Yi to accept is negligible, theoretically,
the expected running time of the algorithm will be reduced by a factor of

√
2.

This improvement is valid for any elliptic curve.

Fruitless Cycles. However, define the iteration function on such equivalence
classes always leads to trivial fruitless cycles. Suppose that Yi ∈ Sj and Yi+1 =
−(Yi+mjP+njQ) (with probability 1

2 , for some j), if Yi+1 ∈ Sj (with probability
1
r), then Yi+2 = −(Yi+1 + mjP + njQ) = Yi (with probability 1), thereby the

random walk falls into a useless 2-cycle. It follows that a fruitless 2-cycle starts
from a random point with probability 1

2r [6]. Let Rj = mjP +njQ, then we can
denote this 2-cycle as follows,

Pi → −(Pi +Rj) → Pi.

Similarly, the random walk may also fall into fruitless 4-cycle, 6-cycle, 8-cycle and
so on with different probabilities. Typically, a fruitless 4-cycle without proper
sub-cycle may have the form,

Pi → Pi +Rj → −(Pi +Rj +Rl) → −(Pi +Rl) → Pi.

The cycle may be entered at any of its four point. We will discuss in detail the
probabilities for a random point falls into these fruitless cycles in next section.

Using Frobenius Endomorphism. Notice that for Koblitz curves, the map
ϕ : E(F2m) → E(F2m) defined by ϕ(x, y) = (x2, y2) is called the Frobenius
endomorphism. There exists an integer λ such that ϕ(P) = λP for all points P
in G. Hence, one can define the equivalence relation by combining the Frobenius
endomorphism and the negation map to get a speedup of

√
2m [9] [22].

Based on Harley’s work on ECC2K-95/ECC-2K108 [10] and [9], Bailey et
al. [1] proposed an efficient and practical alternative iteration function for the
rho method, which can successfully avoid the fruitless cycles. The new iteration
function is given by

Yi+1 = Yi + ϕl(Yi)

where l is a function defined on the equivalence classes, which ensure that points
from the same equivalence class have the same value l. For example, [1] define it
as l = ((HW(xYi)/2) mod 8 + 3, where HW(xYi) is the Hamming weight of the
x-coordinate of Yi.

Obviously, such variant iteration function has unique properties. For some
integer i, j, t, we have

if Yi = ϕt(Yj), then Yi+1 = ϕt(Yj+1);

if Yi = −Yj , then Yi+1 = −Yj+1.

That is the variant iteration function is well defined on equivalence classes,
and can combine with the distinguished points technique to achieve a speedup
of

√
2m. However, this method can only work with Koblitz curves.

Dealing with Fruitless Cycles. To reduce the occurrence of 2-cycles, Wiener
and Zuccherato [22] propose to use a look-ahead technique which proceeds as
follows. For each step of the random walk, check the current point and the
coming next point, if both of them belong to the the same partition, then replace
the next point by a new point with certain deterministic rules, thus reduce

the probability that two successive points belong to the same partition. More
precisely, for Yi ∈ Sj define the next point as follows,

Yi+1 =

∼ (Yi +Rj) if Yi+1 /∈ Sj (1)

∼ (Yi +R(j+t) mod r) if Yi+1 /∈ S(j+t) mod r for the minimal

t in [1, r − 1] (2)

a new random point otherwise (3)

The third case is a very low probability event, expected to happen once every
rr steps. The expected cost per step of the walk is increased by a factor, which
lies between 1 + 1

r and 1 + 1
r−1 .

Although the look-ahead technique reduces the frequency of 2-cycles, they
may still occur [22]. Furthermore, Bos et al. [3] pointed out that this 2-cycles
reduction technique introduces new 2-cycles and 4-cycles, which occurs with
probability 1

2r3 and r−1
4r3 , respectively. Hence, they suggested the following alter-

native iteration function to avoid recurring fruitless cycles. If Yi ∈ Sj , then

Yi+1 =

{
∼ (Yi +Rj) if Yi+1 /∈ Sj (1)

∼ 2Yi otherwise (2)

However, it is well known that just addressing 2-cycles does not solve the
problem of fruitless cycles, because longer cycles will occur as well. Reducing
their occurrence requires additional overhead on top of what is already incurred
to reduce 2-cycles. Given that fruitless cycles are unavoidable, they must be
effectively dealt with when they occur.

Gallant et al. [9] proposed a general approach to detect cycles and to escape
from them: after α steps record a length β sequence of successive points and
compare the next point to these β points. If a cycle is detected a cycle represen-
tative point Y ′

i is chosen deterministically. We named this method as αβ-cycle
detection method. There are several possible ways to escape the cycle from Y ′

i

by a modified iteration. One may set Yi+1 = Y ′
i + R′ where R′ is a distinct

precomputed value that does not depend on the escape-point, or one may set
Yi+1 = Y ′

i + R′
j where Y ′

i ∈ Sj and R′
j from a distinct list of r precomputed

values R′
1, R

′
2, . . . , R

′
r. Bos et al. [3] analyze these cycle escape methods, and

suggested that it is better to set Yi+1 = 2Y ′
i .

Because 2-cycles are more frequent, in practice one may combine the 2-cycle
reduction method with the αβ-cycle detection and escape method to deal with
fruitless cycles.

3 New Alternative Approaches

In this section we discuss fruitless cycles in greater detail and analyze the previ-
ous methods. Then we propose alternative iteration functions for the rho method
based on an efficient cycle detection and escape method.

3.1 Motivation

To better understand the issue of fruitless cycles, we need to know the exact
probabilities for a random point falls into fruitless 2t-cycles, where t equal to
1, 2, 3, . . . , and so on. More precisely, we have the following fact.

Theorem 1. When computing discrete logarithms with Pollard rho method, de-
fine the r-adding walk on equivalence of the negation map, then the probability

for a random point falls into fruitless 2t-cycle is c t!(r−1)!
2tr2t−1(r−t)! , where c ∈ [12 , 1]

is a constant for each positive integer t.

Proof. It is clear that the probability for a random point falls into a fruitless
2t-cycle without considering excluding certain sub-cycles is

Pr(2t-cycle with sub-cycles) =
r − 1

r
· r − 2

r
· · · r − (t− 1)

r
· t

2r
· t− 1

2r
· · · 1

2r

=
t!(r − 1)!

2tr2t−1(r − t)!

However, the above probability for a random point falls into a fruitless 2t-
cycle include the cases that the point falls into certain sub-cycles with the cycle
length less than 2t. The sub-cycles accounts for a certain proportion of the total
cases, thus

Pr(2t-cycle) = c · Pr(2t-cycle with sub-cycles), where c ∈ (0, 1].

For the trivial case t = 1, there is no sub-cycle, then c = 1.
For the cases t = 2 and 3, the sub-cycles accounts for half of the total cases,

that is c = 1
2 .

For the rest of cases t ≥ 4, there is always sub-cycles, hence c < 1. For each
t ≥ 4, let N2, N4, N6, . . ., N2(t−1) be the numbers of sub-2-cycles, sub-4-cycles,

sub-6-cycles, . . ., sub-2(t− 1)-cycles, and let Am
n denote n!

(n−m)! . Then we have

N2 = At−2
t−1

N4 = At−3
t−2(A

1
2 −A0

1) , At−3
t−2M4

N6 = At−4
t−3(A

2
3 −A1

2 −A0
1M4) , At−4

t−3M6

N8 = At−5
t−4(A

3
4 −A2

3 −A1
2M4 −A0

1M6) , At−5
t−4M8

· · ·
N2(t−1) = A0

1(A
t−2
t−1 −At−3

t−2 −At−4
t−3M4 − . . .−A1

2M2(t−3) −A0
1M2(t−2))

It is easy to check that, for t ≥ 4

t−1∑
i=1

N2i <
At−1

t

2

thus, we have

c =
At−1

t −
∑t−1

i=1 N2i

At−1
t

>
1

2

Combine all the above cases, we have

Pr(2t-cycle) = c
t!(r − 1)!

2tr2t−1(r − t)!
, where c ∈ [

1

2
, 1].

�

According to Theorem 1, we present the precise probabilities for a random
point falls into fruitless 2t-cycles in Table 1, where t can be 1, 2, 3 and so on,
and r equals to 20, 128 and 1024, the typical values suggested by the literature.

Table 1. Probabilities to fall into fruitless 2t-cycles with different r.

t c Pr(2t-cycles) r = 20 r = 128 r = 1024

1 1 1
2r

2−5.3 2−8.0 2−11.0

2 1
2

r−1
4r3

2−10.7 2−16.0 2−22.0

3 1
2

3(r−1)(r−2)

8r5
2−14.6 2−22.4 2−31.4

4 13
24

39(r−1)(r−2)(r−3)

48r7
2−18.0 2−28.4 2−40.3

5 71
120

71(r−1)(r−2)···(r−4)

32r9
2−21.2 2−34.0 2−48.9

6 461
720

461(r−1)(r−2)···(r−5)

64r11
2−24.3 2−39.3 2−57.2

7 3447
5040

3447(r−1)(r−2)···(r−6)

128r13
2−27.2 2−44.5 2−65.3

8 29093
40320

29093(r−1)(r−2)···(r−7)

256r15
2−30.1 2−49.5 2−73.2

9 39049
51840

273343(r−1)(r−2)···(r−8)

512r17
2−32.9 2−54.4 2−81.0

10 113173
145152

2829325(r−1)(r−2)···(r−9)

1024r19
2−35.7 2−59.1 2−88.6

11 10666301
13305600

31998903(r−1)(r−2)···(r−10)

2048r21
2−38.5 2−63.7 2−96.1

12 392743957
479001600

392743957(r−1)(r−2)···(r−11)

4096r23
2−41.4 2−68.2 2−103.5

13 1040212291
1245404160

5201061455(r−1)(r−2)···(r−12)

8192r25
2−43.3 2−71.6 2−109.8

14 73943424413
87178291200

73943424413(r−1)(r−2)···(r−13)

16384r27
2−47.3 2−77.0 2−118.0

15 8028493013
9340531200

280997255455(r−1)(r−2)···(r−14)

8192r29
2−50.5 2−81.2 2−125.1

Notice that the probability to enter a fruitless cycle decrease with increasing
r. However, it [3] shows that increasing r-values always leads to poor performance
for the iteration functions. Generally, r cannot be chosen large enough to both
avoid fruitless cycles and achieve adequate performance. Therefore, we need
certain techniques to deal with fruitless cycles.

As we mentioned above, currently the general solution is combining the 2-
cycle reduction method with the αβ-cycle detection and doubling-based escape

to achieve a speedup by a factor of 1.29 using the negation map, which is less
than the speedup factor of

√
2 in theory. Bos et al. [3] concluded that “We

measured to what extent our failure to achieve a speedup by a factor of
√
2 can

be blamed on cycle detection and escape and other overheads”. Therefore, we
are expected to provide a better cycle detection method.

3.2 The Main Algorithm

To solve the fruitless cycles, our basic idea is quite simple. The random walk
proceeds as usual, whenever it falls into a fruitless cycle, it can escape the cycle
from certain escape-point. If Yi ∈ Sj , then our iteration function can be defined
as follows,

Yi+1 =

{
∼ 2Yi if Yi is an escape point (1)

∼ (Yi +Rj) otherwise (2)

To make the above iteration function efficient, one needs an effective method
to detect the fruitless cycles of various length with different probabilities and
an efficient way to determine proper escape point. The main algorithm for the
solution works as follows: We fix an integer N and use two auxiliary variables,
say Ymin and Ynew, where Ymin is the minimum point of N successive points
produced by the iteration function F , and Ynew is the newly computed minimum
point of next N successive points, here the minimum point means the point has
the minimum x-coordinate (or y-coordinate). If Ynew = Ymin, which means the
random walk has fall into certain fruitless cycle, we can assign the minimum point
as the escape point and escape the cycle by double Ymin. Otherwise, replace Ymin

by Ynew, and continue to find the next Ynew. That is, during the random walk
we keep the minimum point of N successive points, if the random walk entered
certain fruitless cycle, we will get collision between the minimum points very
soon. By properly set the integer N , one can detect and escape these fruitless
cycles whose length less than or equal to N .

Generally, one can determine the parameter N according to Table 1, which
means N varies with different r and the size of the group G. Typically, one may
set N = 12, 16, 20. However, we will show later that when the random walk falls
into fruitless cycles, on average it needs about 2.75N additional iterations before
we detect it using the above algorithm. Hence it will be inefficient to detect the
more frequent fruitless 2-cycles and 4-cycles, especially when r is small.

Therefore, it is necessary to improve the above algorithm to detect the short
cycles more efficiently, and we illustrate as follows: For efficiency, generally we as-
sume N is multiple of 4, here we demonstrate by setting N = 16. For instance, we
want to find the minimum point Ynew from 16 successive points {Y1, Y2, . . . Y16}.
We proceed as follows, first we compare Y1 and Y2, Y3 and Y4, respectively. Let
Y1,2 = min(Y1, Y2), and Y3,4 = min(Y3, Y4). Then we compare Y1,2 and Y3,4, if
Y1,2 = Y3,4, the random walk has entered fruitless cycle, we just set Y1,2 be the
escape point, otherwise let Y1,4 = min(Y1,2, Y3,4), which is the minimum point
of Y1, Y2, Y3 and Y4.

Similarly, we then compare Y5 and Y6, Y7 and Y8, respectively. Let Y5,6 =
min(Y5, Y6), and Y7,8 = min(Y7, Y8). If Y5,6 = Y7,8, we set Y5,6 be the escape
point, otherwise let Y5,8 = min(Y5,6, Y7,8), which is the minimum point of Y5,
Y6, Y7 and Y8. Then we compare Y1,4 and Y5,8, if Y1,4 = Y5,8, the random
walk has entered fruitless cycle, we set Y1,4 be the escape point, otherwise let
Y1,8 = min(Y1,4, Y5,8), which is the minimum point of {Y1, Y2, . . . Y8}.

We show the above procedures in the following Fig. 1.

Fig. 1. Find the minimum point of {Y1, Y2, . . . Y8} and detect the fruitless 2-cycles or
4-cycles, simultaneously. For efficiency, when r is small, e.g. r = 20, it is necessary to
check whether Y1,4 = Y5,8 to detect the possible 4-cycles. However, one may ignore
such check and just set Y1,8 = min(Y1,4, Y5,8) when r is big, e.g. r = 1024, where the
possible 4-cycles are rare.

In the same way, we can get Y9,16 the minimum point of {Y9, Y10, . . . Y16},
and let Ynew = min(Y1,8, Y9,16), which is the minimum point of {Y1, Y2, . . . Y16}.
Now, if Ynew = Ymin, which means the random walk has fall into certain fruitless
cycle, we set the minimum point Ymin be the escape point. Otherwise, replace
Ymin by Ynew, and continue to find the next Ynew, which is the minimum point
of next 16 successive points.

Remark 1. In fact to find the minimum one from two points, it is not necessary
to find the one with exact minimum x-coordinate (or y-coordinate). For the new
algorithm, one can define the minimum point as the point whose least 32 bits
is the minimum when interpreted as an integer. Hence the cost of operation to
choose the minimum one from two points is much cheaper than compare two
points or find the one with exact minimum x-coordinate (or y-coordinate).

Obviously, when we set certain point Yi as the minimum point or the escape
point, we need track the corresponding indices ai and bi, such that Yi = aiP +
biQ. Note that the above algorithm leads to the new iteration function we have
defined in this section. More important, Yi+1 still depends solely on Yi, which is
a requirement for distinguished point method to work.

Here, we demonstrate the new iteration function with the parallelized Pol-
lard rho, that is on input an initial point Y0, the algorithm proceed with the
new iteration function, and finally return a distinguished point. Assuming the
function F : G → G is a traditional iteration function, that is, if Yi ∈ Sj ,

F (Yi) =∼ (Yi + Rj). Let DP be the set of distinguished points and EP be a
variable to keep escape point. Then we have the following Algorithm 1 for the
typical case N = 16.

Algorithm 1 New Algorithm for Pollard rho with the Negation Map

Input: Initial value Y0

Output: A distinguished point ∈ DP
1: Ymin ← 0, Ynew ← 0, EP ← 0
2: while True do
3: if EP ̸= 0 then
4: Y0 ← 2EP , EP ← 0
5: end if
6: if Y0 ∈ DP then
7: return Y0

8: end if
9: for i = 1 to 4 do
10: for j = 1 to 4 do
11: Yj ← F (Yj−1)
12: if Yj ∈ DP then
13: return Yj

14: end if
15: end for
16: Y 1i ← min(Y1, Y2), Y 2i ← min(Y3, Y4)
17: if Y 1i = Y 2i then
18: EP ← Y 1i
19: break
20: else
21: Y 3i ← min(Y 1i, Y 2i)
22: end if
23: if i = 2 then
24: Y 41 ← min(Y 31, Y 32)
25: end if
26: end for
27: Y 42 ← min(Y 33, Y 34), Ynew ← min(Y 41, Y 42)
28: if Ynew = Ymin then
29: EP ← Ymin

30: break
31: else
32: Y0 ← Y4

33: end if
34: end while

In fact, when we detect a cycle according to the new algorithm, we need to
check whether it is a valid cycle, which figures out the ECDLP, or an invalid
cycle. However, the probability that such cycle with length less than or equal to
N is valid can be neglected. Therefore, for efficiency we just omit such check.

3.3 Analysis

For the new algorithm, there is a probability that we can not detect the colli-
sion or cycle immediately when it happens. On average it needs to compute 3
additional points to detect a fruitless 2-cycle and about 7 additional points to
detect a fruitless 4-cycle when the random walk reachs certain cycle.

For the rest fruitless 2t-cycles with much smaller probabilities, where 4 <
2t ≤ N , the new algorithm detect them by checking whether Ynew = Ymin.
Generally with high probability, the new algorithm will detect such cycles within
certain additional points. More precisely, we have the following theorem.

Theorem 2. Under the assumption that the iteration function F : G → G
is a random mapping, one detect fruitless 2t-cycles with 4 ≤ 2t ≤ N using
Algorithm 1. When the random walk reach certain fruitless cycle, the number
of additional iterations before finding and escaping the cycle is (k + 1

2)N with

probability 1 − 1
2 (

2
3)

(k−1) where k = 0, 1, 2, · · · . That is, the expected number of
additional iterations is 2.75N .

Proof. Let Ii be the set that consists of the ith N successive values generated
by iteration function F . That is,

Ii = {Yj | iN ≤ j ≤ (i+ 1)N − 1, j ≥ 0}, for i = 0, 1, 2, · · · , ⌈ |G|
N

⌉ − 1.

For finite group G, the sequence produced by F is eventually period. That is,
for any fixed F and Y0, there exist certain integers m and n, such that

Im
∩

In ̸= ∅, m < n.

and
Ii
∩

Ij = ∅, for 0 ≤ i, j < n and i ̸= j.

and also
Im+i

∩
In+i ̸= ∅, for i ≥ 0.

To prove the theorem, we divide it into two cases, that is k = 0 and k =
1, 2, · · · . For k = 0, let minm and minn be the minimum value of Im and In,
then

Pr(minm = minn) =
1

N

N−1∑
i=0

(
1

N
+

2

N
+ · · ·+ N − i

N
)

1

N − i

=
N2 + 3N + 3

4N2

≈ 1

4

That is, the probability of successfully detecting the collision within the first
two intersection sets is 1

4 .

For each of k = 1, 2, · · · , we notice that, for two (intersected) sets Ii and Ij ,
let mini and minj be the minimum value of Ii and Ij , respectively, we have

Pr(mini = minj) = |Ii
∩

Ij |2/N2, where |Ii
∩

Ij | denotes the cardinality of Ii
∩

Ij .

Therefore, we have

Pr(minm+k = minn+k) =
1

N
(
1

N2
+

22

N2
+ · · ·+ (N − 1)2

N2
)

=
2N2 − 3N + 1

6N2

≈ 1

3

Combining the above two cases, under the assumption that the iteration
function F : G → G is a random mapping, one detect fruitless 2t-cycles with
4 ≤ 2t ≤ N using Algorithm 1, the number of additional iterations before finding
and escaping the cycle from the minimum values is (k + 1

2)N with probability

1− 1
2 (

2
3)

(k−1) where k = 0, 1, 2, · · · .
Hence, the expected number of additional iterations is

(1− 1

2
(
2

3
)−1)

1

2
N +

∞∑
k=1

((1− 1

2
(
2

3
)k−1)− (1− 1

2
(
2

3
)k−2))(k +

1

2
)N ≈ 2.75N

�

Therefore, the new algorithm is a probabilistic algorithm. There is a proba-
bility that we can not detect the collision or cycle immediately when it happens.
However, with high probability, the random walk will escape the cycle within
certain additional iterations.

Compare to the traditional iteration function without negation map, on av-
erage the new algorithm introduce one integer comparison for each iteration to
track certain minimum point. For each 2-cycle and 4-cycle, on average it needs 3
additional iterations and 7 additional iterations to detect and escape the cycle.
For the rest 2t-cycles, where 2t ≤ N , it is expected to compute 2.75N additional
iterations to detect and escape the cycle. As a result, we resolved the fruitless
cycles with negligible additional operations, that is we can achieve the speedup
by a factor extremely close to

√
2 using the new algorithm with the negation

map.

4 Experiments

To evaluate the efficiency of the new algorithm, we implemented and compared
the parallelized Pollard rho method with the negation map and without the
negation map for the Certicom ECCp-131 challenge [4]. We also examined the

performances of the new algorithm with different r and N . In this section, we
describe these experiments and analysis the results.

For our experiments, we briefly introduce the elliptic curve groups over prime
fields and the notation we use in the following. Let q be a prime and let Fq denote
Fq denote the field Zq of integers modulo q. Let a, b ∈ Fq such that 4a3+27b2 ̸= 0.
Then the elliptic curve Fq is defined through the equation

Ea,b : y
2 = x3 + ax+ b.

The set of all solutions (x, y) ∈ Fq × Fq of this equation, together with the
element O called the “point at infinity”, forms a finite abelian group which we
denote by Ea,b(Fq). Usually, this group is written additively. Let P ∈ Ea,b(Fq)
be a point of prime order n, let G denote the subgroup of E generated by P .
Given Q ∈ G, determine the integer 0 ≤ k < n such that Q = kP .

The parameters can be found online on Certicom’s website [4]. For the iter-
ation function, we use the Teske’s r-adding walk, and set r be 20, 128 and 1024,
respectively.

Let W = (x, y) be any point of G, we define the partition of G into r subsets
S1, S2, · · · , Sr as follows. First we compute a rational approximation A of the

golden ratio
√
5−1
2 , with a precision of 2 + ⌊log10(qr)⌋ decimal places. Let

u∗ : G → [0, 1), (x, y) →

{
Ax− ⌊Ax⌋ if W ̸= O
0 if W = O

(1)

where Ax− ⌊Ax⌋ is the non-negative fraction part of Ax. Then let

u : G → {1, 2, · · · , r}, u(W) = ⌊u∗(W) · r⌋+ 1

and
Si = {W ∈ G : u(W) = i}

This method is originally from Knuth’s multiplicative hash function [12] and
suggested by Teske [20]. From the theory of multiplicative hash functions we
know that among all numbers between 0 and 1, choosing A as a rational approx-

imation of
√
5−1
2 with a sufficiently large precision leads to the most uniformly

distributed hash values, even for non-random inputs.
The purpose of our experiments is to examine the impact of additional oper-

ations to resolve fruitless cycles on the performance of the rho method. In more
detail, we evaluate the numbers of iterations until a distinguished point is found
for the parallelized Pollard rho method with the negation map and without the
negation map, respectively. Generally, we first define the distinguishing property,
and compute certain number of distinguished points using the two different ways,
and then count the mean value of the numbers of iterations until a distinguished
point is found for each way.

More precisely, to break Certicom ECCp-131, one may define the distinguish-
ing property as the Hamming weight of the x-coordinate of the point less than
32 or 33. However, to examine the performance of the new algorithm, we define

the distinguishing property as the Hamming weight of the least 32 bits of the
x-coordinate of the point less than 8. Each point has probability almost exactly
(
(
32
0

)
+
(
32
1

)
+ · · ·+

(
32
7

)
)/232 ≈ 2−9.8937 of being a distinguished point. That is, it

is expected to take about 951.26 iterations to find a distinguished point. In our
experiments, we collect 1 million distinguished points for each way and count
the corresponding mean value of the numbers of iterations until a distinguished
point is found.

For Pollard rho with the negation map, we set r = 20, 128 and 1024, and
choose N = 14, 8 and 6, respectively. The experiment results are given in Table
2. It confirms our theoretic analysis that the additional iterations introduced by
dealing with the fruitless cycles can be neglected.

Table 2. The mean value of the numbers of iterations for each million samples

r Iterations without Negation Map Iterations with Negation Map

20 951.17 951.66

128 949.94 952.37

1024 951.02 949.53

In the experiment, we also examined the performances of the new algorithm
to detect 2-cycles and 4-cycles within N iterations, it shows that when r is big,
e.g. r = 1024, it is not necessary to detect the fruitless 4-cycles within the N
iterations.

5 Conclusion

In this paper, we examined the exact probabilities for a random point falls into
fruitless 2t-cycles when computing ECDLPs using Pollard rho method with the
negation map. We proposed effective alternative approaches based on cycle de-
tection and escape strategy to resolve fruitless cycles. In conclusion, we resolved
the fruitless cycles with negligible additional operations, one integer comparison
for each iteration to track certain minimum point, that is we can achieve the
speedup by a factor extremely close to

√
2 using the new approach with the

negation map.

References

1. D. V. Bailey, L. Batina, D. J. Bernstein, P. Birkner, J. W. Bos, H. Chen, C. Cheng,
G. V. Damme, G. Meulenaer, L. J. D. Perez, J. Fan, T. Guneysu, F. Gurkaynak,
T. Kleinjung, T. Lange, N. Mentens, R. Niederhagen, C. Paar, F. Regazzoni, P.
Schwabe, L. Uhsadel, A. V. Herrewege, and B. Yang, “Breaking ECC2K-130”,
Cryptology ePrint Archive, Report 2009/541, 2009.

2. D. J. Bernstein, T. Lange and P. Schwabe, “On the correct use of the negation
map in the Pollard rho method”, To appear in PKC2011, 2011.

3. J. W. Bos, T. Kleinjung, A. K. Lenstra, “On the Use of the Negation Map in the
Pollard Rho Method”, In Algorithmic Number Theory (ANTS) 2010, volume 6197
of LNCS, pp. 67-83, 2010.

4. Certicom, Certicom ECC Challenge, http://www.certicom.com/pdfs/cert ecc cha-
llenge.pdf, 2009.

5. H. Cohen, “A Course in Computational Algebraic Number Theory”, volume 138
of Graduate Texts in Mathematics. Springer-Verlag, 1993.

6. I. Duursma, P. Gaudry and F. Morain, “Speeding up the discrete log computation
on curves with automorphisms”, ASIACRYPT 1999, LNCS 1716, pp. 103-121,
Springer, Heidelberg, 1999.

7. T. ElGamal, “A public-key cryptosystem and a signature scheme based on discrete
logarithms”, IEEE Transactions on Information Theory, volume 31, pp. 469-472,
1985.

8. FIPS 186-2, “Digital signature standard”, Federal Information Processing Stan-
dards Publication 186-2, February 2000.

9. R. Gallant, R. Lambert and S. Vanstone, “Improving the parallelized Pollard
lambda search on binary anomalous curves”, Mathematics of Computation, Vol-
ume 69, pp. 1699-1705, 1999.

10. R. Harley, Elliptic curve discrete logarithms project, Avaliable from
http://pauillac.inria.fr/∼harley/ecdl/.

11. B. Harris, “Probability Distribution Related to Random Mappings”, Ann. Math.
Statist. 31, pp. 1045-1062, 1960.

12. D. E. Knuth, “The Art of Computer Programming”, Vol. 3, 2nd ed, Addison-
Wesley, Reading, Mass, 1981.

13. N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation, 48, pp.
203-209, 1987.

14. A. Menezes, P. van Oorschot, and S. A. Vanstone, “Handbook of applied cryptog-
raphy”, CRC Press, 1996.

15. V. Miller, “Use of elliptic curves in cryptography”, Advances in Cryptology: pro-
ceedings of Crypto’85, LNCS 218, pp. 417-426, New York: Springer-Verlag, 1986.

16. S. C. Pohlig and M. E. Hellman, “An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance”, IEEE-Transactions on Information
Theory 24, pp. 106-110, 1978.

17. J. Pollard, “Monte Carlo methods for index computation mod p”, Mathematics of
Computation, 32, pp. 918-924, 1978.

18. C. P. Schnorr, “Efficient signature generation by smart cards”, Journal of Cryp-
tology, volume 4, pp. 161-174, 1991.

19. E. Teske, “Speeding up Pollard’s rho method for computing discrete logarithms”,
in Algorithmic Number Theory Symposium (ANTS IV), LNCS 1423, Springer-
Verlag, pp. 541-553, 1998.

20. E. Teske, “On random walks for Pollard’s rho method”, Mathematics of Compu-
tation 70(234), pp. 809-825, 2001.

21. P. van Oorschot and M. Wiener, “Parallel collision search with cryptanalytic ap-
plications”, Journal of Cryptology, 12, pp. 1-28, 1999.

22. M. Wiener and R. Zuccherato, “Faster attacks on elliptic curve cryptosystems”, Se-
lected Areas in Cryptography’98, LNCS 1556, pp. 190-120, Springer-Verlag, 1998.

