
Unconditionally Reliable Message Transmission in Directed

Neighbour Networks

Shashank Agrawal∗ Abhinav Mehta∗ Kannan Srinathan∗

{shashank.agrawal@research. abhinav mehta@research. srinathan@}iiit.ac.in

Abstract

The problem of unconditionally reliable message transmission (URMT) is to design a
protocol which when run by players in a network enables a sender s to deliver a message
to a receiver r with high probability, even when some players in the network are under the
control of an unbounded adversary. Renault and Tomala [JoC2008] gave a characterization of
undirected neighbour networks over which URMT tolerating Byzantine adversary is possible.
In this paper, we generalize their result to the case of directed networks.

1 Introduction

In Distributed Computing literature, it is widely assumed that every pair of participating player-
s/nodes in a communication network are connected by a reliable channel. However, in practice,
most of the players in a network are not directly connected to each other. In particular, if a
sender s wishes to send a message reliably to a receiver r, it may have to route messages through
intermediate nodes some of whom may be faulty. The problem of unconditionally reliable mes-
sage transmission(URMT) is to design a protocol which when run by the players in a network
helps in the simulation of a highly reliable channel from s to r, even in the presence of these
faults.

URMT has been studied in various network, timing, and fault models. In particular, unicast
networks have been very well studied in literature. In [2], Desmedt and Wang give efficient
protocols for URMT (which additionally provide perfect secrecy) tolerating Byzantine adversary
in directed networks by abstracting the network as a collection of vertex-disjoint paths between s

and r. In [10], Srinathan et. al. forgo this abstraction and characterize general directed networks
in which URMT tolerating mixed adversary is possible. While the two papers discussed above
assume network to be synchronous, the more general case of asynchronous network is studied in
[1].

We consider a special kind of multi-recipient network called neighbour network, first intro-
duced in [4]. In a neighbour network, when a player sends a message, it is received by all of its
neighbours, i.e., every player shares a multicast channel with its neighbours in some underlying
graph. Multi-recipient networks arise frequently in practice; for instance, a local area network
like an Ethernet bus or a token ring. Other examples include the Bluetooth or IEEE 802.11
network. Yet another motivation for the study of multicast models comes from game theory as
described in [8].

In [3], Franklin and Wright initiate the study of URMT in undirected neighbour networks
abstracting it as a collection of neighbour-disjoint multicast lines between s and r. They show
that t + 1 multicast lines are sufficient for URMT tolerating t-threshold Byzantine adversary.
When compared to a unicast network where 2t + 1 vertex-disjoint paths are necessary, this is
a significant improvement. In [8], Renault and Tomala extend this characterization to general

∗Center for Security, Theory and Algorithmic Research (C-STAR), International Institute of Information
Technology, Hyderabad, 500032, India.

1

URMT in Directed Neighbour Networks S. Agrawal, A. Mehta, K. Srinathan

undirected neighbour networks. The case of directed neighbour networks was left as an open
problem.

In this work, we give a characterization of directed neighbour networks over which URMT
tolerating non-threshold Byzantine adversary (defined formally later) is possible. Our model
is essentially the same as [8] with the important difference that their underlying network is
undirected while ours is directed. Note that, for several real-life networks where a node can
communicate with another node but not the other way round, undirected graphs are not a suit-
able model. For instance, in a sensor network where different nodes have different transmission
power, communication links tend to be uni-directional: a node u can hear v but v cannot hear
u [11]. Moreover, as directed networks are a strict generalization, our results can be adapted to
the undirected case also.

2 Organization

In section 3 we describe our model and define URMT formally. In section 4, we show by means
of an example why the approach taken in the case of undirected neighbour networks may not
be applicable to their directed counterpart. In section 5, we first show how the existence of a
URMT protocol tolerating an arbitrary adversary structure A reduces to the existence of URMT
protocols tolerating every two-sized subset of A. We then focus on giving a characterization of
networks over which URMT tolerating a fixed two-sized adversary structure is possible. In
Theorem 4, we give a necessary and sufficient condition on directed neighbour networks for a
URMT protocol to exist. To prove sufficiency, we give a protocol for URMT in any network
that satisfies conditions of Theorem 4. In the following section 6, we show that the condition
is indeed necessary. Our last section 7 concludes the paper by summarising the results and
discussing a few related open problems.

3 Model and Definitions

We model the neighbour network as a digraph G = (V,E), where V denotes the set of nodes (or
players) in the network and E ⊆ V × V represents the set of secure and authenticated channels
available between nodes (similar to the secure channels setting). Two special nodes s, r ∈ V
denote the sender and receiver respectively. The system is assumed to be synchronous, that is,
the protocol is executed in a sequence of rounds [8]. Whenever a node sends a message, it is
identically received by all its out-neighbours. We assume that the topology of the network (i.e.
G) is known to every node.

Fault in the network is modelled via an unbounded centralized fictitious entity called the
adversary that can control a subset of nodes in the network and make them behave in a Byzantine
fashion [6]. Adversary knows the topology of the network as well as the protocol specification.
We further assume that it knows the message sender s has chosen to send to r

1.
The subset of nodes which an adversary can control is specified via an adversary structure.

Formally, an (non-threshold) adversary structure A is a monotone set of subsets of the node
set, i.e., A ⊆ P(V \ {s, r}) and if A ∈ A then all subsets of A also belong to A [5]. During an
execution, adversary may corrupt the nodes of one particular set in A. For a structure A, A
denotes the maximal basis of A given by A = {A ∈ A | ∄ A′ ∈ A s.t. A ⊂ A′}. We assume that

1If we do not make this assumption, the results we prove in this paper still hold but with a slight change in
our definition of URMT (see [3]).

2

URMT in Directed Neighbour Networks S. Agrawal, A. Mehta, K. Srinathan

A itself is a maximal basis. In the sequel when we talk about an adversary structure, it will be
clear from the context which graph is it referring to.

Throughout this paper, nodes are denoted in lowercase while set of nodes in uppercase. A
node which can never be corrupt is called honest, i.e., a node u ∈ V is honest if ∄ an X ∈ A
s.t. u ∈ X. A path C in a graph G is a finite sequence of nodes C = (c1, c2, . . . , cn) s.t.
∀ 1 ≤ i < n (ci, ci+1) ∈ E. A path is an honest path if every ci is honest. For u, v ∈ V , we say
that C is a path from u to v if c1 = u and cn = v. We refer to the set of out-neighbours of a node
u including u itself as the neighbourhood of u, N(u) = {v : ∃ (u, v) ∈ E}∪ {u}. Neighbourhood
of a set of nodes X is defined as N(X) =

⋃
u∈X N(u).

Let the message space be a large finite field 〈F,+, ·〉. All computations are done in this field.
We now formally define URMT as well as a weaker form of it, URMTF . Probabilities are taken
over the random inputs of all honest players and the random inputs of the adversary.

Definition 1 ((A, δ)-URMT). Let δ < 1

2
. We say that a protocol for transmitting a message in

a synchronous network G from s to r is (A, δ)-URMT if for all valid Byzantine corruptions of
any A ∈ A and for every m ∈ F, the probability that r outputs m, given that s has sent m, is at
least (1 − δ).

Definition 2 ((A, δ)-URMTF). Let δ < 1
2
. We say that a protocol for transmitting a message

in a synchronous network G from s to r is (A, δ)-URMTF if for all valid Byzantine corruptions
of any A ∈ A and for every m ∈ F, the probability that r outputs m or knows that the set A is
faulty, given that s has sent m, is at least (1 − δ).

Suppose a node u wishes to send a message f ∈ F along a path C to another node v. If the
adversary corrupts some nodes on path C, it can modify messages sent along the path. We want
that the node v should be able to detect any modification with high probability. We achieve this
by means of an authentication function χ which authenticates any message m ∈ F with a pair
of keys K1,K2 to produce a 2-tuple (m,m · K1 + K2). Assuming a pair of random keys K ′,K ′′

unknown to the adversary has been established between u and v, instead of simply sending f
along path C, the node u now sends χ(f ;K ′,K ′′). Let v receive the 2-tuple (x, y); it verifies

whether y
?
= x ·K ′ + K ′′. If verification succeeds v outputs x, if it doesn’t v knows that path C

is faulty. It can be shown that if x 6= f (i.e., the message has been modified) verification fails
with probability atleast 1 − 1

|F| [7].

4 A Motivating Example

Consider the digraph Ge = (Ve, Ee) shown in Figure 1. Let G′
e = (Ve, E

′
e) be the undirected

counterpart of digraph Ge, where for u, v ∈ Ve, (u, v) ∈ E′
e only if (u, v) ∈ Ee or (v, u) ∈ Ee.

For both the graphs, let B1 = {b1, b
′
1, b

′′
1}, B2 = {b2, b

′
2, b

′′
2}, and let the adversary structure be

A = {B1, B2}. By Definition 3.7 in [8], in the undirected graph G′
e, URMT is possible between

s and p as well as between p and r (also between s and x as well as between x and r). If the
sender s wishes to send a message m to the receiver r, as described in section 3.1 in [8], a URMT
protocol (called the ǫ-Reliable Protocol) is first run between s and p on the message m and then
between p and r, again on the message m.

However, in the digraph Ge, it is easy to see that URMT from p to r is impossible (node b′1
may fail-stop), neither is URMT possible from x to r. Yet a protocol for URMT from s to r

exists (proved formally later). Hence the approach taken in [8] is unlikely to work here. Nodes
p and x can only do a weaker form of URMT, URMTF , to r. As described in the definition

3

URMT in Directed Neighbour Networks S. Agrawal, A. Mehta, K. Srinathan

b′1

b′2

b2

b′′1

b′′2

rs

u2

u3

u4

b1 u1 p

x y

q

Figure 1: An Example Graph Ge

section, in the case of URMTF , r must output the correct message or know the identity of the
corrupt set with high probability.

5 Unconditionally Reliable Message Transmission

It is difficult and non-intuitive to work with an adversary structure of arbitrary size. In the
following theorem, we show how the existence of a URMT protocol tolerating an arbitrary
adversary structure A reduces to the existence of URMT protocols tolerating every two-sized
subset of A. Similar reduction can be found in [10].

Theorem 1. In a synchronous network G = (V,E), (A, δ)-URMT protocol exists if and only if
for every adversary structure A ⊆ A such that |A| = 2, (A, δ)-URMT protocol exists.

Proof. Necessity is trivial. We give sufficiency proof here. We show how to construct a protocol
for an adversary structure A of size n > 2 from protocols for adversary structures of smaller
size. Using this technique, starting from protocols for adversary structures of size 2, we would
be able to construct a protocol for an adversary structure of arbitrary size inductively.

Consider A1, A2 and A3, three ⌈2A
3
⌉-sized subsets of A such that each element of A occurs

in at least two of the three sets. For 1 ≤ i ≤ 3, let ΠAi
be the URMT protocol tolerating Ai.

Let f be any field element s intends to send to r. Now, the protocol ΠA tolerating A is simply:

• Run the protocols ΠA1
, ΠA2

and ΠA3
in the network, each one on the field element f .

• Receiver r outputs the majority of the outcome of these protocols.

Every B ∈ A is present in at least two subsets, hence the corresponding two protocols succeed
with probability at least (1 − δ) each. Since r outputs majority of the outcomes, its output
is correct when both these protocols terminate with the correct output which happens with at
least (1 − δ)2 probability. Thus ΠA is an (A, 2δ − δ2)-URMT protocol which can be repeated
sufficient number of times to achieve (A, δ)-URMT.

4

URMT in Directed Neighbour Networks S. Agrawal, A. Mehta, K. Srinathan

We now describe the conditions under which (A, δ)-URMT exists in a network G where
A = {B1, B2} is a two-sized adversary structure.

5.1 Sufficiency

We remark that in this section we focus on characterization - we wish to capture all digraphs
over which URMT is possible. To this end, we give ‘a’ protocol which can be run on any network
over which some protocol for URMT exists. Hence, our protocol may not be the most efficient
for every possible network. In fact, graphs can be constructed over which it may be impractical
to run the protocols we describe here. We leave the task of designing efficient protocols or
proving lower bounds as an interesting (and perhaps challenging) open problem. 2

We first show how to construct a set Y iteratively such that if a node u ∈ Y , u can do
URMTF to r. Initialize Y = {r}. Nodes are added to Y till there are no more nodes to add.
An honest node u /∈ Y can be added to Y if one of the following hold:

1. ∃ v ∈ Y s.t. there is an honest path from u to v

2. Else, ∃ a ∈ Y s.t. there exists a path C avoiding B2 from u to a and one of the following
hold:

(a) ∃ b ∈ Y s.t. (b, u) ∈ E and N(b) ∩ B1 = φ.

(b) ∃ w ∈ B2 and ∃ b ∈ Y s.t. (w, b), (w, u) ∈ E and N(w) ∩ B1 = φ.

3. (a) and (b) are obtained by replacing B1 with B2 and vice versa in the construction 2(a)
and 2(b) respectively.

The two constructions 2(a) and 2(b) are illustrated in Figure 2. Note that we only add
honest nodes to Y (r). Applying the constructions to digraph Ge in Figure 1, we can add nodes
to Y in the following order: nodes q, u4, y and u3 are added first through Const 1, node u2 is
then added through Const 2(b), p is added through Const 2(a), u1 is added through Const 1, x
is added through Const 3(b), and finally s is added through Const 3(b).

In the following lemma, we show that no matter in what order nodes are added to Y , we
always get the same result.

Lemma 2. The set Y , constructed as described above, is well-defined, i.e., it has finite number
of nodes and is unique.

Proof. Finiteness is easy to see. To show uniqueness, consider two different sequences S1 and S2

in which nodes are added to Y ; S1 = (x1, x2, . . . , xn1
), S2 = (y1, y2, . . . , yn2

) where n1, n2 < |V |
and each xi, yj ∈ V . Let k be the first index at which the two sequences differ, that is, xk 6= yk.
Addition of xk could have used only the nodes that were in S1 already (i.e. x1, x2, . . . , xk−1),
and certain paths in the network G (and/or a certain node in B1 or B2) which together satisfied
some property. Since till index k − 1 both the sequences are same and the network being used
is also same, xk would eventually appear at some index k′ > k in S2. We can swap the elements
present at k and k′ in S2 to obtain another sequence S′

2. Though S′
2 contains same elements as

in S2, it matches S1 upto first k locations, or, one more location as compared to S2.

2We point out that efficient protocols for every undirected neighbour network (or every directed unicast
network) over which URMT is possible are not known (for example, see [8, 10]).

5

URMT in Directed Neighbour Networks S. Agrawal, A. Mehta, K. Srinathan

b

s r

B1

a

s r

b

B1

a

w

Figure 2: Constructions 2(a) and 2(b). Dotted edges between two nodes are URMTF edges,
they may not be actually present in the graph. Box around nodes indicates that these nodes
may belong to the set B1.

The above procedure can be repeated sufficient number of times to obtain a sequence Sfinal
2

from S2 containing same elements as in S2 but which exactly matches S1 at all locations. Hence
Y obtained through two different ways of adding nodes is same.

We now prove that every node u ∈ Y can do URMTF to r.

Lemma 3. If u ∈ Y , there exists a protocol Γu for ({B1, B2},
1

|F|)-URMTF from u to r.

Proof. Let κ = 1

|F| . We give a proof by induction on the iteration at which a node is added. The
protocol Γu which we construct inductively here satisfies the following two important properties:
(a) If the corrupt nodes do not deviate from the protocol, r outputs the correct message with
probability 1. (b) Otherwise, r knows the identity of the corrupt set with at least 1−κ probability
(where the probabilities are taken over the random inputs of all honest players and the random
inputs of the adversary). It is easy to see that a protocol satisfying these properties is a URMTF

protocol of desired error probability κ. Also, due to these stronger properties, as we will see,
the error probability remains bounded as we do induction.

An important remark is in order. Observe that in the constructions described above, a
corrupt node can appear at two places only - in the path C or as node w. The protocol Γu we

6

URMT in Directed Neighbour Networks S. Agrawal, A. Mehta, K. Srinathan

describe below uses node w to distribute keys and the path C to send authenticated messages.
Hence, the adversary can disrupt the protocol in the following two ways only: (i) It can corrupt
some nodes along path C and change the authenticate message tuple being sent through the
path, (ii) It can corrupt the node w and distribute keys improperly.

The proof by induction goes as follows. The first node added to Y is r itself. Since, any node
can send a message reliably to itself, protocol Γr is trivial. We now assume that n − 1 nodes
z1, z2, . . . zn−1 have been added to Y ; and for every 1 ≤ i ≤ n − 1, a protocol Γzi

satisfying the
two properties described above exists for node zi. Let z be the node added at the nth iteration
through one of the constructions described above. Let f ∈ F be the message it intends to send.
If z has been added through the first construction, it is straightforward to construct the protocol
Γz – z sends f reliably along the honest path to v; now, Γv is run in the network with message
f . When z is added through construction 2(b), the protocol Γz proceeds in the sequence of steps
described below. A simpler version of this protocol works for construction 2(a), hence we do not
discuss it separately here. The third construction can be dealt with similarly.

• Node w ∈ B2 selects a random pair of keys K1,K2 ∈ F and sends it to b. Another
neighbour of w - node z - receives the same message from w as b does (nodes are part of
a neighbour network).

• If b does not receive two field elements, an instance of protocol Γb, say Γfault
b , is run as a

sub-protocol in the network on message α0. Otherwise, Γfault
b is run on message α1. (Here

α0 and α1 are two fixed distinct elements of the field.)

• Let z receive elements K ′
1,K

′
2. If it does not, it chooses two elements at random. It sends

χ(f ;K ′
1,K

′
2) to a along C.

• If a receives a malformed message, it chooses two elements f1, f2 ∈ F at random. Oth-
erwise, when a receives a well-formed message consisting of two field elements, let f1, f2

represent those two elements. Two instances of the protocol Γa – say Γ1
a and Γ2

a – are run
as sub-protocols in the network on messages f1 and f2 respectively.

• After the first step, if b received two elements K1 and K2 from w, two instances of the
protocol Γb, call them Γ1

b and Γ2
b , are run as sub-protocols in the network now on messages

K1 and K2 respectively. 3

• Reconstruction at r:

– If the outcome of Γfault
b is α0, r outputs ‘B2 is corrupt’ and halts.

– Else, r waits for the sub-protocols Γ1
a, Γ2

a, Γ1
b and Γ2

b to terminate in that order. If
the outcome of a sub-protocol is ‘B1 is corrupt’ or ‘B2 is corrupt’, r outputs the same
and halts, otherwise it waits for the next sub-protocol to terminate.
Let r recover f r

1 , f r
2 from Γ1

a and Γ2
a, and Kr

1 ,Kr
2 from Γ1

b and Γ2
b . It checks whether

f r
2

?
= f r

1 ·K
r
1 +Kr

2 . If the verification succeeds it outputs f r
1 , otherwise it outputs ‘B1

is corrupt’.

3Even when b does not receive required number of elements, it can choose two elements randomly and Γ1

b

and Γ2

b can be run respectively on them. Although this is not necessary, it can be introduced to homogenize the
overall protocol.

7

URMT in Directed Neighbour Networks S. Agrawal, A. Mehta, K. Srinathan

It is easy to see that if the corrupt nodes follow the protocol, r halts with message f . We
now show how any deviation from the protocol (recall that this can happen in two different ways
only) almost surely reveals adversary’s identity.

First, consider the four sub-protocols Γ1
a, Γ2

a, Γ1
b and Γ2

b . If the corrupt nodes deviate during
the first sub-protocol, r would find out the corrupt set in at least 1− κ fraction of executions of
this sub-protocol and halt. On the other hand, if the corrupt nodes do not deviate during the
first sub-protocol but deviate during the second one, r would recover the correct message from
the first sub-protocol, and in at least 1 − κ fraction of executions of the second sub-protocol it
would come to know the corrupt set. If we continue to argue like this, we can say that if the
corrupt set of nodes deviate during any of the four sub-protocols, r would know the corrupt set
in at least 1 − κ fraction of executions of the protocol Γz.

Now, we assume that the corrupted nodes do not deviate during any of the four sub-protocols.
This implies that r would correctly recover the messages sent through these sub-protocols.
Suppose set B2 is corrupt and w ∈ B2 does not distribute keys properly in first step. In this
case, b would send the message α0 to r through the sub-protocol Γfault

b . Node r would recover
α0 with at least 1−κ probability, knows that B2 is corrupt and halts. On the other hand, when
B1 is corrupt, adversary may modify the pair χ(f ;K1,K2) sent through path C in third step.
Since w has no neighbour in B1, adversary has no knowledge about the keys K1,K2. Hence,
any modification of the pair leads to the failure of verification in Step 2 of Reconstruction at r

with atleast 1− κ probability (as discussed in the last part of Section 3). The corrupt nodes on
path C may also forward a malformed message to a. In this case a himself generates a random
pair of elements which again fail verification with high probability.

We are now ready to state our main theorem of the paper.

Theorem 4. In a directed neighbour network G = (V, E), ({B1, B2}, δ)-URMT from s to r is
possible if and only if there exist two paths from s to r, one avoiding B1, another avoiding B2,
and s ∈ Y .

Proof. Sufficiency: For i ∈ {1, 2}, let Ci be the path avoiding Bi. Sender s sends the message
f to r through the two paths C1 and C2. Next, Γs (constructed in the previous lemma) is run
in the network on message f . With at least 1− 1

|F| probability, r receives the correct message or
knows that the set Bi is corrupt. In the latter case, it outputs the message received along the
path Ci.

We prove necessity in the following section.

6 Necessity

In this section we show that if a neighbour network G does not satisfy the conditions mentioned
in Theorem 4 then ({B1, B2}, δ)-URMT is impossible from s to r in G. It is easy to see that s

must have a path to r avoiding B1, otherwise B1 would fail-stop and no communication from s

to r would be possible. Similarly, the existence of another path avoiding B2 is necessary. We
now assume that s /∈ Y (r). We also assume that the sets B1 and B2 are disjoint. If not, an
additional part of the adversary strategy would be to always fail-stop nodes in B1∩B2 no matter
which among the two sets B1, B2 is chosen to be corrupted.

We divide the set of nodes in B1 into two disjoint sets. Let BY
1 = {u ∈ B1 : ∃ a path from

u to a node v ∈ Y avoiding B2}. Let BY ′

1 = B1 \ BY
1 . Similarly we can divide the set B2 into

two disjoint sets. We also define a set Bd
1 of nodes in BY

1 who have a direct edge to a node in

8

URMT in Directed Neighbour Networks S. Agrawal, A. Mehta, K. Srinathan

Y , i.e., Bd
1 = {u ∈ BY

1 : ∃ v ∈ Y s.t. (u, v) ∈ E}. Further, let Bd′
1 = BY

1 \ Bd
1 . Symmetrically,

Bd
2 and Bd′

2 are also defined.
We next divide the set of nodes X = V \ (Y ∪ B1 ∪ B2) into four disjoint sets. Let X1/2 =

{u ∈ X : u has a path to a node v ∈ Y avoiding either B1 or B2}. Let X ′
1/2

= X \ X1/2. We

further divide the set X1/2, into three disjoint sets. Let X1&2 = {u ∈ X1/2 : ∃ v1, v2 ∈ Y s.t. u
has a path to v1 avoiding B1 and a path to v2 avoiding B2}. Let X1 = {u ∈ X1/2 : ∄ v ∈ Y s.t.
u has a path to v avoiding B1}. Likewise X2 is also defined. It is easy to see that X1&2,X1 and
X2 are disjoint sets. Also, s ∈ X1&2.

In the following, when we say that there cannot be an edge from a set Z1 to a set Z2, we
actually mean that there does not exist a pair of nodes u1 ∈ Z1 and u2 ∈ Z2 s.t. (u1, u2) ∈ E.
We first prove some simple Lemmas regarding the connectivity among the sets we have just
defined, see Figure ?? in Appendix ??.

Lemma 5. (a) If (u, v) ∈ E and u ∈ BY ′

1 then v ∈ BY ′

1 ∪ B2 ∪ X2 ∪ X ′
1/2

.

(b) If (u, v) ∈ E and u ∈ BY ′

2 then v ∈ BY ′

2 ∪ B1 ∪ X1 ∪ X ′
1/2

.

Proof. (a) According to definition, a node u belongs to BY ′

1 if it does not have a path avoiding
B2 to Y . Hence, u cannot have an edge to Y or BY

1 . Also, both X1&2 and X1 have paths to
Y avoiding B2. Hence, there cannot be an edge from BY ′

1 to either of them. Finally, V \ (Y ∪
BY

1 ∪ X1&2 ∪ X1) = BY ′

1 ∪ B2 ∪ X2 ∪ X ′
1/2

. (b) can be similarly proved.

Note that there cannot be an edge from X to Y otherwise a node in X would move to Y by
Construction 1 (described in 5.1).

Lemma 6. (a) If (u, v) ∈ E and u ∈ X1 then v ∈ X1 ∪ B1 ∪ BY ′

2 ∪ X ′
1/2

.

(b) If (u, v) ∈ E and u ∈ X2 then v ∈ X2 ∪ B2 ∪ BY ′

1 ∪ X ′
1/2

.

Proof. (a) As X1 ⊆ X, we know that it cannot have an edge to Y . Since a node u in X1 must
not have a path avoiding B1 to Y , u cannot have an edge to BY

2 . Also, both X1&2 and X2 have
paths to Y avoiding B1. Hence, there cannot be an edge from X1 to either of them. Finally,
V \ (Y ∪ BY

2 ∪ X1&2 ∪ X2) = X1 ∪ B1 ∪ BY ′

2 ∪ X ′
1/2

. (b) can be similarly proved.

Lemma 7. If (u, v) ∈ E and u ∈ X ′
1/2

then v ∈ X ′
1/2

∪ BY ′

1 ∪ BY ′

2 .

Proof. As X ′
1/2

⊆ X, we know that it cannot have an edge to Y . Since X ′
1/2

contains nodes
from whom all paths to Y pass through both B1 and B2, it cannot have an edge to either X1/2

or BY
1 or BY

2 .

Lemma 8. (a) If u ∈ Y ∪ Bd
2 and N(u) ∩ (X1&2 ∪ X1) 6= φ then N(u) ∩ B1 6= φ.

(b) If u ∈ Y ∪ Bd
1 and N(u) ∩ (X1&2 ∪ X2) 6= φ then N(u) ∩ B2 6= φ.

Proof. (a) We know that every node in X1,2 and X1 has at least one path to Y avoiding B2. If
a node u ∈ Y (resp. u ∈ Bd

2) has a neighbour v in X1&2 ∪ X1 but no neighbour in B1, v can do
URMTF to r by Construction 2a (resp. Construction 2b) as described in 5.1. Since v /∈ Y , this
is not allowed. (b) can be proved similarly.

Before proceeding further, we define few more sets to make our presentation compact. Define:

• V1 = X1 ∪ X1&2 and V2 = X2 ∪ X1&2

• E1
1 = {(u, v) ∈ E : u, v ∈ V1} and similarly E1

2

9

URMT in Directed Neighbour Networks S. Agrawal, A. Mehta, K. Srinathan

• E2
1 = {(u, v) ∈ E : u ∈ V1 and v ∈ BY

1 OR u ∈ BY
1 and v ∈ V1}, and similarly E2

2

• E3
1 = {(u, v) ∈ E : u, v ∈ V1 and v ∈ Bd

2 ∪ Y }, and similarly E3
2

• E1 = E1
1 ∪ E2

1 ∪ E3
1 , and similarly E2

• Eperm = {(u, v) ∈ E : u, v ∈ Bd
1 ∪ Bd

2 ∪ Y OR u ∈ Bd′
1 ∪ Bd′

2 and v ∈ Bd
1 ∪ Bd

2}

We now describe the adversary strategy (ζ1, ζ2). When adversary corrupts the set B1 during
an execution of a protocol, it follows the strategy ζ1. It fails-stops all nodes in BY ′

1 at the
start of the execution. During the entire execution, it drops all messages received from nodes
in X ∪ (B2 \ Bd

2). Moreover, Bd′
1 doesn’t send any message on its outgoing edges throughout

the execution. However, the most important component of the adversary strategy is simulation.
To make simulated sets easily distinguishable from actual sets, we use curly alphabets for the
former and normal alphabets for the latter.

Adversary simulates a sub-graph G1 = (V1, E1) of the graph G. Here V1 is the union of sets
X1 and X1&2 which represent the simulated copies of nodes in X1 and X1&2 respectively. Also,
E1 is the union of sets E1

1 , E2
1 and E3

1 which represent the simulated copies of edges in E1
1 , E2

1

and E3
1 respectively. Since the adversary controls all the nodes in set B1, simulation of edges E2

1

is straightforward. Moreover, from Lemma 8 we know that if a node z ∈ Bd
2 ∪Y has a neighbour

in X1 ∪ X1&2, it also has a neighbour in B1. Hence, the messages which nodes in Bd
2 ∪ Y send

to nodes in X1 ∪ X1&2 during the execution are also available to the adversary leading to a
successful simulation of edge set E3

1 .
In the following, we may not explicitly mention messages exchanged between nodes of a

set when it is clear from the context that they would. The simulated sender s1 ∈ X1&2 (say)
is given a message f1 as input at the beginning of the execution. During each round of the
execution, simulated nodes in V1 receive messages from each other through the simulated edges
E1

1 , from BY
1 through the simulated edges in E2

1 and from Bd
2 ∪ Y through the simulated edges

E3
1 . Nodes in BY

1 receive messages from V1 through the simulated edges in E2
1 and from nodes

in Bd
2 ∪ Y . The simulated nodes V1 and the nodes BY

1 run their part of the protocol with these
input messages. They exchange output messages among each other through the simulated edges
in E2

1 . While Bd
1 sends output messages on all its actual outgoing edges, Bd′

1 does not send any
message on any of its actual outgoing edges. 4

This completes the description of strategy ζ1. Analogously, we can describe the other part
ζ2. Among other things, when following ζ2, adversary simulates the sub-graph G2 = (V2, E2)
where, in short, V2 represents the simulated copies of nodes in V2 and E2 represents the simulated
copies of edges in E2.

The following Lemma shows how the adversary strategy (ζ1, ζ2) cuts-off some nodes from
the graph.

Lemma 9. In an execution when adversary corrupts B1, no messages from nodes in BY ′

2 ∪X1∪
X ′

1/2
can reach Y . Similarly, in an execution when adversary corrupts B2, no messages from

nodes in BY ′

1 ∪ X2 ∪ X ′
1/2

can reach Y .

Proof. To prove this, we find out to what other sets a certain set can send messages to. From
Lemmas 5 6 7, we observe the following: BY ′

2 can only send messages to B1, X1 and X ′
1/2

; X1

can only send messages to B1, BY ′

2 and X ′
1/2

; X ′
1/2

can only send messages to BY ′

1 and BY ′

2 .

4An important thing to note is that since we are dealing with a neighbour network, a node in B
Y

1 cannot
choose to send messages to some of its neighbours in other sets and not to others.

10

URMT in Directed Neighbour Networks S. Agrawal, A. Mehta, K. Srinathan

As BY ′

2 ∪ X1 ∪ X ′
1/2

⊆ X ∪ (B2 \ Bd
2), B1 ignores messages from it. Henceforth, the nodes in

BY ′

2 ∪X1∪X ′
1/2

form a closed system which can send messages only among themselves. None of

the messages originating from them is received by BY
2 . Since nodes in Y receive messages from

BY
1 and BY

2 , in an execution where B1 is corrupt, no messages from nodes in BY ′

2 ∪ X1 ∪ X ′
1/2

can reach Y . On the same lines, the other part can be proved.

Omitting few details here, we can say that w.r.t to the set Y which contains r, when adversary
corrupts B1, the network effectively reduces to the node sets V1, BY

1 , V2, BY
2 , Y and the edge

sets E1, E2, Eperm (see Figure 3). Similarly, when adversary corrupts B2, it reduces to V1, BY
1 ,

V2, BY
2 , Y and E1, E2, Eperm. This forms the basis of indistinguishability of views at r.

X1&2 X1

E1
1

V1

X1&2

E1
2

X2

V2

E2
2

E3
2

BY
2

Bd′

2 Bd
2

Bd
1Bd′

1

E2
1

BY
1

E3
1

E3
2

E3
1

Y

Figure 3: A pictorial view of adversary strategy ζ1. Dotted circles represent simulated nodes,
dotted lines/arcs represent simulated edges. The edge set Eperm is not complete shown for sake
of clarity.

We now show that under the adversary strategy (ζ1, ζ2) no (A, δ)-URMT protocol can exist.
On the contrary, assume there exists a protocol Π for (A, δ)-URMT from s to r. Consider an
execution E1 of Π: Sender s chooses to send f2. Adversary corrupts B1 and follows strategy
ζ1. (Recall that the simulated sender gets f1 as input.) Let coin tosses of nodes in V2 and BY

2

be collectively denoted by rV2
and rBY

2

respectively. Similarly, let coin tosses of sets V1 and BY
1

under the control of adversary be denoted by rV1
and rBY

1

respectively. Coin tosses of nodes in
Y are rY . Note that, by Lemma 9, we need not take nodes in other sets into consideration.

Consider another execution E2 of Π: Sender s chooses to send f1. Adversary corrupts B2

and follows strategy ζ2. (Recall that the simulated sender gets f2 as input.) Let coin tosses
of nodes in V1 and BY

1 be collectively denoted by rV1
and rBY

1

respectively. Similarly, let coin

tosses of sets V2 and BY
2 under the control of adversary be denoted by rV2

and rBY

2

respectively.
Coin tosses of nodes in Y are rY .

We can see that the view at Y , and hence at r, in both the executions E1 and E2 is same.
Therefore r’s output will be same in both of them. In general, for every execution in which s

sends f2, there exists an execution in which s chooses to send f1 and the view at r is same, and
vice versa. Since Π is a URMT protocol, when s chooses to send message f2, for at least 1 − δ

11

URMT in Directed Neighbour Networks S. Agrawal, A. Mehta, K. Srinathan

fraction of executions receiver r must output f2. Now, r would again output f2 in at least 1− δ
fraction of executions in which s chooses to send message f1. Hence, Π is not a valid URMT
protocol. This completes our necessity proof.

7 Conclusion

In this work, we have characterized directed neighbour networks over which URMT tolerating
non-threshold Byzantine adversary is possible. However, Byzantine faults are not the only faults
present in a network. There may be simpler faults like fail-stop, omission, etc. A network may
tolerate only upto a certain number of Byzantine faults, but it may additionally tolerate a few
simpler faults. This is captured via a mixed adversary (see [10]). It would be interesting to
generalize our results in neighbour networks to the case of mixed adversary. Our work can also
be extended to a more general network model like directed hypergraphs, which is a better model
in a variety of situations. Though characterization exists for this case [9], it is very complicated
and is not supplemented by a rigorous necessity proof. As discussed earlier, the problem of
designing efficient protocols for directed neighbour networks also remains open.

References

[1] A Choudhary, A Patra, B V Ashwinkumar, K Srinathan, and C P Rangan. On minimal connectivity
requirement for secure message transmission in asynchronous networks. In ICDCN ’09: Proceedings
of the 10th International Conference on Distributed Computing and Networking, pages 148–162,
Berlin, Heidelberg, 2009. Springer-Verlag.

[2] Y Desmedt and Y Wang. Perfectly Secure Message Transmission Revisited. In Proceedings of
Advances in Cryptology EUROCRYPT ’02, volume 2332 of Lecture Notes in Computer Science
(LNCS), pages 502–517. Springer-Verlag, 2002.

[3] M Franklin and R N Wright. Secure Communication in Minimal Connectivity Models. In Proceedings
of Advances in Cryptology EUROCRYPT ’98, volume 1403 of Lecture Notes in Computer Science
(LNCS), pages 346–360. Springer-Verlag, 1998.

[4] M Franklin and M Yung. Secure Hypergraphs: Privacy from Partial Broadcast. In Proceedings of
27th Symposium on Theory of Computing (STOC), pages 36–44. ACM Press, 1995.

[5] M Hirt and U Maurer. Player Simulation and General Adversary Structures in Perfect Multi-party
Computation. Journal of Cryptology, 13(1):31–60, April 2000.

[6] L Lamport, R Shostak, and M Pease. The Byzantine Generals Problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401, July 1982.

[7] T Rabin and M Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. In
STOC ’89: Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages
73–85, New York, NY, USA, 1989. ACM.

[8] J Renault and T Tomala. Probabilistic reliability and privacy of communication using multicast in
general neighbor networks. Journal of Cryptology, 21(2):250–279, April 2008.

[9] K Srinathan, A Patra, A Choudhary, and C P Rangan. Unconditionally reliable message transmission
in directed hypergraphs. In Cryptology and Network Security, volume 5339 of Lecture Notes in
Computer Science, pages 285–303. Springer Berlin / Heidelberg, 2008.

[10] K Srinathan and C P Rangan. Possibility and complexity of probabilistic reliable communications in
directed networks. In Proceedings of 25th ACM Symposium on Principles of Distributed Computing
(PODC’06), 2006.

[11] Y Wang. Robust key establishment in sensor networks. SIGMOD Rec., 33(1):14–19, 2004.

12

	Introduction
	Organization
	Model and Definitions
	A Motivating Example
	Unconditionally Reliable Message Transmission
	Sufficiency

	Necessity
	Conclusion

