
Minimizing Non-interactive Zero-Knowledge Proofs Using Fully

Homomorphic Encryption

Jens Groth∗

University College London

January 6, 2011

Abstract

A non-interactive zero-knowledge proof can be used to demonstrate the truth of a statement
without revealing anything else. It has been shown under standard cryptographic assumptions
that non-interactive zero-knowledge proofs of membership exist for all languages in NP. However,
known non-interactive zero-knowledge proofs of membership of NP-languages yield proofs that
are larger than the corresponding membership witnesses.

We investigate the question of minimizing the communication overhead involved in making
non-interactive zero-knowledge proofs and show that if fully homomorphic encryption exists then
it is possible to minimize the size of non-interactive zero-knowledge proofs and get proofs that
are of the same size as the witnesses.

Our technique is applicable to many types of non-interactive zero-knowledge proofs. We
apply it to both standard non-interactive zero-knowledge proofs and to universally composable
non-interactive zero-knowledge proofs. The technique can also be applied outside the realm of
non-interactive zero-knowledge proofs, for instance to get witness-size interactive zero-knowledge
proofs in the plain model without any setup.

Keywords: Non-interactive zero-knowledge proofs, fully homomorphic encryption.

1 Introduction

Non-interactive zero-knowledge (NIZK) proofs [BFM88] allow the construction of a proof that can
convince others about the truth of a statement. We will consider statements of the form x ∈ L,
where L can be an arbitrary language in NP. While the proof should guarantee the truth of the
statement it should not reveal anything else. More precisely, we require that the NIZK proof is
complete, sound and zero-knowledge.

Completeness: Given a witness w for the statement x ∈ L there is an efficient algorithm to
construct a convincing proof π.

Soundness: A malicious prover should not be able to convince anybody if the statement is false.

We focus on unconditional soundness, where even an adversary with infinite computing power
cannot create a convincing proof π for x /∈ L.

Zero-knowledge: A malicious verifier learns nothing but the truth of the statement. In particular,
the proof π does not reveal the witness w that the prover used when constructing the proof π.

∗Supported by Engineering and Physical Sciences Research Council grant number EP/G013829/1.

1

Only languages in BPP have NIZK proofs in the plain model without any setup [Ore87, GO94,
GK96]. Blum, Feldman and Micali [BFM88] therefore suggested the common reference string model,
where the prover and the verifier have access to a bit-string that is assumed to have been generated
honestly according to a specific distribution. The common reference string can for instance be
generated by a trusted third party or by a set of parties executing a multi-party computation
protocol. Groth and Ostrovsky [GO07] has as an alternative suggested NIZK proofs in the multi-
string model, where many parties generate a random string and the security of the NIZK proof relies
on a majority of the strings being honestly generated.

1.1 Related work

NIZK proofs have many applications, ranging from early chosen-ciphertext secure public-key cryp-
tosystems [DDN00] to recent advanced signature schemes [BW06, CGS07]. There is therefore a
significant body of research dealing with NIZK proofs.

Blum, Feldman and Micali [BFM88] proposed an NIZK proof for all of NP based on a number
theoretic assumption related to factoring. Feige, Lapidot and Shamir [FLS99] gave an NIZK proof
for all of NP based on the existence of trapdoor permutations.

While these results established the existence of NIZK proofs based on general assumptions,
other works have aimed at defining stronger security properties such as non-malleability [Sah01],
robustness [DDO+02] and universal composability [Can01, GOS06b].

There has been significant progress in reducing the complexity of NIZK proofs based on general
assumptions [Dam92, DDP02, KP98, Gro10] and Groth, Ostrovsky and Sahai [GOS06b, GOS06a,
Gro06, GS08] have constructed practical NIZK proofs using techniques from pairing-based cryptog-
raphy. Recently Gentry [Gen09b, Gen09a] proposed a fully homomorphic encryption scheme and
demonstrated that fully homomorphic encryption can be used to construct NIZK proofs that are
proportional to the size of the witness.

1.2 Our contribution

We construct NIZK proofs for arbitrary NP-languages. The size of the common reference string is
poly(k) and the size of the proof is essentially the same as the witness, i.e., |π| = |w|+poly(k) where
k is the security parameter.

In Table 1, we compare our NIZK proofs with the current state of the art NIZK proofs for
Circuit Satisfiability based on respectively trapdoor permutations [Gro10] and specific cryptographic
assumptions [GOS06b, GOS06a, Gro10, Gen09a]. All of these NIZK proofs are publicly verifiable
by anybody who sees the common reference string, the statement and the proof.

CRS size Proof size Assumption

Groth [Gro10] |C| · poly(k) |C| · poly(k) Trapdoor perm.
GOS [GOS06b, GOS06a] poly(k) |C| · poly(k) Pairing-based
Groth [Gro10] |C| · polylog(k) + poly(k) |C| · polylog(k) + poly(k) Naccache-Stern
Gentry [Gen09a] poly(k) |w| · poly(k) + poly(k) FHE and NIZK

This work poly(k) |w|+ poly(k) FHE and NIZK

Table 1: Comparison of NIZK proofs for security parameter k, circuit size |C| and witness size |w|.

Our result is quite general and applies not only to standard NIZK proofs, but also to NIZK proofs
with stronger security properties such as simulation soundness and non-malleability [Sah01] and

2

universal composability [Can01]. Universally composable NIZK proofs have the property that they
retain their security properties in any environment, even an environment where arbitrary protocols
are running concurrently with the NIZK proof. We propose a universally composable NIZK proof
that is secure against adaptive malicious adversaries assuming provers are able to securely erase
data from their system after constructing their proofs. The universally composable NIZK proofs
consist of |w|+ poly(k) bits.

1.3 Our technique

Gentry in his seminal paper [Gen09b] presented a fully homomorphic public-key cryptosystem based
on lattices. A fully homomorphic encryption scheme allows taking two ciphertexts and computing
new ciphertexts containing the sums or products of their plaintext even if the secret key is unknown.
More generally we can take t ciphertexts and compute a new ciphertext containing the evaluation
of an arbitrary circuit on the plaintexts. Recent works have aimed at improving the efficiency and
proposing fully homomorphic encryption schemes under other assumptions [SV10, vDGHV10, SS10].

There are many applications of fully homomorphic encryption schemes. It is not known whether
they imply the existence of NIZK proofs though. However, if NIZK proofs do exist then fully
homomorphic encryption can be used to reduce the size of the proofs. Gentry [Gen09a] showed
that using fully homomorphic encryption it is possible to get NIZK proofs where the proof size is
proportional to the witness size. If we are looking at the satisfiability of a large circuit with a few
input gates, i.e., a small witness for satisfiability, this is a significant improvement over other NIZK
proofs that tend to grow proportionally to the circuit size.

Gentry proposed to encrypt every bit of the witness using a fully homomorphic encryption
scheme. Using the operations of the fully homomorphic cryptosystem it is then possible to eval-
uate the circuit on the plaintexts to get a ciphertext that contains the output. Using an NIZK
proof the prover then constructs a proof for the public key being valid, the encrypted inputs being
valid ciphertexts and the output ciphertext being an encryption of 1. Since the proof contains |w|
ciphertexts and |w| proofs of their correctness the total complexity is |w| · poly(k).

In this paper, we present a simple modification of Gentry’s NIZK proof that decreases the proof
size to |w| + poly(k). The idea is to encrypt the witness w using a symmetric key cryptosystem,
for instance using a one-time pad with a pseudorandom string, and then use the fully homomorphic
encryption both to decrypt the encrypted witness and then evaluate the circuit on the witness.

More precisely, the prover will given a witness w for the satisfiability of a circuit C construct
(u, pk, s̄), where u is an encryption of w and pk is a public key for the fully homomorphic encryption
scheme and s̄ is a fully homomorphic encryption of the secret seed s used to construct u. Now the
prover gives an NIZK proof for pk being a valid public key, s̄ being a valid encryption of a seed s
and that after decrypting u using s and evaluating C on the resulting plaintext the output is 1. The
length of u is |w| and the polynomially many other components are of size poly(k) each so the total
size of the proof is |w|+ poly(k).

Using the fully homomorphic cryptosystem to first evaluate a symmetric key encryption and then
use the resulting value afterwards is applicable in many situations. We apply it to non-interactive
zero-knowledge proofs here, but one could for instance also use the technique to get interactive
zero-knowledge proofs in the plain model with a communication complexity of |w|+ poly(k). This
compares favorably with the current state of the art [KR08, IKOS09] that yield interactive proofs
with communication complexity growing proportionally to the witness size or linearly in the circuit
size.

3

2 Preliminaries

Given two functions f, g : N → [0, 1] we write f(k) ≈ g(k) when |f(k) − g(k)| = O(k−c) for every
constant c > 0. We say that f is negligible if f(k) ≈ 0 and that f is overwhelming if f(k) ≈ 1.

We write y = A(x; r) when the algorithm A on input x and randomness r, outputs y. We write
y ← A(x) for the process of picking randomness r at random and setting y = A(x; r). We also write
y ← S for sampling y uniformly at random from the set S.

We will now define non-interactive zero-knowledge proofs and describe three tools that will
be used in our constructions of minimal size NIZK proofs, namely fully homomorphic encryption
schemes, pseudorandom generators and strong one-time signatures.

2.1 Fully homomorphic public-key encryption

A fully homomorphic bit-encryption scheme enables computation on encrypted bits. There is an
evaluation algorithm Eval that takes as input an arbitrary Boolean circuit and an appropriate
number of ciphertexts and outputs a new ciphertext containing the output of the circuit evaluated
on the plaintexts.

The cryptosystem consists of four algorithms (KFHE, E,D,Eval). The probabilistic polynomial
time key generation algorithm KFHE on input 1k (and randomness ρ ← {0, 1}`KFHE

(k)) outputs a
public key pk and a decryption key dk. The probabilistic polynomial time encryption algorithm
E given a public key pk and a bit b outputs a ciphertext c. The deterministic polynomial time
decryption algorithm D given a public key pk and a ciphertext c returns a bit b or an error symbol
⊥. Finally, the deterministic polynomial time evaluation algorithm Eval takes a public key pk, a
Boolean circuit C with t input gates, and t ciphertexts as input and returns a ciphertext. We require
that the cryptosystem is compact, which means that there is a polynomial upper bound `C(k) on
the size of the ciphertexts output by Eval.

We will often encrypt an entire bit-string one bit at a time. We therefore define Epk(m) to be the
tuple (Epk(m1), . . . , Epk(m|m|)), wherem1, . . . ,m|m| are the bits ofm. When being explicit about the
randomness used, we define Epk(m; r̄) = (Epk(m1; r1), . . . , Epk(m|m|; r|m|)) for r̄ = (r1, . . . , r|m|) ∈
({0, 1}`E(k))|m|.

The properties we need from the fully homomorphic encryption scheme is correctness and indis-
tinguishability under chosen plaintext attack as defined below.

Definition 1 (Correctness) (KFHE, E,D,Eval) is (perfectly) correct if for all Boolean circuits C
and all inputs m of appropriate length we have

Pr
[
(pk, dk)← KFHE(1k); m̄← Epk(m); v = Evalpk(C; m̄) : Ddk(v) = C(m)

]
= 1.

Definition 2 (IND-CPA security) (KFHE, E,D,Eval) is indistinguishable under chosen plain-
text attack (IND-CPA secure) if for all non-uniform polynomial time A we have

Pr
[
(pk, dk)← KFHE(1k); c← Epk(0) : A(c) = 1

]
≈ Pr

[
(pk, dk)← KFHE(1k); c← Epk(1) : A(c) = 1

]
.

2.2 Pseudorandom generators

A length-flexible pseudorandom generator is a deterministic polynomial time algorithm G that on
input (s, `) where s ∈ {0, 1}`G(k) for a polynomial `G specified in the description of G returns an
`-bit string. Pseudorandomness means that G’s output looks random, which we now define formally.

4

Definition 3 (Pseudorandom generator) G is a pseudorandom generator if for all non-uniform
polynomial time A and all polynomially bounded ` we have

Pr
[
s← {0, 1}`G(k); y = G(s, `(k)) : A(y) = 1

]
≈ Pr

[
y ← {0, 1}`(k) : A(y) = 1

]
.

Length-flexible pseudorandom generators can be constructed from one-way functions [HILL99]. The
existence of fully homomorphic encryption therefore implies the existence of length-flexible pseudo-
random generators.

2.3 Strong one-time signatures

A strong one-time signature scheme consists of three algorithms (KSIG, Sign,Vfy). The key gen-
eration algorithm KSIG is a probabilistic polynomial time algorithm that on input 1k returns a
verification key vk and a signing key sk. The signing algorithm Sign is a probabilistic polynomial
time algorithm that on input sk and an arbitrary message m returns a signature sig. The signature
verification algorithm Vfy is a deterministic polynomial time algorithm that given a verification key
vk, a message m and a signature sig returns 1 (acceptance) or 0 (rejection). We require that the
scheme is correct and strongly existentially unforgeable under a single chosen message attack as
defined below.

Definition 4 (Correctness) (KSIG,Sign,Vfy) is (perfectly) correct if for all m ∈ {0, 1}∗ we have

Pr
[
(vk, sk)← KSIG(1k); sig← Signsk(m) : Vfyvk(m, sig) = 1

]
= 1.

Definition 5 (Strong existential unforgeability under one-time chosen message attack)
(KSIG,Sign,Vfy) is strongly existentially unforgeable under chosen message attack if for all non-
uniform polynomial time A we have

Pr
[
(vk, sk)← KSIG(1k);m← A(vk); sig← Signsk(m); (m′, sig′)← A(sig) :

(m′, sig′) 6= (m, sig) ∧ Vfyvk(m
′, sig′) = 1

]
≈ 0.

We will use a strong one-time signature scheme that has fixed-length signatures, i.e., where there is
a polynomial upper bound `SIG on the length of the signatures.

Fixed-length strong one-time signatures can be constructed from one-way functions (from uni-
versal one-way hash-functions and Lamport signatures used in combination with Merkle trees for
instance). The existence of fully homomorphic encryption therefore implies the existence of fixed-
length strong one-time signatures.

2.4 Non-interactive Zero-Knowledge Proofs

Let R be a polynomial time computable binary relation. For pairs (x,w) ∈ R we call x the statement
and w the witness. Let L be the NP-language consisting of statements with witnesses in R.

We will construct NIZK proofs that have almost the same size as the witnesses. The proofs
therefore leak the length of the witnesses, so we will assume that given x ∈ L all witnesses have the
same (efficiently computable given x) length. There is only little loss of generality here, since by
definition of NP all witnesses have length polynomial in |x| and an appropriate amount of padding
could be used to ensure that all witnesses have the same length. We note that most popular NP-
complete languages such as SAT, Circuit Satisfiability and Hamiltonicity for instance do indeed have
statements that uniquely determine the length of potential witnesses.

5

An efficient-prover non-interactive zero-knowledge proof for the relation R consists of three
probabilistic polynomial time algorithms (K,P, V). K is the common reference string generator
that takes the security parameter written in unary 1k and outputs a common reference string σ.
P is the prover algorithm that takes as input the common reference string σ, a statement x and
a witness w so (x,w) ∈ R and outputs a proof π. V is the verifier algorithm that on a common
reference string σ, a statement x and a proof π outputs 0 or 1. We interpret a verifier output of 0
as a rejection of the proof and a verifier output of 1 as an acceptance of the proof.

Definition 6 (K,P, V) is a non-interactive zero-knowledge proof for R if it is complete, sound and
zero-knowledge as described below.

Perfect completeness. Completeness means that a prover with a witness can convince the
verifier. For all adversaries A we have

Pr
[
σ ← K(1k); (x,w)← A(σ);π ← P (σ, x, w) : V (σ, x, π) = 1 if (x,w) ∈ R

]
= 1.

Statistical soundness. Soundness means that it is impossible to convince the verifier of a false
statement. For all adversaries A we have

Pr
[
σ ← K(1k); (x, π)← A(σ) : x /∈ L and V (σ, x, π) = 1

]
≈ 0.

If the probability is exactly 0, we say (K,P, V) is perfectly sound.

Computational zero-knowledge. (K,P, V) is zero-knowledge if it is possible to simulate the
proof of a true statement without knowing the witness. Formally, we require the existence of a
probabilistic polynomial time simulator S = (S1, S2). S1 outputs a simulated common reference
string σ and a simulation trapdoor τ . S2 takes the simulation trapdoor and a statement as input
and produces a simulated proof π. We require for all non-uniform polynomial time adversaries A
that

Pr
[
σ ← K(1k) : AP (·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1

k) : AS(·,·)(σ) = 1
]
,

where P (·, ·) on input (x,w) ∈ R returns π ← P (σ, x, w) and S(·, ·) on input (x,w) ∈ R returns
π ← S2(τ, x).

3 Minimal NIZK Proofs from Fully Homomorphic Encryption

We will now construct an NIZK proof system for an arbitrary NP-relation R. The common reference
string has length poly(k) and the proof for a statement x has size |w| + poly(k), where |w| is the
size of witnesses for x. This is likely to be close to the optimal size for both the common reference
string and the proofs [GH98].

As we explained in the introduction, the idea in the proof system is to use a pseudorandom
one-time pad to encrypt the witness as u = w ⊕G(s, |w|). This ciphertext has length |w|. Using a
fully homomorphic encryption scheme the prover encrypts the seed s for the one-time pad. Both the
prover and the verifier can use the evaluation algorithm to compute a fully homomorphic encryption
of R(x, u ⊕ G(s, |w|)). The prover gives a NIZK proof for the key for the fully homomorphic
cryptosystem having been correctly generated, that a seed s has been correctly encrypted and that
the resulting encryption of R(x, u ⊕ G(s, |w|)) decrypts to 1. The fully homomorphic encryption
part and the NIZK proof have size polynomial in k, independently of the sizes of |w| or |x|. The
total size of the proof is therefore |w|+ poly(k).

6

In order to make this more precise, define given a relation R and a pseudorandom generator G
the deterministic polynomial time computable function f that takes as input the security parameter
k, a statement x and a string u of length |w| and outputs a Boolean circuit Cx,u with `G(k) input
wires such that Cx,u(·) = R(x, u ⊕ G(·, |w|)). Define also given a fully homomorphic cryptosystem
(KFHE, E,D,Eval) the relation

RF = {((pk, s̄, v), (ρ, s, r̄)) :

ρ ∈ {0, 1}`KFHE
(k) ∧ (pk, dk) = KFHE(1k; ρ) ∧ r̄ ∈ ({0, 1}`E(k))|s| ∧ s̄ = Epk(s; r̄) ∧Ddk(v) = 1}.

Let (KF , PF , V F) be an NIZK proof system for RF . We can now give the detailed specification of
the NIZK proof for R in Figure 1.

K(1k)
Return σ ← KF (1k)

V(σ, x,Π)
Parse Π = (pk, s̄, u, π)
Cx,u = f(k, x, u)
v = Evalpk(Cx,u, s̄)
Return V F (σ, (pk, s̄, v), π)

P(σ, x, w)

s← {0, 1}`G(k)

u = w ⊕G(s, |w|)
Cx,u = f(k, x, u)

ρ← {0, 1}`KFHE
(k)

(pk, dk) = KFHE(1k; ρ)

r̄ ← ({0, 1}`E(k))`G(k)

s̄ = Epk(s; r̄)
v = Evalpk(Cx,u, s̄)
π ← PF (σ, (pk, s̄, v), (ρ, s, r̄))
Return Π = (pk, s̄, u, π)

S1(1
k)

Return (σ, τ)← SF1 (1k)

S2(τ, x)

u← {0, 1}|w|
Cx,u = f(k, x, u)
(pk, dk)← KFHE(1k)

s̄← Epk(0
|w|)

v = Evalpk(Cx,u, s̄)
π ← SF2 (τ, (pk, s̄, v))
Return Π = (pk, s̄, u, π)

Figure 1: NIZK proof system for R.

Theorem 7 (K,P, V) described in Figure 1 is an NIZK proof system for R.

Proof. Perfect completeness follows from the perfect completeness of (KF , PF , V F) and the perfect
correctness of the fully homomorphic cryptosystem. The prover generates a valid key pair (pk, dk),
makes valid encryptions of the bits in s and by the correctness of the fully homomorphic cryptosystem
v decrypts to 1 provided w = u⊕G(s, |w|) is a witness for x. The statement and witness provided
to PF is therefore valid and the completeness of (KF , PF , V F) implies that the resulting proof π is
acceptable.

Statistical soundness follows from the statistical soundness of (KF , PF , V F) and the correctness
of the fully homomorphic cryptosystem. To see this, consider a proof Π = (pk, s̄, u, π) for a statement
x. By the statistical soundness of π there exists ρ such that (pk, dk) = KFHE(1k; ρ) and v =
Evalpk(Cx,u, s̄) decrypts to 1 under dk. Furthermore, the statistical soundness also guarantees that
s̄ = Epk(s; r̄) for some seed s and randomness r̄. The perfect correctness of the fully homomorphic
cryptosystem now guarantees that w = u⊕G(s, |w|) is a witness for x ∈ L.

Computational zero-knowledge follows from the computational zero-knowledge of (KF , PF , V F),
the pseudorandomness of G and the IND-CPA security of (KFHE, E,D,Eval). Figure 1 describes
a zero-knowledge simulator (S1, S2) and we will now show that for every non-uniform polynomial
time A

Pr
[
σ ← K(1k) : AP (·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1

k) : AS(·,·)(σ) = 1
]
,

where P (·, ·) on input (x,w) ∈ R returns P (σ, x, w) and S(·, ·) on input (x,w) ∈ R returns S2(τ, x).

7

Consider generating the common reference string using (σ, τ)← SF1 (1k) instead of using K = KF

and consider a modified oracle P ′(·, ·) that on (x,w) ∈ R returns a proof Π = (pk, s̄, u, π) generated
as a normal prover P (σ, x, w) would do except simulating π ← S2(τ, x). By the zero-knowledge
property of (KF , PF , V F) we have for all non-uniform polynomial time A

Pr
[
σ ← K(1k) : AP (·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← SF1 (1k) : AP ′(·,·)(σ) = 1

]
.

Let P ′′ be a modification of P ′ where the responses Π = (pk, s̄, u, π) are generated by computing
s̄ ← Epk(0

`G(k)). By the IND-CPA security of (KFHE, E,D,Eval) we have for all non-uniform
polynomial time A

Pr
[
(σ, τ)← SF1 (1k) : AP ′(·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← SF1 (1k) : AP ′′(·,·)(σ) = 1

]
.

Finally, since S1 = SF1 we can view S as a modification of P ′′ where the responses Π = (pk, s̄, u, π)
are generated such that u← {0, 1}|w|. By the pseudorandomness of G we have for all non-uniform
polynomial time A

Pr
[
(σ, τ)← SF1 (1k) : AP ′′(·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1

k) : AS(·,·)(σ) = 1
]
.

We conclude that (S1, S2) is a zero-knowledge simulator for (K,P, V). �

The transformation preserves many properties of the underlying NIZK proof (KF , PF , V F). If KF

outputs uniformly random common reference strings, then so does K. If the underlying NIZK proof
has perfect soundness, then so does (K,P, V). If the underlying NIZK proof is a proof of knowledge,
i.e., given a secret extraction key ξ related to the common reference string it is possible to extract
the witness, then so is the resulting witness-length NIZK proof.

4 Universally Composable NIZK Proofs from Fully Homomorphic
Encryption

The universal composability (UC) framework [Can01] enables strong security statements of the form
that a protocol φ securely realizes an ideal functionality F , which implies that φ is secure even if it
is running in an environment where arbitrary other protocols are running concurrently with φ. The
ideal functionality specifies the ideal security properties of the protocol. The parties use a secure
channel to forward their inputs to the ideal functionality that computes each party’s outputs. The
universal composition theorem that says if a protocol φF

′
securely realizes an ideal functionality F

in an F ′-hybrid model where it can make calls to an ideal functionality F ′, then for any protocol ψ
securely realizing F ′ we have that φψ securely realizes F .

We are interested in securely realizing the ideal non-interactive zero-knowledge functionality
FRNIZK described in Figure 2. The session ids sid are used to distinguish different invocations of the
same functionality, and the proof ids pid are used to distinguish different queries to the functionality.
The functionality allows a prover to compute a proof π for a statement x if it has a witness w such
that (x,w) ∈ R and will always verify such proofs as being correct. However, the proof π is computed
without any knowledge of the witness w and therefore the functionality captures an ideal notion of
zero-knowledge. The ideal functionality also captures an ideal form of soundness, since the only way
a proof π for a statement x can be accepted is if at some point a witness w such that (x,w) ∈ R
has been provided to the ideal functionality.

8

Ideal NIZK Proof Functionality FRNIZK

Parameterized with NP-relation R and running with parties P̃1, . . . , P̃n and adversary S.

Proof: On input (prove, sid, pid, x, w) from a party Pi ignore if (x,w) /∈ R. Send
(prove, Pi, sid, pid, x) to S and wait for answer (proof , π). Upon receiving the answer
store (x, π) and send (proof , sid, pid, π) to Pi.

Verification: On input (verify, sid, pid, x, π) from a party Pj check whether (x, π) is stored.
If not send (verify, Pj , sid, pid, x, π) to S and wait for an answer (witness, w). Upon
receiving the answer, check whether (x,w) ∈ R and in that case, store (x, π). If (x, π)
has been stored return (verification, sid, pid, 1) to Pj , else return
(verification, sid, pid, 0) to Pj .

Figure 2: Ideal NIZK proof functionality FRNIZK.

Let us clarify what it means to securely realize FRNIZK. We will construct a protocol φ to be run
by parties P1, . . . , Pn that receive protocol inputs from the environment and make outputs to the
environment in which they are operating. We model the environment as a non-uniform polynomial
time algorithm Z. The execution of the protocol itself is attacked by a non-uniform polynomial time
adversary A that may communicate with the environment and corrupt parties adaptively. When
corrupting a party Pi the adversary learns the present state of the party and takes control over the
actions of Pi.

We say the protocol φ securely realizes FRNIZK if there is a simulator S that can simulate the
protocol execution on top of the ideal functionality FRNIZK. The simulator S runs with dummy
parties P̃1, . . . , P̃n that instead of running φ simply forward their inputs to the ideal functionality
FRNIZK and return the responses from FNIZK to the environment. The simulator S has the same
ability as A to corrupt dummy parties and to communicate with the environment, but does not
have access to the internal workings of the ideal execution taking place inside FNIZK.

Formally, it is said φ securely realizes FRNIZK if for any non-uniform polynomial time adver-
sary A there is a non-uniform polynomial time simulator S such that no non-uniform polynomial
time environment can distinguish between φ executed by real parties P1, . . . , Pn under attack by
A and FRNIZK being used by dummy parties P̃1, . . . , P̃n in the simulation by S. There are known
examples of protocols securely realizing FNIZK for Circuit Satisfiability in the common reference
string model [DDO+02, Gro06, GOS06b] and in the multi-string model [GO07]. Also a related
functionality has been securely realized in the registered public key model [BCNP04].

We will now present a non-interactive protocol φ that securely realizes FRNIZK for an arbitrary
NP-relation R with minimal communication. A proof for a statement x with witnesses of size
|w| consists of |w| + poly(k) bits. We make two assumptions, namely that a fully homomorphic

encryption scheme (KFHE, E,D,Eval) exists and that FRF

NIZK can be securely realized for the relation

RF = {((pk, s̄, v, vk), (ρ, s, r̄)) :

ρ ∈ {0, 1}`KFHE
(k) ∧ (pk, dk) = KFHE(1k; ρ) ∧ r̄ ∈ ({0, 1}`E(k))|s| ∧ s̄ = Epk(s; r̄) ∧Ddk(v) = 1}.

Note that we have generalized RF slightly compared to the previous section by allowing statements
to have an arbitrary vk in the end.

The construction is quite similar to the one in the previous section except the prover will make
a strong one-time signature on each proof in order to prevent modifications. We therefore proceed
directly to giving the details of the protocol in Figure 3.

9

Universally Composable NIZK Protocol

Pi on (prove, sid, pid, x, w)

Ignore if (x,w) /∈ R
s← {0, 1}`G(k)

u = w ⊕G(s, |w|)
Cx,u = f(k, x, u)

ρ← {0, 1}`KFHE
(k)

(pk, dk) = KFHE(1k; ρ)

r̄ ← ({0, 1}`E(k))`G(k)

s̄ = Epk(s; r̄)
v = Evalpk(Cx,u, s̄)
(vk, sk)← KSIG(1k)

Run FRF

NIZK using input
(prove, sid, pid, (pk, s̄, v, vk), (ρ, s, r̄))
and immediately deleting dk, ρ, s, r̄

Wait for answer (proof , sid, pid, π)
sig← Signsk(x, pk, s̄, u, vk, π)
Return (proof, sid, pid, (pk, s̄, u, vk, π, sig))

after deleting all other data

Pj on (verify, sid, pid, x, (pk, s̄, u, vk, π, sig))

Check Vfyvk(x, pk, s̄, u, vk, π) = 1
Cx,u = f(k, x, u)
v = Evalpk(Cx,u, s̄)

Run FRF

NIZK using input
(verify, sid, pid, (pk, s̄, v, vk), π)

Wait for answer
(verification, sid, pid, b)

Check b = 1
If all checks pass return

(verification, sid, pid, 1)
Else return (verification, sid, pid, 0)

Figure 3: Universally composable NIZK proof for R.

Theorem 8 The protocol φ in Figure 3 securely realizes FRNIZK in the FRF

NIZK-hybrid model.

Proof. We have to show that for any adversary A there is an ideal process adversary S such that
no environment Z has more than negligible advantage in distinguishing between φ running with
P1, . . . , Pn and A and FRNIZK running with dummy parties P̃1, . . . , P̃n and S. Our proof strategy
is to start with φ running with A and modifying the experiment in steps that the environment
has negligible probability of distinguishing. For this purpose we define three additional simulators
SREAL,SEXT,SSIM that are used in intermediate steps and have the ability to control FRNIZK in
various ways. Informally, SREAL running with the ideal functionality FRNIZK takes full control over
FRNIZK and makes a perfect simulation of A running with φ. SEXT modifies the simulation such
that whenever an NIZK proof that has not been created by FNIZK is verified as being valid it
extracts the corresponding witness and inputs it to FRNIZK. SSIM and S complete the security
proof by enabling the simulation of honest parties making NIZK proofs without knowledge of the
corresponding witnesses.

We now give the details of the simulators and the security proof.

SREAL: SREAL learns the inputs to FRNIZK and controls the outputs. It can therefore run a perfect

simulation of P1, . . . , Pn and A running πNIZK in the FRF

NIZK-hybrid model.

SREAL simulates A and forwards all communication between the simulated A and the envi-
ronment Z. Whenever the simulated A corrupts a simulated Pi, SREAL corrupts P̃i and lets it
interact with the environment asA instructs the simulated Pi to interact with the environment.

When SREAL receives (prove, Pi, sid, pid, x) from FRNIZK it is because an honest P̃i has input
(prove, sid, pid, x, w) with (x,w) ∈ R. Since SREAL knows the inputs to FRNIZK it can simulate

Pi running πNIZK in the FRF

NIZK-hybrid model including FRF

NIZK sending (prove, (pk, s̄, u, vk))

10

to A and on getting the answer (proof , π) making the signature sig to complete the proof
Π = (pk, s̄, u, vk, π, sig). SREAL answers (proof ,Π) to FRNIZK.

On input (verify, Pj , sid, pid, x,Π) from FRNIZK the simulator SREAL knows that the honest
party P̃j has queried (verify, sid, pid, x,Π) to FRNIZK, where (x,Π) has not been stored before
and hence not been created by an honest party. SREAL simulates Pj running the verification
protocol on input (verify, sid, pid, x,Π). The simulator forces FRNIZK to return the resulting
answer (verification, sid, pid, b) and stores (x,Π) in FRNIZK if b = 1.

The simulation is exactly like running πNIZK in the FRF

NIZK-hybrid model, except for the fact that
a proof Π for a statement x output by an honest party P̃i is guaranteed to be accepted in the
verification phase and once a proof Π for a statement x is accepted, it will always be accepted
by FRNIZK. However, if we look at a real execution of πNIZK we see that the correctness of the
signature scheme, the correctness of the fully homomorphic cryptosystem and the properties
of FRF

NIZK guarantees that proofs Π created by honest parties Pi are accepted and also that
accepted proofs will always be accepted again. To the environment, a real execution of πNIZK

in the FRF

NIZK-hybrid model with adversary A is perfectly indistinguishable from the simulation
by SREAL running with FRNIZK.

SEXT: SEXT runs like SREAL when proofs are constructed, but changes the way proofs are verified.
As SREAL it simulates Pj getting input (verify, sid, pid, x,Π) in the execution of πNIZK, but if
the answer is (verification, sid, pid, 1) then it extracts a witness w such that (x,w) ∈ R and
aborts the simulation if the extraction fails.

More precisely, on input (verify, Pj , sid, pid, x,Π) from FRNIZK the simulator SEXT sim-
ulates the honest Pj getting input (verify, sid, pid, x,Π) in πNIZK. If Pj outputs
(verification, sid, pid, 0) then SEXT returns (witness,⊥) to FRNIZK and forwards the re-
sulting (verification, sid, pid, 0) message to P̃j . On the other hand, if Pj outputs
(verification, sid, pid, 1) then SEXT will try to extract a witness w such that (x,w) ∈ R,
return (witness, w) to FRNIZK and send the resulting (verification, sid, pid, 1) message to P̃j .

SEXT parses Π = (pk, s̄, u, vk, π, sig). We only need to extract a witness for Π, where
the signature sig on (x, pk, s̄, u, vk, π) is valid, because otherwise the protocol πNIZK will

reject the proof. Part of the verification protocol also consists in querying FRF

NIZK on

(verify, sid, pid, (pk, s̄, v, vk), π), where v = Evalpk(Cx,u, s̄). The simulated FRF

NIZK will only
return (verification, sid, pid, 1) if an honest party created the proof π on (pk, s̄, v, vk) or if A
supplies a witness (ρ, s, r̄) such that (pk, dk) = KFHE(1k; ρ) and s̄ = Epk(s; r̄) and Ddk(v) = 1.
In the latter case, this tells SEXT what dk is and hence it can compute s and w = u⊕G(s, |w|).
The correctness of the fully homomorphic cryptosystem shows that in this case, the witness w
satisfies (x,w) ∈ R and therefore SEXT can submit (witness, w) to FRNIZK. On the other hand,
if an honest party created the proof π on (pk, s̄, v, vk) then the strong existential unforgeability
of the one-time signature scheme implies that there is negligible probability of the adversary
producing a different valid signature sig using vk. There is therefore only negligible risk of
SEXT not being able to extract a witness w.

SSIM: SEXT runs the verification process of FRNIZK without interference, but in the proof process
it uses knowledge of the inputs the honest parties provide to FRNIZK. In the next couple of
modification of the simulator, we will move towards simulating the proofs instead of using
knowledge of the inputs to FRNIZK.

Let SSIM be a modification of SEXT that instead of running a perfect simulation of FRF

NIZK

allows simulated honest parties to submit (prove, sid, pid, (pk, s̄, v, vk)), w) even if (x,w) /∈ R.

11

This means, FRF

NIZK may ask A for a proof π for a false statement (pk, s̄, v, vk) and store
((pk, s̄, v, vk), π) as being a valid proof and return (proof , sid, pid, (pk, s̄, v, vk), π) to the re-
questing party Pi.

SEXT can now change the way it constructs s̄ to instead set s̄ ← Epk(0
`G(k)). Due to the

IND-CPA security of the fully homomorphic encryption scheme this tuple of ciphertexts s̄
is indistinguishable from a bit-wise encryption of s. Running FRNIZK with SSIM is therefore
computationally indistinguishable from running FRNIZK with SEXT.

S: We will now make a modification of SSIM to get a simulator that does not have access to the
internals of FRNIZK. S is a modification of SSIM that simulates the proof created by an honest
party Pi by setting u← {0, 1}|w| instead of using u = w⊕G(s, |w|). Since G is a pseudorandom
generator, it is not possible for the environment to distinguish whether SSIM or S is making
the simulation with FRNIZK.

Since S does not need to know the witness when simulating a proof for an honest party Pi, it runs
entirely without access to or control over the workings of FRNIZK. As we have shown S running with

FRNIZK is indistinguishable from the protocol πNIZK running with A in the FRF

NIZK-hybrid model. The

protocol πNIZK therefore securely realizes FRNIZK in the FRF

NIZK-hybrid model. �

There may be many ways to securely realize FRF

NIZK and by the universal composition theorem [Can01]
our result shows that all of them imply the existence of witness-length universally composable NIZK
proofs if fully homomorphic encryption exists. In particular, we get witness-length universally com-
posable NIZK proofs in the common reference string model [BFM88], the multi-string model [GO07]
or under any other setup assumption under which universally composable NIZK proofs exist.

We have assumed a dynamic corruption model in the construction. However, our construc-
tion also shows that if FRF

NIZK can be securely realized against static adversaries, then we get a
witness-length universally composable NIZK proof for any NP-relation R that is secure against
static adversaries.

References

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally compos-
able protocols with relaxed set-up assumptions. In FOCS, pages 186–195, 2004.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications. In STOC, pages 103–112, 1988.

[BW06] Xavier Boyen and Brent Waters. Compact group signatures without random oracles.
In EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 427–444,
2006.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145, 2001.

[CGS07] Nishanth Chandran, Jens Groth, and Amit Sahai. Ring signatures of sub-linear size
without random oracles. In ICALP, volume 4596 of Lecture Notes in Computer Science,
pages 423–434, 2007.

[Dam92] Ivan Damg̊ard. Non-interactive circuit based proofs and non-interactive perfect zero-
knowledge with preprocessing. In EUROCRYPT, volume 658 of Lecture Notes in Com-
puter Science, pages 341–355, 1992.

12

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. SIAM
Journal of Computing, 30(2):391–437, 2000.

[DDO+02] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust non-interactive zero knowledge. In CRYPTO, volume 2139 of
Lecture Notes in Computer Science, pages 566–598, 2002.

[DDP02] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Randomness-
optimal characterization of two NP proof systems. In RANDOM, volume 2483 of
Lecture Notes in Computer Science, pages 179–193, 2002.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs under general assumptions. SIAM Journal of Computing, 29(1):1–28, 1999.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[GH98] Oded Goldreich and Johan H̊astad. On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett., 67(4):205–214, 1998.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM Journal of Computing, 25(1):169–192, 1996.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, 1994.

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In
CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 323–341, 2007.

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques
for NIZK. In CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 97–
111, 2006.

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero-knowledge
for NP. In EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages
339–358, 2006.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In ASIACRYPT, volume 4248 of Lecture Notes in Computer Science,
pages 444–459, 2006.

[Gro10] Jens Groth. Short non-interactive zero-knowledge proofs. In ASIACRYPT, volume
6477 of Lecture Notes in Computer Science, pages 341–358, 2010.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages 415–432,
2008.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal of Computating, 28(4):1364–
1396, 1999.

13

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs
from secure multiparty computation. SIAM Journal of Computing, 39(3):1121–1152,
2009.

[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof system
for NP with general assumptions. Journal of Cryptology, 11(1):1–27, 1998.

[KR08] Yael Tauman Kalai and Ran Raz. Interactive pcp. In ICALP, volume 5126 of Lecture
Notes in Computer Science, pages 536–547, 2008.

[Ore87] Yair Oren. On the cunning power of cheating verifiers: Some observations about zero
knowledge proofs. In FOCS, pages 462–471, 1987.

[Sah01] Amit Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-
ciphertext security. In FOCS, pages 543–553, 2001.

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In ASI-
ACRYPT, volume 6477 of Lecture Notes in Computer Science, pages 377–394, 2010.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Public Key Cryptography, volume 6056 of Lecture
Notes in Computer Science, pages 420–443, 2010.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homo-
morphic encryption over the integers. In EUROCRYPT, volume 6110 of Lecture Notes
in Computer Science, pages 24–43, 2010.

14

