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Collision Resistance of the JH Hash Function
Jooyoung Lee and Deukjo Hong

Abstract—In this paper, we analyze collision resistance of the
JH hash function in the ideal primitive model. The JH hash
function is one of the five SHA-3 candidates accepted for the
final round of evaluation. The JH hash function uses a mode of
operation based on a permutation, while its security has been
elusive even in the random permutation model.

One can find a collision for the JH compression function only
with two backward queries to the basing primitive. However, the
security is significantly enhanced in iteration. For c ≤ n/2, we
prove that the JH hash function using an idealn-bit permutation
and producing c-bit outputs by truncation is collision resistant
up to O(2c/2) queries.

Index Terms—hash function, collision resistance.

I. I NTRODUCTION

As many hash functions, including those most common in
practical applications, have started to exhibit serious security
weaknesses [2]–[9], the US National Institute for Standards
and Technology (NIST) has opened a public competition to
develop a new cryptographic hash function. Currently, the
final candidates to replace SHA-2 has been announced, which
are BLAKE, Grøstl, JH, Keccak and Skein. In this paper,
we analyze collision resistance for the JH hash function in
the ideal primitive model. TheJH compression functionis
illustrated in Fig. 1, whereπ is a certain permutation. The
JH hash functionis obtained by feeding the compression
function to the Merkle-Damg̊ard transform [10]. The only
known result for the security of the JH hash function is
its indifferentiability from a random oracle guaranteed up to
2n/6 query complexity [1]. This translates into the collision
resistance of the JH hash function up to2n/6 query complexity,
which is far from optimal.

Even ifπ is a truly random function, one can find a collision
for the JH compression function only with two backward
queries to the basing primitive. In this paper, however, we
show that the security is significantly enhanced in iteration.
For c ≤ n/2, we prove that the JH hash function using
an ideal n-bit permutation and producingc-bit outputs by
truncation is collision resistant up toO(2c/2) queries. This
bound implies that the JH hash function provides the optimal
collision resistance in the random permutation model.

II. PRELIMINARIES

General Notation:For two bitstringsx andy, x||y denotes
the concatenation ofx and y. Given x ∈ {0, 1}n for an
even integern, xL and xR denote n

2 -bit strings such that
x = xL||xR.
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Merkle-Damg̊ard Transform: Let

pad : {0, 1}∗ →
∞⋃

i=1

{0, 1}mi

be an injective padding. With this padding scheme and a
predetermined constantIV ∈ {0, 1}2n, the Merkle-Damg̊ard
transformproduces a variable-input-length functionMD[F ] :
{0, 1}∗ → {0, 1}2n from a fixed-input-length functionF :
{0, 1}2n × {0, 1}m → {0, 1}2n. For M ∈ {0, 1}∗ such that
|pad(M)| = lm, MD[F ](M) is computed as follows.

Function MD[F ](M)

u[0] ← IV
Breakpad(M) = M [1]|| . . . ||M [l + 1] into m-bit blocks
for i ← 1 to l + 1 do

u[i] ← F (u[i− 1],M [i])
return u[l + 1]

Collision Resistance:We review the definition of collision
resistancein the information-theoretic model. Given a function
H = H[P] and an information-theoretic adversaryA both
with oracle access to an ideal primitiveP, the collision
resistance ofH againstA is estimated by the following
experiment.

Experiment Expcol
A

A updatesQ by making oracle queries toP
if ∃ M 6= M ′ andu s.t. u = HQ(M) = HQ(M ′) then

output1
else

output0

This experiment records every query-response pair thatA
obtains by oracle queries into aquery historyQ. We write
u = HQ(M) if Q contains all the query-response pairs
required to computeu = H(M). At the end of the experiment,
A would like to find two distinct evaluations yielding a
collision. Thecollision-finding advantageof A is defined to
be

Advcol
H (A) = Pr

[
Expcol

A = 1
]
.

The probability is taken over the random choice ofP and
A’s coins (if any). Forq > 0, we defineAdvcol

H (q) as the
maximum of Advcol

H (A) over all adversariesA making at
mostq queries.

III. D ESCRIPTION OF THEJH HASH FUNCTION

Let π be a permutation on{0, 1}n for an even integern.
Then theJH compression functionF = F [π] is defined as
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follows.

F : {0, 1}n × {0, 1}n/2 −→ {0, 1}n

(u, z) 7−→ v,

where
v = π (u⊕ (z||0))⊕ (0||z).

The pictorial representation is given in Fig. 1.
For c ≤ n/2, let chopc : {0, 1}n → {0, 1}c be the function

that chops off the(n− c) leftmost bits of its input string, i.e.,
chopc(x) = x2 if x = x1||x2 for somex1 ∈ {0, 1}n−c and
x2 ∈ {0, 1}c. Then thec-bit JH hash functionis defined by
JHc = chopc ◦MD[F ]. In the original submission,n = 1024
andc ∈ {224, 256, 384, 512}.

Since the padding is injective, we can simplify our collision
analysis by assuming that the domain of the JH hash function
is

⋃∞
i=1{0, 1}ni/2 (and ignore the padding scheme). In the

following section, we will prove collision resistance for the
JH hash function assumingπ is an ideal random permutation.
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Fig. 1. JH compression function.

IV. COLLISION RESISTANCE OF THEJH HASH FUNCTION

Suppose that an information-theoretic adversaryA adap-
tively makesq forward or backward queries to an ideal random
permutationπ, and records a query historyQ = {(xi, yi) ∈
{0, 1}n : 1 ≤ i ≤ q}. Hereπ(xi) = yi andA’s i-th query is
eitherπ(xi) or π−1(yi) for 1 ≤ i ≤ q.

We define a direct graphG on {0, 1}n where a direct edge
from u to v labeled i is added toG when thei-th query-
response pair(xi, yi) determines an evaluationF [π](u, z) = v

for somez ∈ {0, 1}n/2. We will denote such an edge byu
i→

v. We note that each queryπ(xL||xR) = (yL||yR) generates
2n/2 edges from((xL⊕ z)||xR) to (yL||(yR ⊕ z)) wherez ∈
{0, 1}n/2.

Definition 1: u ∈ {0, 1}n is called anorderly reachable
node if there exists a direct path

IV
i1→ u[1] i2→ · · · it−1→ u[t− 1] it→ u,

such thati1 < i2 < . . . < it−1 < it. By convention,IV is an
orderly reachable node.

For i = 1, . . . , q, let Ui be the set of orderly reachable nodes
determined by the firsti queries, and letRcoli be the event
that Ui contains a collision in the right-half bits. That is,

Rcoli : there existu, v ∈ Ui such thatu 6= v anduR = vR.

Now our security proof consists of two steps. The first step
is to prove that the probability ofRcolq is small up to the

birthday bound. The next step is to show that the probability
of collision is small without the occurrence ofRcolq. We begin
with the following proposition.

Proposition 1: Without the occurrence ofRcoli, |Ui| ≤ i+1
for i = 0, . . . , q.

Proof: Note thatU0 = {IV }. If |Ui| > i + 1 for some
i = 1, . . . , q, then a certain query, say thej-th query, would
produce two distinct orderly reachable nodes, sayw and w′.
In this case, we have two paths

P1 : IV
j1→ u[1]

j2→ · · · js−1→ u[s− 1]
js→ w

and

P2 : IV
j′1→ v[1]

j′2→ · · · j′t−1→ v[t− 1]
j′t→ w′

where the labels are strictly increasing and

js = j′t = j ≤ i.

Sincew 6= w′ and js = j′t = j ≤ i, u[s− 1] andv[t− 1] are
distinct orderly reachable nodes inUi such thatchopc(u[s −
1]) = chopc(v[t−1]). This contradicts the condition of¬Rcoli.

Proposition 2: Suppose that an adversaryA makes q
queries to a random permutationπ and its inverseπ−1. For
N = 2n/2 andq < N ,

Pr [Rcolq] ≤ q(q + 1)
2(N − 1)

.

Proof: Since

Pr [Rcolq] ≤
q∑

i=1

Pr [Rcoli ∧ ¬Rcoli−1]

≤
q∑

i=1

Pr [Rcoli|¬Rcoli−1] , (1)

(where Rcol0 = ∅), we will focus on the estimation of
Pr [Rcoli|¬Rcoli−1] for i = 1, . . . , q. Note thatUi−1 contains
at mosti nodes without the occurrence of eventRcoli−1 by
Proposition 1.

Suppose thatA makes a forward queryπ(x∗L||x∗R) =
(yL||yR). Since there are at most one orderly reachable node
u ∈ Ui−1 such thatuR = x∗R, the i-th query determines at
most one orderly reachable nodev = (yL||(uL ⊕ x∗L ⊕ yR)).
The probability thatuL ⊕ x∗L ⊕ yR = wR for somew ∈ Ui−1

is at mostiN/(N2 − q). WhenA makes a backward query
π−1(y∗L||y∗R) = (xL||xR), the probability thatxR = wR for
somew ∈ Ui−1 is also at mostiN/(N2 − q). Therefore we
conclude that

Pr [Rcoli|¬Rcoli−1] ≤ iN

N2 − q
,

and by (1),

Pr [Rcolq] ≤
q∑

i=1

iN

N2 − q
≤ q(q + 1)

2(N − 1)
.

Let Coll denote the event thatA makes a collision ofJHc.
This event guarantees existence of two paths

P1 : IV (= u[0]) i1→ u[1] i2→ · · · is−1→ u[s− 1] is→ w
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and

P2 : IV (= v[0])
j1→ v[1]

j2→ · · · jt−1→ v[t− 1]
jt→ w′

such thatchopc(w) = chopc(w′). We can assume that this
collision is anearliest-possibleone such thatis 6= jt.

If both w andw′ are orderly reachable nodes (with the above
paths) andi∗ = is > jt (without loss of generality), then we
would have the following configuration.

1) C1: u
i∗→ w where u ∈ Ui∗−1 and chopc(w) =

chopc(w′) for somew′ ∈ Ui∗−1.
If one of w andw′ is not an orderly reachable node, assuming
w is not an orderly reachable node without loss of generality,
let i∗ = iα be the first index in pathP1 such thatiα ≥ iα+1.
Then, u = u[α − 1] is an orderly reachable node inUi∗−1.
Starting from this node, we have one of the following two
local configurations.

2) C2: u
i∗→ u′ i∗→ u′′, whereu ∈ Ui∗−1.

3) C3: u
i∗→ u′

j→ u′′, whereu ∈ Ui∗−1 and j < i∗.
To summarize, we have

Advcol
JHc

(A) = Pr [Coll] ≤ Pr

[
3∨

k=1

Ck

]

≤ Pr [Rcolq] + Pr

[(
3∨

k=1

Ck

)
∧ ¬Rcolq

]
. (2)

Proposition 3: Suppose that an adversaryA makes q
queries to a random permutationπ and its inverseπ−1. For
N = 2n/2 andq < N ,

Pr

[(
3∨

k=1

Ck

)
∧ ¬Rcolq

]
≤ N

N − 1
· q(q + 1)

2c
.

Proof: Throughout the proof, we fix1 ≤ i∗ ≤ q and
bound the probability that thei∗-th query completes any of
the configurationsC1, C2 and C3 without the occurrence of
eventRcolq.

First, we suppose that thei∗-th query π−1(y∗L||y∗R) =
(xL||xR) is backward. In order to make any configurationCk,
(x′L||xR) should be contained inUi∗−1 for somex′L. This
event occurs with probability at mosti∗N/(N2 − q) since
|Ui∗−1| ≤ i∗ without the occurrence of eventRcolq.

Next, we suppose that thei∗-th query π(x∗L||x∗R) =
(yL||yR) is forward. This query determines at most one orderly
reachable nodeu∗ ∈ Ui∗−1 such thatu∗R = x∗R, and hence a

unique nodew = (yL||(u∗L ⊕ x∗L ⊕ yR)) such thatu
i∗→ w for

someu ∈ Ui∗−1.
a) EventC1 ∧ ¬Rcolq: The probability that

chopc(yL||(u∗L ⊕ x∗L ⊕ yR)) = chopc(w
′)

for a fixed w′ ∈ Ui∗−1 is at most2n−c/(N2 − q). Since
|Ui∗−1| ≤ i∗, the probability that thei∗-th query completesC1

without the occurrence of eventRcolq is at mosti∗2n−c/(N2−
q).

b) EventC2 ∧ ¬Rcolq: The probability that

u∗L ⊕ x∗L ⊕ yR = x∗R

is at mostN/(N2 − q).

c) EventC3 ∧ ¬Rcolq: The probability that

u∗L ⊕ x∗L ⊕ yR = xj
R

for somej < i∗ is at most(i∗ − 1)N/(N2 − q).

To summarize, we have

Pr

[(
3∨

k=1

Ck

)
∧ ¬Rcolq

]
≤ N

N2 − q

q∑

i=1

(
iN

2c
+ 1 + (i− 1)

)

=
(

N

2c
+ 1

)
· N

N2 − q
· q(q + 1)

2

≤ N

N − 1
· q(q + 1)

2c
.

By Propositions 2 and 3, and inequality (2), we have the
following theorem.

Theorem 1:For thec-bit JH hash functionJHc,

Advcol
JHc

(q) ≤ q(q + 1)
2c−1

.
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